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Abstract. Databases have employed a schema-based approach to store and retrieve
structured data for decades. For peer-to-peer (P2P) networks, similar approaches are
just beginning to emerge, also motivated by the fact, that sending (atomic) queries
to the appropriate peers clearly fails for queries which need data from more than
one peer to be executed. While quite a few database techniques can be re-used in
this new context, a P2P data management infrastructure poses additional challenges
which have to be solved before schema-based P2P networks become as common as
schema-based databases. Because of the dynamic nature of P2P networks, we can
neither assume global knowledge about data distribution, nor are static topologies
and static query plans suitable for these networks. Unlike in traditional distributed
database systems, we cannot assume a complete schema instance but rather work
with a distributed schema which directs query processing tasks from one node to
one or more neighboring nodes.
In this paper, we will first discuss a suitable topology for schema-based P2P net-
works and how distributed knowledge about data distribution can be stored, ac-
cessed and updated based on that topology. Second we will describe how this knowl-
edge can be used to distribute abstract query plans through the P2P network and
expand them on the fly such that we can place query operators next to data sources
and utilize distributed computing resources more effectively.

1 Introduction

P2P applications have been quite successful, e.g., for exchanging music files, where net-
works use simple attributes to describe these resources. A lot of effort has been put into
refining topologies and query routing functionalities of these networks, and simple sys-
tems like Napster and Gnutella have inspired more efficient infrastructures such as the
ones based on distributed hash tables (e.g., CAN and CHORD [26, 29]). Less effort has
been put into extending the representation and query functionalities offered by such net-
works, and projects exploring more expressive P2P infrastructures [22, 2, 1, 13] have only
slowly started the move toward schema-based P2P networks.

At the same time, database systems have evolved toward a higher degree of distribu-
tion. While it has been a long way from central databases to truly distributed databases, we
currently see first explorations toward true peer-to-peer data management infrastructures
which will have all characteristics of P2P systems, i.e., local control of data, dynamic
addition and removal of peers, only local knowledge of available data and schemas and
self-organization and -optimization. In this view, schema-based P2P systems are the point
where these two directions of research meet [11] (see Figure 1).

In the Edutella project [7, 22, 24] we have been exploring some issues arising in that
context, with the goal of designing and implementing a schema-based P2P infrastructure
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Fig. 1. Schema Capabilities and Distribution

for the Semantic Web. Edutella relies on the W3C metadata standards RDF and RDF
Schema (RDFS) [19, 4] to describe distributed resources, and uses basic P2P primitives
provided as part of the JXTA framework [9]. In the ObjectGlobe project [3, 17, 18] we
have designed and implemented a distributed data network consisting of three kinds of
suppliers: data-providers supply data, function-providers offer query operators to process
data, and cycle-providers are contracted to execute query operators. ObjectGlobe enables
applications to execute complex queries which involve the execution of operators from
multiple function providers at different sites (cycle providers) and the retrieval of data
and documents from multiple data sources.

In this paper, we discuss in Section 2, how a super-peer based topology and “schema-
aware” routing indices allow us to efficiently route queries only to appropriate peers, and
how these indices are built and updated, when new peers enter or leave the network. In
Sections 3 and 4 we describe how these indices facilitate the distribution and dynamic
expansion of query plans, and will explore different strategies for optimizing query plans
in this environment. Section 5 gives an overview of two prototypes implementing the
proposed techniques and Section 6 concludes with further ideas.

2 Routing in Schema-Based P2P-Systems

Efficient query routing is one of the corner stones of advanced P2P systems. By relying on
a super-peer topology with “schema-aware” routing indices we show how to advance the
efficiency of recent P2P systems. We will start from super-peer networks as a particularly
appropriate topology for our schema-based P2P topologies, and discuss topology and
routing indices in such a network.

2.1 Super-Peer Networks

Each peer in a P2P network usually has varying resources available, e.g., regarding band-
width or processing power. As discussed in [30], exploiting the different capabilities in a
P2P network can lead to an efficient network architecture, where a small subset of peers,
called super-peers, takes over specific responsibilities for peer aggregation, query rout-
ing, and mediation. An example of a simple super-peer based architecture is the KaZaA
network [15], more elaborate versions are described in [5] and [23].

