Preface

Peer-to-peer (P2P) technology, or peer computing, is an emerging paradigm
that is now viewed as a potential technology that could re-architect dis-
tributed architectures (e.g., the Internet) and processing. In a P2P network,
all participating computers (or nodes) have equivalent capabilities and re-
sponsibilities. The nodes can directly exchange resources and services be-
tween themselves without the need for centralized servers. The nodes can
collaborate to perform tasks by aggregating the pool of resources (e.g., stor-
age, CPU cycles) available in the P2P network. The distributed nature of
such a design provides exciting opportunities for new killer applications to
be developed.

P2P computing distinguishes itself from traditional distributed comput-
ing in several important aspects. First, P2P applications reach out to harness
the outer edges of the Internet and consequently involve scales that were
previously unimaginable. Second, P2P by definition, excludes any form of
centralized structure, requiring control to be completely decentralized. Fi-
nally, and most importantly, the environments in which P2P applications
are deployed exhibit extreme dynamism in structure, content and load. The
topology of the system typically changes rapidly due to nodes voluntarily
joining and leaving the network or due to involuntary events such as crashes
and partitions. The load in the system may also shift rapidly from one region
to another, for example, as certain files become “hot” in a file sharing sys-
tem; or the computing needs of a node suddenly increase in a grid computing
system.

The scale and dynamism that characterize P2P systems require tradi-
tional distributed technologies to be reexamined. A paradigm shift that in-
cludes self-reorganization, adaptation and resilience is also called for. In re-
cent years, there has been a proliferation of research efforts to design P2P sys-
tems and applications. This book attempts to present the technical challenges
offered by P2P systems, and the efforts that have been proposed to address
them. The purpose of this book is to provide a thorough and comprehensive
review of recent advances on routing and discovery methods, programming
models, security, accountability, anonymity and P2P systems and projects.
Besides surveying existing methods and systems, the book also compares and
evaluates some of the more promising schemes.



The need for such a book is evident. It provides a single source for prac-
titioners, researchers and newcomers on the state-of-the-art in the field. For
practitioners, this book explains best practice, guiding selection of appro-
priate techniques for each application. For researchers, this book provides a
foundation for development of new and more effective methods. For newcom-
ers, this book is an overview of the wide range of advanced techniques for
realizing effective P2P systems. This book can also be used as a text for an
advanced course on Peer-to-Peer Computing and Technologies, or as a com-
panion text for a variety of courses including courses on distributed systems
and grid and cluster computing.

Organization of the Book

This book consists of ten chapters. Besides the first chapter that sets up the
context and the last chapter that concludes with directions on the future of
P2P, each of the other eight chapters is essentially self-contained and focuses
on one aspect of P2P computing. These eight chapters can thus be read and
used on their own independently of the others.

In Chapter 1, we provide background on P2P computing in general. We
discuss the characteristics of P2P systems that distinguish them from dis-
tributed systems. This chapter also looks at the benefits and promises of
P2P, and some of the applications that will benefit from P2P computing.
It also examines the issues in designing P2P systems and sets the stage for
subsequent chapters.

Chapter 2 presents the various architectures of P2P systems. On one
extreme, we have P2P systems that are supported by centralized servers. On
the other extreme, pure P2P systems are completely decentralized. Between
these two extremes are hybrid systems where nodes are organized into two
layers: the upper tier “super” nodes act as servers for lower tier nodes. We also
compare these different architectures. We also look at how peers are defined -
statically or dynamically. Support for dynamic reorganization of peers allows
communities to be formed based on some common interests among nodes.
We will also examine how nodes that are more powerful can be exploited to
shoulder more responsibilities. Issues on incentives and fairness will also be
addressed.

In Chapter 3, we focus on the issue of searching. There are several modes
in which searching can be performed. First, a query node can broadcast
queries to all nodes. Second, the query can be directed to nodes that are more
likely to contain useful information first. This requires nodes to organize thier
peers based on some optimization criterion. Third, hashing techniques can
be applied. We will also look at how load-balancing can be realized in the
hash-based category. Each of these techniques call for different metadata to
be maintained.



