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Abstract our physical environment with sensor networks consisting
of hundreds of thousands of small sensor nodes [24, 28, 35].
Over the last decade, we have seen a revolution in con-Applications for such large-scale distributed systems have
nectivity between computers, and a resulting paradigm shift three salient properties that distinguish them from tradi-
from centralized to highly distributed systems. With massivetional centralized or small-scale distributed systems.
scale also comes massive instability, as node and link fail-  First, the dynamics of large-scale distributed systems are
ures become the norm rather than the exception. For suchoften significantly different. For example, in P2P networks,
highly volatile systems, decentralized gossip-based proto-individual machines are often under the control of a large
cols are emerging as an approach to maintaining simplicity number of heterogeneous users who may join or leave the
and scalability while achieving fault-tolerant information network at any time. Sensor networks often involve the de-
dissemination. ployment in inhospitable or inaccessible areas that are natu-
In this paper, we study the problem of computing aggre- rally under high stress (for example in battlefields or inside
gates with gossip-style protocols. Our first contribution is |arger devices). Individual sensors may fail at any time, and
an analysis of simple gossip-based protocols for the compu-the wireless network that connects them is highly unreli-
tations of sums, averages, random samples, quantiles, anciple. Thus, with massive distribution comes massive insta-
other aggregate functions, and we show that our protocols pjlity; consequently, the system as a whole must be highly
converge exponentially fast to the true answer when usingfault-tolerant, as node and link failures or temporary com-
uniform gossip. munication disruptions are the norm rather than the excep-
Our second contribution is the definition of a precise no- tjon.

tion of the speed with which a node’s data diffuses through  gecond, due to the large number of nodes and the volatil-
the network. We show that this diffusion speed is at theity of the system, any reliance on central coordination

heart of the approximation guarantees for all of the above || imit the system’s scalability. Gossip-basedor epi-

problems. We analyze the diffusion speed of uniform gos-yemig protocols are emerging as an important communica-
sip in the presence of ngde and link failures, as V\{ell as fgr tion paradigm. In gossip-based protocols, each node con-
roodmg_—based mechanisms. The latter expose interestingats one or a few nodes in each round (usually chosen
connections to random walks on graphs. at random), and exchanges information with these nodes.
The dynamics of information spread bear a resemblance to
the spread of an epidemic [5, 10], and lead to high fault-
1. Introduction tolerance and “self-stabilization” [8, 10, 34]. Gossip-based
protocols usually do not require error recovery mechanisms,
Over the last decade, we have seen a revolution in con-2nd thus enjoy a large advantage in simplicity, while often
nectivity between computers, and a resulting paradigm shiftincurring only moderate overhead compared to optimal de-
from centralized computation to highly distributed systems. terministic protocols, such as the construction of data dis-
For example, large-scale peer-to-peer (P2P) networks withSe€mination trees. The guarantees obtained from gossip are
millions of servers are being used or designed for dis- Usually probabilistic in nature; they achieve high stability
tributed information storage and retrieval [9, 30, 32], and uUnder stress and disruptions, and scale gracefully to a huge
advances in hardware are leading to the augmentation offtUmber of nodes. In comparison, traditional techniques
~Supported by an NSF Graduate Research Fellowship have absolut.e guargntees, but are unsta_ble or fail to make
' Supported by NSF Grants I1S-0133481 and CCR-0205452, and by PrO9ress during periods of even modest disruption.
gifts from Microsoft and Intel. Third, due to the large scale of the system, the values of




aggregate functions over the data in the whole network (or Algorithm 1 Protocol Push-Sum

a large part of it) are often more important than individual 1. Let {(3,.,,)} be all pairs sent téin roundt — 1
data at nodes [17, 24, 34]. For example, in a sensor network 2. | et St = D0 By Wy = 3,

with temperature sensors, we are often more interested in 3. Choose a targef; (i) uniformly at random

the average or median temperature measured by all sensorss: Send the paifésm %wm‘) to f(i) andsi (yourself)
in an area rather than the single measurement at an individ- s: ;f_ is the estimate of the average in step

ual sensor. In a sensor network with acoustic and vibration

sensors, we may want to find out to which extent events of
especially large noise or vibration are spatially or tempo-
rally correlated. In a P2P system, we may be interested in
the total number of files, the average size of files stored, or

uantiles about the amount of free space on the machines ) . ) .
a b If we are interested in computing the sum instead of the

disks. At the same time, communication bandwidth is often average. then we onlv need to anolv a small change: instead
a scarce resource in decentralized settings, so the computa- 9e, y pply ge.

tion of aggregates should involve only small messages. Inof1E ?Iilnn;)dnes stLartlnng W'Itt\r/]vx\i/ erllgt:bo’i :rl,v\?nl)?non?tngdet f
particular, any protocol collecting all local data at one given (for instance the one a ch the query was inserted) starts

node will create communication bottlenecks, or a messageWlth _vvelght 1, while all others start W'th. we|ght We than
implosion at that node. obtain exactly.the same kind of approximation guarantees.