Super-peer based P2P infrastructures are usually based on a two-phase routing archi-
tecture, which routes queries first in the super-peer backbone, and then distributes them to
the peers connected to the super-peers. Caching of the peers data at the super-peers avoids
the second query distribution step but requires considerable amount of storage space. Fur-
thermore, data integrity is not guaranteed. Super-peer routing is usually based on different
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kinds of indexing and routing tables, as discussed in [5] and [23]. Here, we will discuss a
routing mechanism based on two indices which store information to route within the P2P
backbone and between super-peers and their respective peers.

2.2 Routing Indices

The Edutella Super-Peer Topology Edutella super-peers [23] employ routing indices
which explicitly acknowledge the semantic heterogeneity of schema-based P2P networks,
and therefore include schema information as well as other possible index information.
Network connections among the super-peers form the super-peer backbone that is re-
sponsible for message routing and integration/mediation of metadata.

Super-peers in the Edutella network are arranged in the HyperCuP topology. The Hy-
perCuP algorithm described in [27] is capable of organizing super-peers of a P2P network
into a recursive graph structure called a hypercube that stems from the family of Cayley
graphs. Super-peers join the HyperCuP based super-peer topology by asking any of the
already integrated super-peers which then carries out the super-peer integration protocol.
No central maintenance is necessary for changing the HyperCuP structure.

HyperCuP enables efficient and non-redundant query broadcasts. For broadcasts, each
node can be seen as the root of a specific spanning tree through the P2P network. The
topology allows for log2 N path length and log2 N number of neighbors, where N is the
total number of nodes in the network (i.e., the number of super-peers in our case). Peers
connect to the super-peers in a star-like fashion, providing content and content metadata.
Alternatives to this topology are possible provided that they guarantee the spanning tree
characteristic of the super-peer backbone, which we exploit for maintaining our routing
indices and distributed query plans.

Super-Peer/Peer Routing IndicesThe super-peer/peer routing indices (SP/P indices for
short) contain information about metadata usage at each peer, i.e., which schema and
attributes are used to describe the content stored at the peers. On registration the peer
provides this information to its super-peer.

In contrast to other approaches (Gnutella [8], CAN [26]), our indices do not refer to
individual content elements but to peers (as in CHORD [29]). The indices can contain
information about peers at different granularities: schemas, schema properties, property
value ranges and individual property values:

Schema Index We assume that different peers will support different schemas and that
these schemas are uniquely identified (by a URI). The routing index contains the
schema identifier as well as the peers supporting this schema.

Property/Sets of Properties Index Peers might choose to use only a selection of prop-
erties from (one or more) schemas to describe their content. While this is unusual
in conventional database systems, it is more often used for data stores using semi-
structured data, and very common for RDF-based [4] systems. In this kind of index,
super-peers use the properties (uniquely identified by schema ID plus property name)
or sets of properties to describe their peers.

Property Value Range Index For properties which contain values from a predefined
hierarchical vocabulary we can use an index which specifies taxonomies or part of
a taxonomy for properties.
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Property Value Index For some properties it may also be advantageous to create value
indices to reduce network traffic. This case is identical to a classical database index
with the exception that the index entries do not refer to the resource, but the peer
providing it. This index contains only properties that are used very often compared to
the rest of the data stored at the peers.

Using indices with different granularities enables us to state queries at different levels
of accuracy. Figure 2(a) shows an example of an SP/P index at the schema granularity.
Peer P1 uses two schema standards for describing its content, the Dublin Core standard
[6] (dc for short) and the Learning Object Metadata standard [21] (lom for short).

Super-Peer/Super-Peer Routing IndicesIn order to avoid query broadcasting (flooding)
in the super-peer backbone we introduce super-peer/super-peer routing indices (SP/SP
indices) to forward queries among the super-peers. These SP/SP indices are essentially
extracts and summaries from all super-peer local SP/P indices. Similar to the SP/P indices
they contain schema information at different granularities, but refer to the super-peers’
neighbors in the super-peer backbone (as shown in Figure 2(b)). Queries are forwarded
to super-peer neighbors based on the SP/SP indices, and sent to connected peers based on
the SP/P indices. For instance, Table 1 states the SP/SP routing index of the super-peer
SP2 at different granularities.