Chapter 4 presents techniques to perform complex queries. Besides sim-
ple keyword search, there is an increasing need to support more semantic-
based queries for database and multimedia applications. These include partial
match queries, range and join queries, and queries involving high-dimension
vectors. We also looked at how distributed queries are optimized and pro-
cessed in P2P context.

Replication and caching are very effective mechanisms that can bring
the data/results closer to the users to improve performance. However, in
P2P environment, it becomes much harder to control the optimal degree of
replication as well as consistency. Chapter 5 presents the issues that need to
be addressed, and examines some of the existing solutions. In particular, we
will look at techniques that manage replicas/cache dynamically.

In Chapter 6, we look at programming models that are suitable for P2P
environments. Most of the existing P2P systems lack an adequate parallel
programming model. Moreover, unlike parallel programming systems, the
unique features of P2P environment such as dynamic resource discovery and
fault-tolerance and availability should be considered to develop an integrated
environment optimized for parallel computing. We shall examine the design
of some of the existing parallel programming models, including P3 and Teaq.

Before P2P can be widely accepted by users, there are several other is-
sues that need to be addressed: trust, privacy, anonymity, accountability,
reliability and security. These issues are discussed in Chapters 7 and 8. In
Chapter 7, we focus on accountability, trust and reputation. Here, we look at
techniques that automate the collection and processing of information from
previous queries to help users assess whether they can trust a server with a
new query. We also discuss methods to prevent users from taking advantage
of the system by freeloading off the resources contributed by a few. Tech-
niques that authenticate third-party data publication will also be examined
in this chapter.

Chapter 8 focuses on security, privacy and anonymity issues. We look at
techniques that are designed to support anonymity to protect both the users
that disseminate the data, as well as nodes that store the data. Techniques
to protect the privacy of information and users are also discussed. Finally,
we discuss techniques that have been designed to secure data as well as the
P2P environment from attacks.

Chapter 9 presents some representative P2P systems and applications
that have been deployed. We will look at how different applications and
requirements drive the design and architecture of the systems. For example,
missing some data may be acceptable in a music sharing application but
not so in a database application (where data integrity and consistency are
important). We will present systems that support data distribution, search,
code distribution and collaboration.

Finally, in Chapter 10, we suggest promising research topics that deserve
further attention. In particular, integrating agent technology and P2P tech-



nology has the potential to overcome the problem of weaker nodes. Another
important direction is the exploitation of P2P technology in mobile and wire-
less computing environment. Yet another extension is to integrate XML into
P2P context to facilitate more effective information exchange.

Panagiotis Kalnis,
Beng Chin Ooi,
Kian-Lee Tan,
Aoying Zhou



1. Introduction

Peer-to-peer (P2P) computing has re-made itself to become a promising
paradigm for distributed computing. This twenty-year-old technology was de-
ployed in USENET in 1979 and FiDoNet in 1984. At that time, the number of
computer users is relatively small and P2P applications are less user-friendly.
Moreover, users fail to recognize the benefits of the technology. However, sev-
eral trends have re-focused the attention of researchers on this technology.
First, the Internet has allowed a large number of computers to be connected.
Second, the Internet has also provided an avenue for users to share and
disseminate their data in a user-friendly manner. Third, “killer” P2P appli-
cations have surfaced. For example, the Napster [20] MP3 music file sharing
applications served over 20 million users by mid-2000. As another example,
the SETI@home [21] program has accumulated over 500,000 years of CPU
time through more than 2 million users.

In this chapter, we provide background on P2P computing in general.
We discuss the characteristics of P2P systems that distinguish them from
traditional distributed systems. This chapter also looks at the benefits and
promises of P2P, and some of the applications that will benefit from P2P
computing. It also examines the issues in designing P2P systems.

