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ABSTRACT
In a moving objects database (MOD) the dataset and the
workload change frequently. As the locations of objects
change in space and time, the data distribution also changes
and the answer for a same query over the same region may
vary widely over time. As a result, traditional static indexes
are not able to perform well and it is critical to develop self-
tuning indexes that can be reconfigured automatically based
on the state of the system. Towards this goal we propose the
ST2B-tree, a Self-Tunable Spatio-Temporal B+-Tree index
for MODs, which is amenable to tuning. Frequent updates
to its subtrees allows rebuilding (tuning) a subtree using a
different set of reference points and different grid size with-
out significant overhead. We also present an online tuning
framework for the ST2B-tree, where the tuning is conducted
online and automatically without human intervention, also
not interfering with regular functions of the MOD. Our ex-
tensive experiments show that the self-tuning process min-
imizes the effectiveness degradation of the index caused by
workload changes at the cost of virtually no overhead.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS; H.2 [Database Management]; H.3.1 [Content Anal-

ysis and Indexing]: Indexing methods

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Moving Object Indexing, Location-based Services, Index Tun-
ing, Self-Tuning, Data Distribution

1. INTRODUCTION
Database tuning is crucial to the efficient operation of a

database management system (DBMS). Almost every com-
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mercial DBMS provides some tuning tools. The goal of
tuning is to maintain the database always in a near “op-
timal” state. Variations in workload, including both queries
and updates, can significantly impact the performance of the
database. Usually, some components of the database, such
as the indexes and the query optimizer, can be configured
to adapt to workload changes.

Traditionally, the database administrator (DBA) was fully
responsible for tuning the system to ensure optimal perfor-
mance. However, it is impractical for the DBA to keep track
of on the system’s performance all the time. The only practi-
cal solution is to make a database self-tunable so that tuning
proceeds automatically with minimal human intervention.

While some works have been done to develop self-tuning
technologies in database systems, these works are largely re-
stricted to traditional static databases. However, there are
a number of emerging applications (e.g., Geographical In-
formation Systems and location aware applications such as
traffic monitoring) that manage highly dynamic data. In
particular, in a Moving Objects Database (MOD), a large
number of objects are continuously moving, and their loca-
tions have to be frequently updated. The distribution of
moving objects varies over time and space. For example,
in a traffic management system, objects are likely crowded
in some places but less so in others. Moreover, the num-
ber of vehicles at certain locations may be larger during
the day and relatively smaller at night. This means that
the workload for the same query over the same region may
be quite different at different times. Thus, there is a need
to re-examine self-tuning methods for managing dynamic
databases.

In this paper, we focus on designing self-tuning indexes to
support MODs. Existing works on indexing MODs mostly
focus either on designing indexing structures or developing
efficient algorithms for various kinds of queries. Variability
in data workload, i.e., cardinality and distribution of ob-
jects, has so far been overlooked in the design of moving ob-
ject indexes. On the other hand, while self-tuning indexes
(e.g., [4]) have been designed to adapt to workload varia-
tions without the DBA’s intervention, these are focused on
relatively static databases. To the best of our knowledge, no
previous work has investigated the problem of index tuning
in the area of moving object indexing. This work is part of
the SpADE project [1], which uses MySQL as an MOD to
manage moving objects.

Our contributions in this paper are the following:

• We examine three kinds of data diversities in moving
objects databases and specify their impact on a moving



object index based on space partitioning.

• We present a Self-Tunable Spatio-Temporal index for
moving objects, reusing the classical B+-tree, which
we name ST2B-tree. It is amenable to tuning with
respect to the use of reference points as well as the
granularity of space partitioning. No modification to
the basic structure is required.

• We introduce an online tuning framework. In the frame-
work, the ST2B-tree tunes itself based on data varia-
tions. The tuning is performed online with low over-
head. We also provide a guideline for determining pa-
rameters for the ST2B-tree.

• We have conducted an extensive experimental study to
evaluate the performance of the proposed self-tunable
index. The results show that the self-tuning process
lessens the degradation in the effectiveness of the index
with virtually no overhead.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews some related works. Section 3 specifies the
challenges that motivate the self-tuning of a moving object
index. Section 4 presents the ST2B-tree. Section 5 intro-
duces the online tuning framework and how it works. Sec-
tion 6 shows our experimental results. Finally, Section 7
concludes the paper.

2. RELATED WORK
Existing moving object indexes can be classified into two

categories. One is based on data partitioning, such as the
TPR-tree [15] and its variant the TPR*-tree [17]. This type
of indexes organizes objects in a R-tree-like structure. A
Minimum Bounding Rectangle (MBR) is used to bound ob-
jects that are close to one another and that can be stored
in a page. The MBRs are organized hierarchically in an R-
tree-like structure. At the bottom level of the hierarchical
structure, split occurs if too many objects are contained in
a page. While two neighboring MBRs are merged into one
if all objects can be stored in a single page. Data partition-
ing arises because each bottom level MBR contains no more
than a given number of objects. Therefore, the regions in
which objects are crowded always consist of many small re-
gions bounded by leaf MBRs. Sparse regions are typically
covered by few large MBRs.

The second category of indexes relies on space partition-
ing, such as the B+-tree based indexes [8, 9, 20] and the grid
based proposals [11, 13, 19]. These indexes partition space
with a grid in advance. An object is indexed by the cell it
belongs to. The indexing strategy completely ignores the
feature (distribution) of objects.

Space partitioning based indexes surpass their counter-
parts that are based on data partitioning in two ways. First,
both the B+-tree and the grid index are well established
indexing structures present in virtually every commercial
DBMS. The index can be integrated into an existing DBMS
easily. No additional physical design is required to modify
the underlying index structure, concurrency control and the
query execution module of the DBMS. Second, in compari-
son with spatial indexes such as the R-tree, operations such
as search, insertion and deletion on the B+-tree and the grid
index can be performed very efficiently.

The superiority is more remarkable especially in a con-
current environment. Because concurrency control in the
R-tree-like indexes is more complex and time consuming,
the R-tree based indexes are therefore not as scalable for
real moving objects applications, where frequent updates
and queries arrive simultaneously. Jensen, Lin and Ooi [8]
have shown that the throughput of the TPR-tree [15] does
not scale up in concurrent operations due to the fact that
the R-tree based indexes hold the lock longer during up-
dates. Guo et al. [7] have also shown that the pre-processing
and tree optimization strategies employed in the TPR*-tree
[17] results in extra delay in locking, and hence reduces the
performance gain in query processing due to the preprocess-
ing during insertions. They propose using the Buddy-tree
[16] as the alternate structure to trade the data partitioning
and the use of MBR in object bounding for a similar space
partitioning R-tree like index.

However, despite the above deficiencies, R-tree based in-
dexes such as the TPR-tree are less susceptible to data diver-
sities and changes as a result of MBRs splitting and merging.
In contrast, because existing space partitioning indexes, such
as the Bx-tree [8], partition space using a single uniform grid,
the workload across different parts of the index may not be
balanced. Such imbalance does impact the performance of
existing indexes based on space partitioning.