For constructing the SP/SP index a super-peer can be seen as the root of a spanning
tree. The SP/SP index is built dynamically based on the SP/P indices of all the super-peers
on this spanning tree, by backward propagation and aggregation of the SP/P information.
The other super-peers update their SP/SP indices accordingly.

For example, the SP/SP routing index of SP2 states at the schema level that all neigh-
bors (SP1, SP3, SP4) support the Dublin Core Schema dc and the Learning Object Meta-
data schema lom, but only SP3 contains information described by the Qualified Dublin
Core Element Set dcq). Thus, if a query requires both dcq and lom, it will not be routed to
SP1 and SP4 but to SP3. The same routing mechanism applies for queries on the other
levels of granularity. A special case is the Property Value Range level which gives spe-
cific properties in combination with classification hierarchies (like the ACM Computing
Classification System, ACM CCS1). Making use of the topic hierarchy, the routing index
can contain aggregate information in order to reduce the index size.

2.3 Peers Registering at Super-Peers

Peers connecting to a super-peer have to register their metadata information at this super-
peer thus providing the necessary schema information for constructing the SP/P and

1 Note that ccs:networks is a common super concept of ccs:ethernet and ccs:clientserver in the
ACM CCS taxonomy
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Granularity Index of SP2

Schema
dc SP1, SP3, SP4

lom SP1, SP3, SP4

dcq SP3

Property
dc:subject SP1, SP3, SP4

lom:type SP1, SP3, SP4

dc:format SP3, SP4

Property Value Range dc:subject ccs:dbms SP1, SP2, SP3

Property lom:type “exercise” SP3

Value dc:language “de” SP3, SP4

Table 1.SP/SP Index of SP2 at Different Granularities

SP/SP routing indices. For registration an XML registration message encapsulates a meta-
data-based description of the peer properties. A peer must register at least one schema
(e.g., the DC or the LOM element set) with a set of properties (possibly with additional
information), or with information about specific property values. A complete registration
example in the RDF-syntax can be found at [14].

The behavior of (super-)peers is rather unpredictable in a P2P network. Thus, these
registration messages are valid for a certain period only, and peers have to re-register peri-
odically. By invalidating the peers’ registrations periodically we chose a behavior similar
to other protocols for dynamic settings (like DHCP) since peers may leave the network
without any notice. If a super-peer fails, its formerly connected peers must re-register with
another super-peer. We are currently investigating deterministic reconnection strategies
using testaments which specify alternative super-peers, and clustering strategies, group-
ing similar peers (in terms of supported schema) together.

2.4 Update of Routing Indices

Update of the SP/P Index An update of the SP/P index of a given super-peer occurs,
when a peer leaves the super-peer, a new peer registers, or the metadata information of a
registered peer changes (e.g., new attributes are added or deleted).

If a peer leaves the super-peer all references to this peer have to be removed from
the SP/P index of the respective super-peer. The same applies if a peer fails to re-register
periodically. In the case of a peer joining the network or re-registering, its respective
metadata/schema information are matched against the SP/P entries of the respective super-
peer. If the SP/P routing index already contains the peers’ metadata only a reference to the
peer is stored in the index otherwise the respective metadata with references to the peer
are added to the index. The following algorithm formalize this procedure:

We define S as a set of schema elements2: S = {si‖i = 1...n}. The super-peer SPx

already stores a set Sx of schema elements in its SP/P index. The SP/P index of a super
peer SPx can be considered as a mapping si �→ {Pj‖j = 1...m}. A new peer Py registers
to the super peer SPx with a set Sy of schema elements.
1. If Sy ⊆ Sx, then add Py to the list of peers at each si ∈ Sy

2. Else if Sy \ Sx = {sn, ..., sm} �= ∅, then update the SP/P index by adding new rows
sn �→ Py , ..., sm �→ Py .

Update of the SP/SP IndexLet us first consider how to update the SP/SP indices in the
backbone, when one of them has been modified as described before. We assume here, that
each SP/P modification triggers the update process for SP/SP indices, though we can also
collect the modifications for a given period and trigger the SP/SP update process then.