Motivated by these considerations, we study the follow- Push-Su_m IS a vety natgral prott_)gol, yet the_ proof Of_ the
ing class oNode Aggregatioproblems: in a network of approximation guarantee is non-trivial and r(_ahes crucially
nodes, each nodeholds a valuer; (or a setM; of values) on a useful property we termmass conservationthe av-

1 K3 K3 1 1

and the goal is to compute some aggregate function of these: Lﬁi?;?&:ﬁ?&l "Si:glv\zsé?e;;ﬁ;a\r/g,[i?:f arr;?ot_he
values (such as sums, averages, quantiles, etc.) in a decen- ' all WeIgntIve,; ysi. y P
tralized and fault-tolerant fashion, while using small mes- cols w_o!atmg th's.; property _(for instance, Pull-based proto-
sages only. The Node Aggregati,on problem was recentIyCO|S)’ it is not difficult to verify that they cannabnvergego

4 ) . . the true results, in the sense that with some constant prob-
defined formally by Bawa et al. [7], who restrict their atten- " . ) .
tion to sums, averages, minima, and maxima. They defineablllty (pos_S|ny depending on, but not the time!), the
several natural notions of “validity” of a result in the pres- apprquanon stays boundgd away _from the true.average.

. .\ ) L We will elaborate more on this issue in the full version.

ence of node failures, and show that “practical validity” (the
weakest notion) is the only one that can be achieved under

adversarial crash failures. They also present protocols forDiffusion Speeds

aggregation based mostly on building trees. The analysis of Push-Sum builds on an understanding of the

Here, we extend the study of aggregauon. beyond SUMSyittusion speedf Uniform Gossip, characterizing how fast
and averages, and show how to use gossip-based, com:

letelv d ralized protocols t h d | a value originating with any one node diffuses through the
pietely decentralized protoco’s to Compute random SaMpIeSy, oo This notion is made precise in Section 2, although
quantiles, and answers to several other aggregate databawe hasten to add here that it does not in general coincide
gueries in a decentralized fashion. We posit a weaker fail-

del than B tal 17 d obtain simol tocol with the “broadcast time” [6, 18, 29]— the time it takes
ure model than Bawa et al. [7], and obtain simple protocols to disseminate a message to all nodes using point-to-point
for all of the above problems. We can show that all of our

tocol tothe t tially fast communication. Push-Sum is generic with respect to the
protocols converge to the frue answer exponentially fast. underlying mechanism for communication, and its conver-

gence speed corresponds in a precise sense to the diffusion
The Push-Sum protocol speed of the communication mechanism.
We believe that this correspondence is of interest in it-
Our first contribution is a simple and natural protocol Push- self, as the choice of communication mechanism will de-
Sum for computing sums or averages of values at the nodegend strongly on the actual network and its physical im-
of a network. At all timeg, each nodeé maintains asum plementation. In sensor networks or P2P networks of rel-
5,4, initialized tos ; := =, and aveightw; ;, initializedto atively low degree, it may be easily feasible for a node to

(Section 3). Notice also that the lengths of all messages are
bounded by the largest number of bits to encoderthelus
the number of rounds that the protocol has run.

wo,; = 1. Attime 0, it sends the paifso,;, wo ;) to itself, send a message to all of its neighbors at once, but point-
and in each subsequent time stepach nodée follows the to-point connectivity may be hard to achieve (in particular
protocol given as Algorithm 1. for sensor networks, where nodes usually use radio broad-

We show that with probability at leagt— o, the rela- casts). Other networks may support the abstraction of point-
tive error in the approximation of the average has droppedto-point communication, but the number of messages that a
to within ¢, in at mostO(logn + logé + log %) rounds node can send in a round is limited, so that Uniform Gossip



is preferred. Our approach permits us to design and ana-of a resource or building an approximate minimum span-
lyze protocols independently of the actual communication ning tree, different gossip distributions exhibit qualitatively
mechanism; the convergence speed will be determined bydifferent behavior when restricted to small messages.

the diffusion speed of the mechanism.

Hence, we analyze the diffusion speed not only for Uni-
form Gossip, but also for several other communication
mechanisms. In particular, we analyze the impact of node
failures and message loss on the diffusion speed of Uni- We define a notion dfiiffusion speedwhich lets us char-
form Gossip. In addition, we show that the diffusion speed acterize precisely how quickly values originating with mul-
for flooding techniques corresponds in a precise sense tdiple sources diffuse evenly through a network, for a given
the mixing time of a random walk on the network. Thus, communication mechanism.
we obtain good diffusion speeds for flooding on many P2P  Recall that in the basic Push-Sum protocol, each node

network architectures, which are known to possess good exchooses some other node uniformly at random, and passes
pansion properties. on half of its sum and weight, keeping the other half. We

generalize this idea to other communication mechanisms

as follows: each nodé in each round, chooses a non-

negativesharec, ; ; for each nodg, such thad_; o ; =

Building on ideas from the protocol Push-Sum and the no- 1. and sends aa ; ; fraction of its sum and weight to each

tion of diffusion speeds, we design protocols for several j- The choice of shares may be deterministic or random-

more complex types of queries. Specifically, we show how ized, and may or may not depend on the tim#/e identify

to extend the analysis in a relatively straightforward way the communication mechanism with the shaes;,;)¢,,;-

to answer many kinds of aggregate queries in databases To track the diffusion of a nodés value under a given