1.1 Peer-to-Peer Computing

Peer-to-peer (P2P) computing is essentially a model of how we (people) in-
teract in real life. We deal directly with one another when we want to. Very
often, when we need something, we ask our peers who may in turn refer us
to their peers. P2P technologies enable us, through our computers, to carry
our interactions into cyberspace and to continue to deal with one another as
we do in the real world.

In a P2P network, all participating computers (or nodes) have equivalent
capabilities and responsibilities. The nodes can directly exchange resources
and services between themselves without the need for centralized servers.
The system can aggregate resources and data from nodes to accomplish a
task. Figure 1.1 illustrates how P2P computing operates for data sharing
applications. Each node typically maintains some metadata that facilitates
searching. Moreover, each node will indicate to the application the types of



6 1. Introduction

Routing & resource discovery

Metadata
Shared content

Metadata
Shared content

Peer A T~ Peer B

Fig. 1.1. Peer-to-peer computing. Peer A requests for some data that Peer B has.
However, Peer A has to first locate Peer B through other peers in the P2P network.
Once Peer B is located, Peer A deals directly with Peer B.

data that it will contribute share with the community. A query for data will
involve a resource discovery process that routes the query around the network
to nodes that own the data. There may be more than one node that contains
the data. The query node can then directly communicate with the owners to
acquire the data.

P2P computing is really distributed computing. Both share the same set of
issues that distributed computing researchers have been addressing over the
years (e.g., security, trust, anonymity, fault tolerance, scalability, distributed
query processing and coorination). However, P2P computing distinguishes
itself from traditional distributed computing in several aspects. Some of the
more important ones are:

1. Symmetric role. Each participating node in a P2P system acts as both
a server and a client. In fact, each node installs a single package that
encompasses both client and server code. As such, a node can issue query
(like a client) and serves requests (like a server).

2. Scalability. P2P applications reach out to harness the outer edges of the
Internet and consequently involve scales that were previously unimagin-
able. The protocols do not require “all-to-all” communication or coordi-
nation.

3. Heterogenity. The P2P system is highly heterogeneous in terms of the
hardware capacity of the nodes - a node may be a very slow machine and
another may be a high-end super computer.

4. Distributed control. P2P by definition, excludes any form of centralized
structure, requiring control to be completely decentralized.

5. Dynamism. The environments in which P2P applications are deployed
exhibit extreme dynamism in structure, content and load. The topology
of the system typically changes rapidly due to nodes voluntarily joining
and leaving the network or due to involuntary events such as crashes and
partitions.



1.2 Potential, Benefits and Applications 7

The scale and dynamism that characterize P2P systems requires tradi-
tional distributed technologies to be reexamined. A paradigm shift that in-
cludes self-reorganization, adaptation and resilience is also called for.

1.2 Potential, Benefits and Applications

P2P computing has tremendous potential to meet many organizational and
personal needs. It not only leverages on computing resources (within an orga-
nization or in the internet) without excessive cost, it also allows information
to be disseminated widely. Furthermore, it enables the owners of content to
exercise full control over their data.

In recent years, there has been a proliferation of research efforts to design
P2P systems and applications. These applications can be broadly divided
into two categories: resource sharing and data sharing. In resource sharing,
applications allow enterprises or individuals to leverage on available (idle
or otherwise) CPU cycles, disk storage and bandwidth capacity within the
P2P network. P2P computing enables harnessing of underused resources to
perform tasks that would otherwise require a much more expensive machine
such as a super computer. Similarly, data storage devices could be exploited
to create a wide area storage network, and to push the data closer to the users.
In data sharing, applications allow users to access, modify and exchange data
in a flexible manner. Some successful applications include:

— Scientific computation. Many scientific research projects involve extensive
computation that typically require massive supercomputers. However, with
P2P techology, we can now exploit the large number of computers (e.g.,
PCs) participating in the P2P network to perform the task. This not only
saves cost, but also makes more effective use of the large number of idling
computers sitting around. The most notable project is the Search for Ex-
traterrestrial Intelligence (SETI) at Home (SETI@home) project [21]. The
goal of SETI is to detect aliens and intelligent life outside the Earth. To
make use of less powerful computers, SETT splits each computational task
into manageable work units. Each home PC operates on a work unit, and
when it has completed its assignment, it picks up another work unit. In
this way, SETI is able to develop the “world’s most powerful computer”.
For example, as reported in [7], SETI@home is faster than ASCI White,
at less than 1% of the cost. Moreover, in a typical day, SETI@home clients
(i.e., the PCs) process about 700,000 work units, which works out to over
20 TFLOPS. The success of SETI will prompt more compute intentive
projects (whose tasks can be split into sub-tasks with little or no interde-
pence and the ratio of communication overhead and computation is low)
to exploit PCs within or without an organization, e.g., the Stanford Uni-
versity has set up the Folding@Home project that studies protein folding,
misfolding, aggregation and related diseases [1].



8

1. Introduction

— Instant Messaging. People communicate and converse to acquire and spread

knowledge in real life. However, conversations can take place within the In-
ternet through conversational technologies. This allows “meetings” to be
organized among friends and associates in the Internet. Instant messaging
(IM) is one such technology that enables users to locate their peers, pro-
vides a P2P communication path, and even offers an informal status of
a peer’s availability. Through IM platforms, users can compose messages
and transmit files to one or more peers that are online. Typically, peers
are connected to mediating servers who are responsible for negotiating the
delivery and receipt of their clients’ messages with other servers. The mes-
sage is routed from node to node until the server closest to the recepient is
reached, who will then deliver the message. Once connected to their servers,
computers at the network’s edge can establish real-time conversations with
any other peers. Some widely used IM solutions are ICQ [14], AOL instant
messaging, Yahoo instant messenger and Jabber [18, 3.

Digital content sharing. The Internet is essentially an asymmetric shared
content repository, where there are a small number of content providers
(servers) but a large number of content consumers (end users). P2P tech-
nology overcomes this asymmetry by enabling users to act as a producer
as well as a consumer. Essentially, a request for some digital content is
passed from peer to peer, and as each peer is traversed it will pass back
the requested content, if any, to the query node (or through the peer that
forwarded the request); it will also forward the request to other peers. In
this way, a peer contributes his/her content to the P2P network. Such con-
tent sharing not only allows owners to have control over their content, it
also removes any single point of failure. Examples of P2P platforms that
support content sharing are Gnutella [13, 16], Freenet [12, 17], Free Haven
[9] and Publis [22].

Distributed databases. Content sharing can be taken a step further by al-
lowing local databases (stored in MySQL or Microsoft Access) to be shared.
For example, in health care domain, hospital specialists typically have a
group of patients that are solely under their care. While some patient data
are stored in a centralized server of the hospital (e.g., name, address, etc),
other data (e.g., X-rays, prescription, allergy to drugs, history, reaction to
drugs, etc) are typically managed by the specialists on their PCs. For most
of these patients, the specialists are willing to share their data, but there
are always some cases that they are unwilling to share for different reasons
(e.g., part of his research program on a new drug, etc). By making the
sharable patient data available to other specialists, it allows them to look
for other patients who may have similar symptoms as their own patients,
and hence can help them in making better decisions on the treatment (e.g.,
drugs to prescribe, reactions to look out for, etc). As another example, in
life sciences, the discovery of new proteins necessitates complex analysis
in order to determine their functions and classifications. The main tech-



1.2 Potential, Benefits and Applications 9

nique that scientists use in determining this information has two phases.
The first phase involves searching known protein databases for proteins
that “match” the unknown protein. The second phase involves analyzing
the functions and classifications of the similar proteins in an attempt to
infer commonalities with the new protein. While there are several known
servers on genomic data (e.g., GenBank, SWISS-PROT and EMBL), there
are many more data that are produced each day in the many laborato-
ries all over the world. These scientists create their own local databases of
their newly discovered proteins and results, and are willing to share their
findings to the world!