To address the imbalance of space partitioning, STRIPE
[14] utilizes the conventional quad-tree as the underlying
index. The quad-tree is a space partitioning index that
is adaptive to data distribution. The space partitioning is
guided by data distribution, i.e., the way of space partition-
ing is fixed but only dense regions are partitioned. However,
different from the B+-tree, the quad-tree is an unbalanced
structure. The objects in the dense region are stored deeply
in the tree. Updates and queries on these objects always in-
cur higher overhead. Even using such distribution-adaptive
indexes such as the quad-tree, the performance is still unsat-
isfactory when dealing with such data skew in moving ob-
jects databases. To avoid performance deterioration caused
by imbalance and likely changes in workload, it is therefore
crucial to tune the index explicitly.

2.1 Index Moving Objects Using the B+-tree
The Bx-tree [8] is the first effort to adapt the B+-tree to

index moving objects. Each cell of the grid is assigned a
unique id with the help of a space filling curve. Objects are
indexed in a B+-tree with the id of the cell it belongs to.

The time dimension is partitioned into intervals depending
on the maximum time duration between two updates of an
object. Each time interval has a certain reference time. A
portion of the B+-tree is reserved for each time interval.
An object is indexed in the phase with its location at the
reference time. An update deletes the old entry in the valid
phase that covers the last updating time of the object and
then inserts the new record into the newest phase. As time
passes, the oldest phase expires and a new one is appended.

To process a range query, the Bx-tree searches each valid
phase with an enlarged query region. The query region is
expanded to the corresponding reference time according to
the maximum velocity of objects. For example in Figure 1,
given a range query Rq = (−→x1,

−→x2) at tq, the enlarged query
R′

q at tref is:

R′

q = (−→x1 −
−−−→maxv · |tref − tq|,

−→x2 + −−−→maxv · |tref − tq|) (1)
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Figure 1: Query Processing in the Bx-tree

where −→x1 and −→x2 are the lower-left and the upper-right corner
of the of Rq.

−−−→maxv represents maximum velocity. Query
enlargement is essential to avoid false negatives. Objects
outside R′

q at tref cannot appear in Rq at tq due to maximum
velocity constraints. In Figure 1, at tref , o1 is outside Rq

and o2 is inside. In contrast, o1 is actually inside Rq while
o2 is outside Rq at tq. However, since both o1 and o2 are
inside the enlarged region R′

q at Tref , there is no omission
in the result.

The use of the space filling curve in deriving the 1d cell
id destroys location proximity to some extent. A 2d range
query is transformed into several 1d range queries. In Figure
1, the enlarged query region R′

q covers five 1d queries q1 to
q5 which are shown as thick lines (note that q5 is a single
value query).

In [8], global maximum speed is used for query enlarge-
ment, and this could mean that oversized enlarged queries
are used in regions with moving objects. In [9] Jensen,
Tiesyte and Tradisauskas improve the Bx-tree query effi-
ciency through more conscious query enlargements.

Recently, Yiu, Tao and Mamoulis present the Bdual-tree
[20] which also uses a B+-tree to index moving objects,
like the Bx-tree. The Bdual-tree indexes objects in a dual
space instead. A 2d moving object o(x1, x2) is a 4d point
o(x1, x2, v1, v2) in dual space (xi and vi represent the coor-
dinates and velocity in i-th dimension). The space parti-
tioning is applied to the dual space, which means that both
location and velocity are considered in deriving the 1d key.
Unlike the Bx-tree, the Bdual-tree uses R-tree-like query al-
gorithms as in the TPR-tree. Each internal entry in the
B+-tree maintains a set of MOving Rectangles (MOR), in-
dicating the spatial region and range of velocity covered by
the subtree of the entry. A range query searches the subtree
of an internal entry only if any of its MORs intersects with
the query region. Likewise, a kNN query in the Bdual-tree
is processed in a branch-and-bound manner just like that
in the TPR-tree. By partitioning the velocity space, the
Bdual-tree improves the query performance of the Bx-tree.
However, maintaining the MORs introduces high compu-
tation workload, which slows down the fast update of the
B+-Tree according to our findings in [5]. In a concurrent
environment, the throughput is also lower, since during an
update an internal node has to be locked for a longer period
until the MORs are updated to ensure consistency between
its entries and their MORs. In addition, unlike the Bx-tree,
the Bdual-tree modifies the query algorithm of the B+-tree,
which can no longer be readily integrated into existing com-
mercial DBMSs.

3. CHALLENGES IN MOD
In this section, we first examine the impact of data density

and granularity of space partition on index performance.
Next, we present three kinds of data diversity in moving
objects databases. Object diversities hinder an index from
being “optimal”. Index degradation caused by differences
and changes of data engenders the demand for tuning the
index online.

3.1 Impact of Data Density and Space Parti-
tion

To use the B+-tree for indexing spatial data, the first step
is to reduce dimensionality, i.e., mapping spatial data into
1d data. Typically, space is partitioned into small grid cells.
Each cell is assigned a unique key for indexing, using a space
filling curve for example. A 2d query is transformed into
several 1d range queries that can be evaluated over the B+-
tree. The data density and granularity of space partition
exert a joint effect on the index performance.

3.1.1 High Density vs. Coarse Grid
If the density of objects is high, or a coarse grid is used

to partition space, each cell contains many objects and we
have to check all objects in the cells that intersect with the
query. Large number of false positives are incurred in the
boundary cells. For example, in Figure 2(a), all objects
(solid circles) in the 3×3 cells that intersect with the query
(the dark square) must be examined. On the other hand,
since objects in the same cell have the same indexing key, a
cell with too many objects may incur overflow pages. This
means that update cost will be higher as overflow pages have
to be read and searched. The existence of too many overflow
pages also compromises the balance property and bounded
search cost of the B+-tree structure.

3.1.2 Low Density vs. Fine Grid
At the opposite end, if the density of objects is low, or a

fine grid is used to partition space, few objects are contained
in a cell. For example, we can partition the space in Figure
2(a) with a finer grid. Figure 2(b) zooms in on the query
region in Figure 2(a). Now, most cells contain no more than
1 object. Obviously, no additional update overhead is in-
curred. The number of false positives also decreases in query
processing because the boundary cells become smaller and
contain fewer objects. However, the number of 1d range
queries needed increases (from 2 to 9 in Figure 2, shown as
red, thick lines). Although time is saved for pruning false
positives, the increase in the number of 1d range queries
deteriorates query performance.

3.2 Types of Data Diversity
Intrinsically, moving objects are spatial data objects chang-

ing positions with time. The differences and changes of data
fall into the following three categories, which we illustrate
in Figure 3.

3.2.1 Diversity in Space
In general, the density of moving objects varies in different

areas in space. Hotspots, such as commercial centers and
major road junctions, always have higher object density than
other places. Such a situation is portrayed in Figure 3(a).
At time instance t0, we have two hotspots enclosed in red,
solid circles and the blue, dashed circles indicate regions with



(a) Dense/Coarse Grid (b) Sparse/Fine Grid (a) Case 1: at t0 (b) Case 2: at t1 (c) Case 3: at t2

Figure 2: The Co-relation of Data Density and

Grid Granularity, Impact on Query Processing Figure 3: Spatial and Temporal Data Diversity

relatively lower object density.

3.2.2 Diversity with Time
In moving objects environment, the quantity of moving

objects changes with time. For example, mass of vehicles
travel in the day, causing heavy traffic load on the roads.
In contrast, traffic is relative light at night. From time t0
(Figure 3(a)) to t1 (Figure 3(b)), hotspots are still hotspots;
however, the density of all areas decreases significantly.