[3, 4, 11, 13, 14, 15, 33], essentially any query that can be communication mechanism, we define — solely for the

approximated well using linear synopses. purpose of analysis — the following vector-based version
A somewhat more elaborate analysis shows that usingof the protocol. Each nodé locally maintains ann-

On|y small messages and few rounds of the under'ying Com-dimensionabontribution Vectoth7i. |n|t|a”y, |t SendS the

munication mechanism' we can Compute good random Samyectorei (the vector withl in thEi-Coordinate, and in all

ples from among the union of all values held by the nodes. others) to itself. In all subsequent rounds, the protocol is:

This, in turn, permits us to design a fast decentralized algo-

2. Diffusion Speeds

Protocols for other problems

rithm for computing quantiles (Section 4). Algorithm 2 Protocol Push-Vector
1: Let {¥,} be all vectors sent toin roundt — 1
Related Work 2 Letvy; == ¥,

3: Choose shares, ; ; for all nodes;j

Previously, several systems have been proposed that 4 S€Ndai,i; - vy, 1o eachy

combine gossip-based communication with an explicit hi-

erarchy on the nodes that allows for more easy aggregation The sums and weights in the Push-Sum protocol can
[17, 34]. These approaches have been observed to scale wefle expressed in terms of contribution vectorssas =

in practice, but require .the maintenancg qf an explicittree y, ;. x — S v - g andwg; = [[vealli = 3 v

on nodes, and the election of leaders within subtrees. Therefore, ifv, ; is (close to) a multiple of the all-1 vector

The dissemination time of gossip distributions, and the 1, then2%: is (close to) the true average, in a sense to be
time to broadcast one value to all nodes, has been studieg,ade p?ééise in Section 3.

in the past, see [18] for a survey. In particular, Frieze and i motivates characterizing the diffusion speed of the
Grimmett, and Pittel [16, 27] give precise constants in the .,mmunication mechanism by the speed with which the
O(logn) upper bound for Uniform Gossip. Feige etal. [12] .qnyribution vectors converge to multiples of thevec-
consider random broadcasting on random graphs and hyy,, e define the relative error at nodet time to be
percubes. Ravi [29] and Bar-Noy et al. [6] study approx- A;y = max; |l — L= e 1oq. We
imation algorithms for the (NP-complete) problem of op- sa;/ thatT — T”(‘g’ir!ls) isn(an up!;vet'ri ll‘)loun?j on) thiffu-
timal broadcasting. Karp et al. consider tradeoffs betweenSion speedf the r;le}:hanism defined by the distribution on
the r)umber of rounds of gossip and the number of messagesharesm ., if max; A, , < «with probability at least — o,
dupllcaFes that are sent [20]'. - . at all timest > T(é,n,}s). That is, the relative errors in the
The impact of message size restrictions on the ability to contributions at all nodesare bounded by.
solve distributed computation tasks is investigated in [21].

Itis shown that for the problems of locating the closest copy  !Although our framework is presented with decentralized communica-




2.1. Uniform Gossip

In this section, we characterize the diffusion speed of
Uniform Gossip.

Theorem 2.1 The diffusion speed of Uniform Gossip is
Tu(6,n,€) = O(log n+log L +log §). Thus, with probabil-
ity at leastl — 4, there is atime = O(log n+log L +log %)
such that the contributions at all times> ¢ and all nodes

i are nearly uniform, i.emax; |t — L <e.

Iver il

In order to prove this theorem, first notice that the prop-
erty of mass conservatiomentioned in the introduction
now translates to the following

Proposition 2.2 (Mass conservation)Under the protocol
Push-Vector with Uniform Gossip, at any timethe sum
of all of j’s contributions at all nodesg is >, v:;; = 1,

and hence the sum of all weightss, w; ; = n.

The proof of Theorem 2.1 is based on studying the po-
tential function®, = Zm (ve,i,j — w:l=i)2, the sum, over all
i, of the variance of the contributions ; ; (as a function
of j). The following Lemma guarantees geometric conver-
gence of the absolute errors, by showing thalrops to less

than half its previous value in expectation.

Lemma 2.3 The conditional expectation ofb;,; is

E[®i1 | @ = ¢] = (5 — 5,)9.

