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1 INTRODUCTION

Peer-to-Peer (P2P) is a very controversial topic. Many
experts believe that there is not much new in P2P.
There is a lot of confusion: what really constitutes P2P?
For example, is distributed computing really P2P or
not? In addition, this field is relatively young, raising
the question of whether a survey paper is needed. We
believe that the confusion does warrant a thorough
analysis. We have included in the paper the systems
that the P2P community considers to be P2P (e.g., SE-
TI@home), as well as those systems that have some
P2P aspects (e.g., .NET my services), even if there is a
divided opinion on the nature of P2P. The goals of the
paper are threefold: 1) to understand what P2P is and it
is not, as well as what is new, 2) to offer a thorough
analysis of and examples of P2P computing, and 3) to
analyze the potential of P2P computing.

The term “peer-to-peer” refers to a class of systems and
applications that employ distributed resources to perform
a critical function in a decentralized manner. The re-
sources encompass computing power, data (storage and
content), network bandwidth, and presence (computers,
human, and other resources). The critical function can be
distributed computing, data/content sharing, communi-
cation and collaboration, or platform services. Decentral-
ization may apply to algorithms, data, and meta-data, or
to all of them. This does not preclude retaining central-
ization in some parts of the systems and applications if it
meets their requirements. Typical P2P systems reside on
the edge of the Internet or in ad-hoc networks. P2P en-
ables:

• valuable externalities, by aggregating resources
through low-cost interoperability, the whole is made
greater than the sum of its parts

DEJAN S. MILOJICIC1, VANA KALOGERAKI1, RAJAN LUKOSE1, KIRAN NAGARAJA2,
JIM PRUYNE1, BRUNO RICHARD1, SAMI ROLLINS3, and ZHICHEN XU1

[dejan, vana, lukose, pruyne, zhichen]@exch.hpl.hp.com, bruno_richard@hp.com,
knagaraj@cs.rutgers.edu, srollins@cs.ucsb.edu

Peer-to-Peer Computing

1HP Labs, 2Rutgers University, 3University of California at Santa Barbara

Abstract
The term “peer-to-peer” (P2P) refers to a class of systems and applications that employ distributed resources to
perform a critical function in a decentralized manner. With the pervasive deployment of computers, P2P is in-
creasingly receiving attention in research, product development, and investment circles. This interest ranges from
enthusiasm, through hype, to disbelief in its potential. Some of the benefits of a P2P approach include: improving
scalability by avoiding dependency on centralized points; eliminating the need for costly infrastructure by en-
abling direct communication among clients; and enabling resource aggregation.

This survey reviews the field of P2P systems and applications by summarizing the key concepts and giving an
overview of the most important systems. Design and implementation issues of P2P systems are analyzed in gen-
eral, and then revisited for each of the case studies described in Section 6. This survey will help people understand
the potential benefits of P2P in the research community and industry. For people unfamiliar with the field it pro-
vides a general overview, as well as detailed case studies. It is also intended for users, developers, and information
technologies maintaining systems, in particular comparison of P2P solutions with alternative architectures and
models.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems - network oper-
ating systems; D.1.3 [Programming Techniques]: Concurrent Programming - distributed programming; D.4.7 [Operating
Systems]: Organization and Design - distributed systems; E.1 [Data]: Data Structures - distributed data structures; F.1.2
[Theory of Computation]: Modes of Computation - parallelism and concurrency; H.3.4 [Information Systems]: Systems
and Software - Distributed systems.

General Terms: design, experimentation

Additional Key Words and Phrases: peer-to-peer, decentralization, self-organization, anonymity, cost of ownership.



2

• lower cost of ownership and cost sharing, by using
existing infrastructure and by eliminating and distrib-
uting the maintenance costs

• anonymity/privacy, by incorporating these require-
ments in the design and algorithms of P2P systems and
applications, and by allowing peers a greater degree of
autonomous control over their data and resources

However, P2P also raises some security concerns for us-
ers and accountability concerns for IT. In general it is
still a technology in development where it is hard to dis-
tinguish useful from hype and new from old. In the rest
of the paper we evaluate these observations in general as
well as for specific P2P systems and applications.

P2P gained visibility with Napster’s support for music
sharing on the Web [Napster 2001] and its law suit with
the music companies over digital rights management.
However, it is increasingly becoming an important tech-
nique in various areas, such as distributed and collabora-
tive computing both on the Web and in ad-hoc networks.
P2P has received the attention of both industry and aca-
demia. Some big industrial efforts include the P2P
Working Group, led by many industrial partners such as
Intel, HP, Sony, and a number of startup companies; and
JXTA, an open-source effort led by Sun. There are a
number academic events dedicated to P2P, such as the
International Workshop on P2P Computing, Global and
P2P Computing on Large Scale Distributed Systems, In-
ternational Conference on P2P Computing, and O’Reilly
P2P and Web Services Conference. There are already a
number of books published [Oram 2000, Barkai 2001,
Miller, 2001, Moore and Hebeler 2001, Fatah and Fatah
2002], and a number of theses and projects in progress at
universities, such as Chord [Stoica et al 2001], Ocean-
Store [Kubiatowitz et al. 2000], PAST [Druschel and
Rowstron 2001], CAN [Ratnasamy 2001], and FreeNet
[Clark 1999].

There are several of the definitions of P2P that are being
used by the P2P community. The Intel P2P working
group defines it as “the sharing of computer resources
and services by direct exchange between systems”
[p2pwg, 2001]. Alex Weytsel of Aberdeen defines P2P
as “the use of devices on the internet periphery in a non-
client capacity” [Veytsel, 2001]. Ross Lee Graham de-
fines P2P through three key requirements: a) they have
an operational computer of server quality; b) they have
an addressing system independent of DNS; and c) they
are able to cope with variable connectivity [Graham
2001]. Clay Shirky of O’Reilly and Associate uses the
following definition: “P2P is a class of applications that
takes advantage of resources – storage, cycles, content,
human presence – available at the edges of the Internet.
Because accessing these decentralized resources means
operating in an environment of unstable connectivity and
unpredictable IP addresses, P2P nodes must operate out-
side the DNS system and have significant or total auton-
omy from central servers” [Shirky 2001]. Finally,
Kindberg defines P2P systems as those with independent
lifetimes [Kindberg 2002].
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In our view, P2P is about sharing: giving to and obtain-
ing from the peer community. A peer gives some re-
sources and obtains other resources in return. In the case
of Napster, it was about offering music to the rest of the
community and getting other music in return. It could be
donating resources for a good cause, such as searching
for extraterrestrial life or combating cancer, where the
benefit is obtaining the satisfaction of helping others.
P2P is also a way of implementing systems based on the
notion of increasing the decentralization of systems, ap-
plications, or simply algorithms. It is based on the prin-
ciples that the world will be connected and widely
distributed and that it will not be possible or desirable to
leverage everything off of centralized, administratively
managed infrastructures. P2P is a way to leverage vast
amounts of computing power, storage, and connectivity
from personal computers distributed around the world.

Assuming that “peer” is defined as “like each other,” a
P2P system then is one in which autonomous peers de-
pend on other autonomous peers. Peers are autonomous
when they are not wholly controlled by each other or by
the same authority, e.g., the same user. Peers depend on
each other for getting information, computing resources,
forwarding requests, etc. which are essential for the func-
tioning of the system as a whole and for the benefit of all
peers. As a result of the autonomy of peers, they cannot
necessarily trust each other and rely completely on the
behavior of other peers, so issues of scale and redundan-
cy become much more important than in traditional cen-
tralized or distributed systems.

Conceptually, P2P computing is an alternative to the
centralized and client-server models of computing,
where there is typically a single or small cluster of serv-
ers and many clients (see Figure 1). In its purest form, the
P2P model has no concept of server; rather all partici-
pants are peers. This concept is not necessarily new.
Many earlier distributed systems followed a similar
model, such as UUCP [Nowitz 1978] and switched net-
works [Tanenbaum 1981]. The term P2P is also not new.
In one of its simplest forms, it refers to the communica-
tion among the peers. For example, in telephony users
talk to each other directly once the connection is estab-

lished, in a computer networks the computers communi-
cate P2P, and in games, such as Doom, players also
interact directly. However, a comparison between client-
server and P2P computing is significantly more complex
and intertwined along many dimensions. Figure 2 is an
attempt to compare some aspects of these two models.

The P2P model is quite broad and it could be evaluated
from different perspectives. Figure 3 categorizes the
scope of P2P development and deployment. In terms of
development, platforms such as JXTA provide an infra-
structure to support P2P applications. Additionally, de-
velopers are beginning to explore the benefit of
implementing various horizontal technologies such as
distributed computing, collaborative, and content shar-
ing software using the P2P model rather than more tradi-
tional models such as client-server. Applications such as
file sharing and messaging software are being deployed
in a number of different vertical markets. Section 2.3
provides a more thorough evaluation of P2P markets and
Section 5 describes the horizontal technologies in more
detail.

Figure 1: Simplified, High-Level View of Peer-to-Peer ver-
sus Centralized (Client-Server) Approach.

peers clients

server

Figure 2: Peer-to-Peer versus Client-Server. There is no
clear border between a client-server and a P2P model. Both
models can be built on a spectrum of levels of characteristics
(e.g., manageability, configurability), functionality (e.g., look-
up versus discovery), organizations (e.g., hierarchy versus
mesh), components (e.g., DNS), and protocols (e.g., IP), etc.
Furthermore, one model can be built on top of the other or
parts of the components can be realized in one or the other
model. Finally, both models can execute on different types of
platforms (Internet, intranet, etc.) and both can serve as an un-
derlying base for traditional and new applications. Therefore,
it should not be a surprise that there is so much confusion about
what P2P is and what it is not. It is extremely intertwined with
existing technologies [Morgan 2002].
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The following three lists, which are summarized in
Table 1. are an attempt to define the nature of P2P, what
is new in P2P, and what is not new in P2P.

P2P is concerned with:

• The historical evolution of computing in general and
the Internet in particular; computing at the edge of the
Internet. (e.g., SETI@home and other distributed com-
puting systems)

• Sociological aspects of sharing of content (e.g., Nap-
ster and other file/content sharing systems)

• Technological improvements to networks and commu-
nication advances (e.g., wireless networks, handheld
devices enabling better collaboration and communica-
tion)

• P2P software architectures (e.g., JXTA or .NET)

• Deployed P2P algorithms (e.g., Gnutella, FreeNet).

New aspects of P2P include:

• Technology requirements

- scale of deployed computers

- ad-hoc connectivity

- security (e.g., crossing the firewall)

• Architectural requirements
- availability in particular of the scale of the future

number of computers
- scalability of future systems world-wide as well as of

embedded systems
- privacy and anonymity (beyond the Web)

• Economy requirements
- cost of ownership
- pervasive use (home versus business – expectations

about quality and guarantees versus best effort)

Aspects of P2P that are not new include:

• Concept and applications (e.g., telephony, networks,
servers)

• Decentralization for scalability and availability (e.g.,
distributed systems in general, replication)

• Distributed state management (e.g., work of Barak and
many others)

• Disconnected operations in general (e.g., Coda and
many others)

• Distributed scheduling algorithms (e.g., on clusters
and grids)

• Scalability (WWW and Web services in particular)

• Ad-hoc networks

• eBusiness

• Algorithms (many P2P and distributed algorithms al-
ready exist)

Paper Organization and Intended Audience

The paper is organized as follows. Section 2 provides
background on P2P. Section 4 describes characteristics
of P2P solutions. Section 3 presents P2P components and
algorithms. Section 5 classifies P2P systems into five
categories and describes a few representatives for each
category. In Section 6, we present more detailed case
studies. Section 7 presents lessons learned from analyz-

Figure 3: P2P Solutions. P2P can be classified into interoper-
able P2P platforms, applications of the P2P technology, and
vertical P2P applications.
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Table 1. Various P2P Perspectives Illustrating What is and What is Not New in P2P.
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ing the P2P area. Finally, in the last section, we summa-
rize the paper and describe opportunities for further
research. In Appendix A, we compare P2P systems with
alternative solutions.

This paper is intended for people new to the field of P2P
as well as for experts. It is intended for users, developers,
and IT personnel. This first section provided a brief over-
view of the field. Readers interested in learning about the
field in general should read Sections 2 through 5. Experts
can benefit from the detailed case studies in Section 6.
Perspectives of users, developers, and IT personnel are
addressed in Section 7.3. We assume that the readers
have a general knowledge of computing systems.

2 OVERVIEW

P2P is frequently confused with other terms, such as tra-
ditional distributed computing [Coulouris et al. 2001],
grid computing [Foster and Kesselman 1999], and ad-
hoc networking [Perkins 2001]. To better define P2P,
this section introduces P2P goals, terminology, and tax-
onomies.

2.1 Goals

As with any computing system, the goal of P2P systems
is to support applications that satisfy the needs of users.
Selecting a P2P approach is often driven by one or more
of the following goals.

• Cost sharing/reduction. Centralized systems that
serve many clients typically bear the majority of the
cost of the system. When that main cost becomes too
large, a P2P architecture can help spread the cost over
all the peers. For example, in the file-sharing space, the
Napster system enabled the cost sharing of file storage,
and was able to maintain the index required for shar-
ing. In the end, the legal costs of maintaining the index
became too large, and so more radical P2P systems
such as Gnutella were able to share the costs even fur-
ther. Much of the cost sharing is realized by the utili-
zation and aggregation of otherwise unused resources
(e.g. SETI@home), which results both in net marginal
cost reductions and a lower cost for the most costly
system component. Because peers tend to be autono-
mous, it is important for costs to be shared reasonably
equitably.

• Improved scalability/reliability. With the lack of
strong central authority for autonomous peers, improv-
ing system scalability and reliability is an important
goal. As a result, algorithmic innovation in the area of
resource discovery and search has been a clear area of
research, resulting in new algorithms for existing sys-
tems [REFS], and the development of new P2P plat-

forms (such as CAN [Ratnasamy 2001], Chord [Stoica
2001], and PAST [Rowstron 2001]). These develop-
ments will be discussed in more detail in Section 3.

• Resource aggregation and interoperability. A de-
centralized approach lends itself naturally to aggrega-
tion of resources. Each node in the P2P system brings
with it certain resources such as compute power or
storage space. Applications that benefit from huge
amounts of these resources, such as compute-intensive
simulations or distributed file systems, naturally lean
toward a P2P structure to aggregate these resources to
solve the larger problem. Distributed computing sys-
tems, such as SETI@Home, distributed.net, and En-
deavours are obvious examples of this approach. By
aggregating compute resources at thousands of nodes,
they are able to perform computationally intensive
functions. File sharing systems, such as Napster, Gnu-
tella, and so forth, also aggregate resources. In these
cases, it is both disk space to store the community’s
collection of data and bandwidth to move the data that
is aggregated. Interoperability is also an important re-
quirement for the aggregation of diverse resources.

• Increased autonomy. In many cases, users of a dis-
tributed system are unwilling to rely on any centralized
service provider. Instead, they prefer that all data and
work on their behalf be performed locally. P2P sys-
tems support this level of autonomy simply because
they require that the local node do work on behalf of
its user. The principle example of this is the various
file sharing systems such as Napster, Gnutella, and
FreeNet. In each case, users are able to get files that
would not be available at any central server because of
licensing restrictions. However, individuals autono-
mously running their own servers have been able to
share the files because they are more difficult to find
than a server operator would be.

• Anonymity/privacy. Related to autonomy is the no-
tion of anonymity and privacy. A user may not want
anyone or any service provider to know about his or
her involvement in the system. With a central server, it
is difficult to ensure anonymity because the server will
typically be able to identify the client, at least by Inter-
net address. By employing a P2P structure in which ac-
tivities are performed locally, users can avoid having
to provide any information about themselves to any-
one else. FreeNet is a prime example of how anonym-
ity can be built into a P2P application. It uses a
forwarding scheme for messages to ensure that the
original requestor of a service cannot be tracked. It in-
creases anonymity by using probabilistic algorithms
so that origins cannot be easily tracked by analyzing
network traffic.
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• Dynamism. P2P systems assume that the computing
environment is highly dynamic. That is, resources,
such as compute nodes, will be entering and leaving
the system continuously. When an application is in-
tended to support a highly dynamic environment, the
P2P approach is a natural fit. In communication appli-
cations, such as Instant Messaging, so-called “buddy
lists” are used to inform users when persons with
whom they wish to communicate become available.
Without this support, users would be required to “poll”
for chat partners by sending periodic messages to
them. Likewise, distributed computing applications
such as distributed.net and SETI@Home must adapt to
changing participants. They, therefore, must re-issue
computation jobs to other participants to ensure that
work is not lost if earlier participants drop out of the
network while they were performing a computation
step.

• Enabling ad-hoc communication and collabora-
tion. Related to dynamism is the notion of supporting
ad-hoc environments. By ad hoc, we mean environ-
ments where members come and go based perhaps on
their current physical location or their current inter-
ests. Again, P2P fits these applications because it nat-
urally takes into account changes in the group of
participants. P2P systems typically do not rely on es-
tablished infrastructure — they build their own, e.g.,
logical overlay in CAN and PAST.

2.2 Terminology

The following terminology is used in the taxonomies in
Section 2.3 and in the comparisons between P2P and its
alternatives in Section 7.1 and Appendix A.

• Centralized systems represent single-unit solutions, in-
cluding single- and multi-processor machines, as well
as high-end machines, such as supercomputers and
mainframes.

• Distributed systems are those in which components lo-
cated at networked computers communicate and coor-
dinate their actions only by passing messages
[Couloris, et al. 2001].

• Client is informally defined as an entity (node, pro-
gram, module, etc.) that initiates requests but is not
able to serve requests. If the client also serves the re-
quest, then it plays the role of a server.

• Server is informally defined as an entity that serves re-
quests from other entities, but does not initiate re-
quests. If the server does initiate requests, then it plays
the role of a client. Typically, there are one or a few
servers versus many clients.

• Client-Server model represents the execution of enti-
ties with the roles of clients and servers. Any entity in
a system can play both roles but for a different pur-
pose, i.e. server and client functionality residing on
separate nodes. Similarly an entity can be a server for
one kind of request and client for others.

• Peer is informally defined as an entity with capabili-
ties similar to other entities in the system.

• P2P model enables peers to share their resources (in-
formation, processing, presence, etc.) with at most a
limited interaction with a centralized server. The peers
may have to handle a limited connectivity (wireless,
unreliable modem links, etc.), support possibly inde-
pendent naming, and be able to share the role of the
server [Oram, 2000]. It is equivalent to having all en-
tities being client and servers for the same purpose.

Other terms frequently associated with P2P include:

• Distributed computing, which is defined as “a comput-
er system in which several interconnected computers
share the computing tasks assigned to the system”
[IEEE 1990]. Such systems include computing clus-
ters, Grids (see below), and global computing systems
gathering computing resources from individual PCs
over the Internet. We will use the term Distributed
Computing to refer to systems that have inherent P2P
properties.

• Grid computing, which is defined as “coordinated re-
source sharing and problem solving in large, multi-in-
stitutional virtual organization.” [Foster and
Kesselman 1999]. More specifically, a Grid is an infra-
structure for globally sharing compute-intensive re-
sources such as supercomputers or computational
clusters. As far as transparency is concerned, Grid
computing is orthogonal to P2P distributed computing
systems.

• Ad-hoc communication, which is defined as a system
that enables communication to take place without any
preexisting infrastructure in place, except for the com-
municating computers. These computers form an ad-
hoc network. This network and associated computers
take care of communication, naming, and security.
P2P systems can be used on top of an ad-hoc commu-
nication infrastructure.