3.2.3 Diversity in Space with Time
As a combination of the above two kinds of diversities,

both the density and distribution of moving objects change
with time. From time t1 (Figure 3(b)) to time t2 (Figure
3(c)), besides an increase in the total number of objects,
the hotspots move as well. The sparse areas may become
dense while the dense areas may become sparse due to some
external factors such as peak hours, road work and accidents.
In a real scenario, from 8am to 9am, people drive from the
residential suburbs to downtown. During office hours, most
vehicles move in and around the downtown area. After 5pm,
people start trickling home. The residential suburbs and
downtown behave as hotspots alternately.

In summary, the object density and granularity of space
partitioning greatly affect the efficiency of an index. Con-
sidering the three kinds of diversities in MODs, an index
suffers from performance degradation if it partitions space
evenly using a uniform grid consistently. As a result, a good
moving object index must:

1. Discriminate between regions of different densities,

2. Adapt to density and distribution changes with time.

4. ST2B-TREE: A SELF-TUNABLE MOVING
OBJECT INDEX

In this section, we first introduce the structure and basic
query algorithm of the ST2B-tree. Then we explain why
the ST2B-tree satisfies the two requirements of an adaptive
index for moving objects outlined in earlier section.

4.1 ST2B-tree Structure
The ST2B-tree is built on the B+-tree without any changes

to the underlying B+-tree structure and insertion/deletion
algorithms. It indexes moving objects as 1d data points. A
moving object is a spatio-temporal point in its natural space.
The 1d key is composed of two components: KEYtime and
KEYspace.

BT0          BT1

BT
1' BT

0
'

2iT (2i+1)T        2(i+1)T

(2i-1)T (2i
+3
)T

Rotate with time
t

SPANspace SPANspace SPANspace SPANspace

SPANtime SPANtime

c0 c1 c2... c0 c1 c2... c0 c1 c2... c0 c1 c2...

G10 G1n-1 G20 G2n-1

Figure 4: The Essence of the ST2B-tree

4.1.1 Index with Time
Assume that an object is updated at least once in time

interval T . The ST2B-tree logically splits the B+-tree into
two subtrees, BT0 and BT1. Each subtree is assigned a range
of T time. Specifically, the time ranges covering BT0 and
BT1 are [2iT, (2i+1)T ) and [(2i+1)T, (2i+2)T ) respectively,
where i = 0, 1, 2 . . . As time elapses, the value of i increases
and the time ranges of the two subtrees roll over alternately.
The index therefore rolls over and self-adjusts with time.
This behavior is illustrated in Figure 4. Suppose an object
o issues an update (−→x ,−→v ) at tup, where −→x and −→v represent
the location and velocity of the object at tup. The object
will be indexed in the subtree whose time range covers tup.
For instance, updates issued in [0, T ) are indexed in the first
subtree BT0 while those in [T, 2T ) fall into the right subtree
BT1. Subsequent updates in [2T, 3T ) go back to BT0, and
so on and so forth.

Each subtree has a unique reference time Tref and o is
indexed with its location at Tref , −→x ′ = −→x +−→v ·(Tref − tup).
Tref is set to the upper bound of the time range, which is:

Tref =

{

(2i + 1)T, if tup ∈ [2iT, (2i + 1)T )
(2i + 2)T, if tup ∈ [(2i + 1)T, (2i + 2)T )

(2)

The temporal component KEYtime, which is used to iden-
tify the subtree that the object belongs to, is obtained as
follows:

KEYtime =

{

0, if tup ∈ [2iT, (2i + 1)T )
1, if tup ∈ [(2i + 1)T, (2i + 2)T )
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4.1.2 Index in Space
Suppose we have a set of n reference points {RP0, RP1,

. . ., RPn−1}, the data space is then partitioned into n dis-
joint regions {V C0, V C1, . . . , V Cn−1} in terms of the dis-
tance to the reference points. The partitioning forms a
Voronoi Diagram of the n reference points as shown in Fig-
ure 5(a). Each reference point RPi maintains a grid Gi,
which centers at RPi and covers its voronoi cell V Ci.

Given an object o(−→x ,−→v ) whose nearest reference point is
RPi. The spatial component KEYspace is:

KEYspace(o) = i × SPANspace + cid(−→x ′, Gi)

where i is the grid id, i.e., the id of the nearest reference point
of o. A portion of SPANspace continuous keys in the B+-tree
are reserved for each grid. i×SPANspace helps to locate the
portion of key values reserved for grid Gi. cid(−→x ′, Gi) is the
id of the cell in Gi that −→x ′ belongs to. The cell id is assigned
with the help of a space filling curve. To preserve locality
well, the ST2B-tree utilizes the Hilbert curve as shown in
Figure 2. In order to guarantee that the keys of adjacent
grids do not intersect with each other, SPANspace must be
an upper bound of cid in all grids.

Figure 5(b) illustrates how objects are indexed around two
reference points RP1 and RP2. o1, whose nearest reference
point is RP1, is indexed in G1 and o2 in G2 likewise. An-
other object o3, although covered by G2 as well, is indexed
in G1 because o3 is closer to RP1 than RP2 (i.e., in RP1’s
voronoi cell V C1). Although overlap may exist between ad-
jacent grids, the voronoi cells of reference points are disjoint.
Therefore, it is clear for an object which grid it belongs to.

In summary, in the ST2B-tree, object o is indexed with
KEYST2 :

KEYST2 = KEYtime × SPANtime + KEYspace (3)

where SPANtime, similar to SPANspace, is the size of the
key range reserved for each subtree. SPANtime must be
an upper bound of KEYspace to avoid overlap between keys
in two subtrees. KEYtime and KEYspace are derived as
described above.

Figure 4 shows the essence of the ST2B-tree. The current
time is in [2iT, 2(i + 1)T ). The two logical subtrees are BT0

and BT1. At time (2i − 1)T , the time range of BT ′

1 has
changed to [(2i + 1)T, 2(i + 1)T ), shown as BT1 in Figure
4. The next rotation will happen at 2(i + 1)T . BT0 will
be assigned with a new time range, shown as BT ′

0. For key
allocation, the key space is halved according to the update

Algorithm 1 Range Query

Input: Query region Rq , query time tq

Output: All objects in Rq at tq

1: result = ∅
2: for each subtree BTi do

3: R′

q = EnlargeRegion(Rq, maxv, tq, Trefi);
4: for each entry reference point RPj do

5: if R′

q intersects with V Cj then

6: //V Cj stands for the voronoi cell of RPj

7: for each cell of Gj that intersects with R′

q do

8: for each objects o in cell do

9: ptq = Position(o, tq, Trefi);
10: if ptq ∈ Rq then

11: add o into result;
12: return result;

time. At the second level, each half is further partitioned
for the n grids. Finally, at the bottom level, within the key
space of each grid, objects are sorted in ascending order of
the id of the cells they belong to.