2 2n
Proof. Suppose we are given all contributions; = v; ; ;
and weightsw; = w,; at timet, as well as the calling as-
signmentf = f; (i.e. nodei calls nodef(:)). Then, the
new potential at time + 1 is

1 w;
IIRESY (E(w’j - #) + )
irj ki f (k) =i

1 i 1
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tion in mind, it does not a priori preclude the possibility of aggregating data

Wi

)

+ %Z > (k- %)(Ukhj -

Ik k'#kf(k)=f(k")

In the last step, we used the fact that e&dmppears in the
sum for exactly one node Next, we take expectations, not-
ing that the independent and uniform choice of communica-
tion partners ensures th&(f(k) =i = L for all nodesi
andk, andP[f(k) = f(K')] = + wheneverk # k'. Thus,

we obtain that

E[®y1 | @ = ¢)]

= %¢+ % > (i = =)k — =) PIf(k) =]
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In the last step, we used the mass conservation property,
to show that the sum is 0. ]

Proof of Theorem 2.1. By taking expectations repeatedly
in Lemma 2.3, and using the fact thé is at mostn, we
obtain thatt[®;] < n -27¢.

With foresight, we choose = 4logn + log % and an
absolute error of = &2 - § - 2727, Then, after running for
t =logn+log + = logn+2log L +log 2 +27 rounds, the
expectation ofb, is at most[®;] < £. Hence, by Markov’s
Inequality, with probability at leadt— g the potentiafb, is
bounded by? - 2727, In particular,v; ; j — “5| < e-277
for all nodesi.

In order to obtain a good bound on the relative error, we
still have to give a lower bound on the weights at time
Let ¢ be the node with largest weight at timg = ¢t — 7,
so thatw,, ; > 1. We look at how weight diffuses from
Consider a “message” that originates witht timetg, and
is forwarded by all nodes that have received it. A result by

along the edges of a tree that is fixed. This would correspond to each nodeFrieze and Grimmett (Theorem 5.2 in [16]) shows that with

sending its entire vector (with shatg to its parent during a first phase,

and parents distributing the correct aggregate evenly among their chiIdrent
in a second phase. The reader is encouraged to verify that our aggregation
protocols then coincide with the natural way of aggregating data in a tree,

and the diffusion speed is twice the height of the tree.

probability at least — g the message reaches all nodes in
ime at mosttlog n + log 2.

If in the “message” experiment, at any time> tg, a
nodej receives the message originating with negéen in



the Push-Vector protocoj, receives weight at leagto—', let 1 denote the loss rate for messages, or the fraction of

as the weight is divided bg in each round. In turny nodes that have failed at the beginning of the computation.
continues to divide its weight by at maogtin each round,

and therefore, with probability at least— % all nodes Theorem 2.4 If 4 < 1is an upper bound on the probability
have weight at leas2~" at timet = to + 7. Apply- of message loss in each round resp. the fraction of failed

ing a Union Bound over the potential and weight events, nodes, then the diffusion spegtiin the presence of failures

and dividing by the weightv, ; gives us that with prob-  satisfiesI”(6,n,e) < ﬁT(&,n,s).

ability at leastl — ¢, we have\% — 1| < ¢, attime

t = O(logn + log % + log %). ’ The proof of Theorem 2.4 is deferred to the full version
Finally, to see that the same bound holds for all later Of this paper. Note that the Theorem does not give guaran-

times, we use a Simp|e inductive proof_ The desired in- tees if nodes leave the network during the Computation. If

equality at timet’ can be rewritten as - vy ; ; € [(1 — we assume that they leave in an orderly fashion (after send-
en) - wy 4, (1 + en) - wy ;). Substituting these bounds into ing all of their sum and weight (or vector) to another node
the contributions at timé& -+ 1, we obtain that first), then it can be seen fairly easily that the poterbigat
1 1 most doubles as a result of nodes leaving, when at most half
R L ey Z SNV g of the nodes leave in one round. In particular, at most one
kify (k)=i additional round is required for convergence. If nodes crash
1 during the computation, then our results do not carry over.
€ l(L—en) wy; + > (1—en) wp, We are currently investigating the question of whether the
kfu (k)=i system can recover from crash failures, and what the impact
(14en)-wp,; + Z (14 en) - wy x) on the diffusion speed is.
ki fy (k)=i

= [(1—en) - wpsr (1 +2n) - wpprd). 2.3. Flooding

Thig proves the inducti\(e step, and hence the claim holds at |, several topologies, such as P2P or wireless radio net-

alltimest’ > ¢, completing the proof. B \works, point-to-point communication may not be a rea-
Under some additional technical assumptions, we cansSonable assumption, while the small number of neighbors

obtain similar guarantees for distributions that are not “too (O the physical implementation of communication) may

different” from uniform. The diffusion speed will be slowed Make it feasible to send one message to all neighbors at

down essentially by the largest (multiplicative) deviation once. If the shares assigned to each neighbor are time-
from the uniform distribution. The precise statement (and independent, then we can characterize all shares by a matrix

more cumbersome analysis) will be given in the full version 4 = (a,;):,;, where the entryy; ; denotes what fraction of