2 A complete schema, e.g., dc is also considered as schema element
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We further assume that the super-peers cluster peers according to their schema charac-
teristics, so that peers connected to a super-peer usually have similar characteristics, and
SP/P modifications trigger SP/SP index updates less frequently. If we take for example
the network in Figure 3 and the example SP/SP index of SP2 shown in Table 1, a new
peer Px registering at super-peer SP1 with the property dc:language does not trigger the
update process since this metadata information already exists in the SP/P index. If a new
peer Py registers at SP1 with the property dcq:created, the SP/SP update process starts,
as this property was not included in the index before.

SP/SP Update Process. Remember that super-peers in the network are organized into a
HyperCuP topology, which implicitly defines each super-peer as root of a spanning tree.
Query routing takes place along the spanning trees (restricted by the SP/SP indices), so
the update of SP/SP indices has to be done in the reverse direction. For these updates,
again each super-peer acts as the root of a spanning tree (in the “backward direction”),
as shown in Figure 4 for the super-peer G. In this example we have a simple (complete)
cube, which has three dimensions (0,1,2), such that every node has 3 neighbors.

In order to update the SP/SP indices after an update of the SP/P index of the super-peer
SPx we build the spanning tree of the super-peer SPx as follows: SPx sends the update
message to all its neighbors, tagging it with the edge label (dimension) on which the mes-
sage was sent. Super-peers receiving the message update their SP/SP index accordingly
and forward the update message, but only to those super-peers tagged with lower edge
labels. Furthermore, whenever a message does not change the SP/SP index at a receiving
super-peer SPy , forwarding stops. The update is done as follows:

– For all si ∈ Sx ∩ Sy add dimension of SPx to the list of dimensions at row si if this
dimension does not exist.

– For all si ∈ Sx \ Sy add a new row si �→ dimension(SPx)

Adding new Super-Peers. Adding a new super-peer is a bit more complicated. For a new
super-peer, the HyperCuP protocol takes care of identifying new neighbors as discussed
in [27]. In this process one of the super-peers is “responsible” for integrating the new
super-peer. In most cases the new super-peer will fill a “vacant” position in the hypercube,
which has temporarily been administered by the responsible super-peer. In this process,
this super-peer, who has been holding an additional SP/SP and SP/P index for the vacant
position, transfers these indices to the new super-peer. If the new super-peer opens a new
dimension, it has to take over some peers from the old super-peer, and the SP/SP index
has to be split into two indices. The neighboring super-peers have to update their indices
accordingly, by exchanging the responsible super-peer with the new super-peer on the
appropriate dimension. Beyond the immediate neighbors, no further update is necessary.
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Fig. 4. HyperCup Topology and Spanning Tree Example

Removing Super-Peers. The HyperCuP protocol also takes care of super-peers leaving the
backbone. We usually assume that the leaving super-peer coordinates this operation, and
specifically asks appropriate super-peer(s) (more than one if the leaving super-peer tem-
porarily fills several positions) that will administer its position afterwards. In this process
the administering super-peers take over the SP/SP and SP/P indices of the leaving super-
peer, and the neighbors of the leaving super-peer as well as of the administering ones
have to update their SP/SP indices. Again, no update is required beyond the immediate
neighbors. Peers of the leaving super-peer reconnect to the super-peer which administers
the vacant position.

In the case of unexpected link failure its neighbors determine the “closest” (regarding
smallest hop distance) super-peer. This super-peer then coordinates the administration of
the open position with the same procedure as described above. Peers of the failing super-
peer have to reconnect at some other super-peer, possibly triggering further SP/SP update
messages.

3 Query Processing in P2P Networks

As described before, P2P networks can be divided into the two classes: pure P2P networks
and schema-based P2P networks. In this section we demonstrate at first the deficiencies of
traditional query processing in both classes as they rely on data shipping. Then we propose
our approach on dynamic, extensible, and distributed query processing in schema-based
P2P networks. We illustrate query processing by Figures 5 and 6 where a client peer states
a query to search for some information and uses its own filter predicates (the two stars) to
select the relevant information.