4.2 Basic Query Algorithm
Algorithm 1 depicts the evaluation procedure of a simple

range query in the ST2B-tree. Both subtrees are searched.
Since all objects in subtree BTi are indexed with positions
at time Trefi, the algorithm first enlarges the query region
Rq from query time tq to Trefi using the global maximum
velocity maxv (line 3) (the same way as in the Bx-tree in
Equation 1). Then, the grids of the reference points whose
voronoi cell intersects with the enlarged query region needs
to be further searched (lines 4-5). The cells that intersect
with the enlarged query region are retrieved (line 7) (in as-
cending order of cell id assigned by using the space filling
curve). Finally, an object is added to the result set if its
position at time tq is contained in the query region (lines
8-10). When the query q is a current query, tq = tnow (tnow

is the current time when the query is issued). If q is a pre-
dictive query, tq = tnow + h, where h denotes the prediction
interval.

In the ST2B-tree, a k Nearest Neighbor (kNN) query is
conducted as incremental range queries until exact k nearest
neighbors are found. It starts with an initial search radius r.
If the kNNs are not found in the initial search region, it ex-
tend the search radius by increment. Both r and increment
is set to Dk/k as in [8], where

Dk =
2

π
[1 −

√

1 −

√

k

N
] (4)

Here, Dk is the estimated distance to k’th nearest neighbor
[18] and N is the number of objects in a unit space. We omit
the detailed algorithm here and a similar procedure can be
found in [8].

4.3 Why is the ST2B-tree Tunable?
We now explain why the ST2B-tree can be easily tuned

to adapt to the three kinds of data diversities discussed in
Section 3.

4.3.1 Diversity in Space
The ST2B-tree partitions space using n reference points.

Each reference point has its own grid and the cell sizes are



not necessarily identical for all the grids. In fact, grid gran-
ularity can be determined by object density in the voronoi
cell of the reference point. As shown in Figure 5(b), objects
are relatively dense around RP1. G1 therefore is of finer
granularity. For RP2, objects are relatively sparse, so G2

uses larger cells and partitions space at a coarser level. By
using different grids in different areas (for different reference
points), the ST2B-tree can discriminate between regions of
different densities.

4.3.2 Diversity with Time
At any point of time t, the older subtree (i.e., the one cov-

ering the earlier time range) in the ST2B-tree is in a mono-
tonic shrinking phase – only deletions affect that subtree.
All insertions are conducted in the other subtree, whose time
range covers the current time. At the next transition time
iT , the older subtree becomes empty. All objects have been
updated to the other subtree or dropped from the system.

If the database receives no update of an object in T time,
we assume that the object leaves the system (e.g., parking)
and it is deleted from the index. Alternatively, the object is
migrated into the other part of the index with its position
at new reference time. The new position is estimated using
its last updated position and velocity. This is a design deci-
sion to be made by the system administrator. For the latter
strategy, in order to guarantee the precision of the index-
ing, the system can pull updates from objects that are not
updated in the last T time.

A new time range is assigned to the empty subtree, with-
out interfering with any objects which are currently indexed
in the other subtree. The older subtree is refreshed while the
original younger subtree becomes the “older” one and enters
the shrinking phase. At each transition time, one subtree in
ST2B-tree is empty. The ST2B-tree can tune the granular-
ity of grids for the empty subtree, according to the object
densities investigated in the previous T time. The grids of
the other non-empty subtree are kept unchanged. As a re-
sult, the two subtrees in the ST2B-tree have their own set
of grids. While searching/updating in a subtree, the corre-
sponding set of grids are used. No collision happens.

4.3.3 Diversity in Space with Time
Since the two subtrees work independently without inter-

ference, the granularity of grids can be tuned to capture the
change of object density with time. Likewise, the number
and positions of reference points can also be tuned to capture
the change of object distribution with time. For example,
in Figure 3, at t0 and t1, the centers of the four circles are
used as reference points. Later, at t2, the centers of the
three circles are used as reference points instead. Further,
the two subtrees use their own set of reference points and
corresponding grids.

In short, both reference points and grid granularity are
tunable in the ST2B-tree. The ST2B-tree meets the two
requirements we mentioned in Section 3. We discuss the
guidelines of tuning these two parameters in the next section.

5. SELF-TUNING OF THE ST2B-TREE
We now introduce how the self-tuning occurs on the ST2B-

tree. Figure 6 shows the self-tuning framework of the ST2B-
tree. The tuning framework adds four components on top of
the underlying DBMS: the Reference Table for keeping infor-

updates

Histogram

Reference Table

Online Tuning

Key-Gen

Timer

B
+
-tree Index

Figure 6: Online Tuning Framework

mation about the reference points, the Key-Gen for comput-
ing the index key, the Histogram for keeping statistics about
the objects and the Online Tuning module for executing the
tuning process.

The Reference Table maintains information about refer-
ence points, including their positions and voronoi cells. It
consists of two parts, one for the reference points of the last
T time (i.e., the older subtree) and one for the reference
points of current time.

On receiving an object update, the Key-Gen module reads
information about the reference points of the current time
from the reference table and calculates the KEYST2 accord-
ing to Equation 3. Then, the update is performed over the
B+-tree with KEYST2 and the new location and velocity of
the object. Meanwhile, the statistics about the number of
objects in the Histogram is updated accordingly.

At each transition time iT , the Timer triggers the On-
line Tuning module to start the tuning procedure. Based
on the statistics in the Histogram, the Online Tuning mod-
ule discovers new reference points and determines their grid
granularity respectively. At the end of the tuning procedure,
the reference table is updated accordingly.

We note that the reference time of a subtree also affects
query performance. A query is enlarged into Tref using max-
imum velocity. The maximum velocity and reference time
both affect the query enlargement. Only the reference time
is a variable parameter. Nevertheless, it does not need to be
tuned with time. In [20], the authors have proven that the
optimal value of Tref is 1

2
(T +H), where T is the maximum

update time and H is the maximum time that a query can
predict into future. We constrain H to be equal to T and
hence Tref is set as in Equation 2. In fact, it is reasonable
to set H to T . An object issues at least one update during
time interval T , which means the location and velocity of
the object stored will expire after T time. It makes sense
to constrain a query to predict no further than T before the
information stored becomes invalid.

Next, we present how the online tuning module discovers
reference points and chooses the reasonable granularity for
it.

5.1 Selection of Reference Points
The ST2B-tree can dynamically adjust to different space

partitioning. In a moving objects environment, both up-
dates and queries arrive continuously. The tuning procedure
must be done online without deferring any other operations.
Since the data is highly dynamic, it is difficult to find an
optimal partitioning. Even if such an optimal partitioning
exists, it is costly to discover it; moreover, its optimality is
bound to be short-lived because of the dynamics of the sys-
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tem. Therefore, we aim to rapidly find a moderate set of
reference points that roughly but effectively partitions the
space based on density differences.

5.1.1 Histogram Maintenance
In the tuning framework, we have a 2d histogram, which

consists of n × n square sized cells. The histogram of a cell
cij , where i and j denote the row and column number of the
cell, is a tuple hij = (−→xij , nij), where nij is the estimated
number of objects in that cell at Tref + T and −→xij is the
centroid of objects in the cell.

Let the next transition time be Tref . Then, we find the
reference points for [Tref , Tref + T ]. During that time, all
updates will be indexed at a new reference time Tref +T (as
explained in Section 4.3). This is why objects are estimated
and counted at the time instance of Tref + T .