of this paper. its vectorv, ; nodei sends tgj. (In most applications, the
sharesy; ; will be the same for all nodes— however, our
2.2. Impact of faults on diffusion speed results hold in greater generality.) Thug, - Al is exactly

the vector of contributionsu, ; ;); from node; at all other

The power of gossip_based techniques lies in their im- nodes. As this is also the probablllty that the Markov Chain
plicit robustness against faults: often, there is no need todefined byA (and starting at nodg) is at states at timet,
distinguish failed nodes from temporary or permanent com- We can leverage a large body of work on the mixing speed of
munication disruptions; nor is any specific recovery action Markov Chains in analyzing diffusion speeds for flooding.
required. In this section, we investigate the impact of sev- T0 make this notion precise, we recall the following
eral models of failures on the diffusion speed of the Uniform definitions. m denotes the vector of stationary probabil-
Gossip mechanism. ities of the Markov Chain. For two vectors, b, we

We consider the f0||owing two failure models: random define the fraction% pointwise, i.e. itsi-coordinate is
message loss and initial failures of some nodes. We assumé>- Most results on mixing times for Markov Chains
that nodes can detect when their message has not reached its€ either the total variation distance or thg,-distance
destination (for instance by means of an acknowledgment(which lie within constant factors of each other). The
mechanism). However, they are unable to discern the rea-|"||2,~-distance from the stationary probability with respect
son, i.e. do not know whether a message got lost, or the desig 7 s ||ejT7'TAt 1 = (Zi(wy . m)l/Q_
tination node has failed. The Push-Sum (and Push-Vector)Here, we are interested in the||..-distance, which is
protocol is modified as follows: if a node detects that its | 7. a
message was not delivered, it sends the message to itself inUT
stead. Other than that, the protocol is not altered at all. We  2We assume that the Markov Chain so defined is actually ergodic.

e;‘-F-At~e1-—7ri

Whenever the

—1|| = max;| -




Markov Chain is reversible, i.ex;c; ; = 7505, for all 4, j, We conjecture that the diffusion speed of the asynchronous
these two distance measures can be related in the followingversion matches that of the synchronous version; the analy-
precise sense (see Lemma 2.4.6 from [31], and its analoguesis, however, becomes more complex.
for discrete time Markov Chains): As another practical consideration, nodes will usually
want to stop processing a query after some time, when the
Lemma 2.5 [31] If A defines a reversible Markov Chain, - approximation guarantee is good enough. This can be done
then whenevermaxj\\eff — 1o < 4, we have easily if the nod& posing the query) disseminates a mes-
el A% 1] < 82 sage stgtmg thai’Q is flnlshed._ However, it alsq raises _the
o =" interesting question of how will be able to decide that its
approximation is good enough. If the number of nodes or
the network topology are known, thénhas exact bounds
on the quality of approximation. However, nodes will often
not know the entire topology in decentralized settings. We
are currently investigating techniques by which nodes can
locally estimate the quality of their current approximations.
Theorem 2.6 Let T be a function such that Finally, many decentralized settings, such as sensor net-
¢ works, also involve frequently changing data that needs to

max; ||~
Hence, by doubling the time for the chain to run, we
obtain equally good (or usually better) bounds on|thie. -
norm. Now, ift is a time such that=-2—"| < 2= then
. . ; t,i,] 1
a straightforward calculation shows th?}é?ﬁl - X <e.

Thus, we obtain the following

el.At
maz;|-— —1[2 < ¢ forall ¢ > T(n,e). Then,  pe monitored. In our setting, a nodean simply add the
Tr(n,e) = 2T(n,/5%==) is an upper bound on the amountA by which its valuer; changed into its own sum

s¢; at any change, and continue disseminating this new
value. This will ensure that a snapshot over the entire sys-
Theorem 2.6 allows us to leverage a large body of lit- €M will always give the correct value, although the esti-
erature on the convergence speed of Markov Chains andnates at nodes may be temporarily incorrect. However, they
Random Walks for the analysis of our aggregate Compu_wiII eventually converge to the true average, once no more
tation protocols (see for instance [1, 23, 31]). In particular, changes happen for a sufficiently long time. Thus, our pro-
whenever the underlying network is an expander, then wetocols implement th&ventual Consistengyaradigm [34].
obtain diffusion speed'(n, c) = O(logn+log 1). Several
Peer-to-Peer topologies explicitly generate expander graphg Averages, Sums, and Aggregates
[22, 26], and others [30, 32, 36] build hypercube-like net-
works which are expected to also have good expansion.
Thus, we believe that our techniques will yield quick con-
vergence on many P2P architectures.

diffusion speed for the flooding mechanism defined by

Using Theorem 2.1, it is fairly straightforward to prove
the convergence of Push-Sum to the true average that we
claimed in the introduction.

