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Abstract more decentralized file-sharing systems like Gnutella [10]
and Freenet [8] came along that eliminated the need for a

Peer-to-peer computing paradigm is emerging as a scal- centralized index. The popularity of P2P systems has also
able and robust model for sharing media objects. In this resulted in several research projects [3, 15, 5, 7, 18, 17, 19
paper, we propose an architecture and describe the associ-addressing issues such as scalability, fault-tolerameese-
ated algorithms and data structures to support the exenoutio curity.
of range selection queries over data scattered across a P2P
network especially for resource discovery in grid environ-
ments.

We develop a distributed data structure referred to as a
range addressable network that provides the following two
quality-of-service guarantees: (i) the located peer is one
with the smallest superset of the query range (important
from the application perspective), and (ii) in a P2P network
of n peers, a query is routed through(log n) peers be-
fore the intended peer is found (important from the system
perspective).

In their current form, P2P systems are still primarily used
for sharing files (or media objects). Yet they possess the
potential to become much more than file sharing systems.
A grand vision of P2P computing is emerging in the con-
text of computational gridg46]. The emerging grid archi-
tecture will combine all the information and other resosrce
(data, storage, computing power) into a loosely connected
but highly available, reliable, robust system. Tihtorma-

tion service componewf the computational grid tracks the
availability and attributes of a large number of resources

- . N that are geographically distributed and heterogeneous-in n
Our preliminary experimental evaluation indicates that

th dd bl work has desirabl i fture. A fundamental functionality of the information ser-
€ range addressable network has desirable properties ol ;. s 1o |ocate resources with specific combinations of
scalability and load-balancing, which are crucial for the

attribute values. Andrzejak and Xu [1] have recently pro-
success of a large-scale P2P system. posed a P2P based distributed indexing infrastructure for
indexing range attributes such as processing or storage ca-
_ pacity. A typical grid client would query for available hest
1. Introduction with memory capacities in the range of 256 MB to 2GB.
Peer to peer (P2P) computing has attracted enormous in-In this app_roach, the authors extend the .CAN systems such
terest recently, both from the commercial and the academic_that peersin Fhe hypers_pace are responS|_bIe forve_iluesange
instead of point values in domain. Extensions of simple ob-

communities. The underlying principle of P2P systems is . ) :
very simple. A user wishing to participate in a P2P system ject lookup functionality of P2P systems to support more

registers his/her machine and, once registered, becomes general database query processing over P2P data are aiso

peer node. If a user at a peer node wants to search for a file €ing explorgd [_11’ 1_3’ 2 .14’ 12]. However the focus O.f
the user submits a query string (name of a file), and the Sys_t_hese works is primarily on issues _related to schema media-
tem returns to the user the name of the peer that contains th&on and complex database operations.

file (if it is available in the system). Napster [16] became an  In this paper, we extend the peer-based storage architec-
overnight sensation as millions of users found it useful to ture for Computational Grid Systems by providing an ar-
share their music files. Its centralized index was techlyical chitectural layer in which answers to the range queries are
deficient and not designed to scale to the large populationcached at the peers. We envision, that in a large Grid infras-

that it found itself serving. Soon thereafter, howevergoth tructure, clients will often ask highly similar queries and



burdening the underlying storage system to answer suchaddressable DAGnN Section 3, we develop a variety of ap-
repetitive questions will impede scalability. For example proaches to map the range addressable DAG over peers in
systems such as NWS [20] and Globus [9] monitor grid re- a P2P network. In addition, we also identify opportunities
sources and provide an API to its users to query about theand techniques for improving the performance of the P2P
status of such resources. Unfortunately, since thesersgste system based on range addressable network. In Section 4,
are centralized implementations high query workload can we conduct an experimental evaluation to evaluate the per-
impact the performance significantly. Although the grid re- formance of range addressable networks. We conclude with
source monitoring system proposed by Andrzejak and Xu isa discussion of our results in Section 5.
a distributed implementation, range query processing may
require processing the query at multiple peers (since eachy Range Addressable Networ k Topology
peer is responsible for a specific range).
We have developed a P2P architecture, referred to as The proposed system consists of peers forming an over-
Range Addressable Network (RARr resource discovery lay network with range addressable DAGopology de-
in Grid systems. The results of prior range queries issuedscribed below. The data is stored at peers in the form of sets
by grid clients are cached in RAN for future reuse. Our so- of relation tuples obtained by range selection queries over
lution provides the following two quality-of-service guar — an attribute executing in the system. Peers may issue selec-
antees: tion queries for certain ranges of values that an attribaite c
take. The system would try to locate the result of the selec-
1. from the application point-of-view, given a selection tion by locating a peer using the overlay topology that store
query we locate the peer which contains the smallestall tuples required to answer the query. In case, no peer has
superset of the query range; and the desired answer, the query is directed to the source(s).
) ) The computed result is then installed at a peer that is re-
2. fromthe system point-of-view, the path length for rout- gponsible for the corresponding selection range. Note that
ing a query requestis guaranteed tadléog 1), where  the gverlay can also be used as an index, in which case peers
n is the maximum number of peers participating inthe need not store the tuples themselves, but only the informa-
system. tion that leads to peers having the tuples falling in a partic
. ular selection range.
As P2P systems mature and become viable platforms The underlying topology of our architecture determines