Given an object o(−→x ,−→v ) that is updated at tup, the his-
togram is updated as follows:

1. Estimate o’s position at the time instance of Tref +T :

−→x ′′ = −→x + −→v · (Tref − tup + T )

According to the definition of Tref in Section 4.1.1,

−→x ′′ = −→x + −→v · [(btup/T c + 2)T − tup]

2. Hij of the cell that −→x ′′ belongs to is updated

−→xij =
nij ·

−→xij + −→o.x′′

nij + 1

nij = nij + 1

Thus, −→xij is always the centroid of all objects estimated to
be in the cell, as

−→xij =

∑nij

k=1

−→
x′′

k

nij

5.1.2 Finding Reference Points via Region Growing
The tuning procedure is triggered by the timer at each

transition time iT . With the histogram, e.g., Figure 7(a),
we identify dense and sparse regions by region growing.

Region growing is a technique widely used in image seg-
mentation for finding adjacent similar pixels. In image pro-
cessing, similarity of pixels is defined over color, brightness,
etc. For us, each cell in the histogram acts as a pixel. Two
cells are said to be similar if they have a similar number of
objects. Algorithm 2 shows the procedure of region growing.

Algorithm 2 Region Growing

Output: a set of regions {R}

1: RS = ∅;
2: for each previous reference points RPk do

3: c = the cell that contains RPk

4: if c is unmarked then

5: Add c to a new region R; mark c;
6: Growing(c, R); Add R to RS;
7: while there is c that is unmarked do

8: Add c to a new region R; mark c;
9: Growing(c, R); Add R to RS

10: return RS;

Function Growing(c, R)

1: for each neighbor cell c′ of c do

2: if c′ is unmarked and |c.n − R.maxn| 6 ε and |c.n −
R.minn| 6 ε then

3: Add c′ to R; mark c;
4: Growing(c′, R);

First, we take the previous reference points as the seeds
for growing. Since the distribution and densities of moving
objects change gradually, the positions of reference points
should move slightly. Starting from cell c, we examine its
neighboring cells. If the neighboring cell c′ does not belong
to any existing region and |c.n − R.maxn| 6 ε and |c.n −
R.minn| 6 ε, c′ is added into the region R of c. R.maxn and
R.minn are the maximum and minimum number of objects
n of cells in R, and ε is a predefined threshold that defines
similarity.

The growing procedure terminates when all the cells be-
long to some region. If too many regions are returned by the
algorithm, the small regions can be dropped as noises and
adjacent regions can be merged together based on a relaxed
definition of similarity.

The output of the region growing algorithm is a set of
regions that have similar densities as shown in Figure 7(a).
The centers of the resultant regions are marked as the refer-
ence points. More specifically, a resultant region R consists
of several adjacent cells. The center of R, i.e., the reference
point RP , is calculated as:

RP.−→x =

∑

cij∈R nij · −→xij
∑

cij∈R nij

The object density for RP is:

RP.ρ =

∑

cij∈R nij

|R|

where |R| is the number of cells in R.
As shown in Figure 7(b), the region growing method roughly

identifies four reference points, which further partition the
space into disjoint voronoi cells. We use the cells in R (with
a similar number of objects) for estimating density for RP ,
ignoring the other cells which are noted as noises.

5.1.3 Alternative Methods
Intuitively, we can also apply density-based clustering meth-

ods to partition space. Examples of density based spatial
clustering methods include DBSCAN [6] and OPTICS [3].
However, none of these existing methods accommodate the
need of online tuning. First, they can only find dense ar-



eas; sparse regions may be completely disregarded. Second,
density-based clustering methods are time-consuming. DB-
SCAN takes seconds to cluster a few thousand data points,
even in the presence of a spatial index. While the tuning
procedure is running, all updates have to be suspended. An
update costs a few milliseconds over a B+-tree on average,
which means that thousands of updates may need to be post-
poned during the tuning procedure. This is not acceptable
for online tuning of an index meant to support high update
load.

Yet another practical approach to select reference points is
to consider the characteristics of real world moving objects,
e.g., city traffic. In reality, hotspots remain hotspots, no
matter how many objects there are. Prominent landmarks,
such as major road junctions and commercial centers, always
attract more vehicles than the other places. These hotspots
can be used as reference points most of the time. On the
other hand, we can also discover that real traffic often ex-
hibits seasonal patterns, either daily, weekly or monthly. For
example, many vehicles move towards the downtown area of
a city between 8 to 9am and travel back to the residential
suburbs at around 5 to 6pm every weekday. Based on the
above observations, reference points can also be computed
off-line based on historical data. We can compute and pre-
serve the reference points for each time slice that the data
shows similar patterns regularly. An online tuning module
can then choose the set of preset reference points of the right
slice of time as the tree rolls over with time.

5.2 Selection of Grid Granularity
As discussed in Section 3, data density and grid granular-

ity are important factors that affect the performance of any
index based on grid partitioning. Thus, grid granularity is
a core parameter to be tuned in our tuning framework. To
find the optimal granularity of space partition, we now an-
alyze the effect of different grid granularity on the overall
performance of an index.

For ease of analysis, we assume that objects are uniformly
distributed in the entire space and the space is partitioned
using a single grid. Without ambiguity, the result is directly
applicable to each grid in the ST2B-tree with local uniform
assumption around each reference point.

The notations used are listed in Table 1. We start our
analysis by giving a definition of the grid order λ.

Symbol Description

N the number of objects
λ the resolution of space filling curve
IOL the number of leaf node I/O
NL the number of leaf nodes
no average number of overflow nodes per leaf node
CL capacity of leaf nodes
CO capacity of overflow nodes
f average fan-out of tree nodes
h the height of the tree
V the velocity used in query enlargement
L the side length of square covered by a leaf node
Lq the side length of a square-sized range query
tq the time of the query
Tref the reference time objects stored in the index
Nq the number of 1d range queries
NI the number of internal node accesses

Table 1: Notations for Analyzing Grid Granularity

Definition 1. The grid order λ is defined as the reso-

lution of the space filling curve used for mapping grid cells

into 1d values. A grid of order λ partitions data space into

2λ × 2λ cells.

Suppose that the entire space is a unit space which is
partitioned by a grid of order λ. Then the side length of each
cell is 2−λ. The following Lemma 1 estimates the number
of leaf I/Os [20].

Lemma 1. The number of leaf node accesses of a square-

sized range query is estimated as:

IOL = NL[L + V · (tq − Tref ) + Lq]
2 (5)

Proof: NL is the number of leaf nodes. Let NL = 22i,
where i is an integer no larger than λ. Then, each leaf node
covers 22(λ−i) cells on average, which forms a square with
side length L = 2−i = (1/NL)1/2.

Let LQ = V · (tq − Tref ) + Lq. LQ is the side length of
the enlarged query region. (L+LQ)2 is the probability that
the enlarged query range intersects with the spatial region
covered by a leaf node. The number of leaf nodes that to be
accessed by a query is NL[L + LQ]2.2

However, Equation 5 in Lemma 1 is valid only when there
is no overflow pages in the tree, which means that there
are very few objects having the same key. Considering the
uniform distribution of objects, N

22λ ≤ 1 (λ ≥ 1
2

log2 N) is a
necessary condition of Lemma 1.