2.4. Practical Considerations , . ,
Theorem 3.1 1. With probability at least — 9, there is

i — 1 1
We present the protocols Push-Sum, Push-Random (Sec- atimeto = O(logn + log ¢ + log 5), such that for all

tion 4), etc. in terms of synchronous rounds, and with a
synchronized starting point. The latter is certainly unnec-
essary. Instead, the node at which the query was posed may
simply assign a unique identifi€}, and use the underlying
communication mechanism to inform all other nodes of the
qguery. Once a node first learns about a query, it adds its
own value and weight to the received values, and then par-
ticipates fully in the protocol. It is fairly straightforward to
see that this does not affect the behavior, and convergence
will be equally fast as before once all nodes have learned of
the query.

The assumption of synchronous rounds is also not truly
necessary for the definition of the protocols. Instead, nodes
may simply follow their own clocks in deciding when to for-
ward a share of their values or vectors. Mass conservation|

timest > ty and all nodes, the relative error in the
Zj ‘277‘

estimate of the average at nodles at most - 5+ 2]
J
(where the relative error |§ﬁ ot - )

In particular, the relative error is at most whenever
all valuesz; have the same sign.

2. The sizes of all messages sent at tiraee bounded by

O(t+ max; bits(z;)) bits, wherebits(z;) denotes the
number of bits in the binary representationagf

Proof. Theorem 2.1 guarantees that with probability at
leastl — 4, there is a time, = O(logn + log 3 + log 1)
such that the contributions at all times > ¢, satisfy

Vi _1.1H < £
lveili  n *© = n’

is still ensured; however, the analysis of the convergenceaverage at nodeis =-—.

At time ¢, the estimate of the
By applying the Triangle In-

Vi,iX

speed for Uniform Gossip or flooding needs to be altered. equality under the sum (@ider’s Inequality), we obtain the



desired bound on the relative error at nedes follows:

Co) -2, ml Ny — )
= 25 Tl DIFEA
I — £ Lo - Il
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want to show that even if the relative error in the approxi-
mation of the sum of the synopses is large, the effect on the
function under consideration is small.

Specifically, we assume that the actual functiois ap-
proximated byE|[f], wheref (hy, ... , hi ) is computed as a
polynomial fromK small linear synopses of the data (which
in turn are the sums of local synopses(¢) at nodes, and
are often random variables). In addition, and most cru-

cially, we assume thdt[f] can be rewritten as a polyno-
mial 3, 6, E[[Tr_, [T, hx (i)}’ in terms of the expec-

For the second part of the theorem, notice that values ardationsE[h(i)] of local synopses, such that every additive

only divided by2 in each round. Hence, adding one bit of
precision in each round suffices to keep full accuracym

Of course, we may substitute any other communication
mechanism instead of Uniform Gossip, and will only have

term isalways non-negativeNotice that the non-negativity
requirement does not need to apply to the synopses them-
selves, but rather to the monomials &jf]. We write

d = max, Zk,ipr,k,i for the maximum degree of any term

in this polynomial.

to adapt the statement about the speed with which the values
converge to the true average to the diffusion speed of the3.1.1 The Push-Synopses protocol

mechanism.
If only one node (instead of all nodes) starts with weight

1, then the value computed at the nodes converges to theé®

sum of thex;, instead of their average, as a very similar
proof to the above shows. In fact, this technique can be
used to count the number of nodes in the network in a de-
centralized manner, if each node starts with valye= 1,

but only one node with weight; = 1 (the others having
weight0).

3.1. Linear Synopses

In turn, the ability to compute sums approximately is
a powerful primitive for more complex queries. In Sec-
tion 4, we see how to combine it with random sampling
to compute quantiles. Another application is in answer-

In the gossip protocol for synopses-based approximation,
ach node locally maintains a weightv, ;, and a vector
s¢; of K synopsess; ;. The synopses are initialized to
S0,k = hi(7), and the weights tav, ; = 0 at all nodes
except a specific starting node which haswg ; = 1. At
time step0, each node sends the p&ip ;, wo ;) to itself.

In each time step > 1, each nodé executes the following
protocol.

Algorithm 3 Protocol Push-Synopses

. Let{(§,,w,)} be all pairs sent toin roundt — 1
2: Lets,; :=)" 8, wy; =), Wy

: Choose shares, ; ; for eachj

: Send(am,j “ Sty Ot gj ° wm-) to eaChj

f(ij}Tl, ..., i) s the estimate at time

7w

[

AW

a

ing database queries that can be approximated well us-

ing linear synopsesi.e. functionsh on multisets such that
h(S1 U Sy) = h(Sy) + h(S2). Following the work by Alon

The approximation properties of the Push-Synopses pro-
tocol are summarized by the following theorem. The proof

et al. on using sketches to estimate join sizes [3, 4], thereis a fairly straightforward generalization of the proof of
has been a large body of work suggesting such techniquesheorem 3.1, and deferred to the full version of this paper.

for different kinds of queries, including aggregate functions
over joins [11],L, norms [13, 15], distinct values [4, 14]
and histograms [33].