Although distributed query optimization and execution are well known problems in
databases, distributed query processing on distributed metadata is novel. Middleware sys-
tems, e.g., Garlic [16], have been used to overcome the heterogeneity faced when data is
dispersed across different data sources. In [20] a central mapping information of all partic-
ipating, distributed data sources is queried. [25] introduces so called mutant query plans
which encapsulate partially evaluated query plans and data. Their approach is not capa-
ble of supporting user-defined operators. Furthermore, loss of pipelining during execution
limits the general applicability for distributed query processing.

3.1 Pure P2P Query Processing: Flooding Requests

In pure P2P systems like Gnutella query processing takes place entirely at the client.
Therefore, all required data has to be shipped to the client whereby the network is flooded
with requests for resources which are propagated to all neighbors through the network
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Fig. 5. Traditional Query Processing in Schema-Based P2P Networks (Routing Requests)

up to a particular horizon. Usually the majority of these peers host none of the desired
information. On the other side, due to the horizon, some information is never discovered.
The URIs of the results are returned to the client and another round-trip is necessary to
obtain the data itself. The results of this initial data shipping phase are processed centrally
at the client, i.e., only at the client the user-defined filtering (execution of special-purpose
code) can take place and possibly large volumes of data are shipped to the client.

3.2 Schema-Based P2P Query Processing: Routing Requests

In schema-based P2P networks a distributed index systematically guides the search to the
appropriate (super-)peers. Whenever a new participant joins the P2P network the index
is updated with the metadata of the resources by the new peers as described in the previ-
ous section. Figure 5 shows on the left hand side that the search of information usually
involves only a small part (depending on the clustering) of the network. The right hand
side of Figure 5 illustrates that the local indices are consulted to selectively propagate the
search. The routing of requests constitutes an enormous improvement compared to flood-
ing requests in pure P2P networks. All relevant information is found and must be shipped
to the client to make the user-defined filters applicable. Search in schema-based P2P net-
works is much more efficient, as only the necessary peers are contacted and flooding the
network with requests is avoided. Nevertheless, entire query processing still takes place
only at the client and user-defined filters and complex operators can only be applied after
the data has already been shipped to the client.

3.3 Extensible Distributed Query Processing: Pushing Code-Carrying QEPs

To enable dynamic, extensible, and distributed query processing in schema-based P2P
networks, where both standard query operators and user-defined code can be executed
nearby the data, we distribute query processing to the (super-)peers. Therefore, super-
peers provide functionality for the management of the index structures, query optimiza-
tion, and query processing capabilities. Additionally, we expect that peers provide query
processing capabilities to be a full member of the P2P network. 3 These query processors

3 This assumtion is no necessity for our approach, e.g., thin clients such as mobile devices presum-
ably would provide no query processing capabilities. In this case the next super-peer takes over
query processing.
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can be dynamically extended by special-purpose query operators that are shipped to the
query processor as part of the query plan. This way, query evaluation plans (QEPs) with
user-defined code, e.g., selection predicates, compression functions, join predicates, etc.,
can be pushed from the client to the (super-)peers where they are executed. Furthermore,
super-peers have to provide an optimizer for generating good query plans from the queries
they receive. We utilize these distributed query processing capabilities at the super-peers
and distribute the query stated by the user to the corresponding super-peers. This dis-
tribution process is guided by the index which is dynamic and corresponds to the data
allocation schema in traditional distributed DBMSs. However, as the index is dynamic
and dispersed, static query optimization is not possible. Thus, query optimization must
also be dynamic and based on the allocation schema of the data known at the super-peer.