for g|s(';r:jbutet<)j databasefs, the_re V\I’,'” bg negi:\? de\r/].elop ®Xthe neighborrelation among the active peers. Each peer
tended database query functionality. Our architecture . Jintains some information about its topological neigh-

]E;a}ln b_e seen as an important st(_ap_ln that dflrectu?]n, folr thebors. These topological neighbors are completely logical,
ofiowing reason. Mosf[queg/ olf)t|m|zers pehr olrmt € se% e;]:- and do not imply any physical proximity. In our scheme,
tion operations in a given SQL query at the leaves of the ¢, -, peer has only a constant number of neighboring peers.

query tree. ThusSELECTI_ N IS one of the primitive op- We assume that the tuples that are stored in our peer sys-
erations that must be available in order to support complextem are labeled . 2 N. A ranger — [a,b] is a con-

guery processing capabilities over P2P systems. tiguous subset of 1,2, ..., N'}, where0 < a < b < N.

Our range addressable network has three main algorith-, o0, v — ', ] s called a.’superseof_r if & < aand
mic anql data structure components: (Zppology; which b > b Thesize7of arange: = [a,b] is its Iength,_namely,
determines thdogical connectlvn_y among the peers, _(2) a - al. Given a query rangf, b], peers in RAN cooperate
peer management scheme, which handles the joining anc{o find theshortest supersef [a, b], if there is one. In the
dipar:ture .O.f peerr]s, and (3) a range management Scfhem?ollowing subsections, we first develop a logical solution
which partitions the data among active peers and per OMS5 index ranges over a key attribute for a database relation.

range queries. In addition, we suggest several optimizatio Later, we develop a physical mapping of this solution over
techniques thatincrease the robustness and improve e loa, Hop system

balance across the system. Our preliminary experimen-
tal evalu_atlons |nd|cat¢ that the range addressable nbtv_vor 21 A Naive Scheme
has desirable properties of scalability and load-balancin
which are crucial for the success of a large-scale P2P sys- We first describe a simple tree topology, whose short-
tem. In that RAN is an essential component that can be useccomings help motivate our new range addressable topol-
to increase scalability and fault-tolerance of grid moriitg ogy. Imagine a balanced binary tréeon the set of leaves
services such as NWS and Globus. {1,2,...,n}. With each node in the tree, we associate an
The paper is organized as follows. In Section 2, we intervali(v), which is the range spanned by all the descen-
present a graph-based structure to represent range intervalants ofv. Thus, the interval of the root node(is n]; the
information efficiently. The structure is referred torasge left and the right children of the root have interv{a]ls%n]



and[%n + 1,n], respectively. See Figure 1 for illustration. to know during the search if the shortest superset has al-
The data structure is similar in effect to interval trees [4]  ready been found (adds inefficiency), and (2) the lookup
forces all searches to go to the root (causes overload at the
root). We solve both these shortcomings by using a directed
acyclic graph (DAG) topology, which we describe next.