Entertainment. P2P technology established its roots in entertainment with
the success of Napster [20]. The P2P system potentially provides a gigantic
repository of music and video collection aggregated from individual user
in the network. While these are essentially file sharing applications, P2P
also fit well for interactive gaming over the internet. Each peer can store,
manipulate and process complex models involving 3D graphics. The com-
munication overhead between gaming peers can be minimal, e.g., a few
message exchange may involve significant local computation and refresh-
ing of the screen display (e.g., on how troops in a battle may be deployed).
Examples of Internet P2P gaming platforms the Net-Z [5] and Star Craft
[6].

Collaborative caching and storage. Computers in a P2P system can con-
tribute storage to enable content to be replicated and cached in different
parts of the network. Such an environment offers many advantages. First,
content can be brought closer to users that need them. For example, in e-
learning applications, an education center can minimize remote accesses to
course content (and hence minimize bandwidth consumption) by caching
materials that are frequently needed on local nodes. Similary, internet ac-
cesses within an enterprise can exploit the local cache within each computer
to share content that are common to most users [23]. Data warehouse is yet
another practical application where caching is beneficial especially since
the content of a warehouse is only updated periodically [15]. Second, a
larger storage pool can facilitate anonymity as it becomes harder to iden-
tify the original source of content if multiple copies exist in the network.
Third, availability and security can also be enhanced. For example, Publis
employs secret sharing methods to distribute content shares to multiple
nodes such that a subet of these shares can be used to reconstruct the
content [22].

Collaborative work environments. Today’s work environments involve peo-
ple who may be geogrphically dispersed. As such, it is critical for net-based
collaboration tools to be developed to facilitate cooperation. P2P technol-
ogy lends themselves well for cooperative collaboration environments. Here,
a collaboration or virtual space will be created for the team members to in-
teract and work together on project in real time. Shared content (e.g.,



10 1. Introduction

documents and software) may be modified by any user, and automatically
synchronized for consistency. Groove [2] and Magi [4] are examples of two
P2P collaboration platforms.

1.3 P2P Enabling Technologies

P2P is not a panacea [19]. While it offers great potential and promises, there
are many challenges that have to be addressed before its full potential could
be realized. Some of these are:

— Awailability. Because nodes can join and leave the P2P network, the system
is essentially unpredictable. A resource (data or service) may be available
at some time but not at others. These resources are available only when
the nodes are connected to the network. As such, critical data or services
may not be available when they are needed. Therefore, for a given query,
the answer may be incomplete, and may also be different at different times.
Mechanisms that replicate data or services can, to some extent, alleviate
this problem.

— Performance. A same query will also experience different performance at
different time depending on nodes that are connected and the network
topology at time of query. Here, again, replication and caching may be
useful as it brings the data closer to the query nodes. Mechanisms that
load-balance the system will be very useful, for example, nodes that are
more powerful may be exploited to perform a heavier load (recognizing
that a node is powerful is a challenge!).

— Integrity. In a P2P environment, data may be replicated and cached in
many nodes. It is hard to maintain the integrity and consistency of the data.
There is a need to remove outdated copies or to refresh them. Techniques
to validate or certify copies are also important especially since it is easy
to proliferate content that misrepresent information. In particular, how to
ascertain that a set of answers that are returned from a node is complete
is very challenging.

— Routing and resource discovery. The main operation in a P2P environment
is to be able to locate data or resources. At one extreme, we can employ a
Gnutella-like mechanism [13] that broadcasts a query from a query node to
its peers, who in turn will relay the message to their peers and so on. Such
a method is simple, does not require any meta-data to be retained and
can potentially reach to a large number of peers in the network. However,
flooding the network with queries is bandwidth inefficient. Moreover, a
large amount of resources are expended to evaluate the query - even peers
that do not contain the results. At the other extreme, each peer can store
some metadata that can direct the search for data/resource to the peers
that contain the data/resource. The challenge, however, is to determine the
type of metadata necessary for effective searching. Moreover, the need to



1.3 P2P Enabling Technologies 11

maintain the metadata can be complicated by peers’ frequent connection
and disconnection from the network. As such, there is a need to design
effective and efficient data/resource discovery mechanisms.