Figure 6 illustrates schema-based P2P networks with extensible distributed query pro-
cessing capabilities. We assume for our example, that the (super-)peers install a fully
functional optimizer and an extensible query processor as mentioned above. The left hand
side of Figure 6 shows the architecture and the flow of messages in our approach where
queries and code are pushed through the network. The client sends the query including
user-defined operators to the first super-peer where the local indices are consulted and
the query is split into two parts. The local optimizer determines the parts to be sent to
the next (super-)peers and the operators to be executed locally to combine the results.
Section 4 discusses three basic alternative optimization strategies. The first part including
Filter 1 is shipped to Peer 1, where the filter can be applied directly on the data before
shipping the results to Super-Peer 1. The later part of the original query including Filter 2
is pushed to Super-Peer 3, where the same process is repeated. Again, a part of the query
is sent to Super-Peer 4 and the results are sent to Super-Peer 1, where they are processed
further and finally returned to the client. The client just needs to display the results, and
very limited resources suffice for clients. Less data shipping enables thin clients and even
mobile devices, e.g., cellular telephones and PDAs, to query the P2P network. The right
hand side of Figure 6 shows the sequence of index lookups, shipping of queries and code,
and local query processing at the (super-)peers. The query plan is decentrally optimized,
whereby each super-peer optimizes just the piece of the query it receives. The remaining
parts are pushed further. This way, user-defined code such as filter predicates are pushed
to the data sources.
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select r1.data, r2.data, r3.data
from Resources r1, Resources r2, Resources r3

wherer1.lom type = “lecture” and r1.dc subject = “ccs:dbms” and r1.dc language = “de” and
r1.dc format = “application/pdf” and occur(r1.data, “transaction processing”) >= 2 and
r2.lom type = “exercise” and r2.dc subject = “ccs:dbms” and r2.dc language = “de” and
r3.lom type = “exercise” and r3.dc subject = “ccs:dbms” and r3.dc language = “en” and
r1.dc author = r2.dc author and r1.dc author = r3.dc author

Fig. 7.SQL Formulation of the Example Query

3.4 Summary and Classification of P2P Networks

The following table classifies P2P networks summarizing the most important characteris-
tics regarding query processing facilities and usage of index structures:
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4 Plan Generation and Distribution

In this section we describe the generation of a query evaluation plan at one super-peer us-
ing the allocation schema provided by the index structures. For illustration let us consider
the following example query: “Retrieve the data of resources r 1, r2, and r3 where r1 is a
lecture about ccs:dbms, and the language is de; furthermore, resource r 1 should be a PDF
file containing at least twice the phrase “transaction processing”; r2 is an exercise about
ccs:dbms, the language is de; r3 is an exercise about ccs:dbms, the language is en; the
resources should be written by the same author.” The corresponding SQL formulation of
this query is shown in Figure 7. The query accesses “Resources”, which represents the
collection of all resources registered in the P2P network. The attribute data represents
all the data belonging to the registered resource, i.e., in our example the PDF file. The
user-defined filter occur(r1.data, ‘‘transaction processing’’) >= 2
counts the number of appearances of the string in the PDF file. This is operation has to be
executed nearby the data sources to reduce the network traffic.

4.1 Details of the Plan Generation and Distribution

In contrast to traditional distributed query optimization, the plan is not generated statically
at one single host. In our approach, super-peers generate partial query plans which are
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Fig. 8. Plan Generation at a Super-Peer

executed locally and the remainders of the query are pushed to the neighbors. Thereby,
plan generation involves five major steps as depicted in Figure 8:

Parse The received SQL query is parsed and transformed into an internal representation
which is a decomposition of the query into its building blocks. The succeeding steps are
prepared, i.e., properties, property-values, and user-defined operators are identified.

Bind Resources The local indices are consulted to determine the location of the required
resources. For this purpose we introduce resource directions (RD), physical resources
(PR), and logical resources (LR): Users specify the desired information by giving prop-
erties and property-values which restrict LRs. These LRs are bound to RDs, if a corre-
sponding data source is found in the SP/SP index. Using the SP/P index, LRs are bound
to PRs, i.e., the URIs of registered resources. Binding the LRs to PRs and RDs, all levels
of granularity of the indices have to be considered. In our example scenario we obtain the
following bindings at SP1: r1 = RD1

1@SP2, r2 = RD1
2@SP2, and r3 = PR1

3@P1 = t,
where, e.g., RD1

2@SP2 denotes the first resource direction for the logical resource r2 and
references super-peer SP2. Multiple RDs and PRs can contribute data for the same LR.