There are many examples of distributed systems, at var-
ious scales, such as the Internet, wide-area networks, in-
tranets, local-area networks, etc. Distributed system
components can be organized in a P2P model or in a cli-
ent-server model. (We believe that other models, such as
three-tier and publish-subscribe, can be mapped onto cli-
ent-server). Typical client examples include Web brows-
ers (e.g., Netscape Communicator or Internet Explorer),
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file system clients, DNS clients, CORBA clients, etc.
Server examples include name servers (DNS [Albitz and
Liu 2001, Mockapetris 1989], LDAP [Howes and Smith
2001], etc.]), distributed file servers (NFS [Sandberg et
al. 1985], AFS [Howard et al. 1988], CORBA Object Re-
quest Brokers [OMG 1996], HTTP Server, authentica-
tion server, etc. Client-server model examples include
CORBA, RMI [Wolrath et al 1996], and other middle-
ware [Bernstein 1996; Britton 2000]). Peer examples in-
clude computers in a network that serve a similar role.
There are numerous examples of the P2P model through-
out the paper.

2.3 P2P Taxonomies

A taxonomy of computer systems from the P2P perspec-
tive is presented in Figure 4. All computer systems can
be classified into centralized and distributed. Distributed
systems can be further classified into the client-server
model and the P2P model. The client-server model can
be flat where all clients only communicate with a single
server (possibly replicated for improved reliability), or it
can be hierarchical for improved scalability. In a hierar-
chal model, the servers of one level are acting as clients
to higher level servers. Examples of a flat model include
traditional middleware solutions, such as object request
brokers and distributed objects. Examples of a hierarchi-
cal model include DNS server and mounted file systems.

The P2P model can either be pure or it can be hybrid. In
a pure model, there does not exist a centralized server.

Examples of a pure P2P model include Gnutella and
Freenet. In a hybrid model, a server is approached first to
obtain meta-information, such as the identity of the peer
on which some information is stored, or to verify security
credentials (see Figure 5 (a)). From then on, the P2P
communication is performed (see Figure 5 (b)). Exam-
ples of a hybrid model include Napster, Groove, Aim-
ster, Magi, Softwax, and iMesh. There are also
intermediate solutions where with SuperPeers, such as
KaZaa. SuperPeers contain some of the information that
others may not have. Other peers typically lookup infor-
mation at SuperPeers if they cannot find it otherwise.

Figure 6 presents a coarse taxonomy of P2P systems. We
classify P2P systems into distributed computing (e.g.,
SETI@home, Avaki, Entropia), file sharing (e.g., Nap-
ster, Gnutella, Freenet, Publius, Free Haven), collabora-
tion (e.g., Magi, Groove, Jabber), and platforms (e.g.,
JXTA and .NET My Services). Section 6 contains a de-
scription of eight case studies of P2P systems according
to the taxonomy presented in Figure 6.

In Figure 7, we present a classification of various P2P
systems according to the taxonomy presented in
Figure 6. This figure demonstrates that certain P2P sys-
tems emphasize different aspects along the taxonomy di-
mensions (computing, storage, communication),
whereas the platforms support all of these dimensions.

Distributed Systems

Peer-to-PeerClient-Server

HybridPureHierarchicalFlat

Figure 4: A Taxonomy of Computer Systems.

Centralized Systems
(mainframes, SMPs, workstations)

Computer Systems

Figure 5: Hybrid Peer-to-Peer Model. (1) Initial communica-
tion with a server, e.g., to obtain the location/identity of a peer,
followed by (2) direct communication with a peer.

peers

server

peers

server

(1) (2)

(a) (b)

P2P Systems

Figure 6: A Taxonomy of P2P Systems.

distributed
computing

file
sharing

collaboration platforms

Figure 7: A Classification of P2P Systems Based on the Tax-
onomy in Figure 6. Systems in bold-italic are case studies de-
scribed in detail in Section 6.
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Application Taxonomy. Three main classes of P2P ap-
plications have emerged: parallelizable, content and file
management, and collaborative (see Figure 8).

• Parallelizable. Parallelizable P2P applications split a
large task into smaller sub-pieces that can execute in
parallel over a number of independent peer nodes.
Most implementations of this model have focused on
compute-intensive applications. The general idea be-
hind these applications is that idle cycles from any
computer connected to the Internet can be leverage to
solve difficult problems that require extreme amounts
of computation. Most often, the same task is per-
formed on each peer using different sets of parameters.
Examples of implementations include searching for
extraterrestrial life [SETI@Home, 2001], code break-
ing, portfolio pricing, risk hedge calculation, market
and credit evaluation, and demographic analysis. Sec-
tion 5.2 presents systems supporting this class of appli-
cation. Componentized applications have not yet been
widely recognized as P2P. However, we envision ap-
plications that can be built out of finer-grain compo-
nents that execute over many nodes in parallel. In
contrast to compute-intensive applications that run the
same task on many peers, componentized applications
run different components on each peer. Examples in-
clude Workflow, JavaBeans, or Web Services in gen-
eral.

• Content and file management. Content and file man-
agement P2P applications focus on storing informa-
tion on and retrieving information from various peers
in the network. The model that popularized this class
of application is the content exchange model. Applica-
tions like Napster [Napster 2001] and Gnutella [Gnu-
tella 2001] allow peers to search for and download
files, primarily music files, that other peers have made
available. For the most part, current implementations
have not focused much on providing reliability and
rely on the user to make intelligent choices about the
location from which to fetch files and to retry when
downloads fail. They focus on using otherwise unused
storage space as a server for users. These applications
must ensure reliability by using more traditional data-
base techniques such as replication. A number of re-
search projects have explored the foundations of P2P

file systems [Ratnasamy et al 2001, Bolosky et al
2000, Kubiatowicz et al 2000, Rowstron and Druschel
2001, Gribble et al 2001, Stoica et al 2001]. Finally,
filtering and mining applications such as OpenCOLA
[OpenCOLA 2001] and JXTA Search [Waterhouse et
al. 2002] are beginning to emerge. Instead of focusing
on sharing information, these applications focus on
collaborative filtering techniques that build searchable
indices over a peer network. A technology such as
JXTA Search can be used in conjunction with an appli-
cation like Gnutella to allow more up-to-date searches
over a large, distributed body of information.

• Collaborative. Collaborative P2P applications allow
users to collaborate, in real time, without relying on a
central server to collect and relay information. Instant
messaging is one subclass of this class of application.
Services such as Yahoo!, AOL, and Jabber instant
messaging have become popular among a wide variety
of computer users [Strom 2001]. Similarly, shared ap-
plications that allow people (e.g., business colleagues)
to interact while viewing and editing the same infor-
mation simultaneously, yet possibly thousands of
miles apart, are also emerging. Examples include
Buzzpad [www.buzzpad.com] and distributed Power-
Point [Rice and Mahon 2000]. Games are a final type
of collaborative P2P application. P2P games are host-
ed on all peer computers and updates are distributed to
all peers without requiring a central server. Example
games include NetZ 1.0 by Quazal
[www.quazal.com], Scour Exchange by CenterSpan,
Descent [www.planetdescent.com], and Cybiko.

P2P Target Environments. The target environments for
P2P consist of the Internet, intranets, and ad-hoc net-
works. P2P systems connected to Internet support con-
nections in the spectrum from dialup lines to broadband
(DSL). The underlying architecture can rely on personal
home computers, corporate desktops, or personal mobile
computers (laptops and handhelds).

The most frequent environment is personal home com-
puters connected to the Internet. The early P2P systems
in this environment were primarily used for content shar-
ing. Examples include Napster, Gnutella, and Aimster.
Distributed computing in a P2P fashion also started on
desktop computers on the Internet such as SETI@home,
but it also gained acceptance in Intranets, such as in
DataSynapse [Intel 2001, DataSynapse 2001].

Ad-hoc networks of handhelds are only recently becom-
ing available (e.g., Endeavors Technologies Magi) dedi-
cated for collaborative computing, but similar platforms
are expected to follow with a wider deployment of hand-
held computers and wireless networks.

P2P applications

collaborativeparallelizable

instant games

content and file

exchange systems messaging
sharedfiltering,

mining
content filecompute- compo-

Figure 8: A Taxonomy of P2P Applications.
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Future environments may include variations of existing
deployment scenarios, such as using corporate desktops
for content sharing, e.g., for distributed Internet data cen-
ters, or handheld computers for resource aggregation
(content sharing or distributed computing). Furthermore,
Internet2 (http://www.internet2.edu/) may offer more
enabling support for P2P systems and applications.

P2P Markets. There are three main markets for P2P:
consumer, enterprise, and public. Consumer space en-
compasses the use of P2P for personal use, such as music
and content sharing, instant messaging, email, and
games. Application examples include music sharing and
communication. Examples of companies in this space in-
clude Napster and Gnutella. Enterprise space P2P appli-
cations include biotech, financial, traditional IT
solutions, and B2B. Example companies include Data
Synapse, Information Architects, and WorldStreet. Fi-
nally, the public class of applications includes the fol-
lowing types of applications: information sharing, digital
rights management, and entertainment. Centerspan,
AIM, and Scour deliver music and video on broadband
using P2P technology.

According to Philips, markets can be classified based on
user activities into those performed @work, @play, and
@rest [Nethisinghe 200]. We extended this perspective
to map user activities to markets (consumer, enterprise,
and public) (see Table 2). The insight is that P2P perme-
ates a number of user activities and markets.

3 COMPONENTS AND ALGORITHMS

This section introduces components of P2P systems and
algorithms used in P2P.

3.1 Infrastructure Components

Figure 10 illustrates an abstract P2P architecture. In this
section, we discuss the functions of each component and
look at some of the tradeoffs involved in making compo-
nent implementation decisions.

Communication. The P2P model covers a wide spec-
trum of communication paradigms. At one end of the
spectrum are desktop machines mostly connected via
stable, high-speed links over the Internet [Saroiu et al.
2002]. At the other end of the spectrum, are small wire-
less devices such as PDAs or even sensor-based devices
that are connected in an ad-hoc manner via a wireless
medium. The fundamental challenge of communication
in a P2P community is overcoming the problems associ-
ated with the dynamic nature of peers. Either intentional-
ly (e.g., because a user turns off her computer) or
unintentionally (e.g., due to a, possibly dial-up, network
link failing) peer groups frequently change. Maintaining
application-level connectivity in such an environment is
one of the biggest challenges facing P2P developers.

Group Management. Peer group management includes
discovery of other peers in the community and location
and routing between those peers. Discovery of peers can
be highly centralized such as in Napster [Napster 2001],
highly distributed such as in Gnutella [Gnutella 2001], or
somewhere in between. A number of factors influence
the design of discovery algorithms. For example, mobile,
wireless devices can discover other peers based upon

P2P markets

publicconsumer

content

enterprise

biotech financial B2Bcontent commu- enterta-

Figure 9: A Taxonomy of P2P Markets. There are also other
markets that can map to some of the presented ones, such as
military, education, scientific, etc.
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their range of communication [Roman et al. 2001]. Pro-
tocols built for desktop machines often use other ap-
proaches such as centralized directories.

Location and routing algorithms generally try to opti-
mize the path of a message traveling from one peer to an-
other. While deployed systems such as Napster and
Gnutella try to optimize factors such as underlying net-
work latency, the research in this space takes a more sys-
tematic approach as discussed in Section 3.2.

Robustness. There are three main components that are
essential to maintaining robust P2P systems: security, re-
source aggregation, and reliability. Security is one of the
biggest challenges for P2P infrastructures. A benefit of
P2P is that it allows nodes to function as both a client and
a server. However, transforming a standard client device
into a server poses a number of risks to the system. Only
trusted or authenticated sources should have access to in-
formation and services provided by a given node. Unfor-
tunately, the security requirement either requires
potentially cumbersome intervention from the user, or
interaction with a trusted third party. Centralizing the
task of security is often the only solution even though it
voids the P2P benefit of a distributed infrastructure. For
a more detailed discussion of P2P security concerns see
Section 4.8.

The P2P model provides the basis for interacting peers to
aggregate resources available on their systems. Classify-
ing the architecture of a P2P resource aggregation com-
ponent is difficult because there are a wide variety of
resources that may be aggregated across peers. On the
one hand, resources include files or other content resid-
ing on a computer. A wide variety of file sharing systems
have addressed the problem of aggregating this type of
resource. On the other hand, resources can be defined in
terms of the resources available on a given peer device
such as CPU processing power, bandwidth, energy, and
disk space.

Reliability in P2P systems is a hard problem. The inher-
ently distributed nature of peer networks makes it diffi-
cult to guarantee reliable behavior. The most common
solution to reliability across P2P systems is to take ad-
vantage of redundancy. For example, in case of compute-
intensive applications upon a detection of a failure the
task can be restarted on other available machines. Alter-
natively, the same task can be initially assigned to multi-
ple peers. In file sharing applications, data can be
replicated across many peers. Finally, in messaging ap-
plications, lost messages can be resent or can be sent
along multiple paths simultaneously.

Class-Specific. While the components discussed so far
are applicable to any P2P architecture, application-spe-
cific components abstract functionality from each class
of P2P application. Scheduling applies to parallelizable
or compute-intensive applications. Compute-intensive
tasks are broken into pieces that must be scheduled
across the peer community. Metadata applies to content
and file management applications. Metadata describes
the content stored across nodes of the peer community
and may be consulted to determine the location of de-
sired information. Messaging applies to collaborative ap-
plications. Messages sent between peers enable
communication. Management supports managing the
underlying P2P infrastructure.

Application-Specific. Tools, applications, and services
implement application-specific functionality, which cor-
respond to certain P2P applications running on top of the
underlying P2P infrastructure. It corresponds to specific
cases of distributed scheduling (e.g.scientific, financial,
biotechnology, etc.), content and file sharing (e.g., music
MP3 file exchange), or specific applications running on
top of collaborative and communication systems, such as
calendaring, notes, messaging, and chatting.

3.2 Algorithms

This section overviews three common P2P algorithms
and then compares their implementations in a few P2P
systems.

Centralized directory model. This model was made
popular by Napster. The peers of the community connect
to a central directory where they publish information
about the content they offer for sharing (see Figure 11).
Upon request from a peer, the central index will match
the request with the best peer in its directory that matches
the request. The best peer could be the one that is cheap-
est, fastest, or the most available, depending on the user
needs. Then a file exchange will occur directly between
the two peers. This model requires some managed infra-

Figure 11: Central Index Algorithm.
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structure (the directory server), which hosts information
about all participants in the community. This can cause
the model to show some scalability limits, because it re-
quires bigger servers when the number of requests in-
crease, and larger storage when the number of users
increase. However, Napster’ experience showed that –
except for legal issues – the model was very strong and
efficient.

Flooded requests model. The flooding model is differ-
ent from the central index one. This is a pure P2P model
in which no advertisement of shared resources occurs.
Instead, each request from a peer is flooded (broadcast)
to directly connected peers, which themselves flood their
peers etc., until the request is answered or a maximum
number of flooding steps (typically 5 to 9) occur (see
Figure 12). This model, which is used by Gnutella, re-
quires a lot of network bandwidth, and hence does not
prove to be very scalable, but it is efficient in limited
communities such as a company network. To circumvent
this problem, some companies have been developing
“super-peer” client software, that concentrates lots of the
requests. This leads to much lower network bandwidth
requirement, at the expense of high CPU consumption.
Caching of recent search requests is also used to improve
scalability.

Document routing model. The document routing mod-
el, used by FreeNet, is the most recent approach. Each
peer from the network is assigned a random ID and each
peer also knows a given number of peers (see Figure 13).
When a document is published (shared) on such a sys-
tem, an ID is assigned to the document based on a hash
of the document’s contents and its name. Each peer will
then route the document towards the peer with the ID
that is most similar to the document ID. This process is
repeated until the nearest peer ID is the current peer’s ID.
Each routing operation also ensures that a local copy of
the document is kept. When a peer requests the document
from the P2P system, the request will go to the peer with

the ID most similar to the document ID. This process is
repeated until a copy of the document is found. Then the
document is transferred back to the request originator,
while each peer participating the routing will keep a local
copy.

Although the document routing model is very efficient
for large, global communities, it has the problem that the
document IDs must be known before posting a request
for a given document. Hence it is more difficult to imple-
ment a search than in the flooded requests model. Also,
network partitioning can lead to an islanding problem,
where the community splits into independent sub-com-
munities, that don’t have links to each other.

Four main algorithms have implemented the document
routing model: Chord, CAN, Tapestry, and Pastry. The
goals of each algorithm are similar. The primary goals
are to reduce the number of P2P hops that must be taken
to locate a document of interest and to reduce the amount
of routing state that must be kept at each peer. Each of the
four algorithms either guarantee logarithmic bounds with
respect to the size of the peer community, or argue that
logarithmic bounds can be achieved with high probabili-
ty. The differences in each approach are minimal, how-
ever each is more suitable for slightly different
environments. In Chord, each peer keeps track of
other peers (where N is the total number of peers in the
community). When peer joins and leaves occur the high-
ly optimized version of the algorithm will only need to
notify other peers of the change. In CAN, each
peer keeps track of only a small number of other peers
(possibly less than ). Only this set of peers is affect-
ed during insertion and deletion, making CAN more suit-
able for dynamic communities. However, the tradeoff in
this case lies in the fact that the smaller the routing table
of a CAN peer, the longer the length of searches. Tapes-
try and Pastry are very similar. The primary benefit of
these algorithms over the other two is that they actively
try to reduce the latency of each P2P hop in addition to
reducing the number of hops taken during a search.

Figure 12: Flooded Requests Algorithm.
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Comparison of algorithms. The Chord algorithm mod-
els the identifier space as a uni-dimensional, circular
identifier space. Peers are assigned IDs based on a hash
on the IP address of the peer. When a peer joins the net-
work, it contacts a gateway peer and routes toward its
successor. The routing table at each peer n contains en-
tries for other peers where the i-th peer succeeds n
by at least . To route to another peer, the routing ta-
ble at each hop is consulted and the message is forwarded
toward the desired peer. When the successor of the new
peer is found, the new peer takes responsibility for the set
of documents that have identifiers less than or equal to its
identifier and establishes its routing table. It then updates
the routing state of all other peers in the network that are
affected by the insertion. To increase the robustness of
the algorithm, each document can be stored at some
number of successive peers. Therefore, if a single peer
fails, the network can be repaired and the document can
be found at another peer.

CAN models the identifier space as multidimensional.
Each peer keeps track of its neighbors in each dimension.
When a new peer joins the network, it randomly chooses
a point in the identifier space and contacts the peer cur-
rently responsible for that point. The contacted peer
splits the entire space for which it is responsible into two
pieces and transfers responsibility of half to the new
peer. The new peer also contacts all of the neighbors to
update their routing entries. To increase the robustness of
this algorithm, the entire identifier space can be replicat-
ed to create two or more “realities”. In each reality, each
peer is responsible for a different set of information.
Therefore, if a document cannot be found in one reality,
a peer can use the routing information for a second real-
ity to find the desired information.

Tapestry and Pastry are very similar and are based on the
idea of a Plaxton mesh. Identifiers are assigned based on

a hash on the IP address of each peer. When a peer joins
the network, it contacts a gateway peer and routes toward
the peer in the network with the ID that most closely
matches the its own ID. Routing state for the new peer is
built by copying the routing state of the peers along the
path toward the new peer's location. For a given peer n,
its routing table will contain i levels where the i-th level
contains references to b nodes (where b is the base of the
identifier) that have identifiers that match n in the last i
positions. Routing is based on a longest suffix protocol
that selects the next hop to be the peer that has a suffix
that matches the desired location in the greatest number
of positions. Robustness in this protocol relies on the fact
that at each hop, multiple nodes, and hence multiple
paths, may be traversed.

4 CHARACTERISTICS

This section addresses issues in P2P technology: decen-
tralization, scalability, anonymity, self-organization,
cost of ownership, ad-hoc connectivity, performance, se-
curity, transparency, usability, fault-resilience, and in-
teroperability. These issues have a major impact on the
effectiveness and deployment of P2P systems and appli-
cations. We compare them in the summary, Section 4.12.