Lemma 2. If λ ≥ 1
2

log2 N , IOL does not change when λ
increases.

Proof: If λ ≥ 1
2

log2 N , each cell contains 1 object at most

and duplicate keys are rare. NL = N
f

, where f = 69% · CL,

where 69% is a typical fill factor of the B+-tree.

IOL = NL(L + LQ)2 = NL

(

(1/NL)
1

2 + LQ

)2

=
N

f

(

(f/N)
1

2 + LQ

)2

Thus, IOL is independent on λ.2

Lemma 3. If λ ≤ 1
2

log2 N − 1
2

log2 CL, IOL increases

when λ decreases.

Proof: If λ ≤ 1
2

log2 N − 1
2

log2 CL ( N
22λ ≥ CL), the number

of objects contained in a cell is larger than the capacity of
a leaf node. Each leaf node has only one key; therefore
NL = 22i, i = λ. Suppose each leaf node has no overflow
nodes, then:

IOL = NL(1 + no)
(

(1/NL)
1

2 + LQ

)2

Let CL = CO,

no =
N

22λ − CL

CO
=

N

22λCO
− 1

IOL =

(

N

CO

)

(2−λ + LQ)2

Clearly, IOL increases as λ decreases. 2

Lemma 3 can be explained as follows. All objects con-
tained in the boundary cells, which partially intersect with
the query range, need to be checked. As λ decreases, the



extent of a grid cell grows exponentially, bringing in more
false positives. Access to these false positives incurs addi-
tional I/Os.

Corollary 1. The grid order λ that minimizes IOL is

in range [ 1
2

log2 N − 1
2

log2 CL, 1
2

log2 N ].

Proof: Easily deduced from Lemma 2-3, IOL increases when
λ is either larger than 1

2
log2 N or smaller than 1

2
log2 N −

1
2

log2 CL.2
According to Corollary 1, in order to minimize the number

of leaf node accesses during a query, the space should be use
the space filling curve with resolution 1

2
log2 N− 1

2
log2 CL ≤

λ ≤ 1
2

log2 N .
While Corollary 1 focuses on the I/O overhead of the leaf

nodes, we now consider the overhead of internal node ac-
cesses. The pitfall of dimensionality reduction is that a
multidimensional range query is split into several 1d range
queries. The number of 1d range queries has a significant
impact on internal node accesses.

Lemma 4. The number of 1d range queries Nq and inter-

nal node accesses NI increases with λ.

Proof: As proven in [12], the number of 1d range queries
is about half the perimeter of the query range. Therefore,
we have Nq = 2 · LQ/2−λ. Suppose we do not modify the
query algorithm of the B+-tree. Each 1d range query starts
from the root and searches for the lower boundary of the
range. Then, the number of internal node accesses is:

NI = Nq · h = Nq · logf NL = 2λ+1 · logf NL · LQ

The height of the tree h is relatively stable when NL

varies. NI is mainly determined by Nq. As λ increases,
Nq decreases, and so does NI . Therefore, a larger value of
λ indicates a heavier overhead on internal nodes. 2

To evaluate the query performance of a tree-index, the
number of leaf I/O NL is usually the main concern. How-
ever, as we shall see in Section 6.2, the number of I/O
varies slightly with a wide range of grid order (in between
[ 1
2

log2 N − 1
2

log2 CL, 1
2

log2 N ]). Consequently, the number
of accesses to internal nodes dominates query performance
in terms of query time. In addition, the effect of internal
node accesses becomes even more important in a concur-
rent environment. When queries and updates arrive simul-
taneously, each access to the internal node requires locking
node and postponing concurrent updates accessing the same
node. Therefore, according to Lemma 4 and Corollary 1,
d 1

2
log2 N − 1

2
log2 CLe is the best value for λ that minimizes

the query costs.
We also need to consider the effect of grid granularity on

update cost. An update consists of deleting the old record
and inserting the new record. To find the old record, 1+ 1

2
no

nodes are searched on average, apart from the cost for node
underflow. The old record is deleted and the node is writ-
ten back. Despite the sporadic node overflow, inserting the
new record incurs (1 + no) + 1 leaf and overflow node I/O.
The insertion follows the overflow chain to obtain the last
overflow nodes into which the new record is to be inserted.
Writing back contributes another I/O. The update cost in-
creases with the average number of overflow pages. The cell
size increases with smaller λ and so is the number of overflow
pages.

In summary, a smaller λ within the range indicated in
Corollary 1 leads to better query performance; nevertheless
it might incur higher update costs. As we shall see in Section
6.1, the query and the update cost achieves the best tradeoff
when λ = d 1

2
log2 N − 1

2
log2 CLe.

6. PERFORMANCE EVALUATION

6.1 Experiment Setup
We implemented the ST2B-tree with self-tuning function,

and compared it with the Bx-tree [8] and the TPR*-tree
[17], the most representative B+-tree and R-tree based in-
dexes for moving objects. The ST2B-tree and the Bx-tree
are built on top of the same B+-tree implementation for fair-
ness and both of them adopt the optimal query enlargement
algorithm [9], which has been designed for the Bx-tree and
is also applicable to the ST2B-tree. We use the TPR*-tree
implementation provided in [2]. The original version stores
moving objects as rectangles, which reduces the capacity
of the leaf nodes. We modified the code to store objects
as points to enhance the performance. We also experiment
on the Bdual-tree. Although it improves the query perfor-
mance to some extent, the update cost is high due to the
time-consuming MORs computation and the performance
in concurrent environment is poor for the same reason. For
demonstrating the effect of self-tuning more clearly, we leave
the corresponding results of the Bdual-tree in [5].

The data space is 100×100km2. We have five kinds of ob-
jects, with maximum speed of 30, 60, 90, 150 and 300km/h,
simulating different real vehicles in different traffic condi-
tions. Since we intend to investigate the imbalance and
changes in the workloads, we use nonuniform workloads in
most experiments unless explicitly stated. We have ran-
domly selected some points in the space as hotspots. Each
hotspot uses a Gaussian distribution to generate objects
around it. The queries are either uniform or non-uniform.
The non-uniform queries follow the same distribution as the
objects. The settings of workload used in the experiments
are summarized in Table 2, where default values of variable
parameters are shown in bold.

Parameter Setting

Max Update Time (T ) 120 timestamps
Number of Hotspots 1, 2, ..., 10

Number of objects(K) 100, 200, 300, ..., 1000

Max speed of objects 30, 60, 90, 150 and 300km/h
Query Distribution uniform, non-uniform
Number of queries 200

Range Query Size 100×100m2, 200×200m2, ...,
1×1km2

kNN k 10, 20,..., 100

Query Predict Time (h) 120 timestamps
Query-Update ratio 10:1, 1:1, 1:10, 1:100, 1:1000

Table 2: Workload Settings

All the indexes are implemented in C++ and all of them
use the same disk manager included in the TPR*-tree im-
plementation [2]. The disk page size is 4KB. A LRU buffer
of 50 pages is used. All experiments were conducted on a
PC with Pentium IV 3.0GHz processor, 1.0GB memory and
80G SATA Disk, running Window XP.
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Figure 8: Grid Granularity

6.2 Effect of Grid Granularity
We first study the effect of grid granularity empirically to

verify the analysis in Section 5.2 and to determine the opti-
mal grid order. We test on two workloads, including 100K
and 1M moving objects. The positions of objects are ran-
domly selected. Since the objects are uniformly distributed,
the object density in the whole space is the same. The ST2B-
Tree will have only one reference point at the center of the
space. The query workload consists of 200 1000×1000m2

uniform range queries.
Figure 8 illustrates the overall performance with grid order

λ varying from 3 to 11. We make the following observations:

1. The update I/O increases significantly when λ ≤ 1
2
(log2N−

log2L) (about 7 for 1M objects) and hardly changes
with finer partitioning.