Generate & Optimize Subqueries Based on the bindings, a local query plan is generated.
For the remaining parts subqueries are generated. As super-peers have a very limited view
of the whole P2P network (only the neighbors are known), it is obvious that no compre-
hensive static plan in the traditional sense can be produced. Furthermore, we determine
which subplans are executed at the neighboring (super-)peers.

As only partial information is available to the query optimizer this is a non-standard
query optimization problem where only a part of the query plan is generated. The remain-
der of the query which could not be executed locally is identified and grouped by host.
These remaining parts constitute the inputs to the local plan. To perform cost based op-
timization, the optimizer uses statistics of the input data, the network topology, and the
hosts. When LRs are bound at least the number of referenced resources should be pro-
vided by the index structures. This forms the basis of the cost estimation. Furthermore,
the optimizer may learn response times, transfer rates, and even result sizes from previous
query executions whereby the techniques presented by [12] can be adopted for P2P query
processing to obtain fine-grained and up-to-date statistics.

During plan generation, each query operator is annotated with the host where it is
executed. This is done bottom up from the leaves of the operator tree, which constitute
PRs and RDs. The annotations of the leaves are given by the binding phase. Now, an
operator can be executed on a host H , if all its input operators are executed at H , too.
This means, that a join must be executed at a host, if both inputs stem from different
hosts. For instance, the following query plan could be generated at SP 1:
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�author@SP1

�author@SP2

σoccur(u.data,...)>=2@SP2

RD1
1@SP2

�� ��
RD1

2@SP2

�� ��
PR1

3@P1 = t

The left-hand subtree can be executed at SP2, a subquery is pushed to SP2 which will
be optimized analogously (based on the bindings r1 = RD1

1@SP3 ∪ RD2
1@SP4 and r2 =

RD1
2@SP3). The following query plan could be generated at SP 2 for the subquery, where

again the individual subtrees can be pushed to SP3 and SP4:
�author@SP2

∪@SP2

σoccur(u.data,...)>=2@SP3

RD1
1@SP3

��� ���
σoccur(u.data,...)>=2@SP4

RD2
1@SP4

�� ��
RD1

2@SP3

Instantiate Local Plan The local query plan is instantiated at the super-peer, all user-
defined code is loaded and the communication path to the super-peer which uses this part
of the query plan as input is established. The execution of the local query plan is not
started until the distributed subqueries have established their communication paths. When
the subqueries are instantiated the plan is executed following the iterator model [10].

Distribute Subqueries The remaining subqueries are distributed to the corresponding
super-peers, where they are processed further.

4.2 Optimization Strategies

As shown above, several PRs and RDs can contribute data for the same LRs. The simplest
way for incorporating the data for such an LR would be to union all the affected physical
resources before any other operation is considered for that LR. First, this naive strategy
would produce good plans in some cases, but usually leads to an increase of the trans-
mitted data. Second, query optimization would be limited, however, and possibly better
plans might not be considered. Thus, several alternatives for the naive query plan must be
considered by applying equivalence transformations. Unfortunately, the number of plans
which has to be considered during query optimization when all possible equivalence trans-
formations should be taken into account, is rather large. The naive strategy is acceptable,
if the bound resources are spread widely over multiple hosts. To increase the degree of dis-
tribution, this query plan can be transformed using an equivalence transformation which
turns the join of unions into a union of joins, e.g., (R 1 ∪R2)�S = (R1�S)∪ (R2 �S).
The joins may then be distributed to the neighboring super-peers. This plan may have a
huge number of subqueries, however, which may not be efficient.

The most promissing strategy in such a distributed environment is to collect as many
bindings of one LR as possible at one host. Thereby the optimizer determines utilizing
statistics one “collecting host” to collect all data of one logical resource and the other hosts
are informed to send all data to the collecting host. This designated collecting host may
change during the plan generation. Furthermore, the selection of the collecting host can
take into account the current load situation to balance the load amoung all participanting
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Fig. 9. Query Plan Mapped onto the P2P Network
(The Arrows Indicate the Flow of Results)

(super-)peers. Figure 9 shows the mapping of the query plan onto the network, in which
this strategy is used. In this plan all resources for r1 are collected at first at P2 (where the
union is executed), then the join of resources r1 with r2 is done at SP3.