4.1 Decentralization

P2P models question the wisdom of storing and process-
ing data only on centralized servers and accessing the
content via request-response protocols. In traditional cli-
ent-server models, the information is concentrated in
centrally located servers and distributed through net-
works to client computers that act primarily as user inter-
face devices. Such centralized systems are ideal for some
applications and tasks. For example, access rights and se-
curity are more easily managed in centralized systems.
However, the topology of the centralized systems inevi-

P2P System

Algorithm Comparison Criteria

Model Parameters Hops to
locate data Routing state Peer joins

and leaves Reliability

Napster
centralized metadata index
location inquiry from central server
download directly from peers

none constant constant constant
Central server returns multiple down-
load locations, client can retry

Gnutella
Broadcast request to as many peers
as possible, download directly

none no guarantee
constant

(approx 3-7)
constant receive multiple replies from peers with

available data, requester can retry

Chord uni-dimensional, circular ID space N - number of peers in network replicate data on multiple consecutive

peers, app retries on failure

CAN multidimensional ID space N - number of peers in network

d - number of dimensions

multiple peers responsible for each data

item, app retries on failure

Tapestry Plaxton-style global mesh N – number of peers in network

b – base of the chosen identifier

replicate data across multiple peers,

keep track of multiple paths to each peer

Pastry Plaxton-style global mesh N - number of peers in network

b - base of the chosen identifier

replicate data across multiple peers,

keep track of multiple paths to each peer

Table 3. Comparison of Different P2P Location Algorithms.
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tably yields inefficiencies, bottlenecks, and wasted re-
sources. Furthermore, although hardware performance
and cost have improved, centralized repositories are ex-
pensive to set up and hard to maintain. They require hu-
man intelligence to build, and to keep the information
they contain relevant and current.

One of the more powerful ideas of decentralization is the
emphasis on the users' ownership and control of data and
resources. In a fully decentralized system, every peer is
an equal participant. This makes the implementation of
the P2P models difficult in practice because there is no
centralized server with a global view of all the peers in
the network or the files they provide. This is the reason
why many P2P file systems are built as hybrid approach-
es as in the case of Napster, where there is a centralized
directory of the files but the nodes download files direct-
ly from their peers.

In fully decentralized file systems, such as Freenet and
Gnutella, just finding the network becomes difficult. In
Gnutella, for example, new nodes must know the address
of another Gnutella node or use a host list with known IP
addresses of other peers. The node joins the network of
peers by establishing a connection with at least one peer
currently in the network. Then, it can begin discovering
other peers and cache their IP addresses locally.

One way to categorize the autonomy of a P2P system is
through the “pure P2P” versus “hybrid P2P” distinction.
A more precise decomposition may be as presented in
Figure 14. This categorization has a direct effect on the
self-organization and scalability of a system, as the pur-
est systems are loosely coupled to any infrastructure.

4.2 Scalability

An immediate benefit of decentralization is improved
scalability. Scalability is limited by factors such as the

amount of centralized operations (e.g, synchronization
and coordination) that needs to be performed, the amount
of state that needs to be maintained, the inherent parallel-
ism an application exhibits, and the programming model
that is used to represent the computation.

Napster attacked the scalability problem by having the
peers directly download music files from the peers that
possess the requested document. As a result, Napster was
able to scale up to over 6 million users at the peak of its
service. In contrast, SETI@home [SETI@home 2001]
focuses on a task that is embarrassingly parallel. It har-
nesses the computer power that is available over the In-
ternet to analyze data collected from its telescopes with
the goal of searching for extraterrestrial life forms. SE-
TI@home has close to 3.5 million users so far. Systems
like Avaki address scalability by providing a distributed
object model.

Achieving good scalability should not be at the expense
of other desirable features, such as determinism and per-
formance guarantees. To address this problem, hybrid
P2P systems, such as Napster, intentionally keep some
amount of the operations and files centralized.

Early P2P systems such Gnutella [Gnutella 2001] and
Freenet [Clark 2001] are ad-hoc in nature. A peer has to
“blindly” send its requests to many other peers, causing
the rest of the peers to search for the requested document.
This can cause the time to retrieve a document to be un-
bounded. In addition, searching may fail even when an
object exists, making the behavior of the system nonde-
terministic.

Recent P2P systems, represented by CAN, Chord,
Oceanstore, and PAST, dictate a consistent mapping be-
tween an object key and hosting node. Therefore, an ob-
ject can always be retrieved as long as the hosting nodes
can be reached. Nodes in these systems compose an
overlay network. Each node only maintains information
about a small number of other nodes in the system. This
limits the amount of state that needs to be maintained,
and hence increases scalability. The logical topology of
the overlay provides some guarantees on the lookup cost.
These systems are designed to scale to billions of users,
millions of servers and over 1014 files.

In the future, as the bandwidth and computation power
continue to grow, platforms will be able to take advan-
tage of this power, which should become interesting to
more applications. The net effect is that these architec-
tures will enable more automated scaling, as much re-
sources can be provided, the applications could scale.

Figure 14: Examples of Levels of Decentralization in Vari-
ous P2P Systems.
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4.3 Anonymity

An important goal of anonymity is to allow people to use
systems without concern for legal or other ramifications.
A further goal is to guarantee that censorship of digital
content is not possible. The authors of the Free Haven
[Dingledine 2000] have identified the following forms of
anonymity:

• Author: A document’s author or creator cannot be
identified

• Publisher: The person who published the document to
the system cannot be identified

• Reader: People who read or otherwise consume data
cannot be identified

• Server: Servers containing a document cannot be iden-
tified based on the document

• Document: Servers do not know what documents they
are storing

• Query: A server cannot tell what document it is using
to respond to a user’s query

Regardless of the forms of anonymity, enforcing them
typically involves enforcing three different kinds of ano-
nymity between a communicating pair: sender anonymi-
ty, which hides the sender’s identity; receiver anonymity,
which hides a receiver’s identity; and mutual anonymity,
which hides the identities of the sender and receiver are
hidden from each other and other peers [Pfitzmann
1987].

Besides the kinds of anonymity, it is also very important
to understand the degree of anonymity a certain tech-
nique can achieve. Reiter and Rubin [Reiter 1998] pre-
sented a spectrum of anonymity degrees that cover
absolute privacy, beyond suspicion, probable innocence,
and provably exposed. For example, beyond suspicion
means that even though an attacker can see evidence of a
sent message., the sender appears no more likely to be
the originator of that message than any other potential
sender in the system.

There are six popular techniques, each suitable for en-
forcing different kinds of anonymity and with different
kinds of constraints. We summarize them below.

Multicasting. Multicasting (or broadcasting) can be
used to enforce receiver anonymity [Pfitzmann 1987]. A
multicast group is formed for parties who wish to keep
anonymous. An entity that is interested in obtaining a
document subscribes to the multicast group. The party
that possesses the document sends the document to the
group. The identity of the requestor is effectively hidden
from both the sender and other members of the group,

and the requestor’s anonymity is beyond suspicion. This
technique can take advantage of the underlying network
that supports multicast (e.g., Ethernet or token ring).

Spoofing the sender’s address. For connectionless pro-
tocols such as UDP, the anonymity of the sender of a
message can be enforced by spoofing the sender’s IP ad-
dress. This however, requires changing the protocol. In
addition, this is not always feasible, because most ISPs
now filer packets originating from invalid IP addresses.

Identity Spoofing: Besides changing the originator’s
address, anonymity can also be ensured by changing the
identity of a communicating party. For example, in
Freenet [Clark 2001], a peer passing a file to a requestor,
either out of its own cache or from an upstream peer, can
claim to be the owner of the content. The responder is
possibly innocent, from an attackers’s point view, be-
cause there is a nontrivial probability that the real re-
sponder is someone else.

Covert paths. Instead of communicating directly, two
parties communicate through some middle nodes. Most
existing techniques ensure only sender anonymity. A
party that wishes to hide its identity prepares a covert
path with the other party as the end of the path. Examples
include Mix [Chaum 1981], Onion [Syverson 1997], An-
onymizing Proxy [Gabber 1997], Crowds [Reiter 1998]
and Herdes [Shields 2000]. The covert paths can use
store/forward or persistent connection. By varying the
length of the covert paths and changing the selected
paths with different frequency, different degrees of ano-
nymity can be achieved.

Intractable aliases. LPWA [Gabber 1999] is a proxy
server that generates consistent untraceable aliases for
clients from the servers. The client can open an account
and be recognized upon returning to the opened account,
while hiding the true identity of the client from the serv-
er. Techniques of this kind ensure sender anonymity and
rely on a trusted proxy server. The degree of anonymity
that can be achieved falls in between absolute privacy
and beyond suspicion.

Non-voluntary placement. An interesting new ap-
proach is anonymity via non-voluntary placement of a
document on a hosting node. Here, a publisher forces a
document onto a hosting node using, for example, con-
sistent hashing. Because the placement is non-voluntary,
the host cannot be held accountable for owning the doc-
ument.
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We now summarize the forms of anonymity some of the
popular P2P systems support and the techniques they
employ (see Table 4).

Gnutella [Gnutella 2001] and Freenet [Clark 2001] pro-
vide a certain degree of anonymity in the way peers re-
quest/send a document. In Gnutella, a request is
broadcast and rebroadcast until it reaches a peer with the
content. In Freenet, a request is sent and forwarded to a
peer that is most likely to have the content. The reply is
sent back along the same path.

APFS [Scarlata 2001] addresses the mutual anonymity
problem assuming that trusted centralized support does
not exist. Peers may inform a (untrusted) coordinator
about their willingness to be index servers. Both the ini-
tiator and the responder need to prepare their own covert
paths.

Free Haven [Dingledine 2000] and Publius [Waldman
2000] are designed to defend against censorship. They
strengthen the document’s anonymity by further splitting
the files as they are stored at each server. In this way, no
single server even contains all of the data needed to per-
form an attack on the encrypted file contents. The ano-
nymity among a pair of communicating parties
(publisher/server, reader/server) is enforced via covert
paths. Both Free Haven and Publius build the covert
paths using an anonymous re-mailer system. Publius
could be extended to support reader anonymity by using
its re-mailer for publishing, but it does not currently do
so.

PAST [Rowstron 2001], CAN [Ratnasamy 2001] and
Chord [Stoica 2001] represent a new class of P2P system
that provides a reliable infrastructure. One common
property among these systems is that object placement
can be entirely non-voluntary. As a result, when an ob-
ject is placed on a node, that node cannot be held ac-

countable for owning that object. The embedded routing
mechanisms in these systems can also easily be adapted
to covert path for mutual anonymity.

4.4 Self-Organization

In cybernetics, self-organization is defined as “a process
where the organization (constraint, redundancy) of a sys-
tem spontaneously increases, i.e., without this increase
being controlled by the environment or an encompassing
or otherwise external system” [Heylighen 1997].

In P2P systems, self-organization is needed because of
scalability, fault resilience, intermittent connection of re-
sources, and the cost of ownership. P2P systems can
scale unpredictably in terms of the number of systems,
number of users, and the load. It is very hard to predict
any one of them, requiring frequent re-configuration of
centralized system. The significant level of scale results
in an increased probability of failures, which requires
self-maintenance and self-repair of the systems. Similar
reasoning applies to intermittent disconnection; it is hard
for any predefined configuration to remain intact over a
long period of time. Adaptation is required to handle the
changes caused by peers connecting and disconnecting
from the P2P systems. Finally, because it would be cost-
ly to have dedicated equipment and/or people for manag-
ing such a fluctuating environment, the management is
distributed among the peers.

There are a number of academic systems and products
that address self-organization. In OceanStore, self-orga-
nization is applied to location and routing infrastructure
[Kubiatowicz et al 2000, Rhea et al. 2001, Zhao et al.
2001]. Because of intermittent peer availability, as well
as variances in network latency and bandwidth, the infra-
structure is continuously adapting its routing and loca-
tion support.

Project
Types and Techniques of Anonymity

Publisher Reader Server Document

Gnutella
multicasting,
covert paths

N/A N/A N/A

Freenet
covert path,

identity spoofing
covert paths

non-voluntary
placement

encryption

APFS covert paths covert paths N/A N/A

Free
Haven

covert paths (remailer) covert paths broadcast
encryption/split files

into shares

Publius covert paths (remailer)
N/A non-voluntary

placement
encryption/ split key

PAST N/A N/A
non-voluntary

placement
encryption

Table 4. Types of Anonymity and Techniques to Enforce Them
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In Pastry, self-organization is handled through protocols
for node arrivals and departures based on a fault-tolerant
overlay network [Druschel and Rowstron 2001, Row-
stron and Druschel 2001]. Client requests are guaranteed
to be routed in less than steps on average. Also,
file replicas are distributed and storage is randomizes for
load balancing.

The FastTrack product attributes quicker search and
download to self-organizing distributed networks. In
these networks, more powerful computers automatically
become SuperNodes and act as search hubs. Any client
can become a SuperNode if it meets processing, and net-
working criteria (bandwidth and latency). The distribut-
ed networks replace any centralized service [FastTrack
2001].

SearchLing uses self-organization to adapt its network
according to the type of search, resulting in reduced net-
work traffic and less unreachable information
[SearchLing 2001].

4.5 Cost of Ownership

One of the premises of P2P computing is shared owner-
ship. Shared ownership reduces the cost of owning the
systems and the content, and the cost of maintaining
them. This is applicable to all classes of P2P systems. It
is probably most obvious in distributed computing. For
example, SETI@home is faster than the fastest super-
computer in the world, yet at only a fraction of its cost –
1% [Anderson 2000].

The whole concept of Napster music sharing was based
on each member contributing to the pool of music files.
Similar assumptions for peers are used in other file sys-
tems, such as OceanStore.

In P2P collaboration and communication systems, and in
platforms, elimination of centralized computers for stor-
ing information also provides reduced ownership and
maintenance costs. A similar approach is taken in wire-
less communication in the United States. A so-called
“Parasitic grid” wireless movement, enables sharing of
the existing home-installed 802.11b bandwidth among
the users [Schwarz 2001]. These networks compete with
the companies installing wireless infrastructure at the
fraction of the cost.

4.6 Ad-Hoc Connectivity

The ad-hoc nature of connectivity has a strong effect on
all classes of P2P systems. In distributed computing, the
parallelized applications cannot be executed on all sys-
tems all of the time; some of the systems will be available

all of the time, some will be available part of the time,
and some will be not be available at all. P2P systems and
applications in distributed computing need to be aware of
this ad-hoc nature and be able to handle systems joining
and withdrawing from the pool of available P2P systems.
While in traditional distributed systems, this was an ex-
ceptional event, in P2P systems it is considered usual.

In content sharing P2P systems and applications, users
expect to be able to access content intermittently, subject
to the connectivity of the content providers. In systems
with higher guarantees, such as service-level agree-
ments, the ad-hoc nature is reduced by redundant service
providers, but the parts of the providers may still be un-
available.

In collaborative P2P systems and applications, the ad-
hoc nature of connectivity is even more evident. Collab-
orative users are increasingly expected to use mobile de-
vices, making them more connected to Internet and
available for collaboration. To handle this situation, col-
laborative systems support transparent delay of commu-
nication to disconnected systems. This can be
accomplished by having proxies delegated on networks
to receive messages, or by having other sorts of relays on
the sending system or somewhere in the network that
will temporarily hold communication for an unavailable
system.

Furthermore, not everything will be connected to the In-
ternet. Even under these circumstance, ad-hoc groups of
people should be able to form ad-hoc networks in order
to collaborate. The supporting ad-hoc networking infra-
structures, such as 802.11b, Bluetooth, and infrared,
have only a limited radius of accessibility. Therefore,
both P2P systems and applications need to be designed to
tolerate sudden disconnection and ad-hoc additions to
groups of peers.

4.7 Performance

Performance is a significant concern in P2P systems.
P2P systems aim to improve performance by aggregating
distributed storage capacity (e.g., Napster, Gnutella) and
computing cycles (e.g., SETI@Home) of devices spread
across a network. Because of the decentralized nature of
these models, performance is influenced by three types
of resources: processing, storage, and networking. In
particular, networking delays can be significant in wide-
area networks. Bandwidth is a major factor when a large
number of messages are propagated in the network and
large amounts of files are being transferred among many
peers. This limits the scalability of the system. Perfor-
mance in this context does not put emphasis in the milli-
second level, but rather tries to answer questions of how

N16log
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long it takes to retrieve a file or how much bandwidth
will a query consume.

In centrally coordinated systems (e.g., Napster, Se-
ti@Home) coordination between peers is controlled and
mediated by a central server, although the peers also may
later contact each other directly. This makes these sys-
tems vulnerable to the problems facing centralized serv-
ers. To overcome the limitations of a centralized
coordinator, different hybrid P2P architectures [Yang,
2001] have been proposed to distribute the functionality
of the coordinator in multiple indexing servers that coop-
erate with each other to satisfy user requests. DNS is an-
other example of a hierarchical P2P system that
improves performance by defining a tree of coordinators,
with each coordinator responsible for a peer group. Com-
munication between peers in different groups is achieved
through a higher level coordinator.

In decentralized coordinated systems such as Gnutella
and Freenet, there is no central coordinator; communica-
tion is handled individually by each peer. Typically, they
use message forwarding mechanisms search for informa-
tion and data. The problem with such systems is that they
end up sending a large number of messages over many
hops from one peer to another. Each hop contributes to
an increase in the bandwidth on the communication links
and to the time required to get results for the queries. The
bandwidth for a search query is proportional to the num-
ber of messages sent, which in turn is proportional to the
number of peers that must process the request before
finding the data.

There are three key approaches to optimize performance:
replication, caching, and intelligent routing.

Replication. Replication puts copies of objects/files
closer to the requesting peers, thus minimizing the con-
nection distance between the peers requesting and pro-
viding the objects. Changes to data objects have to be
propagated to all the object replicas. Oceanstore uses an
update propagation scheme based on conflict resolution
that supports a wide range of consistency semantics. The
geographic distribution of the peers helps to reduce con-
gestion on both the peers and the network. In combina-
tion with intelligent routing, replication helps to
minimize the distance delay by sending requests to close-
ly located peers. Replication also helps to cope with the
disappearance of peers. Because peers tend to be user
machines rather than dedicated servers, there is no guar-
antee that the peers won't be disconnected from the net-
work at random.

Caching. Caching reduces the path length required to
fetch a file/object and therefore the number of messages
exchanged between the peers. Reducing such transmis-
sions is important because the communication latency
between the peers is a serious performance bottleneck
facing P2P systems. In Freenet for example, when a file
is found and propagated to the requesting node, the file is
cached locally in all the nodes in the return path. More
efficient caching strategies can be used to cache large
amounts of data infrequently. The goal of caching is to
minimize peer access latencies, to maximize query
throughput and to balance the workload in the system.
The object replicas can be used for load balancing and la-
tency reduction.

Intelligent routing and network organization. To fully
realize the potential of P2P networks, it is important to
understand and explore the social interactions between
the peers. The most pioneering work in studying the so-
cial connections among people is the “small-world phe-
nomenon” initiated by Milgram [Milgram 1967]. The
goal of his experiment was to find short chains of ac-
quaintances linking pairs of people in the United States
who did not know one another. Using booklets of post-
cards he discovered that Americans in the 1960s were, on
average, about six acquaintances away from each other.
Adamic et al. have explored the power-law distribution
of the P2P networks, and have introduced local search
strategies that use high-degree nodes and have costs that
scale sub-linearly with the size of the network [Adamic
et al. 2001]. Ramanathan et al [Ramanathan, 2001] deter-
mine “good” peers based on interests, and dynamically
manipulate the connections between peers to guarantee
that peers with a high degree of similar interests are con-
nected closely. Establishing a good set of peers reduces
the number of messages broadcast in the network and the
number of peers that process a request before a result is
found. A number of academic systems (Oceanstore,
Pastry, see Section 2.6)) improve performance by proac-
tively moving the data in the network. The advantage of
these approaches is that peers decide whom to contact
and when to add/drop a connection based on local infor-
mation only.

4.8 Security

P2P systems share most of their security needs with com-
mon distributed systems: trust chains between peers and
shared objects, session key exchange schemes, encryp-
tion, digital digests, and signatures. Extensive research
has been done in these areas, and we will not discuss it
further in the present document. New security require-
ments appeared with P2P systems.
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• Multi-key encryption. File sharing systems such as
Publius intend to protect a shared object, as well as the
anonymity of its author, publishing peer and hosting
peer. The security scheme chosen by Publius develop-
ers is based on a (Public key, Multiple private keys)
asymmetric encryption mechanism derived from R.
Shamir’s “shared secrets” encryption method [Shamir
1979]. Byzantine attacks by malicious authenticated
users have typically been an issue for such schemes.
Recent improvements (see [Castro and Liskov 2001]
for an example) have greatly reduced the costs inher-
ent to Byzantine agreements and opened the way to
solid systems used by large numbers of users.