2. When λ ≤ 1
2
(log2N − log2L), the query I/O increases

with smaller value of λ. However, with larger λ, the
number of average query I/O hardly changes. Note
that in Figure 8(b), the query I/O of the 1M dataset
is labeled with the right y-axis with different values,
because we do not intend to compare the I/O of 100K
and 1M datasets but to show the trend of I/O changes
with grid order λ.

3. The query processing time increases dramatically with
a larger λ due to increasing number of key retrievals.
Notice that the query processing time increases when
λ becomes smaller. This can be explained by the fact
that with excessively large grid cells, very few number
of 1d searches are required. However, the I/O cost
increases significantly, which contributes more to the
processing time. In addition, it incurs more time to
prune away a large number of false positives when the
grid cells are too large.

Based on the observation in Figure 8 and the analysis in
Section 5.2, we set the grid granularity λ to d 1

2
(log2N −

log2L)e, which results in the best tradeoff between update
and query performance. In the following experiments, this
rule is applied to the selection of global space partitioning for
the Bx-tree, while for the ST2B-tree, it guides the selection
of grid granularity of each reference point.

6.3 Spatial Diversity
We now investigate the effectiveness of the ST2B-tree with

regard to the spatial diversity of moving objects. We use
the default workloads that have been generated with 10 ran-
domly selected hotspots as shown in Figure 9 (some hotspots
are so close to others that they cannot be clearly seen). In

Figure 9: Hotspots in Spatial and Temporal Test

this set of experiments, we keep the distribution and car-
dinality of workload unchanged with time and examine the
effect of data skew only. The indexes run up to 1.5T (180s)
and are evaluated on the average query performance for 200
queries.

6.3.1 Scalability Test
First, Figure 10 shows the effect of the database size on

query performance. The number of objects varies from 100K
to 1M, with an increment of 100K. Because of the overlap
between MBRs, the TPR*-tree has to search multiple paths
in an update, resulting in a high update cost in both I/O and
time Figure 10(a). The MBR adjustment during an update
operation further degrades the update time. The Bx-tree
and the ST2B-tree both have fairly constant update time,
about 0.2ms. The update time of the TPR*-tree is about
40 times higher. The TPR*-tree update I/O grows with the
number of objects. Because the TPR*-tree has a smaller
internal node capacity, the height of the tree grows faster
than the others and still due to the overlap between MBRs,
more nodes have to be searched during an update.

The query cost of all indexes increases linearly with the
number of objects in Figure 10. For kNN queries (Figure
10(b)), the ST2B-tree and the TPR*-tree have similar I/O
overhead. The cost of the ST2B-tree is mainly determined
by the number of objects contained in the enlarged query
region, while the TPR*-tree has been specifically designed
to reduce its I/O cost over the original TPR-tree. The Bx-
tree is not able to handle hotspots well due to its use of
one single grid granularity, and causes many false positives
to be retrieved and examined, and therefore incurs a higher
I/O cost. The ST2B-tree is most efficient in terms of query
time due to its adaptive use of appropriate grid granularity
when it rolls forward with time. Although the TPR*-tree
has been optimized for query performance at the expense of
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Figure 10: Object Cardinality

higher update cost, the use of bounding rectangle enlarge-
ment compromises its search performance. We show the
results of the kNN queries as the Bx-tree and the ST2B-tree
both treat kNN queries as incremental range queries. That
is, the kNN queries are processed as range queries, and the
ranges are gradually extended till all k nearest neighbors are
retrieved.

6.3.2 kNN Query
Figure 11 examines the performance of kNN queries fur-

ther, with k varying from 10 to 100. The I/O cost of the
kNN queries, which depends on the number of objects in the
expanded query region, is less sensitive to k for the Bx-tree
and the ST2B-tree. The ST2B-tree incurs fewer I/Os than
the Bx-tree. The ST2B-tree surpasses the Bx-tree by a great
margin in kNN queries. Both the time and I/O cost of the
Bx-tree are quite high. The kNN queries in both Bx-tree and
the ST2B-tree are conducted as incremental range queries
with the initial search region estimated from the objects den-
sity. The Bx-tree makes such estimation using global object
density. As a result, in dense regions, the Bx-tree starts the
kNN search with an oversized search region; in sparse re-
gions, the Bx-tree starts with a small search region, but has
to expand the region for many times to find the kNNs. Both
affect the query processing time and I/Os. The ST2B-tree,
on the other hand, starts the search with a more accurate
radius according to the object density around the reference
points. Owing to more accurate search region, the perfor-
mance of the ST2B-tree on kNN queries is less affected by
the data skew. The TPR*-tree incurs fewer I/Os and higher
query processing time for the same reason as stated in the
scalability test.

6.4 Temporal Diversity
Next, we examine the effectiveness of the ST2B-tree’s self-

tuning to adapt to the time-dependent changes in data car-
dinality. All the objects follow the same distribution with
previous experiments (Figure 9). We build the indexes in
the first round and run them for another 9 rounds of time.
Each round is 120s. In each round, each object updates
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once and the whole index will be refreshed after the round.
The number of queries is 1% of the number of updates each
round. This is to simulate the real applications where many
moving objects will keep on updating their positions, and
the number of positional updates significantly outnumbers
the number of queries. We study the total time of processing
the updates and queries in each round as a measure of over-
all performance. Then we compute the benefit introduced
by the self-tuning feature of the ST2B-tree, which is defined
as follows:

Benefit =
total processing time of the Bx-tree

total processing time of the ST2B-tree with self-tuning

The granularity of the Bx-tree is selected using the initial
number of objects. When the data is uniformly distributed,
the performance of the ST2B-tree degrades to that of the Bx-
tree with only one reference point at the center of the space.
In other words, the Bx-tree is a static version of the ST2B-
tree which completely ignores the distribution and changes
of objects. Hence we compare the ST2B-tree with the static
Bx-tree to show the effectiveness of the self-tuning features.
The running time of the self-tuning process is included in
the total processing time of the ST2B-tree.

Firstly, we start with 100K objects and add another 100K
objects in each round. Figure 12 shows the benefit of self-
tuning in each round of time. The benefit of self-tuning
grows with time, when the hotspots and data distribution
change with time.

Initially, the Bx-tree selects the granularity of space par-
titioning with 100K objects. It then uses a grid with large
cells (about 3000×3000m2). With the increasing number
of objects in the following rounds, the update performance
degrades, because the increase in the number of overflow
pages affects the balance of the underlying B+-tree. On the
other hand, since the ST2B-tree partitions and indexes ob-
jects according to the distribution and density, the update
cost remains at about 0.2ms all the time. Since the Bx-tree
uses a large cell, it saves on query processing time accord-
ing to our findings in Section 6.2. However, with carefully
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Figure 14: Distribution of Spatio-Temporal Test

chosen granularity of space partition, the query processing
time of the ST2B-tree is higher than the Bx-tree only in
the dense regions. In those sparse regions, the ST2B-tree
might use even larger grid cells, which would reduce the
query processing time. Therefore, combining all these facts,
the overall benefits of the self-tuning of the ST2B-tree over
static Bx-tree, especially when there are more updates than
the queries, are obvious and significant.