5 Implementation
5.1 The QueryFlow System as a Basis for P2P Query Processing

One of our platforms for implementing the ideas described above is the QueryFlow sys-
tem ([17, 18]) which is based on ObjectGlobe ([3]). The idea of ObjectGlobe is to create
an open market place for three kinds of suppliers: data-providers supply data, function-
providers offer query operators to process data, and cycle-providers are contracted to
execute query operators. A single site (even a single machine) may comprise all three
services. ObjectGlobe enables applications to execute complex queries which involve the
execution of operators from multiple function providers at different sites (cycle providers)
and the retrieval of data and documents from multiple data sources. The system is written
in Java, as are user-defined query operators which are loaded on demand and executed at
the cycle provider in their own Java sandbox. User-defined query operators, e.g., filters or
joins using complex predicates, must implement the iterator model of [10].

The QueryFlow system extends the idea of dynamic query execution by introducing
incomplete query plans. Hyperlinks reference single query plans (HyperQueries), which
are embedded as virtual attributes into the database of one host. The HyperQueries reside
on hosts in the Internet and are accessed dynamically. Whenever a virtual attribute is
accessed during execution, the referenced HyperQuery is executed at the remote host and
the result is returned to the caller. In our prototypical implementation, we assume that
each super-peer is a fully functional cycle-provider, i.e., HyperQueries and operations
such as joins, selection, projections, and user-defined operators can be executed by them.

Code-carrying QEPs do not really transmit the Java code of the operators but the query
plan is annotated with information which indicates the function-provider the user-defined
operator is loaded from. A class loader loads the bytecode of the operator on demand
into memory, whereby access to safety critical system resources is controlled by Java’s
security manager. Therby, a so-called sandbox is created in which untrusted code is safely
executed. Details of security, trust, and resource consumption are discussed in [28].

5.2 The Edutella P2P Infrastructure

The Open Source Edutella project [7, 22, 24] has the goal to design and implement a
schema-based P2P infrastructure for the Semantic Web. Edutella relies on the W3C meta-
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data standards RDF and RDF Schema (RDFS) [19, 4] to describe distributed resources.
It connects heterogeneous RDF (and also XML) repositories describing the resources
available in the network. Provider peers integrate heterogeneous data sources into the net-
work, by allowing local translation (wrapping) from the common data and query model
(ECDM) [22], to backend databases using either memory-based RDF models, database
systems using SQL, or systems based on logic (e.g., Prolog). The ECDM and the cor-
responding query exchange language RDF-QEL is based on Datalog semantics and is
represented in RDF. Edutella is written in Java, and uses the JXTA architecture [9] devel-
oped by Sun for basic P2P functionality, like initial peer discovery, network groups and
pipe-based communication between peers.

The Edutella super-peers [23] include schema information as well as other possible
index information in the corresponding routing indices. The current implementation uses
the routing indices to select (super-)peers who can answer a given query using the in-
dex information and the query characteristics. We are currently implementing distributed
query processing and query plans as discussed in Section 3.

6 Conclusions and Future Work

In this paper we have discussed additional challenges for P2P data management regarding
query routing and query planning, based on the specific characteristics of schema-based
P2P systems, which make straightforward adoptions of distributed database techniques
impossible. We have discussed an innovative query routing and planning architecture
based on distributed routing indices, which allows us to place query operators next to
data sources and utilize distributed computing resources more effectively. In the future
we try to merge both systems by processing code-carrying query plans in Edutella and
supporting more schema-based features by the QueryFlow system.

For further optimization, we want to investigate the inclusion of additional statistical
information in the indices, e.g., average response time, amount of registered data regard-
ing schematas, properties, etc. Furthermore, top-down query optimization seems to be an
interesting strategy especially as query optimization can be interrupted at any time and
a query plan is provided. At last, studying other strategies for the plan generation and a
more dynamic placement of operators would offer new possibilities.
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