• Sandboxing. Distributed computing P2P systems re-
quire execution of some code on peer machines. It is
crucial to protect the peer machines from potentially
malicious code and protect the code from a malicious
peer machine. Protecting a peer machine typically in-
volves enforcing (1) safety properties such that the ex-
ternal code will not crash the host box, or will only
access the host data in a type-safe way, and (2) enforc-
ing security properties to prevent sensitive data from
being leaked to malicious parties. Techniques to en-
force the first include sandboxing, safe languages
(e.g., java), virtual machines (e.g., Internet C++
POSIX virtual machine, real mode Linux derivatives,
which run a virtual machine on top of the actual OS,
VMware), proof-carrying code and certifying compil-
ers [Necula 1997, 1998] and program verification
techniques applied to verifying the safety properties of
machine code [Xu 2000, 2001]. Techniques to check
the latter include information flow theory [Denning
1976], and model checking [Ball 2001].

• Digital Rights Management. P2P file sharing makes
file copying easy. It is necessary to be able to protect
the authors from having their intellectual property sto-
len. One way to handle this problem is to add a signa-
ture in the file that makes it recognizable (the signature
remains attached to the file contents) although the file
contents do not seem affected. This technique, refer-
enced as watermarking or steganography [Katzenbeis-
ser 1999], has been experimented with by RIAA to
protect audio files such as MP3s, hiding the Copyright
information in the file in inaudible ways.

• Reputation and Accountability. We already spoke
about trust, which is the way we will mathematically
ensure that a communiquee is actually the entity it
claims it is. In P2P systems, reputation is built on top
of trust, and requires ways to measure how “good” or
“useful” a peer is. For instance, if a given user shares
lots of interesting files, its reputation should be high.
Freeloader is a common term for a user who down-
loads files from P2P systems without offering files to

others. A freeloader usually has a low reputation. To
prevent this kind of non-cooperative behavior, some
accountability mechanisms need to be devised. Cur-
rent systems often rely on cross-ratings, but because it
is based on a community of authenticated but untrust-
ed users, it is difficult to produce a solid system.

• Firewalls. P2P applications inherently require direct
connections between peers. However, in corporate en-
vironments internal networks get isolated from the ex-
ternal network (the Internet), leaving reduced access
rights to applications. For instance, most firewalls
block inbound TCP connections [Peer-to-peer Work-
ing Group. 2001]. This means that a machine within a
Firewall will not be accessible from a machine exter-
nal to the network. Worse, home users frequently use
IP Masquerading or Network Address Translation
(NAT) technology to share an internet connection be-
tween several machines, which leads to the same inac-
cessibility problem. However, as outbound access
through port 80 (HTTP) is often allowed by firewalls,
some mechanisms have been devised that enable con-
nections between hidden (machines behind a firewall
or NAT, inaccessible from the Internet) and Internet
machines. This is quite limiting however, as it requires
connection to be initiated from the hidden machine.
When both peers who want to communicate reside be-
hind different firewalls, the problem becomes harder.
It requires a central reflector (or relay) server on the In-
ternet, which provides a connection between the hid-
den peers.

4.9 Transparency and Usability

In distributed systems, transparency was traditionally as-
sociated with the ability to transparently connect distrib-
uted systems into a seamlessly local system. The primary
form of transparency was location transparency, but oth-
er forms included transparency of access, concurrency,
replication, failure, mobility, scaling, etc.
[Coulouris1990]. Over time, some of the transparencies
were further qualified, such as transparency for failure,
by requiring distributed applications to be aware of fail-
ures [Waldo et al 1997], and addressing transparency on
the Internet and Web (see next paragraph).

From its beginning, the Internet paid particular attention
to transparency at the protocol level (TCP/IP), so called
end-to-end address transparency [Carpenter 2000]. The
end-to-end argument [Saltzer et al. 1984] claims that cer-
tain functions in a communication between two entities
can be performed only with the knowledge and state
maintained at these entities at the application level
(hence, end-to-end: all the way from application through
the communication stack, up to the other application).
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This implies that application communication state is not
maintained in the network, but rather at the communica-
tion end points.

This also implies that any point in the network knows the
name and address of the other communication point, an
assumption that is not true any more. IPv4’s lack of the
domain names and IP numbers, as well as the introduc-
tion of intranets and mobile users, resulted in IP numbers
that are valid only during a single session. Examples in-
clude SLIP and PPP, VPNs, use of firewalls, DHCP, pri-
vate addresses, network address translators (NATs), split
DNS, load sharing optimizations, etc [Carpenter 2000].
This had significant implications for P2P and was also
one of the reasons for the introduction of P2P. Because it
was no longer possible to rely on DNS to provide an ac-
curate name, P2P systems came up with different naming
and discovery schemes (see Section 3.1 as well as end of
Section 5.3).

Web naming did not necessarily offer full naming trans-
parency. URLs are widely used instead of URNs, which
were supposed to enable naming transparency [Berners-
Lee et al. 1998]. Beside naming/addressing transparen-
cy in P2P there is also a requirement for administration
transparency. Users are typically non-experts and they
do not or cannot administer their software and devices.

The P2P software should not require any significant set
up or configuration of either networks or devices in order
to be able to run. Also, self-updating software is a desir-
able feature. In addition, P2P systems should be network
and device transparent (independent). They should work
on the Internet, intranets, and private networks, using
high-speed or dial-up links. They should also be device
transparent, which means they should work on a variety
of devices, such as handheld personal digital assistants
(PDAs), desktops, cell phones, and tablets.

Another form of transparency is related to security and
mobility. Automatic and transparent authentication of
users and delegation to user proxies can significantly
simplify users’ actions. Supporting mobile users and dis-
connection in particular, can enable users to work inde-
pendently of whether and how they are connected to the
Internet or intranets.

A user can use P2P applications in the following man-
ners:

• as a user of services, typically through Web interfaces
(e.g., content sharing, information gathering)

• wrapped around non-P2P applications, typically on a
P2P platform (e.g., Groove, .NET)

• as locally installed P2P software (e.g., distributed
computing screensavers and Napster)

4.10 Fault Resilience

One of the primary design goals of a P2P system is to
avoid a central point of failure. Although most P2P sys-
tems (pure P2P) already do this, they nevertheless are
faced with failures commonly associated with systems
spanning multiple hosts and networks: disconnections/
unreachability, partitions, and node failures. These fail-
ures may be more pronounced in some networks (e.g.,
wireless) than others (e.g., wired enterprise networks). It
would be desirable to continue active collaboration
among the still connected peers in the presence of such
failures. An example would be an application, such as
genome@home [Genome@HOME 2001] executing a
partitioned computation among connected peers. Would
it be possible to continue the computation if one of the
peers were to disappear because of a network link fail-
ure? If the disconnected peer were to reappear, could the
completed results (generated during the standalone
phase) be integrated into the ongoing computation?
Questions similar to these would have to be addressed by
P2P systems aiming to provide more than just “best ef-
fort” Internet service.

In the past, client-server disconnection has been studied
for distributed file systems that consider mobile clients
(e.g., Coda [Satyanarayanan 1990]), and a common solu-
tion is to have application-specific resolvers to handle
any inconsistency on reconnection. Some current P2P
systems (e.g., Groove [Groove 2001]) handle this by pro-
viding special nodes, called relays, that store any updates
or communication temporarily until the destination (in
this case another peer) reappears on the network. Others
(e.g., Magi [Magi 2001]) queue messages at the source,
until the presence of the destination peer is detected.

Another problem related to disconnection is non-avail-
ability of resources. This may occur either because the
resource is unreachable because of a network failure or
because the peer hosting the resource has crashed/gone
offline. While the former may be resolved by routing
around the failure and is already supported by the Inter-
net, the latter requires more careful consideration. Repli-
cation of crucial resources helps alleviate the problem.
P2P networks such as Napster and Gnutella represent
systems having both a passive and an uncontrolled repli-
cation mechanism based solely on the file's popularity.
Depending on the application running over these net-
works, it may be necessary to provide certain persistence
guarantees. This requires a more active and reliable rep-
lication policy.

Anonymous publishing systems such as Freenet [Clark
et al. 2000] and Publius [Waldman 2000] ensure avail-
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ability by controlled replication. Oceanstore [Kubiatow-
icz 2000] maintains a two-layered hierarchy of replicas
and through monitoring of administrative domains
avoids sending replicas to locations with highly correlat-
ed probability of failures. However, because a resource
in the P2P system could be more than a just a file – such
as a proxy to the Internet, shared storage space, or shared
computing power – the concepts of replicated file sys-
tems have to be extended to additional types of resourc-
es. Grid computing solutions (e.g. Legion) provide
resilience against node failures by restarting computa-
tions on different nodes.

A challenging aspect of P2P systems is that the system
maintenance responsibility is completely distributed and
needs to be addressed by each peer to ensure availability.
This is quite different from client-server systems, where
availability is a server-side responsibility.

4.11 Interoperability

Although many P2P systems already exist there is still no
support to enable these P2P systems to interoperate.
Some of the requirements for interoperability include:

• How do systems determine that they can ineroperate

• How do systems communicate, e.g., what protocol
should be used, such as sockets, messages, or HTTP

• How do systems exchange requests and data, and exe-
cute tasks at the higher level, e.g., do they exchange
files or search for data

• How do systems determine if they are compatible at
the higher protocol levels, e.g., can one system rely on
another to properly search for a piece of information

• How do systems advertise and maintain the same level
of security, QoS, and reliability

In the past, there were different ways to approach in-
teroperability, such as standards IEEE, (e.g., IEEE stan-
dards for ethernet, token ring, and wireless); common
specifications, (e.g., Object Management Group [OMG,
2001]); common source code, (e.g., OSF DCE [Rosen-
berry, 1992]); open-source (e.g., Linux); and de facto
standards (e.g., Windows or Java).

In the P2P space, some efforts have been made towards
improved interoperability, even though interoperability
is still not supported. The P2P Working Group [p2pwg,
2001] is an attempt to gather the community of P2P de-
velopers together and establish common ground by writ-
ing reports and white papers that would enable common
understanding among P2P developers. The P2P Working
Group gathers developers from both ad-hoc communica-
tion systems and grid systems. The Grid Forum is a sim-

ilar effort in the grid computing space. Both efforts
represent an approach similar to OMG, in defining spec-
ifications and possibly reference implementations.

The JXTA effort [JXTA, 2001] approaches interopera-
bility as an open-source effort, by attempting to impose
a de facto standard. A number of developers are invited
to contribute to the common source tree with different
pieces of functionality. Only a minimal underlying archi-
tecture is supported as a base, enabling other systems to
contribute parts that may be compatible with their own
implementations. A number of existing P2P systems
have already been ported to the JXTA base. JXTA is de-
scribed in more detail in Section 6.7.

4.12 Summary

Decentralization is a key feature of P2P systems. It af-
fects how developers design systems and applications,
by influencing algorithms, data structures, security, scal-
ability, and availability assumptions. It affects how users
can be connected to a system and the people with whom
they can interact. For example, in games, users perceive
that other players are remote, and that they can also be
disconnected. This implies that they should devise strat-
egies in a decentralized fashion. Distributed P2P applica-
tions are written assuming decentralization, and
collaborative applications have to handle group manage-
ment without central naming, authorization, and data re-
positories.

The ad-hoc nature of P2P systems also affects the way
applications and systems are conceived. The fact that any
system or user can disappear at time drives the design of
these systems as well as user perceptions and expecta-
tions. In addition to the classical security issues of tradi-
tional distributed systems, P2P is distinguished by the
importance of anonymity in certain applications and
markets. Scalability, performance, fault resilience, and
interoperability have similar importance for P2P as they
have in traditional distributed systems.

Distributed computing applications are primarily con-
cerned with scalability (which is derived from decentral-
ization) and performance. Fault resilience is tied in with
the ad-hoc nature of connectivity – distributed applica-
tion designers and users need to account for the possibil-
ity of a system going down at any time and being able to
resume from a previous checkpoint. P2P systems that use
critical or confidential data are concerned with security.
Content sharing applications and systems are primarily
concerned with the availability of data. Enterprise sys-
tems are concerned with security and performance, and
public and consumer systems are concerned with trans-
parency (ease of use) and anonymity. Collaborative and
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communication applications are concerned with connec-
tivity (ad-hoc nature), security, and anonymity, and with
interoperability between systems.

5 P2P SYSTEMS

This section describes in more detail the four categories
presented in Figure 6: distributed computing, file shar-
ing, collaborative systems, and P2P platforms. In addi-
tion, we also present historical P2P systems that predated
the recent notion of P2P systems. While this section pre-
sents the P2P systems categories in general, Section 6
presents each of the categories in more detail with two
case studies. This section and Section 6 are used as the
basis for a comparison of systems in Appendix A, and
specifically for Table 6.

5.1 Historical

In most cases, early distributed applications were P2P.
When most users were from a technical or academic
background, and were using either time-sharing systems
or engineering workstations, P2P applications seemed
the most natural approach. It was the late-80's and early-
90's when client-server architectures became more prev-
alent because they provided the fastest and most cost-ef-
fective means of supporting large numbers of non-
technical users. It also allowed the use of less expensive
and less functional computers such as desktop PCs.

While most early distributed applications can be consid-
ered P2P, e-mail systems built on the Simple Mail Trans-
fer Protocol (SMTP) and Usenet News were probably the
most widely used. In each case, local servers that re-
ceived a message built connections with peer servers to
deliver messages into a user's mail file or into a spool file
containing messages for the newsgroup. The File Trans-
fer Protocol (FTP) was the precursor to today’s file shar-
ing P2P systems. While FTP is a client-server
application, it was very common for individuals to run
FTP servers on their workstations to provide files to their
peers. Eventually, an indexing system, Archie, was de-
veloped to provide a central search mechanism for files
on FTP servers. This structure with central search and
distributed files is exactly replicated in the Napster P2P
system.

Prior to the establishment of a continuously connected
network such as the Internet, decentralized dial-up net-
works were widely used. The most notable examples in-
clude UUNet and Fidonet. These networks were
composed of a collection of machines that made periodic
dial-up connections to one another. On a typical connec-
tion, messages (again, typically e-mail or discussion

group entries) were transferred bi-directionally. Often, a
message would be routed through multiple dial-up hops
to reach its destination. This multi-hop message routing
approach can be seen in current P2P systems such as
Gnutella.

In our “modern” era dominated by PCs on workplace
LANs or home dial-up connections, the first widen use of
P2P seems to have been in instant messaging systems
such as AOL Instant Messenger. These are typically hy-
brid P2P solutions with discovery and brokering handled
by a central server followed by direct communication be-
tween the peer messaging systems on the PCs. The cur-
rent phase of interest and activity in P2P was driven by
the introduction of Napster [Napster 2001] in 1999. It
came at a time when computers and their network con-
nections were nearing the level found previously in tech-
nical and academic environments, and re-created earlier
approaches with an interface more suitable to a non-tech-
nical audience.

5.2 Distributed Computing

Distributed computing is very successfully used by P2P
systems. The idea of using spare computing resources
has been addressed for some time. The Beowulf project
from NASA [Becker et al. 1995] was a major milestone
that showed that high performance can be obtained by
using a number of standard machines. Other efforts such
as MOSIX [Barak and Litman 1985, Barak and Wheeler
1989] and Condor [Litzkow et al 1988, Litzkow and So-
lomon 1992] also addressed distributed computing in a
community of machines, focusing on the delegation or
migration of computing tasks from machine to machine.

Grid computing is another concept that was first ex-
plored in the 1995 I-WAY experiment [I. Foster], in
which high-speed networks were used to connect high-
end resources at 17 sites across North America. Out of
this activity grew a number of Grid research projects that
developed the core technologies for “production” Grids
in various communities and scientific disciplines. Grid
technology efforts are now focused around the Global
Grid forum (http://www.globalgridforum.org) and the
Globus project (http://www.globus.org). A computing
grid can be seen and used as a single, transparent com-
puter. A user logs in, starts jobs, moves files, and re-
ceives results in a standard way.

Derivatives of Grid Computing based on collaboration of
standard Internet-connected PCs began to appear in the
late 90’s. In this document, we will use “Distributed
Computing” terminology to describe them.
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Distributed Computing achieves processing scalability
by aggregating the resources of large number of individ-
ual Internet PCs. Typically, distributed computing re-
quires applications that are run in a proprietary way by a
central controller. Such applications are usually targeting
massive multi-parameters systems, with long running
jobs (months or years) using P2P foundations. One of the
first widely visible distributed computing events oc-
curred in January 1999, where distributed.net, with the
help of several tens of thousands of Internet computers,
broke the RSA challenge [DES-III] in less than 24 hours
using a distributed computing approach. This made peo-
ple realize how much power can be available from idle
Internet PCs.

More recent projects have been raising interest from
many users within the Internet community. For example,
SETI@home [SETI@home 2001] now has a consolidat-
ed power of about 25 Tflop/s (Thousands of Billions of
floating point operation per second), collected from more
than three million registered user machines.

Peer-to-Peer? A common misconception is that distrib-
uted computing systems such as SETI@home are not
P2P systems: The argument is that central server is re-
quired for controlling the offered PC resources, the PCs
do not operate as servers, and no communication occurs
between peers (PCs). However, a very significant part of
the system is executed on the PCs, with high autonomy.
Hence, we consider distributed computing systems to be
P2P systems.

How it works. The computational problem to be solved
is split into small independent parts. The processing of
each of the parts (using a fork-and-join mechanism) is
done on an individual PC and the results are collected on
a central server. This central server is responsible for dis-
tributing job items to PCs on the Internet. Each of the
registered PCs is equipped with client software. The cli-
ent software takes advantage of inactivity periods (often
characterized by screensaver activation times) in the PC
to perform some computation requested by the server.
After the computation is finished, the result is sent back
to the server, and a new job is allocated to the client.

Current usage. One of the major limitations of Desktop
Computing is that it requires jobs that can be split into in-
dependent small parts that do not require cross-peer com-
munication. Internet latencies do not allow demanding
communication patterns such as those found in typical
cluster computing. Hence, it is not possible to execute
supercomputing-like processing such as linear algebra
problems (matrix computation). Current applications

consist of Single Process Multiple Data (SPMD) prob-
lems and multiprogramming problems where a given job
has to be run on many different input data sets. This
mostly includes simulation and model validation tasks.
Because specific applications have to be developed using
very specific constraints, paradigms, and environments,
their development cost is prohibitive to most users, and
the scope remains limited to highly visible research do-
mains, such as the human genome project, alien seeking,
cancer research, and weather model validation.

Application area examples – Financial and Biotech-
nology. Financial and biotechnology applications are
suitable for distributed computing. Financial institutions,
such as banks and credit companies, are executing com-
plex simulations for market calculations. Applications
include portfolio pricing, risk hedge calculation, market
and credit evaluation, counter-party netting, margin cal-
culations, cash flow, and demographic analysis [Intel
2001]. In the past, financial applications were typically
run during the night. As they become more real-time in
nature, these requirements will grow even further. So far
only big institutions have been able to afford the comput-
ing power to automate these simulations, typically using
mainframe computers or very powerful workstations. By
relying on P2P commodity platforms, smaller banks can
also benefit from these applications. Furthermore, as
technology favors farms of desktop computers, they be-
come not only more cost effective, but also a more pow-
erful platform. As an example, Intel and DataSynapse
claim speed-ups from 15 hours to 30 minutes in the case

Figure 15: Distributed computing over the Web
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of interest rate swap modeling when moving to a P2P so-
lution [DataSynapse 2001]. The biggest challenge in us-
ing P2P for financial markets is the intrinsic requirement
for security. Because most of these applications are exe-
cuting behind the firewall, security requirements are
somewhat relaxed. In particular, parts of the applications
can even be executed outside of the firewall.