If each node computes the “local synopsis” of its own

data, then the synopsis of the entire data can be approxi-

Theorem 3.2 LetT be the convergence speed of the chosen
communication mechanism in step 2. GiveandJ, let ¢’

be such thatl + &')¢ < 1+ ¢, andt > T(8,n,&’).

Then, with probability at least — ¢, the relative error at

mated by adding these local synopses, using the Push-Surd!l nodes: incurred by the communication layer is at mest

protocol. From the synopses, nodes can in turn computedt all timest’ > ¢. Here, the relative error i

approximate function values. It is then important to analyze
how the error introduced by Push-Sum affects the error in
the final outcome. A subtle difficulty arises from the fact

1

) %[f”(hl,... )]
)] = E[f(h1,... )]l

Notice thats” will be only polynomially smaller thas,

St,i, K
7wy

E[f (2Lt

tyi )

that in many cases (e.g. sketches), the expectation of théecausel is a constant. For most communication mech-

synopsis i9), so the actual value of the sum may be close
to 0, even though the local synopses are large in magnitude

anisms,T" grows at most logarithmically ia, so the time
required to reach error bounded &ywill only be longer by

Thus, Theorem 3.1 does not give useful bounds. Instead, wea constant factor than that to reach egror



3.2. Applications 4.1. Random Sampling

Linear synopses are a common technique for computing In order to draw a random sample frakfi, each node
aggregate information in database settings. We illustrate thefirst samples an elemet; from M, uniformly at randor,
applicability with respect to sketching techniques for join and then sends the pdig ;, m;) to itself. Subsequently,
size queries, and list several other applications. each node executes the following protocol Push-Random in

If f., andg, denote the frequency with which the ele- each round.
mentu appears in the relation8y and R,, then the join
size of the two relations i§", f.g.. In their work on  Algorithm 4 Protocol Push-Random
approximating frequency moments [3, 4], Alon et al. in- 1: Let{(g,,w,)} be all pairs sent toin roundt — 1
troducedsketchess powerful linear synopses of such fre-  2: Letw,; := >
quency tables;, R,. A sketch ofRy is a random variable : Choosey ; at random from{ g, } with probabilitiesﬁ
Xy = > ucv &ufu, Where eacl, is a random variable : Choose shares, ; ; for eachj h
with values uniformly in{—1, 1}. A straightforward calcu- : Send(g ., ati j - wy ;) to eachy
lation shows that if the,, are fourwise independent, then . qq.; is the random element at time
not only is the expectatioB[ X s - X¢] = > fugu, butthe :
variance is also reasonably bounde@onsideringX ; and
X, as synopses of the data, we see Hjaf ; - X,] is a sum
of monomials that are always non-negative, and hence th
techniques introduced above apply.

In addition to join-size queries, the following synopses- X
based aggregation techniques satisfy the required propertied€ following Theorem:
above,_ and can hence be Comk_nned with gossip-based 4% heorem 4.1 LetT be the diffusion speed of the underlying
gregation protocols (an elaboration on the exact form of the

. . . . communication mechanism. Then, with probability at least
synopses is again deferred to the full version of this paper):

1-4, afterT'(d, n, ﬁ) rounds, the element at each node

. 1 il —E& €
et al. [11] to include a much larger class of aggregate With probability betweer 2 and <.
gueries over multi-way joins in databases.

o g b~ WN

The protocol only uses small messages, and at any given
dime, each node holds some element. The important
guestion is how soon this element will be close to uniformly
distributed. The convergence behavior is characterized by

Proof. We show by induction on the time that
e Approximate histogram construction using sketches Plg:; = qo;] = ““;2 (recall thatv,; are the contri-
[33]. butions vectors). At time, this is clearly true, as the ratio
is 1 for j = ¢, and0 otherwise, and nodg¢holds its own
element.
For the inductive step, consider a nagdand all the pairs
it receives; letk be the node that sedf, = ¢;—1 %, which
o Distinct Value Queries, using hash functions [14, 4]. i chosen by with probability ==+%"%=~~ . Using con-
ditional probabilities over all of thé, and the induction
hypothesisP[g:—1.x = qo,;] = % we obtain that

e L,-norms, by using either range-summable hash func-
tions with limited independence [13], prstable dis-
tributions [19].