Complex query processing. Most of the existing P2P systems support sim-
ple queries such as keyword search. However, to support more applications
such as databases, there is a need to design techniques for complex query
processing. For example, there is a need to study how data stored in multi-
ple relations relations can be combined efficiently. This calls for novel join
algorithms to be developed. We also expect approximate query processing
to play a more important role in P2P environments. In this case, there is a
need to provide an indication on the quality of the approximate answers.
Replication and caching. As noted above, replication and caching tech-
niques are very important in P2P environments. However, techniques em-
ployed in distributed environments are not directly applicable because the
topology of the network is continuously changing. It is much more difficult
to control replicas and to refresh any cache data. Novel mechanisms are
needed to optimize the allocation of replicas or cache data. Morever, as
communities may shift from one region to another, techniques that can
dynamically moves the cache content to new region may be useful.
Programming model. Most of the existing P2P systems lack an adequate
parallel programming model. Moreover, unlike parallel programming sys-
tems, the unique features of P2P environment such as dynamic resource
discovery and fault-tolerance and availability should be considered to de-
velop an integrated environment optimized for parallel computing. New
programming models must be developed to fully exploit the potential of
P2P computing.

Security. P2P systems present interesting security problems. First, P2P
applications could have security holes. By allowing other nodes to access a
node’s content/service through these applications, the node is vulnerable to
attack. Second, a node (or even the entire network) could also be vulnerable
to denial-of-service (DoS) attack as a malicious node can flood the node (or
network) with queries. Such attacks are much harder to detect since these
are at the application level. These call for novel methods to restrict access
(access control mechanisms) to resources and data as well as techniques to
detect application level DoS attacks.

Anonymity, Trust and Accountability. There are other critical issues that
may be specific to applications. For example, some applications may re-
quire support for anonymity. However, as noted in [8], providing anonymity
may conflict with design goals for P2P systems. There is a need to de-
sign schemes that balance these goals. Another issue is the need for
trust/reputation management. This is because the open and anonymity
of P2P network leads to a complete lack of accountability. Effective rep-
utation systems need to be developed to assure one of the quality of an-
swers/service.



12 1. Introduction

— Incentives and Fairness. For P2P system to be successful, there must be
incentives for nodes to participate and contribute to the community. For
example, a node may find itself being swamped by requests for some data
that it has cached; without incentives, it may decide to leave the network.
On the other hand, there may be nodes that are exploiting the system
resource while contributing very little in return. Some mechanisms should
be developed to ensure fairness in the system.

From the above discussions, it is clear that P2P computing offers tremen-
dous amount of opportunity for research and development. This book is de-
voted to dealing with most of these issues and to review the various ap-
proaches that have been adopted in the literature.

1.4 P2P vs Grid Computing

Before leaving this chapter, we would like to compare P2P with Grid comput-
ing [11, 10]. Grid computing has emerged recently with the intent of scaling
the system performance and availability by sharing resources. Like P2P com-
puting, Grid Computing has been popularized by the need for resource shar-
ing and consequently, it rides on existing underlying organizational structure.
However, there are differences that distinguish the two.

First, the grid network involves higher-end resources as compared to edge
level devices in the P2P network. While the former requires large amount of
money to be pumped in, the latter can tap into existing resources that are
idling and hence require less upfront cost commitment.

Second, the participants in the Grid network are organizations which agree
in good faith to share resources with a good degree of trust, accountability and
common understanding; membership can be rather exclusive and hence the
number of participants is usually not large. The common platform for sharing
is usually clusters that have been demonstrated to be cost effective to super-
computing, and together they provide an enormous amount of aggregated
computing resources. In contrast, the participants of the P2P network are
mainly end-users and the platform of sharing is mainly individual Personal
Computer (PC). However, due to the mass appeal, the network grows in a
much faster rate and may scale up to thousands of nodes. Because of the loose
integration, it is more difficult and critical to manage trust, accountability
and security.