In the biotechnology sector, the need for advanced com-
puting techniques is being driven by the availability of
colossal amounts of data. For instance, genomic research
has close to three billion sequences in the human genome
database. Applying statistical inference techniques to
data of this magnitude requires unprecedented computa-
tional power. Traditionally, scientists have used high-
performance clustering (HPC) and supercomputing solu-
tions, and have been forced to employ approximating
techniques in order to complete studies in an acceptable
amount of time. By harnessing idle computing cycles
(95%-98% unused) from general purpose machines on
the network, and grouping multi-site resources, grid
computing makes more computing power available to re-
searchers. Grid solutions partition the problem space
among the aggregated resources to speed up completion
times. Companies such as Platform Computing (LSF)
[Platform Computing 2001], Entropia [Entropia], Avaki
[Avaki 2001] and Grid Computing Bioinformatics [GCB
2001] offer complete HPC and grid solutions to biologi-
cal research organizations and pharmaceutical research
and development. Genomics and proteomics projects
such as Genome@home and Folding@home managed
by groups at Stanford make use of the idle cycles of reg-
istered clients to compute parts of the complex genome
sequencing and protein folding problems.

In search for a business model. Distributed computing
requires an expensive infrastructure to host the Web ser-
vice, and this does not even account for development and
maintenance costs. Attempts have been made by several
companies (such as Porivo) to pay the user for use of his
machine by the system. If your machine computes a lot
of jobs, you can get some money for having shared your
machine. Other models are based on auctions, where the
cheapest available CPU is allocated for a given job. An-
other model used by Entropia addresses vertical markets,
such as Genomics, which is based on huge database look
ups. However, none of the existing business models have
yet proven successful. The only model that currently
seems to work is the dedicated community model, such
as astronomy researchers sharing their machines in a
“friendly” way.

5.3 File Sharing

Content storage and exchange is one of the areas where
P2P technology has been most successful. Multimedia
content, for instance, inherently requires large files. Nap-
ster and Gnutella have been used by Internet users to cir-
cumvent bandwidth limitations that make large file
transfers unacceptable with classic mechanisms. Distrib-
uted storage systems based on P2P technologies are tak-
ing advantage of the existing infrastructure to offer the
following features.

• File exchange areas. Systems such as Freenet provide
the user with a potentially unlimited storage area by
taking advantage of redundancy. A given file is stored
on some nodes in the P2P community, but it is made
available to any of the peers. A peer requesting a given
file just has to know a reference to a file, and is able to
retrieve the file from the community by submitting the
file reference. Systems such as Freenet, Gnutella, and
Kazaa fall in this category.

• Highly available safe storage. The duplication and re-
dundancy policies in some projects offer virtual stor-
age places where critical files get replicated multiple
times, which helps ensuring their availability. Ocean-
Store [Kubiatowicz et al. 2000] and Chord [Dabek et
al. 2000] are examples of such systems.

• Anonymity. Some P2P systems such as Publius [Wald-
man, Rubin and Cranor references] mathematically
ensure that published documents preserve anonymity
for their authors and publishers, while allowing people
to access the documents.

• Manageability. P2P systems enable easy and fast re-
trieval of the data by distributing the data to caches lo-
cated at the edges of the network. The location of the
data is not known by the retriever, perhaps not even af-
ter the data is retrieved. Freenet, for example, stores
the data in many locations in the path between the pro-
vider and the retriever, so the whole notion of hosting
a file becomes meaningless. Files move freely among
the peers and are allowed to disappear even if they are
being downloaded. This has some important implica-
tions. For example, the question is who is accountable
for the files (see Section 4.5). Also, how can we ensure
that the entire piece of data is being downloaded and
cope with the un-reliability of the peers (see Section
4.10).

Technical issues. The major technical issues in file shar-
ing systems are mostly the network bandwidth consump-
tion, security, and search capabilities. Three main
models exist today, as discussed in Section 3.2: Central-
ized directory model (Napster), the flooded request mod-
el (Gnutella), and the document routing model



24

(FreeNet). All P2P file sharing systems can be catego-
rized into one of these three families, although variations
do exist, such as extensions of the models with leader
election mechanisms (automatic or manual elections)
such as in KaZaA, which allow for better scalability of
the systems and less stress on the network. In addition,
current P2P systems (e.g., Napster, Gnutella, Freenet)
have mainly focused on the exchange and sharing of
“small” objects such as files and music clips. However,
we expect that in future P2P systems the content will be
of any form, including audio, video, software, and docu-
ments. To do that, we will need intelligent decisions such
as from where the content be retrieved and over which
network path should the content travel. XDegrees [XDe-
grees 2001], for example, ensures that information is ef-
ficiently routed to users and that multiple document
replicas are synchronized across many peers. They pro-
vide an eXtensible Resource Name System (XRNS)
based on the notion of the URL that creates a location-in-
dependent name space. They place frequently accessed
information at optimal locations in the network and then
select the best route to retrieve that information based on
source availability, network topology, and response
time.

Application area example. Napster is first P2P file
sharing application that jump started the P2P area. Nap-
ster was originally developed to defeat the copying prob-
lem and to enable the sharing of music files over the
Internet. Napster uses the centralized directory model
(see Section 2.6) to maintain a list of music files, where
the files are added and removed as individual users con-
nect and disconnect from the system. Users submit
search requests based on keywords such as “title,” “art-
ist,” etc. Although Napster's search mechanism is cen-
tralized, the file sharing mechanism is decentralized; the
actual transfer of files is done directly between the peers.
Napster’s centralized directory model inevitably yields
scalability limitations (see Section 3.2). For example,
your available bandwidth can be tremendously reduced
by users downloading songs from your machine. Yet,
centralization simplifies the problem of obtaining a
namespace and enables the realization of security mech-
anisms (see Section 3.8).

Napster has been quite popular. It has had more than for-
ty million client downloads and has led to numerous
variants of file-sharing applications (such as Gnutella
and Pointera). OpenNap (http://opennap.source-
forge.net/) is an open-source Napster server that extends
the Napster protocol to allow sharing of any media type
and add the ability to link Napster servers together. To
solve the problem with copyright violations, Napster re-
launched a new Napster membership service to start a

new chapter in the music file business. Although it still
offered the core functions (searching, finding, sharing,
and discovering digital music through the Napster com-
munity) it also offered to artists the opportunity to regis-
ter as rights holders and get paid for sharing their music
on Napster. Napster set the rules for how their music files
are used.

Morpheus is a full-featured P2P file-sharing system in-
troduced by MusicCity (www.comusiccity.com) that
tries to overcome some of the limitations of Napster. It
includes a powerful search engine that can search for all
types of media (including music, videos, documents, and
reference files). The results are grouped together so the
same file is displayed only once. Its SmartStream mech-
anism automatically resumes broken content streams by
finding another source for the same content and monitor-
ing the network until the whole content stream is down-
loaded. Morpheus increases the download speed of large
files through the simultaneous transfer of content from
multiple sources (FastStream mechanism). Its encryp-
tion mechanisms protect privacy and transmissions, and
prevent unauthorized intrusions. Also, it allows content
providers to deploy third-party digital rights manage-
ment technology to protect the copyrights of their digital
content that is distributed through the network.

Kazaa is another example of a P2P file sharing system
that uses SuperNodes as local search hubs. These are
powerful nodes on fast connections that are generated
automatically. Peers connect to their local SuperNode to
upload information about the files they share, and to per-
form searches in the network. Kazaa uses an intelligent
download system to improve download speed and reli-
ability. The system automatically finds and downloads
files from the fastest connections, failed transfers are au-
tomatically resumed, and files are even downloaded
from several sources simultaneously to speed up the
download. When files are imported, the system automat-
ically extracts meta-data from the contents of the files
(such as ID3 tags for mp3 files). This makes for much
faster and more accurate searches.Kazaa also uses a tech-
nique called MD5 hashing to make sure the contents of
multi-sourced files are identical.

5.4 Collaboration

Collaborative P2P applications aim to allow application-
level collaboration between users. The inherently ad-hoc
nature of P2P technology makes it a good fit for user-lev-
el collaborative applications. These applications range
from instant messaging and chat, to online games, to
shared applications that can be used in business, educa-
tional, and home environments. Unfortunately, a number
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of technical challenges remain to be solved before pure
P2P collaborative implementations become viable.

Overview. Collaborative applications are generally
event-based. Peers form a group and begin a given task.
The group may include only two peers collaborating di-
rectly, or may be a larger group. When a change occurs
at one peer (e.g., that peer initiates sending a new chat
message), an event is generated and sent to the rest of the
group. At the application layer, each peer's interface is
updated accordingly.

Technical Challenges. There are a number of technical
challenges that make implementation of this type of sys-
tem difficult. Like other classes of P2P systems, location
of other peers is a challenge for collaborative systems.
Many systems, such as Magi, rely on centralized directo-
ries that list all peers who are online. To form a new
group, peers consult the directory and select the peers
they wish to involve. Other systems, like Microsoft's
NetMeeting, can require that peers identify one another
by IP address. This is much too restrictive, especially in
environments where groups are large.

Fault tolerance is another challenge for collaborative
systems. In shared applications, messages often must be
delivered reliably to ensure that all peers have the same
view of the information. In some cases, message order-
ing may be important. While many well-known group
communication techniques address these challenges in a
non-P2P environment, most P2P applications do not re-
quire such strict guarantees. The primary solution em-
ployed in P2P applications is to queue messages that
have been sent and not delivered (i.e., because a given
peer is down or offline). The messages can then be deliv-
ered to the offline peer when it comes back online.

Realtime constraints are perhaps the most challenging
aspect of collaborative implementations. Users are the
ultimate end points in a collaborative environment. As
such, any delay can be immediately perceived by the us-
er. Unfortunately, the bottleneck in this case is not the
P2P technology, but the underlying network. While
many collaborative applications may work well in a lo-
cal-area systems, wide-area latencies limit P2P applica-
tions just as they limit client-server applications.
Consider a gaming environment. The game DOOM is a
so-called First Person Shooter (FPS) game in which mul-
tiple players can collaborate or compete in a virtual envi-
ronment. DOOM uses a P2P structure in which each
player's machine sends updates of the state of the envi-
ronment (such as the player's movement) to each of the
other machines. Only when all updates have been re-
ceived does the game update the view. This was margin-
ally viable in local-area, small-scale games, but did not

scale to wide-area games. Long latencies and uneven
computing power at the various players machines made
this lock-step architecture unusable. All FPS games since
DOOM have used a more standard client-server architec-
ture for communication.

5.5 Platforms

Operating systems are becoming decreasingly relevant
as environments for applications. Middleware solutions,
such as Java Virtual Machines, or Web browsers and
servers are the dominant environment that is of interest
to users as well as to developers of applications. In that
regard, it is likely that future systems will increasingly
depend on some other sort of platform that will be a com-
mon denominator for users and services connected to the
Web or in an ad-hoc network. Examples of such environ-
ments include AOL and Yahoo, and .NET is striving to-
ward a similar goal.

As described in Section 3.1, platforms, even more so
than other P2P systems, have support for primary P2P
components: naming, discovery, communication, securi-
ty, and resource aggregation. They have an OS depen-
dency even though it is minimal. Most P2P systems are
either running on an open-source OS (Linux) or they are
based on Windows.

There are a number of candidates competing for future
P2P platform. .NET is the most ambitious one, going be-
yond P2P to encompass all service support on the client
and server side. JXTA is another attempt, taking a bot-
tom up and strong interoperability approach. Most other
systems also have some level of platform support, such
as Groove covering enterprise domain and Magi, cover-
ing handheld devices domain. Section 6.7 and
Section 6.8 contain detailed descriptions of JXTA and
.NET respectively.

6 CASE STUDIES

In this section, we compare eight case studies of P2P sys-
tems. We selected systems in four different categories,
representing the spectrum of different P2P system cate-
gories, as well as public domain and proprietary systems
(see Table 5).

6.1 Avaki

Avaki provides a single virtual computer view of a het-
erogeneous network of computing resources. It is a clas-
sic example of meta-computing applied to networks
ranging from corporate compute and data grids to global
application grids of Internet scale.
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History. Avaki began as Legion [Grimshaw et al. 1994],
a research project initiated by Andrew Grimshaw at the
University of Virginia in 1993. The vision was to achieve
a unified view of the computing resources scattered
around the nation as a single nationwide virtual comput-
er. Passing through various stages of development, and
following the first showcase of the Legion technology in
1997 at the Super Computing conference, the research
project emerged as a commercial venture called Applied
MetaComputing, in 1998. In mid 2001, it was re-
launched as Avaki Corporation, which currently focuses
on providing enterprise-level distributed computing so-
lutions.

Goals. The eventual goal is to knit together the nation’s
computing resources into a seamless parallel execution
environment, allowing faster completion of applications.
Current goals include robust security, performance man-
agement, and failure detection and recovery features to
radically simplify grid administration. Avaki is marketed
as a middleware platform for enterprise-level computing.
They are also working with other developing standards
in the field of distributed, pervasive, and P2P computing,
such as JXTA, to make Avaki an interoperable platform.

Design. The core of Avaki is based on the object-orient-
ed paradigm. Every entity in the system is an individual-
ly addressable object with a set of interfaces for
interaction. This approach enables uniformity in system
design through inheritance, and containment through en-
capsulation. Legion was an extension to Mentat [Grim-
shaw 1994], an object-oriented parallel processing
system. The ability of Mentat to deliver high perfor-
mance on platforms with very different communication
characteristics was the key reason it was chosen to be ex-
tended to produce Legion. High performance, exploita-
tion of heterogeneity, scalability, and masking of

complexity were key design criteria in the development
of Avaki.

The middleware is structured as a layered virtual ma-
chine as shown in Figure 16. The stack has three main
components.

• Core Services. These service provide some of the basic
functionality required to map the system to a network
of computing resources. The meta-data and the direc-
tory services enable users and applications to efficient-
ly locate files or computing resources. The protocol
adaptors enable interoperability with various network-
ing standards including JXTA – a developing open
standard from Sun.

• System Management Services. These services allow
the Avaki system to monitor and control the efficiency
of the meta-system. The policy management service
allows administrators to manage access control for lo-
cal resources.

• Application Services. Built over the basic services,
these services enable the construction of applications
such as collaborative and high-performance comput-
ing.

Scalability. Avaki is built as a layered virtual machine
with scalable, distributed control. It allows for multiple
administration domains, allowing system administrators
complete control over local resources and their access
policies. To make the file system scalable and to not im-
pose a single file system across all machines, Legion
takes a federated file system approach and builds a uni-
fied file system over existing ones.

Fault resilience. The scale of the Avaki network enables
high redundancy of hardware components, but at the
same time detecting and recovering from faults in this
large system is a challenge. Legion decides to tradeoff

P2P system Developer Technology

Avaki Avaki
distributed computing

SETI@home public domain

Groove Groove Networks
collaboration

Magi Endeavors Technologies

FreeNet public domain
content distribution

Gnutella public domain

JXTA public domain
platform

.NET Microsoft

Table 5. Case Studies for Eight P2P systems
Figure 16: Avaki Architecture.
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extensive fault tolerance support for higher performance.
The scope of the support is limited to fail-stop faults of
hardware components and chooses to stay away from
software or Byzantine faults. However, in the event of
internal failures during program execution, the user is
notified and can decide on appropriate steps. When a
host goes down, Avaki dynamically reconfigures the grid
and automatically migrates failed jobs to different loca-
tions. Applications are allowed to specify the level of
fault tolerance they require, the idea being that they
should not pay for fault tolerance that is not required.

Implementation and performance. Because Avaki is
designed as a layered virtual machine, the applications
incur an overhead when compared to native executions.
However, Avaki gains significantly by the parallel exe-
cution of applications, and trades off the overhead for
significantly reduced software complexity. Applications
submitted to the Legion system are executed in parallel
across a pool of available computing resources. The
main design goal is the reduction of completion time of
the application. This obviously depends on how parallel-
izable the application is and the existing data dependen-
cies. Applications that can tolerate latency and are coarse
grained stand to gain from the parallel execution. Results
from executing applications such as CHARMM and
complib over Legion show an order of magnitude speed-
up over executions at a single installation.

Security. Avaki has built-in security, which eliminates
the need for any other software-based security controls.
Its security is lateral and decentralized allowing individ-
ual administration domains control over access to local
resources. Authentication by the users occurs once dur-
ing sign-in, and Avaki manages all further authentication
required to run tasks over resources spread across multi-
ple administration domains.

Lessons learned. Handling heterogeneity and automatic
error detection and recovery are key to the success of
systems of this scale. Systems such as Avaki also have to
handle the possibility of a small percentage of the results
being incorrect. One approach to handling this problem
is to evaluate the same job at separate locations and ver-
ify the consistency of the results.

Business model. Avaki is marketing its product to enter-
prises as a complete data and compute grid. However, it
faces tough competition from established HPC solution
vendors such as Platform Computing. Avaki is currently
being evaluated at various research labs.

Applications. Apart from enterprise solutions, Avaki
can provide high-end computing power for problems in

the pure science area. Applications that involve parame-
ter-space studies can benefit from the high-performance
parallel execution characteristics of Avaki. Examples in-
clude biochemical simulations, complib – a protein and
DNA sequence comparator and CHARMM – a p-space
study of 3D structures.

6.2 SETI@home

SETI (Search for Extraterrestrial Intelligence) is a col-
lection of research projects aimed at discovering alien
civilizations. One of these projects, SETI@home, uses
radio emissions received from space and collected by the
giant Arecibo telescope, it analyzes them using the pro-
cessing power of millions of unused Internet PCs.

History. SETI@home is a scientific research project
aimed at building a huge virtual computer based on the
aggregation of the computer power offered from inter-
net-connected computers during their idle periods. The
project has been widely accepted and raised an incredible
raw processing power of several dozens of TFlops from
more than three million internet-connected computers.

Goals. The goal is to process a search for extraterrestrial
radio emissions from nearby developed intelligent popu-
lations based on data collected from the huge radio tele-
scope at Arecibo. The ultimate objective of
SETI@home, realized within the framework of the SETI
project, is to track down and identify signals sent from
intelligent civilizations situated outside our solar system.

Design. A major value of SETI@home is that the project
old enough so that the tools have reached a very high lev-
el of quality. The project uses two major components: the
database server and the client. They are provided by sev-
eral different platforms, such as Windows, Linux, So-
laris, and HP-UX (see Figure 17). The database has
proven to be very scalable (more than three million users
registered) and solid. Parts of the server-side code have

Figure 17: SETI@home Architecture. Adapted from [Sulli-
van et al. 1997].
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been made available for analysis. The client-side soft-
ware is available as a screen saver module (although
stand-alone operation is available) and is not linked to
any third-party technology. This means that the client
software has been developed specifically for each sup-
ported platform. Although the required development ef-
fort was costly, it made it easier to solve specific
problems such as handling security (sandboxing of the
execution, encryption of information, digital digests).

Fault resilience. Fault resilience is a major value of the
client operation. Because one computing batch may re-
quire as much as ten hours to complete, it was necessary
to ensure seamless recovery when the user logs in (which
stops the SETI@home client), as well as when the ma-
chine is shut down. The SETI@home client resilience re-
lies on a checkpointing mechanism, where the resumable
dataset is saved on the hard disk every ten minutes. This
means that each time a SETI@home computation is in-
terrupted (by the user or a system failure), the computa-
tion will resume at the last saved dataset and proceed
from there. This simple mechanism adds only a small
processing overhead and little complexity, and results in
a program that is very reliable.

Scalability. The SETI@home project strongly relies on
its server to distribute jobs to each participating peer and
to collect results after processing is done. The horizontal
scalability (number of users) of the system is excellent,
with millions of enthusiastic users already participating.
A vertical scalability bottleneck of the architecture may
be that a single server is responsible for coordinating all
of its operations. However, the huge number of users
shows that the system can handle this load.

Lessons learned. The major value of the SETI@home
project – apart the scientific results – was to prove that
the technology can be applied to real situations. We can
envision how it could be used to better tap the processing
power from unused computers and identify the peak pe-
riods of used computers. SETI@home developers were
hoping for approximately 100,000 participants, but they
surpassed this number within a week. So far there have
been more than 3,000,000 contributors. The last lesson is
related to security. Most of the problems were not caused
by malicious users, but as a consequence of competitive-
ness. People raised the frequency of their CPUs, making
them more exposed to failures [Wortheimer 2002].