4. Random Sampling and Quantiles

! i i Plg; ; = 1 Q41 ki " Wi—1,k Vi—1,k,j - M
A second important task besides computing sums and av- 9t = qo,j] = Z )

erages is to find random samples and quantiles of a multiset ko b W1,k
of elements. We assume that each notields a multiset =M Zat_l’k’i CVe—1,kj

M; of m; elements, and led/ = [J, M, be the union of Wea

all these multisets, writing» = [M| = >, m;. We give a Vii,j - My

simple protocol with small messages for sampling elements Wy 4

nearly uniformly at random from/, and show how to com- , . ) o

bine it with Push-Sum to compute quantilesiafin a de- Given a desired quality of approximatien we choose
¢’ < =-=5—, and consider a time at which the rela-

centralized fashion. = 2Fem oy )
tive error in contributions at all nodesis less then<’,

3In order to apply these results in our distributed setting (and still obtain
linearity), all nodes have to use the same multiplérs Alon et al. show 4If M; = 0, theni initializes go,; =L for some special symbal.
how to generate fourwise independent multipliers from a random seed of As the_L element is always associated with weighit will be overridden
length logarithmic in the size of the universe [2, 4], so it suffices to dissem- by any true element, and hence, we can ignore this case for the rest of the
inate this seed to all nodeés analysis.




i.e.vi; € |[veilli-[2 —¢, L +¢] forall j andi. Letq be
any element inM (we conS|der all elements distinct here),
andj the node such thate M;. Then, nodé holdsg if and
only if ¢o ; = ¢, andgq, ; = qo ;. Since these two events are
independent, the probab|I|ty+é Ytig :”J = Zf preTt
Using the bounds from the dIfoSIOﬂ speed both in the de-
nominator and the numerator, we obtain that

Ut,i,j
Plgti=4q] = 7Zk:vt’i7:.mk
c i'[l/n—s’ 1/n—|—5’]
m ‘1/n+¢e’ 1/n—¢
1—¢ 1+¢
c [

4.2. Quantile Computation

Here, we phrase the problem of finding quantiles as that
of actually finding thep-largest element, with probability
at leastl — §. Our algorithm is essentially a decentral-
ized implementation of the simple randomized “Find” algo-
rithm [25]. It starts with the entire (multi-)set of elements,
and in each round choosepiwot elemenfrom among the
remaining elements uniformly at random. The algorithm

then counts the number of elements larger resp. smaller than

the pivot, and recurses in the corresponding subinterval. A
fairly straightforward analysis shows that when the random
samples are uniform, and the element counts are exact, the
the expected number of iterations is boundedifjog m),

Algorithm 5 Distributed-Find
1: Use Push-Sum to approximate the numbeiof ele-
ments byu, to within 1 + % with probability at least
s
l—3
2: Letm := 2u, p := 3min(

log(4/3) 1 )
2logm 7 81n(3/6)
3: while intervalI = (a,b) has more than one poidb

4:  Use Push-Random to select a randgim I, within
i%ﬂ of uniform, with probability at least — £

5.  Disseminatd andq to all nodes

6: Approximately count the numbers ands; of el-
ements in the intervalg, = (a,q),[z = (g,b), to
within relative error at mosg— with probability at
leastl — £. Rounds; ands, to the nearest integers

7. Updatel to the sub-interval containing thielargest
element according to the counts ss

8: end while

finds thep-largest element withi®((log m + log %) -
(log n+log m+log log %)) rounds of communication.

5. Conclusions

In this paper, we have presented a novel framework for
processing many types of aggregation queries in decen-
tralized settings. Our approach uses small messages and
gossip-style local communication to provide simple and
fault-tolerant protocols.

and the actual number of iterations is sharply concentrated The power of the approach also comes with liabilities.

around its expectation.
In the decentralized version, given below as Algorithm

In particular, when the protocols use flooding on networks
with slowly mixing random walks (for instance grid-like

5, one node (for instance the one at which the query wasgraphs), convergence of the protocols will be slow. This

posed), is considered theader, and decides when to enter
the next phase of the protocol. It uses the underlying com-
munication mechanism to broadcast the information about

suggests trying to use (decentralized) techniques to learn
more about the topology, and trying to adapt the mecha-
nism to speed up communication. We consider the question

the next phase to all other nodes. The leader maintains @f how to judiciously use long-range connections, or how

candidate interval at all times; the interval is initialized to
be the entire universg-co, c0), and the algorithm termi-
nates when the interval consists of a single point.

The following theorem states that within a logarithmic
number of iterations of thevhile loop, the algorithm finds
the ¢-largest element, with high probability. The proof is
a relatively straightforward combination of Chernoff and
Union Bounds, and deferred to the full version.

Theorem 4.2 1. With probability at least1 — 4,
the Distributed-Find algorithm finds the ¢-
largest element within O((logm + log 1)
T(O(m)nO(m))) total rounds of
communication (wher&’ is the diffusion speed of the
underlying communication mechanism).

2. In particular, using Uniform Gossip, Distributed-Find

to speed up random walks, a very interesting direction for
future research.

A further direction is the development of protocols
for other complex types of queries. In particular, it
seems promising to use our techniques for iceberg queries
(i.e. finding elements with outstandingly high frequency).
Also, it would be desirable to develop techniques that allow
nodes to estimate the current error of approximation with-
out knowledge of the underlying network or communication
mechanism.

We are currently validating our results with practical ex-
periments on several network topologies. For uniform gos-
sip and several Internet-like topologies, preliminary results
are very encouraging. We plan to report on these results in
detail in future work.
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