Third, the Grid network is very much well structured and stable. As a
result, resource discovery is less of an issue. On the contrary, P2P network
is very unstable - nodes can join and leave the network anytime. This com-
plicates the design of resource discovery mechanisms. Nodes that leave the
network may mean some directories may be temporarily “unavailable”.

Fourth, Grid computing can exploit traditional distributed query process-
ing techniques and ensure that answers are complete. In contrast, nodes in



1.4 P2P vs Grid Computing 13

the P2P network containing data may not be connected at the time of query,
answers are likely to be incomplete.

Finally, computational grids are largely set up in anticipation of resource
intensive applications, e.g. BioGrid for bioinformatics. On the other hand,
“killer” applications have surfaced in P2P naturally as can be seen from the
success of Napster [20] and SETI@home [21].

In summary, we believe Grid computing will continue to play an important
role in specialized applications, although architecturely, Grid computing can
be considered a special case of P2P computing, where each participating node
has a larger capacity and collaboration is more constrained and organized.
Notwithstanding, we believe P2P technology is more “user friendly” in the
sense that it allows users (particularly those at the edges) to share their
resources and information easily and freely. P2P also offers more research
challenges in view of the scale and unstability of the network.



14 1. Introduction



10

NO oUW

®

16.
17.
18.
19.
20.

21.
22.

23.

Folding@home. In http://folding.stanford.edu/.

Groove. In http://www.groove.net/.

Jabber. In http://jabber.org.

Magi. In http://www.endeavors.com/.

Net-Z. In http://www.proksim.com/.

Star Craft. In http://www.blizzard.com/.

D. Anderson. SETI@home. In Peer-to-Peer : Harnessing the Power of Disrup-
tive Technologies (Chapter 5), pages 67-76. O’Reilly & Associates, 2001.

N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-sharing
peer-to-peer systems. In ICDE’2003, 2003.

R. Dingledine, M. Freedman, and D. Molnar. Free Haven. In Peer-to-Peer :
Harnessing the Power of Disruptive Technologies (Chapter 12), pages 159-187.
O’Reilly & Associates, 2001.

. I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-

peer and grid computing. In Proceedings of the Second International Workshop
on Peer-to-Peer Systems, Berkeley, CA, USA, 2003.

. L. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

. Freenet Home Page. http://freenet.sourceforge.com/.

. Gnutella Development Home Page. http://gnutella.wego.com/.

. ICQ Home Page. http://www.icq.com/.

. P. Kalnis, W.S. Ng, B.C. Ooi, D. Papadias, and K.L.. Tan. An adaptive peer-

to-peer network for distributed caching of olap results. In ACM SIGMOD 2002,
pages 25-36, 2002.

G. Kan. Gnutella. In Peer-to-Peer : Harnessing the Power of Disruptive Tech-
nologies (Chapter 8), pages 94-122. O’Reilly & Associates, 2001.

A. Langley. Freenet. In Peer-to-Peer : Harnessing the Power of Disruptive
Technologies (Chapter 9), pages 123-132. O’Reilly & Associates, 2001.

J. Miller. Jabber. In Peer-to-Peer : Harnessing the Power of Disruptive Tech-
nologies (Chapter 6), pages 77-88. O’Reilly & Associates, 2001.

D. Moore and J. Hebeler. Peer-to-peer: Building Secure, Scalable, and Man-
ageable Networks. McGraw-Hill/Osborne, 2002.

Napster Home Page. http://www.napster.com/.

SETI@home Home Page. http://setiathome.ssl.berkely.edu/.

M. Waldman, L. Cranor, and A. Rubin. Publis. In Peer-to-Peer : Harnessing
the Power of Disruptive Technologies (Chapter 11), pages 145-158. O’Reilly &
Associates, 2001.

X. Wang, W.S. Ng, B.C. Ooi, K.L. Tan, and A. Zhou. BuddyWeb: A p2p-based
collaborative web caching system. In Proceedings of the International Workshop
on Peer-to-Peer Computing (LNCS 2376), pages 247-251, Pisa, Italy, 2002.