Business model. However, it is still not clear how ven-
dors will package this approach into products and servic-
es, or what business model they should follow.

6.3 Groove

Groove is a collaborative P2P system. It is mainly target-
ed to Internet and intranet users, although it can also be
used on mobile devices, such as PDAs, mobile phones,
and tablets. It is intended to enable communication, con-
tent sharing, and tools for joint activities [Leigh and
Benyola 2001].

History. Groove was founded in 1997 by Ray Ozzie, the
developer of Lotus Notes. The first version of the prod-
uct was released in the beginning of 2001.

Goals. The Groove’s main goal, which was P2P by de-
sign, was to allow users to communicate directly with
other users without relying on a server [Suthar and Ozzie
2000]. Other important goals include security and priva-
cy, and flexibility.

Groove users are authenticated, data is secured both on
disk and on the wire, and data confidentiality and integ-
rity are enabled by secure key technology. User data re-
siding on the server is opaque and private data is not
shared with third parties. Finally, Groove components
are signed.

Flexibility in Groove is related to both network and de-
velopment. Groove supports the Internet, intranets, and
private networks, and allows users to transparently han-
dle disconnection. Groove also supports a number of re-
usable components.

Applications. Groove is intended for communication,
collaboration, and content sharing.

• communication: voice over Internet, instant messag-
ing, chat, threaded discussions

• content sharing: shared files, images, and contacts

• collaboration: group calendaring, group drawing and
editing, and co-Web browsing

XML Object Store

Figure 18: Groove Layers. Adapted from Groove Product
Backgrounder White Paper, http://www.groove.net/pdf/back-
grounder-product.pdf.

XML Object Routing

Security

Tool Tool Tool Tool Tool

Shared Application Space

Storage Network

User Agent

Transceiver

Shared Application Space



29

Groove presents itself to users or to agents representing
users in the form of shared spaces (See Figure 18).
Shared spaces offer users benefits, such as spontaneity –
users act without an administrator, security – shared
spaces act as virtual private networks, context – spaces
provide and maintain the context for users, synchroniza-
tion – all spaces of the same user are synchronized across
all users devices, and granularity – parts of documents
can be exchanged [Udell, et all 2000].

Design. The Groove layer is inserted between the appli-
cation logic and command execution layers (see
Figure 19). This enables the command requests or data to
be stored locally or forwarded to the network, as appro-
priate. Commands are transformed into XML objects, re-
corded, and sequenced, which enables them to be played
back and relayed in case of disconnection. Security lay-
ers are executed before storing objects to disk or sending
them out to the network, preventing unauthorized access.
Groove supports peer-based authentication and end-to-
end encryption.

Groove supports system and centralized services
[Groove Networks 2001]. System services include:

• security, such as automatic handling of public/private
key management, encryption, and authentication

• storage based on the XML object store, enabling dis-
connection from the network

• synchronization of multiple local copies of the user
spaces

• peer connection to support transparent administration,
such as IP addresses, bandwidth selection, and firewall
translators

Centralized services, which leverage centralized man-
agement of resources, include:

• licence management which enables viewing all the de-
vices using certain software as well as managing the
use of this software

• component management, to enable managing Groove
components on the fly without requiring user interac-
tion for upgrades

• relays and transparent cross-firewall interaction to
optimize the communication bandwidth and offline
work, while still enabling direct P2P communication

• usage reporting to track how shared spaces are used,
enabling administrators to optimize resource distribu-
tion while respecting user privacy

Fault Resilience. The only form of fault resilience sup-
port is through relay activities, where messages sent to
failed nodes are queued until the nodes are brought up.
The same applies to transient failures in the network con-
nectivity.

Business model. Groove Networks plans to license its
infrastructure platform to corporations and third-party
integrators [Rice and Mahon 2001]. The competitors are
primarily other collaborative P2P systems, such as En-
deavors Technologies, but also Microsoft, given the na-
ture of the systems platform that both Groove and
Microsoft advocate. Some of the enablers for adoption of
Groove include elimination of the network administra-
tion costs, minimization of dependences on server infra-
structure, and availability.

6.4 Magi

Magi is a P2P infrastructure platform for building secure,
cross-platform, collaborative applications. It employes
Web-based standards such as HTTP, WebDAV, and
XML to enable communication among applications
within an enterprise network or over the Internet. Magi
Enterprise, their end product, builds over the infrastruc-
ture to link office and project teams so they can share
files, do instant messaging, and chat.

History. Magi evolved from a research project headed
by Greg Bolcer at the University of California, Irvine.
His team was funded by grants from DARPA, and at the
time, it was believed to be the largest, non-Sun Java
project in the country. Endeavors Technology was
founded in 1998, and was later bought over by Tadpole
Technology. The first version of Magi, which is their
P2P infrastructure, was released in late 2000. This was
followed by their enterprise edition in 2001.

User Interface

Application Logic

Cmds as XML Objs:

Cmd Execution

Data Storage

Data Modification

record, sequence,
playback

Store and Forward
Fanout, relay service

XML Object
Routing

to/from other
nodes

Figure 19: Groove Application Structure. Adapted from ht-
tp://www.groove.net/developers/presentations/architec-
ture.exe.
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Goals. The goal of Magi is to enable information sharing
and messaging on any device using popular Web-based
standards. The architectural framework runs on various
platforms including PDAs and Pocket PCs. It aims to
make development of XML and Java-based distributed
applications easier by providing event notification to any
device running an instance of Magi.

Design. The key components of the Magi framework in-
clude a micro-Apache HTTP server which provides a
link to every instance of Magi, a set of core services, and
a generic extensible interface. The modular architecture
of an Apache server allows easy reconfiguration and the
addition of interfaces only if they are required. The core
services include:

• Communication Service: messaging interface between
Magi services and the HTTP server

• Event Service: local modules register with the event
service to receive specific event notifications; also en-
ables communication among local modules

• Buddy Manager: maintains a list of active buddies and
their most recent communication endpoints

• Access Controller: allows restricted access to resourc-
es on a Magi peer

Plug-able service modules such as MagiChat, Magi-
DAV, and instant messaging, could be built over the core
infrastructure as shown in Figure 20.

Each instance of Magi acts as both a client as well as a
server and hence can participate in P2P communication
with other Magi servers. Magi supports the following
Web protocols: HTTP1.1; WebDAV for remote author-
ing of documents and SWAP/Wf-XML for remote pro-
cess monitoring and control. The modules supporting
these protocols can be loaded when required to achieve
interoperability with applications compliant with these
protocols. These features reinforce Magi's primary de-

sign goal to achieve interoperability with existing Web
access standards.

Scalability. Magi relies on a centralized Dynamic DNS
as a directory for IP addresses of Magi instances. Be-
cause Magi instances can have dynamic IPs, when a
Magi instance comes up, it reports its IP to the DDNS.
This enables other Magi instances to find the current net-
work endpoints of their buddies. This centralized repos-
itory might be a scalability issue with the growing
number of users on the Magi network. More importantly,
it is a single point of failure, which could cause non-
availability of aliasing information. For user authentica-
tion, Magi provides a centralized Certificate Authority
(CA), which is another scalability concern and single
point of failure.

Fault Resilience. Queuing messages that cannot be de-
livered to buddies who are currently offline enables guar-
anteed delivery when the destination buddy eventually
comes online. Buddy crashes are not detected, as there is
no mechanism to check the liveliness of each buddy.
However, the core Magi interface can be extended as de-
sired to support any kind of fault resilience mechanism
among the buddies. For its centralized services such as
dynamic DNS and CA, Magi currently does not provide
any fallback schemes in the event of failure.

Implementation. The entire infrastructure is in Java and
the Web interface is through servlets. This makes Magi
as fast as the underlying virtual machine. Because each
Magi instance is both able to receive and send messages
over HTTP, a minimal Web server must be running. This
may not be the best solution for a Pocket PC or a hand-
held with limited memory resources. Magi uses Tomcat,
which supports modular loading of essential compo-
nents, coupled with independent service-oriented design
of the infrastructure to target constrained and embedded
devices. Magi's services are accessible through a Web-
based interface and is the access mechanism in their im-
plementations for the Compaq iPaq and the HP Jornada
pocket PCs.

Lessons learned. While most other P2P infrastructures
implement proprietary interfaces and communication
standards, Magi emphasizes the use of existing popular
standards. This makes Magi a highly interoperable plat-
form, and its Web-based design makes its deployment on
a range of devices easy.

Applications. Magi was designed primarily with the pa-
per-based workflow scenario in mind and is targeted at
any type of collaborative environment. It supports file
sharing and collaborative tools such as chat and messag-

Figure 20: Magi Architecture.
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ing. As a platform, it can be used to embed collaborative
processes into enterprise-wide applications and B2B
products. An SDK has also been released to ease the in-
tegration of Magi into applications.

6.5 FreeNet

Freenet is a P2P file-sharing system based on an initial
design by Ian Clarke [Clark 1999, Clark et al. 2001]. The
primary mission of Freenet is to make use of the system
anonymous. That is, upon entering the system, a user
should be able to make requests for files without anyone
being able to determine who is making these requests.
Likewise, if a user stores a file in the system, it should be
impossible to determine who placed the file into the sys-
tem. Finally, the operator of a freenet node should have
no knowledge of what data is stored on the local disk.
These forms of anonymity make it possible to provide
storage and use the system without concern of being
tracked down or potentially held liable.

History. The Freenet system was conceptualized by Ian
Clarke in 1999 while at the University of Edinburgh. In
his introduction to Freenet, he cites the following quota-
tion:

“I worry about my child and the Internet all the time even
though she's too young to have logged on yet. Here's
what I worry about. I worry that 10 or 15 years from now,
she will come to me and say “Daddy, where were you
when they took freedom of the press away from the In-
ternet” - Mike Godwin

Public development of the Open Source Freenet refer-
ence implementation began in early 2000.

Goals. The principle goal of Freenet is to provide an
anonymous method for storing and retrieving informa-
tion. Freenet permits no compromise on these goals.
However, within these bounds, Freenet also strives to be
as reliable, easy to use, and responsive as possible.

Design. One of the key design points of the Freenet sys-
tem is to remain completely decentralized. Therefore,
Freenet represents the purest form of P2P system.
Freenet's basic unit of storage is a file. Every node in the
Freenet network maintains a set of files locally up to the
maximum disk space allocated by the node operator.
When all disk space is consumed, files are replaced in ac-
cordance with a least recently used (LRU) replacement
strategy.

Each file in the Freenet system is identified by a key.
These are typically generated using the hash SHA-1

[SHA-1 1997] function. A variety of mechanisms are
used to generate the desired hashes, but typically a user
starts by providing a short text description of the file.
This description is then hashed to generate a key pair.
The public key becomes the file identifier. The private
key is used to sign the file to provide some form of file
integrity check. Other schemes for generating keys can
be used as well permitting users to create hierarchical file
structures or to generate disjoint name spaces. The file's
key is then made available to users of the system by out-
of-band mechanisms such as a Web site. Because the key
can be computed from the description of the file, it is
common to publish only the description and not the actu-
al key.

The only operations in the Freenet system are inserting
and searching for files. In either case, it is essential to
find the proper location for the file. In general, Freenet
nodes form a network in which they pass and forward
messages to find the location of an existing file or the
proper location to store a new file. The keys are used to
assist in the routing of these messages. Freenet attempts
to cluster files with similar keys on a single node. By
clustering, Freenet is able to optimize searches by creat-
ing routing tables. When a file is successfully located by
a search, the file's key is inserted into a local routing ta-
ble. When another search message is received, it is first
forwarded to the peer node with the most similar key in
the routing table. When a search is received by a node
that contains the desired file, it returns the entire file as a
successful result. This is done recursively until the file is
returned to the initial requester. As a side effect, the file
becomes replicated at each node in the search path. In
this way, popular files become highly replicated.

Inserts operate much the same as searches. First, a search
operation is performed on the file's key. If a file with that
key is found, it is returned to the inserter as a form of key
collision indication. When no existing file is found, the
file is propagated forward along the search path. This ac-
complishes both the replication of the file that occurs
during a search as well as preserving the integrity of the
routing tables by placing the new file in a cluster of files
with similar keys.

New nodes announce their presence in the network by
performing a search operation. This search basically ac-
complishes the function of announcing the new node to
other existing nodes. Prior to sending the message, the
node must first discover at least one other node in the net-
work to which it can connect. Freenet explicitly does not
help in this problem because doing so typically leads to
centralized solutions. User's are required to bootstrap
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themselves into the network using out-of-band means for
finding at least one peer.

Scalability. The scalability of Freenet has been studied
by its authors using extensive simulation studies [Clarke
et. al. 2001]. Their studies support the hypothetical no-
tion that route lengths grow logarithmically with the
number of users. In their experiments, they start with a
network of 1000 nodes in a ring topology. As the exper-
iment runs, random keys are inserted and removed from
the network, and the path length to find a file reduces
from approximately 500 to less than ten. This is consis-
tent with the logarithmic curve expected.

Implementation and performance. Freenet is available
in an Open Source reference implementation. The proto-
col is also well defined allowing others to create their
own implementations. One side-effect of the focus on
anonymity in Freenet is the difficulty in observing its be-
havior. Obscured identities and probabilistic choices
make measurements difficult. For these reasons, no real
world performance studies seem to be available. Only
the simulation results described above can be used to
evaluate the system.

Lessons learned. The key lesson of Freenet is both the
importance and difficulty of maintaining anonymity. An-
onymity opens the door to freer discourse on the network
because users need not be concerned with the ramifica-
tions of their actions. Anonymity also runs contrary to
many intellectual property notions such as copyright.
The Freenet team argues that preserving freedom and
eliminating censorship are more important than intellec-
tual property concerns.

Business model. Freenet operates as a non-profit Open
Source project. There are as yet no commercial ventures
building on top of Freenet. The Freenet project does so-
licit donations to help fund continued development, but
does not appear to be dependent on these donations.

Applications. Freenet's only real application is as an in-
formation storage and retrieval system. The heavy use of
cryptography as well as anonymization of requests may
lead to other related uses. For example, it may be possi-
ble to use Freenet as a form of distributed backup system
with some guarantees that data can only be retrieved by
the owner of the data. However, Freenet only provides
probabilistic guarantees about the persistence of data, so
this likely would not make for a high-confidence back-up
solution.

6.6 Gnutella

Gnutella is a file sharing protocol. Applications that im-
plement the Gnutella protocol allow users to search for
and download files from other users connected to the In-
ternet.

History. Gnutella file sharing technology [Gnutella,
2001] was introduced in March of 2000 by two employ-
ees of AOL’s Nullsoft division. Touted as an open-
source program with functionality similar to that of Nap-
ster [Napster, 2001], the Gnutella servant program was
taken offline the following day because of a possible
threat to Warner Music and EMI. AOL was rumored to
be in the midst of merger talks with the record companies
at that time. However, the open-source program re-
mained online long enough for eager hackers to discover
the Gnutella protocol and produce a series of clones to
communicate using the Gnutella communication proto-
col. Soon after, versions of the original Gnutella servant
were communicating with Gnutella clones to search and
trade files over the Gnutella Network.

Goals. The goal of Gnutella is to provide a purely distrib-
uted file sharing solution. Users can run software that im-
plements the Gnutella protocol to share files and search
for new files. The decentralized nature of Gnutella pro-
vides a level of anonymity for users, but also introduces
a degree of uncertainty.

Design. Gnutella is not a system or a piece of software.
Gnutella is the communication protocol used to search
for and share files among users. A user must first know
the IP address of another Gnutella node in the network.
This can be discovered by going to a well-known Web
site where a number of Gnutella users are posted. When
a user wishes to find a file, the user issues a query for the
file to the Gnutella users about which it knows. Those us-
ers may or may not respond with results, and will for-
ward the query request to any other Gnutella nodes they
know about. A query contains a Time-To-Live (TTL)
field and will be forwarded until the TTL has been
reached.

Scalability. While the Gnutella model has managed to
succeed thus far, in theory it does not scale well. The
number of queries and the number of potential responses
increases exponentially with each hop. For example, if
each node is connected to only two others and the TTL
of a query is 7 (the default for most Gnutella queries), the
number of queries sent will be 128 and the number of re-
sponses may be substantially more depending on the
popularity of the item.

Fault resilience. The Gnutella protocol itself does not
provide a fault tolerance mechanism. The hope is that
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enough nodes will be connected to the network at a given
time such that a query will propagate far enough to find
a result. However, the distributed nature of the protocol
does not guarantee this behavior. In fact, studies have
shown [Adar and Huberman, 2000, Saroiu et al. 2002]
that only a small fraction of Gnutella users actually re-
main online long enough to respond to queries from oth-
er users. More robust software has begun to alleviate this
problem, however no guaranteed solution exists. The
only real solution at this point is to rely on users to retry
when their queries or downloads fail.

Implementation and performance. Since the first Gnu-
tella servant was posted by Nullsoft, a number of compa-
nies have implemented clone software and made efforts
to overcome many of the limitations not addressed by the
protocol. Among the most popular are Limewire
[Limewire, 2001], ToadNode [ToadNode, 2001], and
BearShare [BearShare, 2001]. Kotzen claims that while
in late 2000 only 10% of download attempts were suc-
cessful, by March of 2001 the number grew to over 25%
[Kotzen, 2001]. In addition, the number of Gnutella us-
ers has increased. However, Kotzen reports that a maxi-
mum of 11,000 users has been seen on the network at any
one time. While this represents an increase over previous
findings [Clip 2 Marketing, 2000], it does not provide
any proof of the scalability or performance of the Gnu-
tella network for the targeted thousands or millions of
nodes.

Business model. Gnutella is not a company or a piece of
software, but rather an open protocol. As such, there is no
Gnutella business model. Many of the companies devel-
oping Gnutella-compatible software are open-source or
offer free download. Additionally, some companies are
building software for the enterprise that offer content-
specific content sharing.

Lessons learned. The Gnutella model has raised a num-
ber of questions in the research and development com-
munity. Well-known solutions to traditional computer
systems problems cannot be applied in a straightforward
manner to Gnutella’s decentralized network. Research-
ers are busily trying to apply distributed computing and
database problems to ad-hoc, unorganized, decentralized
networks of nodes. The benefit of a Gnutella-style net-
work is the use of an unbounded set of diverse resources.
However, solutions often trade reliability for the poten-
tial of discovering an otherwise unavailable resource.

Applications. The primary application for this technolo-
gy has been the sharing of music files. While this contin-
ues to be the main motivating application for companies
developing Gnutella-compatible software, Gnutella is
more a paradigm than a given application. A number of

companies are developing visions of using the Gnutella
protocol for enterprise software including project-man-
agement-style applications as well as academic software
for classroom-based communication.

6.7 JXTA

The vision of the JXTA project is to provide an open, in-
novative collaboration platform that supports a wide
range of distributed computing applications and enables
them to run on any device with a digital heartbeat. JXTA
provides core functionality in multiple layers, including
basic mechanisms and concepts, higher level services
that expand the capabilities of the core, and a wide range
of applications that demonstrate the broad applicability
of the platform.

History. The JXTA project was unveiled by Sun on
April 25, 2001 [JXTA 2001] and was intended to be a
platform on which to develop a wide range of distributed
computing applications. Despite its recent introduction,
JXTA has been quite popular. Statistics show that on the
week of November 3rd, 2001, JXTA had 122 posts and
was used by 6,809 users.

Goals. The goal of JXTA is to provide a “general-pur-
pose” network programming and computing infrastruc-
ture. Its goals are:

• Interoperability: by enabling inter-connected peers to
easily locate each other, participate in community-
based activities and offer services to each other seam-
lessly across different P2P systems and different com-
munities

• Platform independence: JXTA is designed to be inde-
pendent from programming languages (such as C or
Java), system platforms (such as Microsoft Windows
and UNIX operating systems), and networking plat-
forms (such as TCP/IP or Bluetooth)

• Ubiquity: JXTA is designed to be implementable on
every device with a digital heartbeat, including appli-
ances, desktop computers, and storage systems

Design. It is important to note that the JXTA project is
approaching the P2P space from the lower level as they
are proposing an entirely new infrastructure with no di-
rect relation to other, existing P2P systems (e.g., Gnutel-
la and Napster). For example, they have built their own
distributed search service, called JXTA search.