Figure 13 shows the results of a reverse process. Start-
ing with 1M objects, the number of objects being indexed
decreases by 100K per round. The Bx-tree now uses a fine
grid with smaller cells (about 200×200m2) to partition the
entire space. As we can see, the benefit of self-tuning is
just a little higher with non-uniform queries. That is be-
cause the cost of the Bx-tree is also near optimal with such
a fine grid. Non-uniform queries follow the same distribu-
tion as objects, and therefore the queries are concentrated
at those dense regions. Now, in those dense regions, the
ST2B-tree also employs fine grid. Therefore, the benefit of
tuning is less significant. However, for the uniform queries,
the ST2B-tree gains more by tuning with the data workload.
The ST2B-tree reduces the processing time of queries in the
sparse regions by using larger grid cells. The overall perfor-
mance gain is much more significant than for non-uniform
queries.

6.5 Spatio-Temporal Diversity
Now we further investigate the performance of the self-

tuning phase of the ST2B-tree with regard to the changes of
objects distribution with time. We generate a set of work-
loads in which the skewness of objects increase with time. In
round 0, we build the indexes with 1M uniformly distributed
objects. Next, in round 1, the objects are generated with
10 hotspots. Subsequently, the number of hotspots is re-
duced by 1 each round. Finally, in round 9, there is only
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Figure 15: Change of Data Distribution with Time

one hotspots. Figure 14 shows the snapshots of objects at
round 5 (moderately skewed) and round 9 (highly skewed).
The query-update ratio is still 1:100.

Figure 15 shows the changes of performance benefits with
time. As expected, the gain of the self-tuning ST2B-tree
over the static Bx-tree increases when the data become even
more skewed with time. During round 1, the ST2B-tree
is comparable to the Bx-tree. Since the objects are uni-
formly distributed, the region-growing algorithm will result
in only one reference point and hence the ST2B-tree degen-
erates to a Bx-tree with only one reference point. However,
with skewed objects joining in the subsequent rounds, the
ST2B-tree gradually outperforms the Bx-tree owing to the
self-tuning phases, which are equipped with adaptive space
partitioning and granularity of indexing. For range queries
(Figure 15(a)), the ST2B-tree outperforms the Bx-tree by
about 2 times in round 9 for both uniform and non-uniform
query workloads. For kNN queries (Figure 15(b)), the per-
formance gain is much higher, which is about 4 times.

6.6 Throughput Test
Finally, we evaluate the performance of the Bx-tree and

the ST2B-tree on concurrent operations. To highlight the
difference between the two B+-tree based indexes, we do not
show the result for the TPR*-tree since it has been shown
to be inefficient in a concurrent environment in [16] and [8].
We implemented the B-link concurrency control mechanism
[10]. A multi-thread program ran in a single PC to simulate
a real multi-user environment. The default 1M dataset as
shown in Figure 9 is used. The query workload of each
thread is 200 non-uniform range queries with side length of
1000m.The results are the average of 10 runs of simulation.

Figure 16(a) shows the throughput and response time with
the query-update ratio varying from 10:1 to 1:1000 using 8
working threads. In real moving object applications, the up-
date load caused by the changes in object locations and mov-
ing speed is much higher than the query load, and the query-
update ratio is to simulate such scenario. As expected, the
throughput of the indexes increase significantly with more
updates and the response time decreases. The queries, which
hold shared lock on the node being accessed, do not prevent
the other queries. However, although queries allow other
read operations, they block the update operations, and by
design of the experiment, the updates contribute more to
the throughput. The updates access only a few nodes in the
index and can finish very quickly. The (range) queries, on
the other hand, have to traverse multiple paths and read
many leaf nodes (data nodes); hence they take longer than
the updates. Since the throughput is defined as the num-
ber of operations completed by the indexes every second,
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Figure 16: Concurrent Operations

the updates contribute more to it. Therefore, when the per-
centage of updates in the workload increases, the throughput
increases and the response time decreases accordingly.

Figure 16(b) shows the effect of the number of threads un-
der workload whose query-update ratio is 1:100. The num-
ber of threads varies from 1 to 128. In general, the through-
put reduces with the number of threads for all indexes. Like-
wise, the response time increases with the number of threads
being used. An update locks exclusively the node being ac-
cessed and all the concurrent requests for reading/writing
the node are suspended. Considering the workload includes
more updates than queries, the indexes are frequently being
w-locked. As a result, the throughput decreases with more
threads and each thread waits for a longer time for its turn
to access the tree.

However, with more queries, the throughput first increases
and then reduces with increasing number of threads. As
shown in Figure 16(c), when the workload consists of 50%
queries and 50% updates, the throughput reaches the peak
with about 2 threads for both indexes. As more threads
are introduced, they start to compete for resources and the
throughput reduces as a result. Because the queries hold
a shared lock on the node being accessed, it will not sus-
pend the other query operations. Therefore, the degree of
concurrency becomes higher with more queries. With more
queries, the throughput reaches the peak with more threads.
For example, when query-update ratio is 10:1, the peak of
the throughput is 4 threads or so. However, in the MODs,
there are typically more short updates than queries. Due

to space constraint, we omit the results for such workload
composition.

As can be observed from Figure 16(b) and 16(c), the in-
dexes hit thrashing point after the number of threads in-
crease to certain point and this is when the throughput
starts to decrease after hitting the peak. We note that the
throughput and the response time can be improved by im-
plementing some admission controls to throttle the amount
of work being performed concurrently. However, the admis-
sion control introduces another dimension of effect to the
performance, we therefore ran our throughput tests without
any admission.

For different workload and number of threads, the ST2B-
tree obtains higher throughput and faster response time than
the Bx-tree. The ST2B-tree partitions sparse regions with
larger cell, incurring much fewer key retrieves than the the
Bx-tree. The internal nodes are locked less frequently than
the Bx-tree. On the other hand, in dense regions, the ST2B-
tree uses finer grid than the Bx-tree. The Bx-tree has higher
update I/O. This means that an update operation exclu-
sively locks more nodes, preventing the other updates or
queries from accessing these nodes.

7. CONCLUSION
In this paper, we proposed the ST2B-tree, a self-tunable

B+-tree index for moving objects databases. The ST2B-
tree partitions the data space using a set of reference points.
Each reference point uses its own individual grid to partition
its voronoi cell. The grid granularity is determined by the
object density around a reference point. By monitoring the
distribution and density of objects, the ST2B-tree dynami-
cally determines a different set of reference points, and adap-
tively adjusts the granularity of the space partitioning, The
self-tuning procedure runs online, incurring almost no over-
head. The experimental results confirm that the ST2B-tree
is efficient, robust and scalable with respect to data distribu-
tion, volume and concurrent operations. More importantly,
equipped with the self-tuning capability, the ST2B-tree is
also adaptive to changes in workload with time.
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