Peer groups are the core of JXTA's infrastructure. A peer
group is essentially a partitioning of the world of peers
for communication, security, performance, “logical lo-
cality” and other reasons. A single participant can be in
multiple groups at one time. JXTA provides core proto-
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cols for peer discovery, peer group memberships, and
peer monitoring. JXTA uses asynchronous uni-direc-
tional communication channels, called pipes, for sending
and receiving messages. All data interchange in JXTA is
in the form of XML formatted documents.

Services. The JXTA project has defined core and option-
al services that run on the JXTA platform. Examples of
core services include authentication, discovery, and
management. To address the need for security, they have
implemented a cryptography toolkit that enables mes-
sage privacy, ensures authentication and integrity, and
permits transactions between peers that cannot be repu-
diated. However, it is not clear at this point how they deal
with firewalls; for example, how a peer outside a firewall
can discover peers inside the firewall or how two peers
inside two firewalls can communicate. Another core ser-
vice is the Content Manager Service (CMS) that allows
JXTA applications to share, retrieve, and transfer content
within a peer group. However, in the current version of
the CMS, there is no support for automatic propagation
of content requests; each peer sends content requests di-
rectly to the other peers. Examples of optional services
are naming, routing, indexing, and searching. For exam-
ple, the JXTA distributed indexing service implements a
general-purpose, fully distributed index service by using
a distributed inverted index to map keywords to a list of
postings.

Applications. The JXTA Shell was the first application
developed that gives a command-line interface to the
core JXTA services, such as peer and group discovery
and messaging. Since then, the JXTA project has devel-
oped more applications that allow interactive access to
the JXTA platform. For example, the InstantP2P applica-
tion enhances the JXTA project with chat capabilities. It
includes functionality that enables users to chat one on
one, chat with a group, and share files. Another applica-

tion is JuxtaProse, which is a discussion application that
allows creating, viewing, and replying to HTML docu-
ments over JXTA’s content management system. Other
applications that the JXTA community is currently de-
signing include event notification and P2P email.

Scalability. The JXTA project has a layered architec-
ture, which consists of three building blocks: JXTA core
(for peer group management), JXTA services (such as
searching and indexing), and JXTA applications (e.g.,
JXTA Shell). This layered architecture enables JXTA to
easily incorporate new protocols and services to support
a growing number of users. However, it will certainly
face some scalability problems that have been currently
left un-attended. One of these problems is global naming.
JXTA attaches a unique ID (generated by the users) with
each peer in the group but does not solve the global nam-
ing problem because it does not guarantee uniqueness
across the entire community of millions of peers. Even if
a peer has a unique ID within its group there is no guar-
antee that its name is unique across multiple groups.

Implementation and performance. The first version of
the JXTA core has currently been released, running in
three different platforms: the Solaris Operating System,
Linux, and Microsoft Windows. A prototype of the
JXTA Shell that gives a command-line interface to the
core services is also available. In addition to that, there
have been many independent efforts that build services
and applications on top of JXTA.

Business model. JXTA has been released as open-source
code and has already attracted many developers to build
applications (e.g., event notification, file sharing, P2P
email) on top of it. Sun is also working with other P2P
companies that are committed to work with the JXTA
open-source model and contribute their P2P technology
to it. JXTA requires some familiarity with the UNIX op-
erating system, which is not required for typical Gnutella
users.

6.8 .NET My Services

.NET My Services and .NET in a more global form do
not represent a P2P system in its traditional form, as do
other P2P systems described in this paper. However,
.NET My Services encompass a lot of P2P architecture
and as such they are presented here. .NET also introduc-
es a new language called C#, development tools, a
framework, a foundation for Web services, and the un-
derlying operating systems. This paper addresses only
the .NET My Services part of it (shaded part of
Figure 22).
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History. Microsoft officially announced .NET for the
first time in June 2000. Shortly thereafter, certain com-
ponents were available, such as operating systems, parts
of the .NET framework and enterprise servers, and pass-
port. During 2001 and 2002, subsequent versions of op-
erating systems, frameworks, and some key services
have been introduced.

Goals. The goals of .NET My Services and .NET in the
broader context are to enable users to access Web servic-
es on the Internet from available devices, including desk-
tops, laptops, and handhelds, using existing standards,
such as XML [Bray et al. 2000], UDDI [Ariba et al.
2000], SOAP [Box et al. 2000], WSDL (Christensen et
al. 2001]. The goal of .NET is to shift focus from appli-
cations, platforms and, devices to user-focused data.
Therefore, security and privacy are one of the major
goals of .NET.

Design. The design of .NET is focused around de-com-
ponentization and decentralization of distributed servic-
es. For example, a user will locate the desired service
through the UDDI registry, then she will access service
through the Web Services provider location, and she will
be authenticated through a separate passport service (see
Figure 23). The .NET Services programming model is
built around Web standards and standard protocols, such

as SOAP, UDDI, and WSDL. The .NET System pro-
gramming model is built around a new common lan-
guage run-time, which is intended to complement the
Java run-time. Passport (see Security and Privacy below)
is an authentication method for .NET Services. Other
Web services can communicate with .NET My Services
without disclosing a user’s identity and personal infor-
mation.

Security and Privacy. Security and privacy is one of the
main goals but also one of the main challenges for .NET
My Services. The support is provided through an online
service (Passport) that enables authentication of users.
This is used for accessing Web pages (see Figure 24) or
for services in general. Once authenticated, the user can
roam across passport-participating Web sites. Web sites
in turn are required to implement the “single sign-in” ser-
vice. Passport was released in July 1999 [Microsoft
2001a] and it had over 160 million accounts by July
2001.

Users of passport are required to create a passport ac-
count that contains the following information.

• Passport unique identifier (puid). Created automati-
cally as a part of account creation.

• User profile. Contains an email address or a phone
number (required), a first/last name, and demographic
information (postal code, region, country, etc.).

• Credential. Consists of a standard credential (email/
phone and a password) and a four-digit key for strong
credential sign-in required by some Web sites.

• Wallet (optional). Contains credit card numbers and a
postal address for delivery of purchased goods.

Of the passport information, only the puid is shared with
participating Web sites, and wallet information is shared
in case of purchases. This protects the privacy of users,
with passport playing the intermediary in user authenti-
cation. Passport offers the Kids Passport service, where
parents can restrict the information visiting Web sites
can collect about kids. Finally, passport has been opti-
mized for phone access by means of adaptation to mini-
mal screen requirements and different protocol support
(e.g., WML for WAP browsers or cHTML for i-mode).
Passport will be integrated with Windows XP by storing
them in the local credentials manager.

Scalability. It is only fair to compare the scalability of
.NET implementations with its earlier pre-.NET equiva-
lents. Operating systems will be enhanced with hooks for
the benefit of Web Service Foundations, and the OS
server editions will be required to scale even more given
the increased number of clients with the introduction of
mobile users that may have unpredictable access pat-

Figure 22: .NET Architecture.
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terns. The ultimate benefit of the .NET approach will be
in the further decomponentizing of the solutions en-
abling finer granularity of concurrency between compo-
nents and hence better component utilization. At the
same time, the side effect is improved reliability and
availability.

Fault resilience. Similar to scalability, further decompo-
nentization of .NET enables fewer single points of fail-
ure and more opportunities for failover among peer
components.

Implementation and performance. It is fairly early to
talk about implementation details and performance. So
far, most of .NET is envisioned to execute on Windows
platforms. It is still uncertain whether there will be other
platforms where .NET can run. Given the large base of
developers it is likely that performance will be addressed
as the deployment progresses.

Business model. .NET is a significant move in Mi-
crosoft’s strategy. It represents a move from a license-
based to a subscription-based model. .NET also has sig-
nificant impact on how other businesses will function in
general. It is one of the first times that Microsoft embrac-
es the Internet model in its entirety. Microsoft plans to
run .NET Services as a business, similarly to AOL or Ya-
hoo. It will charge consumers and service providers for
using .NET My Services. In the longer term, Microsoft
may provide enterprise-level .NET My Services. One

important aspect of the business model is that Microsoft
embraced open-source standards, such as XML, SOAP,
WSDL, and UDDI, as well as its submission of the C#
and Common Language Infrastructure to standards body
European Computer Manufacturers Association (EC-
MA).

Applications. The major advantage of .NET My Servic-
es compared to other solutions is the wealth of applica-
tions. Microsoft will port all of the Microsoft Office
applications to .NET, including the development tools.

Lessons learned. .NET and .NET Services are fairly
new to be able to derive any substantial lessons learned.
Nevertheless, at least two lessons can already be derived.
First, the passport model raises a lot of concerns about
security problems, but it has also attracted a huge number
of users so far. Second, it is the applications that attract
users; .NET seems to follow the same model as with MS
DOS, where it is really the applications, such as Excel
and Word that are of interest to users, not the infrastruc-
ture itself.

6.9 Summary

This Section summarizes the case studies. Table 6 sum-
marizes the general characteristics of all of the case stud-
ies. The entries are self explanatory. P2P systems are
deployed on a variety of systems and support different
languages and standard protocols. They are largely tar-
geted for the Internet and some are targeted for mobile
settings.

Table 7 summarizes the case studies from the perspec-
tive of the characteristics described in Section 4. There
are various decentralization models, including pure
(FreeNet, Gnutella, JXTA), hybrid (Groove, Magi), mas-
ter-slave (SETI@home), and mixed (.NET). Few sys-Figure 24: .NET Passport.
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System Feature

System
Category Alternative Solution Platform

Languages and
Tools Distinctive Features Target Networks

Avaki
distributed
computing

single installation HPC and
supercomputers

Linux, Solaris,
MS Windows

OO, paral. lang. obj wrap., legacy
app x-comp. (Fortran, Ada, C)

dist. admin ctrl, heterogeneity,
secure access, high paral. exec

Internet, intranet

SETI@home distributed objects
all common

OS supported
closed source large scale Internet

Groove
collabora-

tion

Web-based
collaboration

MS Windows
JavaScript, VB, Perl, SOAP, C++,

XML
exec. playback, self-updating

multi-identities
Internet, intranet

Magi dist. file sys. centralized chat
& messaging

Windows and Mac Java, XML, HTTP, WebDAV HTTP based, platform indep.
Internet, ad-hoc

(mobile)

FreeNet content
distribution

anonymity: none. others cen-
tralized & single point of trust

any with Java Java implementation and APIs Preservation of anonymity Internet

Gnutella central servers Windows, Linux Java, C protocol Internet

JXTA
platform

client-server
Solaris, Linux, MS

Windows
Java, C, Perl open-source effort Internet

.NET /
My Services Web-based Windows C#, VC++, JScript, VBScript, VB widespread MS apps base

Internet and
mobile

Table 6. Summary of Case Studies.
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tems support a high degree of anonymity (FreeNet). A
number of them support some sort of self-organization
and most of them improve cost of ownership. Ad-hoc na-
ture is predominantly supported through the ability of the
peers to join and leave. Performance is improved prima-
rily in the distributed computing type of P2P systems
(Avaki, SETI@home). Standard security mechanisms
are supported, such as encryption, authentication, and
authorization, and some of them protect against denial of
service attacks (Freenet).

Transparency is primarily supported for the benefit of
disconnection and to hide communication/computation
heterogeneity (Groove, Avaki). Fault resilience is sup-
ported through checkpoint-restart mechanisms (Avaki,
SETI@home), queued messages (Groove, Magi), and in
general by the redundancy of components and the elimi-
nation of a single point of failure. Most systems interop-
erate by relying on standard communication stacks (IP)

and on Web standards (SOAP, XML, UDDI, WSDL, and
WebDAV). There are a only a couple of exceptions of in-
teroperability with other P2P systems, such as Avaki
with Sun’s Grid, and Magi with JXTA.

Table 8 summarizes the business aspect of the case stud-
ies. The surveyed case studies belong both to proprietary
(Groove, .NET) and open source systems (FreeNet, Gnu-
tella, JXTA), or they are offered as either (Avaki, Magi).
They support applications in their respective domains,
such as distributed computing, communication/collabo-
ration, and file sharing. P2P systems classified as plat-
forms (.NET My Services, JXT, and to a certain extent
Groove and Magi) support a wider base of applications.

The case studies we selected have a closed base of cus-
tomers with the exception of .NET My Services, which
relies on its earlier customer base. Also, they are compet-
itors within each class of P2P systems. These systems
have different funding model: startups (Magi, Freenet,

P2P System

System Feature

Decentralizat
ion Scalability Anonymity

Self-
Organization

Cost of
Ownership Ad-hoc

Performa
nce Security Transparency

Fault
Resilience Interoperability

Avaki distributed,
no central mgr

scale to 1000s
2.5-3k tested

N/A
restructures

around failure
low

join/leave com-
pute resources

speedups
encryp, authentica-
tion, adm. domains

location; HW/
SW heterog.

chckpt/restart
reliable msg

interoperates
with Sun Grid

SETI@home master-slave millions medium low very low
join/leave com-
pute resources

huge
speedups

proprietary high
timed
chckpt

IP?

Groove hybrid P2P N/A poor high low
join/leave of
collaborators

medium
shared-spaces

authn/authr, encryp
high

queued
messages

IP-based

Magi hybrid P2P
around a 100 (cor-

porate NW)
N/A N/A low

join/leave of
buddies N/A

certificate
authority

communicate
offline buddies

queued
messages

JXTA, WebDAV

FreeNet pure P2P
theoret. scales ~

log(size_network)
high high low

join/leave of
peers

medium
f anonymity & pre-

venting DoS
high

No 1 point of
failure, replic.

low

Gnutella pure P2P thousands low high low
join/leave of

peers
low not addressed medium

resume
download

IP?

JXTA pure P2P
also addresses

embedded systems
N/A N/A low

join/leave of
peers

N/A
crypto algor.

distr. trust model
low low low

.NET /
My Services

mixed world-scale N/A medium low
join/leave of

peers
high passport-based high replication

SOAP, XML,
UDDI, WSDL

Table 7. Comparison of Characteristics of Case Studies.

P2PSystem

System Feature

Revenue Model Supported
Applications

Known Customers Competitors Funding Business Model

Avaki product and
open-source

computation grid, shared
secure data access

none. evaluated at several life
sciences labs

Platform Computing
Globus

startup N/A

SETI@home Academic Closed Academic
cancer@home

fight_aids@home
government

sell more computers
ads on screen savers

Groove product
purchasing, inventory,

auctions, etc.
N/A Magi IPO

collaborative tool of
choice next Lotus Notes

Magi product &
open-source

Shared file access, mes-
saging, chat

Global eTech, InterPro Global
Part., Mongoose T., Mediasoft

Groove startup N/A

FreeNet open-source file sharing public N/A startup N/A

Gnutella open-source file sharing public N/A public domain
algorithm of choice for

P2P

JXTA open-source
proprietary extensions

file sharing, messaging,
event notific., email

Many P2P systems ported to
JXTA

.NET/My Services
public domain, supported

by Sun Microsystems
de-facto common P2P

platform

.NET /

.NET My Services
proprietary & open-

source standards
MIcrosoft Office and

more
large base of MS

customers
AOL, Sun J2EE/JXTA,

Ximian MONO
MS internally

de-facto pervasive plat-
form

Table 8. Business Comparison of Case Studies.
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government funded (SETI@home), public domain ef-
forts (Gnutella, JXTA), or privately owned companies
(.NET My Services).

Finally, they have different business models, ranging
from becoming an all-encompassing pervasive platform
of choice (.NET My Services), or becoming a collabora-
tive platform of choice (Groove, Magi), to selling more
computers and using ads on screen savers (SETI@home)
and becoming a P2P algorithm of choice.

7 LESSONS LEARNED

Peer-to-peer is a relatively new technology that is not yet
proven in the research community and in industry.
Therefore, it may be too early to make a firm statement
on some of the lessons learned. Nevertheless, we can
make some preliminary observations. Some of them are
intuitive, while others are not obvious. We divide the ob-
servations into P2P strengths and weaknesses, P2P non-
technical challenges, and implications on users, develop-
ers, and IT.

7.1 Strengths and Weaknesses

A comparison of P2P with its alternatives, centralized
and client-server systems, is summarized in Table 9. A
more detailed comparison of P2P with its alternatives in
specific classes of P2P systems is also provided in Ap-
pendix A. P2P systems are designed with the goals of de-
centralization, ad-hoc behavior, improved cost of

ownership, and anonymity. Therefore, P2P is superior to
centralized and client-server systems in these areas. P2P
has more decentralized control and data compared to al-
ternatives; it supports systems whose parts can come and
go and can communicate in an ad-hoc manner; the cost
of ownership is distributed among the peers; and the
peers can be anonymous. Compared to P2P, centralized
systems are inherently centralized and client-server sys-
tems have centralized points of control and data at the
servers.

It is harder to compare P2P with alternatives in terms of
scalability, performance, security, self-organization, and
fault-tolerance. It is our speculation that because of high-
er decentralization P2P can better satisfy these require-
ments as well. P2P has the potential to be more scalable
than centralized and client-server solutions. However,
P2P systems are highly dependent on the underlying to-
pology and the types of applications. For example, main-
frame computers are still competitive for transaction-
based computing because they are optimized for this type
of applications. On the other hand, P2P system are very
suitable for large number of computers on the Internet,
for mobile wireless users, or for device sensor networks.
A similar reasoning applies to performance and fault-re-
silience. Individually, centralized systems have highly
optimized performance and fault-tolerance, followed by
client-server systems, and only then by P2P systems. The
opposite is true for aggregate systems where P2P has
higher aggregate performance and fault resilience by
avoiding the need to interact with servers and having
fewer points of failure.

It is unclear whether any of the systems has a clear ad-
vantage in self-organization and transparency. There has
been long-standing work in improving these characteris-
tics in both centralized systems and client-server sys-
tems. Self-organization is especially critical in Internet
Data Centers, and mainframe computers also implement
some forms of adaptation. Transparency has been the fo-
cus of client-server systems, in particular location trans-
parency. While also a goal of P2P, transparency has not
been sufficiently developed in P2P systems. Many ac-
tions require user intervention, such as connecting to a
specific network of P2P systems, providing knowledge
about the files and users, and understanding the failure
model.

Finally, we believe that in two regards P2P lags behind
its alternatives. Inherently, P2P systems expose more se-
curity threats than centralized and client-server models.
Because of the nature of peer-to-peer interaction, suffi-
cient guarantees or additional trust has to be established
among the peers. Interoperability is matter of investment

System/App
Requirements

Type of the System

Centralized Client-Server Peer-to-Peer

decentralization low (none) high very high

ad-hoc behavior no medium high

cost of ownership very high high low

anonymity low (none) medium very high

scalability low high high

performance
individual high

medium
individual low

aggregate low aggregate high

fault resilience
individual high

medium
individual low

aggregate low aggregate high

self-organization medium medium medium

transparency low medium medium

security very high high low

interoperability standardized standardized in progress

Table 9. Comparison of Solutions. Darker shading represents
more preferred characteristics or strengths.
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and as development proceeds more interoperability may
evolve. At the time of writing, client-server systems sup-
port the most interoperability.

7.2 Non-Technical Challenges

In addition to all of the technical motivations and diffi-
culties with developing P2P systems, there are also non-
technical challenges to the success of P2P. In spite of ex-
cellent technology, if these challenges are not overcome,
P2P will likely remain an approach used only in small
niches or by specific communities.

The chief challenge of P2P systems is acceptance and
use. Because peers rely on one another to provide ser-
vice, it is essential that numerous peers be available for
the service to be useful. By comparison, centralized or
client-server environments are potentially useful as long
as the service provider keeps the service running. This is
not the case in P2P systems. If the peers abandon the sys-
tem, there are no services available to anyone.

P2P systems live and die on their network effects, which
draw in more and more users. The value of network ef-
fects was informally specified by Metcalfe’s Law, which
states that “the utility of a system grows with the square
of the number of users.” While we cannot truly quantify
utility to prove the law, it resonates clearly with the idea
that more users make a system more useful.

Studies have also shown that all users are not alike, and
that some users can actually damage a system. [Adar and
Huberman2000] showed that in the Gnutella system,
many users download files, but few actual provide files.
Further, those with poor resources, such as bandwidth,
can actually slow the network down by becoming bottle-
necks for the system as a whole. This situation has been
likened to the tragedy of the commons where poorly be-
having users of a free, shared resource make the resource
unusable by all.

Solutions to this problem revolve around building an
economy around the use of the shared resource. One ex-
ample of this is MojoNation [MojoNation 2001]. In Mo-
joNation, users accumulate a form of currency called
“mojo” by providing service to others. In the MojoNa-
tion scheme, this currency would be redeemable for oth-
er services or potentially from real-world vendors in the
form of gift certificates or related benefits. However, im-
plementing a MojoNation type scheme requires account-
ing to be performed, and this can limit anonymity and
other potential benefits of P2P systems.

Related to acceptance and use is the danger of fragmen-
tation of the user base. Typically, individuals are only

going to participate in one or a very few different P2P
systems because they simply don't have the resources to
support multiple systems at the same time. Because of
this, as each new system is introduced it fragments the
user base and can potentially damage the value of all P2P
systems. Consider the success of Napster. It was argu-
ably not the most technically sound P2P system devel-
oped, but it was the first to gather a large user base.
Therefore, until it was forcibly shutdown, it thrived be-
cause the network effects continued to draw more and
more users.

Since Napster’s demise, a number of music sharing sys-
tems, such as Gnutella and KaZaa have been developed
and are both free and technically sound. However, nei-
ther has yet become the one truly dominant system, so
neither has become as truly useful as Napster was in its
prime.

Instant messaging faces a similar difficulty. While there
are numerous IM systems, each with a significant user
base, the overall utility of IM is limited because of frag-
mentation. Typically, to communicate with everyone a
user wishes to reach, the user must maintain accounts
and run clients from many IM systems at the same time.
Interoperability, as discussed in Section 4.11, seems to
be the only solution to this problem.

While P2P systems rely on scale for success, scale is also
a significant challenge. In centralized systems, problems
related to scale are relatively well understood and solu-
tions are pretty well known. In the worst case, bigger,
faster computing platforms are an option for improving
scale. Decentralized P2P systems more often require al-
gorithmic solutions to problems of scale. There is no cen-
tral place to simply throw more computing resources.
These distributed algorithms tend to be some of the most
difficult to develop because they require decisions to be
made at each local peer, usually with little global knowl-
edge.

A final challenge involves the release of control. In cen-
tralized systems, the operator of the system has some
control of the system. For example, an operator can mon-
itor each transaction and potentially determine who initi-
ated the transaction and how long it took. In a
decentralized system, no such monitoring is possible.
This scares many providers of traditional services so they
resist P2P schemes. Certainly, the release of control can
be seen as part of the reason for the Recording Industry
Association of America’s (RIAA) lawsuit against Nap-
ster. Napster provides an alternative method for music
distribution. While copyright, payment, and fair-use is-
sues are certainly at the center of the case, embracing a
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P2P approach to distribution, such as Napster, also im-
plies a release of control of the distribution channel. This
may explain why the RIAA and Napster have not been
able to reach an agreement.

7.3 Implications for Users, Developers, and IT

P2P is not a solution for every future system and applica-
tion. As we have seen in the previous two sections, it has
both strengths and weaknesses. In this section, we eval-
uate the implications that P2P has for users, developers,
and IT department. In Table 10, we compare P2P with its
alternatives. P2P has the following implications for the
users of P2P systems and applications: pervasiveness,
complexity of use, state of the art, and trust and reputa-
tion.

Pervasiveness is becoming more and more important.
While it may not be possible to access traditional servic-
es at any point on Earth at any time, P2P offers opportu-
nities in this regard by relying on peers to provide
services when there is no other infrastructure or means of
access available. For example, cellular connectivity may
not be available to the server, but a peer can offer the ser-
vice locally.

Traditional centralized solutions have complex support
compared to client-server solutions. P2P solutions are
not as simple or as well-understood as the client-server
model, yet wide deployment and use of Napster, Gnutel-

la-based solutions, and other startups offers potential in
this regard.

Currently, the client-server model represents the state of
the art, but there is a lot of ongoing development in P2P
research – second generation P2P systems (CAN, Pastry,
CHORDS, Tapestry, etc.); open-source – JXTA; propri-
etary systems – .NET; and standards – P2PWG.

From the user perspective, P2P is probably weakest in
the sense trust and reputation. Owners want to have trust
in the service they are using, so they will use only repu-
table sites unless price is the main objective or the ser-
vice is free. Centralized systems and the client-server
model have traditionally built up trust and reputation,
and this is a concern for users of P2P.

Developers are also concerned with complexity, as well
as with the sustainability of solutions, with the availabil-
ity of the tools, and the compatibility of the systems. In
this comparison, the client-server dominate over the oth-
er solutions.

Client-server systems are well-understood and docu-
mented for developers. P2P systems offer promise in
simple cases, such as document exchange, but for more
complex requirements, such as collaborative applica-
tions, they require more complex algorithms and under-
standing. It is a similar case of sustainability. In the long
term, centralized solutions may not be as sustainable as
peer-to-peer solutions, but the client-server model will
continue to be supported. Finally, the weakest aspect of
P2P is the lack of tools and compatibility across various
P2P systems.

P2P has the following implications for IT: accountabili-
ty, being in control, manageability, and standards. The
first three are very closely tied. Accountability is empha-
sized in centralized systems where access is monitored
through logins, accounts, and the logging of activities.
Accountability is more difficult to achieve in client-serv-
er systems, because of interactions with multiple clients.
It is weakest in P2P systems, because of equal rights and
functionality among the peers. Similar reasoning applies
for being in control. In centralized and client-server sys-
tems, control is exercised at one or more well-defined
points, whereas it is harder to achieve in P2P systems,
where control is entirely distributed.

A similar situation exists for manageability. There are a
lot of tools for the management of client-server systems,
somewhat fewer for centralized systems, and fewest for
P2P. Similar applies for standards. Most standards have
been developed for client-server systems and very few
for P2P systems.

Target Criteria
Type of the System

Centralized Client-Server P2P

User

Pervasiveness low medium high

State-of-the-art low high medium

Complexity high low medium

Trust &
Reputation

high medium low

Developer

Complexity high straightforward
typical - no

atypical - yes

Sustainability low high medium

Tools medium
(proprietary)

high
(standardized)

low
(few tools)

Compatibility medium high low

IT

Accountability high medium low

Being in control high (fully) medium low

Manageability medium high low

Standards medium
(proprietary)

high
low

(inexistent)

Table 10. Comparison of Solutions. Darker shading represents
preferred characteristics.
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While Table 9. compares the potential of P2P versus its
alternatives in terms of the characteristics, Table 10.
summarizes the existing implications of P2P on users,
developers, and IT. In summary, there is a lot of potential
for P2P, but it has not yet been realized.

8 SUMMARY AND FUTURE WORK

In this paper, we surveyed the field of P2P systems. We
defined the field through terminology, architectures,
goals, components, and challenges. We also introduced
taxonomies for P2P systems, applications, and markets.
Based on this information, we summarized P2P system
characteristics. Then, we surveyed different P2P system
categories, as well as P2P markets. Out of systems pre-
sented in Section 5, we selected eight case studies and
described them in more detail. We also compared them
based on the characteristics we introduced in Section 4.
Based on this information, we derived some lessons
about P2P applications and systems.

In the rest of this section, we revisit what P2P is, we ex-
plain why we think that P2P is an important technology,
and finally we present the outlook for the P2P future.

8.1 Final Thoughts on What P2P Is

One of the most contentious aspects in writing this paper
was to define what P2P is and what it is not. Even after
completing this effort, we do not feel compelled to offer
a concise definition and a recipe of what P2P is and what
it is not. A simple answer is that P2P is many things to
many people and it is not possible to come up with a sim-
plified answer. P2P is a mind set, a model, an implemen-
tation choice, and property of a system or an
environment.

• A mind set. As a mind set, P2P is a system and/or ap-
plication that either (1) takes advantage of resources at
the edge of the system or (2) supports direct interaction
among its users. Such a system and/or application re-
mains P2P regardless of its model or implementation.
Examples include SETI@home, which is considered
to have a client-server model, but displays the first
mind set property, and Slashdot [Slashdot 2002],
which enables the second mind set property, but really
has a centralized implementation.

• A model. A system and/or application supporting the
model presented in Figure 1 is P2P. In its purest form,
P2P is represented by Gnutella, Freenet, and Groove.
According to this, SETI@home does not have a P2P
model, whereas Napster has a hybrid model.

• An implementation choice. P2P systems and applica-
tions can be implemented in a P2P way, such as JXTA

or Magi. However, a non-P2P application can also be
implemented in a P2P way. For example, application-
layer multicast can have a P2P implementation, and
parts of the ORBs or DNS servers are also implement-
ed in a P2P way.

• A property of a system or an environment. .NET as
well as environments, such as small device sensor net-
works, may require P2P implementation solutions
while not necessarily supporting a P2P application.
P2P solutions may be required for scalability, perfor-
mance, or simply because of the lack of any kind of in-
frastructure, making P2P the only way to
communicate. This is similar to looking at P2P as an
implementation choice, however in this case P2P is the
forced implementation choice.

8.2 Why We Think P2P is Important

As P2P becomes more mature, its future infrastructures
will improve. There will be increased interoperability,
more connections to the (Internet) world, and more ro-
bust software and hardware. Nevertheless, some inherent
problems will remain. P2P will remain an important ap-
proach for the following reasons.

• Scalability will always be a problem at certain levels
(network, system, and application), especially with
global connectivity, much of it wireless. It will be hard
to predict and guarantee all service-level agreements.
P2P can contribute to each area.

• Certain parts of the world will not be covered by (suf-
ficient) connectivity, requiring ad-hoc, decentralized
groups to be formed. P2P is a well-suited alternative
when there is a lack of infrastructure.

• Certain configurations of systems and applications
will inherently be P2P and will lend themselves to P2P
solutions.

8.3 P2P in the Future

The authors of this paper believe that there are at least
three ways in which P2P may have impact in the future:

• P2P algorithms probably have the biggest chance of
making impact. As the world becomes increasingly
decentralized and connected, there will be a growing
need for P2P algorithms to overcome the scalability,
anonymity, and connectivity problems.

• P2P applications are the next most likely to succeed
in the future. Examples, such as Napster are a convinc-
ing proof of such a possibility.

• P2P platforms are the third possible scenario for P2P.
Platforms such as JXTA may be widely adopted, in
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which case many other P2P systems can also gain wide
adoption.

8.4 Summary

We believe that P2P is an important technology that has
already found its way into existing products and research
projects. It will remain an important solution to certain
inherent problems in distributed systems. It may not be
the only solution and may not be appropriate for all prob-
lems, but it will continue to be a strong alternative for
scalability, anonymity, and fault resilience requirements.
P2P algorithms, applications, and platforms have an op-
portunity for deployment in the future. From the market
perspective, cost of ownership may be the driving factor
for P2P. The strong presence of P2P products indicates
that P2P is not only an interesting research technology
but also a promising product base.
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APPENDIX A P2P VS. ALTERNATIVES

P2P is not a solution to every problem in the future of
computing. Alternatives to P2P are traditional technolo-
gies, such as centralized systems and the client-server
model. One potentially interesting observation is that
these two alternatives to P2P are a hardware architecture
and a programming model, which seems like a compari-
son of apples and oranges. This can be particularly awk-
ward as we compare these solutions. However, P2P is
indeed both an architecture (how we design and imple-
ment systems) and a programming model (how we pro-
gram algorithms and in general conceive the systems and
applications).

Centralized systems (possibly organized in small clus-
ters) are represented by mainframes and supercomputers
for execution of compute-intensive applications and
large batch jobs, and high-end servers for data/content
sharing and for collaborative applications. Internet Data
Centers are also a form of centralized-point-of-control
(even if distributed) installation of a large number of ma-
chines serving one purpose – content sharing.

The client-server model has different implementations,
including on top of clusters, such as Platform Computing
LSF, wide-area middleware systems, such as CORBA,
RMI, and Web-based solutions, such as a Web server of-
fering services to clients.

Some of the strengths of centralized and client-server
systems include well-understood programming models,
guaranteed performance, strong security, and well-
known solutions for reliability. A lot of work has already
been standardized and used for several decades. These
systems are managed from a central point of control en-
abling good insight into the status and straightforward
changes to configuration and parameters. On the nega-
tive side, these systems have limits to scalability, and a
lot of them are proprietary and consequently hard to
change. Centralized systems are costly to own and main-
tain and hard to deploy on a wide scale, such as in perva-
sive computing.

In Table 11, we summarize various types of P2P systems
that will be compared in the rest of the section. We have
classified P2P systems into those supporting distributed
computing, data sharing, and collaboration, and into plat-
forms. As alternatives, most of the P2P systems have
Web-based tools, and some have traditional distributed
systems. The key features of these systems are scalabili-
ty by avoiding the bottlenecks of centralized solutions
systems are better able to scale, self-organization, caused
by individual peers continuously going up and down, the
ad-hoc nature of peers that establish communication
channels for collaboration, and interoperability as re-
quired by platforms.

In the following three tables, we compare each class of
P2P system with its alternatives in more detail. In

P2P Solutions

Comparison Criteria

Example Systems Alternatives Key Feature
Typical Target
Architecture

Distributed Computing Avaki, Entropia, DataSynapse, MojoNation, United
Devices, cancer@home, SETI@home

grids, clusters,
supercomputers

scalability, self-
organization

personal/company
owned computers

Data Sharing Napster, Gnutella, Aimster, Freenet, DFS, Web-based availability Internet

Collaboration Magi, Groove Cybiko, desktop, Web-based ad-hoc nature
Internet,

ad-hoc networks

Platforms JXTA, .NET,
OS, Web, traditional
distributed systems,

interoperability Internet, enterprises

Table 11. The P2P Types of Systems.

Solutions

Comparison Criteria

Example Infra-
structure

Decentral
ization

Scalability
(maximum)

Anonymity Self-
Organiz.

Cost of
Ownership

Ad-Hoc Performa
nce

Security
Threats

Transpare
ncy

Fault
Resilience

Interoper
ability

Supercomputers
High-End Servers

IBM Sys-
plex, Com-

paq, Sun, HP

standalone
small LAN

somewhat a few low low high low
high for

small
minimal low

elaborate at
all levels

low

Clusters of PCs Condor, LSF
Intranet,
LANs

strong a few 100 low low moderate medium low high
checkpoint-

restart
fail-over

medium

P2P Avaki,
SETI@home

Internet
intranets

signifi-
cant

SETI
(500000) high high

low (dis-
tributed)

high high

restart on
failure,

tolerate dis-
connection

low

Table 12. Comparison of Distributed Computing Solutions.
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Table 12, we compare P2P solutions for distributed com-
puting with clusters of PCs, supercomputers and high-
end servers, and grids. The earlier systems, such as high-
end servers and supercomputers, run either standalone or
in intranets. Examples are IBM mainframes (clusters of
Sysplex machines), standalone or clusters of high-end
UNIX servers. They have small scalability, elaborate
fault-handling, and extensive security, but high cost of
ownership. They are very expensive to obtain and to
maintain.

Clusters represent a transition to P2P solutions in that
they scale more compared to high-end systems, up to a
few hundreds (e.g., LSF claims to have scaled to over
500 hundred machines), but they compromise in terms of
security, fault handling, and cost of ownership. Similarly
to high-end systems, they are deployed within intranets
or even LANs.

Finally, P2P solutions are deployed on the Internet where
they have increased scalability (e.g., up to 500,000 in the
case of SETI@home), but they are very vulnerable to se-
curity attacks and have implemented only the coarsest
failure tolerance such as restarting failed tasks. However,
their cost of ownership is very small. It can be as little as
the cost of an average PC.

Figure 25 shows how scalability increases in the transi-
tion from high-end solutions over clusters of computers
to P2P solutions. On the same plot, the cost of ownership
decreases. Simultaneously, the graphs of security threats
are growing and fault tolerance are decreasing, but these

plots are omitted from the figure because of the lack of
quantitative comparison numbers.

In Table 13, we compare collaborative P2P solutions
with two other collaborative solutions: desktop-based
computing in an intranet environment and Web-based
collaborative solutions. Historically, there seems to be a
progressive evolution of connectivity from intranets
through the Internet to ad-hoc wireless connectivity.
However, the security threats are increasing proportion-
ally with the increase in connectivity.

In Table 14, we compare the solutions for context shar-
ing with their historical alternatives: distributed file sys-
tems, and Web-based publishing. Similar to other
comparisons, the cost of ownership is reduced, but secu-
rity attacks are increased for P2P. In addition, consisten-
cy is decreased as well as availability, but anonymity is

high-end clusters P2P

scalability

cost of ownership~100k

~10k

~1k

<10
<1k

<1M

Figure 25: Comparison of Distributed Computing Solutions.

time

characteristics

Solutions

Comparison Criteria for Collaborative Computing Solutions

Example Infra-
structure

Conne-
ctivity

Decentr
alization

Scalability
(maximum)

Anonym
ity

Self-
Organiz

Cost of
Ownership

Ad-hoc Perform
ance

Security
Threats

Transpa
rency

Fault
Resilience

Interope
rability

Desktop-
Based

Netmeeting,
Lotus Notes

Intranet limited low low low low high low medium low low low medium

Web-Based
SharePoint,

instant messaging
(AOL, Yahoo)

Internet Internet-wide low medium medium low medium low high high low high high

P2P Groove, Magi
Internet,
ad-hoc,

enterprise
World-wide high medium medium high low medium low very high high medium low

Table 13. Comparison of Collaborative Computing Solutions.

Solutions

Comparison Criteria for Context Sharing

Example Purpose
Infra-

structure Consistency
Decentra
lization

Scalability
(maximum) Anonymity

Self-
Organiz.

Cost of
Owner

ship
Ad-hoc

Perfor
mance

Security
Threats

Transpa
rency

Fault
Resilience

Interope
rability

Distributed
File Systems

NFS,
AFS,
DFS

general
purpose

file sharing

Clusters,
WANs,
Intranet

strong medium high restricted low high low N/A minimal high high low

Web-Based
Web
pages

information
sharing

Internet
mostly read-

only
medium high

by obscu-
rity

medium low low N/A high medium
Internet-
limited

high

P2P
Napster,
Gnutella

content
sharing

Internet,
ad-hoc

weak high high guaranteed high
very
low

high N/A
very
high

low
connectiv-
ity-limited

low

Table 14. Comparison of Solutions for Context Sharing.
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improved. Traditional file systems provided guarantees
for acceptable information consistency at individual
nodes in a Distributed File Systems (DFS), modulo NFS
problems. Web based systems are largely considered
read-only, even though there is increasingly more read-
write content. This significantly simplifies consistency
requirements. P2P systems cannot make significant
guarantees for consistency.

Traditional DFSs are designed to be highly available and
users are guaranteed access to the data by techniques,
such as replication, caching, and failover. On the Web,
caching also takes place, but network connectivity prob-
lems are the major concern for consistency, with obso-
lete caches as the next level of problems. In P2P systems,
there is an assumption that there will be a best effort for
availability. The content may or may not be available
subject to connectivity and peer availability.

Finally, anonymity is restricted in a DFS. It is possible on
the Web, largely by obscuring the identity. P2P systems
bring it to the next level, by guaranteeing anonymity. For
example, in systems like Freenet, Publius, or Free Ha-
ven, anonymity is guaranteed to the reader, writer, and
publisher of the content.

In summary, we can compare P2P solutions with tradi-
tional client-server solutions based on the model (see
Figure 4). Similarly, as in previous comparisons, the P2P
solutions have improved scalability, fault resilience, an-
onymity, security, and self-organization (ad-hoc nature).