2.2. Range Addressable DAG

The range addressable DAG also maps the entire uni-
verse[l,n] to a root node, but then recursively divides
into three overlapping sub-intervals. Specifically, thetro

Figure 1: The basic tree topology on 16 leaves. has three children nodes, v2, v3, with intervals|1, in],
[in+1,2n], [3n + 1,n], respectively. This recursive par-

Given an arbitrary range = [a, b], letv, be the unique titioning continues until each interval has length two, in
node of T whose interval containg but the intervals of  which case we create two leaf nodes. See Figure 2 for an ex-
neither children ofv,. containr. We call v, the topology ample. Observe that because of the overlapping intervals, a
nodefor r. It is easy to see that, for any ranged], where node can have up to 2 parents—thus, the topology structure
a,b < n, there is a unique topology node for it. In the ba- is a DAG, not atree. In terms of the number of levels, nodes

sic tree scheme, the rangewill be stored at node,.. In and edges, however, the DAG has complexity similar to the
Figure 1, for example, rand8, 6] will be stored at the left ~ basic tree. In particular, it can be shown that the range ad-
child of the root. dressable DAG on leaves has at mokign + 1 levels, and

The lookup for a query range= [z,y] can beginatany  O(n) nodes and edges (Lemma A.1). The mapping from
node. The search can move up or down in the tree, and so
we initially set a booleamlown true. Suppose we are at a
nodev. There are three cases to consider: (1) if the query
rangeq is not contained irt(v), the search moves to the
parent ofv; (2) if ¢ is contained in the interval of a child
of v, anddownis true, then the search moves to that child;
(3) Otherwisey is contained ini(v). If some range stored
atv is a superset of, report it and stop. Otherwise, we set
downto false, and the search moves to the parent of )

The correctness of the search procedure follows from the Figure 2: The range addressable topology DAG.
simple observation that the interval of a node is divided ] o ]
among its two children, and the root's interval is the en- f@nges to topology nodes is very similar to its counterpart
tire universe. It is also easy to see that the search will visi IN the basic tree. A range = [a, b] is associated with the

O(logn) nodes. However, this simple scheme suffers from unique DAG nodey, whose intervali(v,) containsr, but
a few significant drawbacks. none of the child-intervals af,. contain it. The lookup for

First, the search as outlined abaees nowlways find & duery rangg = [z,y] is slightly different, because the
the shortest superset of a query. As an example consideftructure is @ DAG, nota tree. Suppose the lookup begins at
the query rangé7, 8. Suppose there are two ranges stored & nodev. Initially, the bo_oleardowms true. We again have
in the system that match if7, 9] and[2, 8]. The topology ~ the three cases to consider:

node for[7,9] is the root, while[2, 8] will be stored at the 1. If¢ Z i(v), thenthe search moves to one of the parents
left child of the root. Assuming the lookup started at any of v whose interval overlapg

leaf node betweem ands, the search will outpuf2, 8] as 2. If ¢ € i(w), for some childw of v, anddownis true,

the answer, because it will be found first. This example il- then the search movesto

lustrates a key weakness of the basic tree topology—there 3. If some range stored atis a superset of, then we

is no correlation between thgizeof a range and its posi- report theshortest range containingthat is stored at
tion in the tree. Arbitrarily small ranges can get mapped to eitherv or a parent ob, andstop Otherwise, we set
nodes with arbitrarily large intervals. Specifically, tkage down to false, and the search moves to one or both
[in, n+1]is always stored at the root, as is any range that parents ofy whose intervals overlap

properly contains the |e$n in its interior. While the overall search scheme looks similar to the earlier

While one can find the shortest superset in the basic treescheme for basic topology, there are two key differences.
topology by continuing the lookup all the way to the root, First, because the search sometimes requires viditirtiy
this can be undesirable for two reasons: (1) there is no waythe parents of a node, the search complexity can potentially



explode. It can be shown that this is not the case, and the3. The Peer Protocol
lookup retains itD(logn) complexity (See Lemma A.4).
Second, we will show that when a superset range is found,
it is necessarily thehortest supersednd hence the early

In general, a P2P system managing data has to deal with
the following problems. The system should be able to deter-
termination in this search is correct. Thus, we avoid pushin Mine what parts of the logical structure are mapped to which
the search up the hierarchy as soon as a match is found. P€ers. This mapping of peers to the logical data structure

It may not be clear in Step 3 why the parent of a node can nheeds to be mr?mtamed d);]nar;:jlchally as peerhs join and lleave
have a smaller range than the node itself. As an examplethe Zystgm. _T e system Z ou ?]ve amec amshm tg ogate
consider a query range [5,8]. Suppose there are two range e destination peers an route the queries to t_e_ gstlna-

ion peer. In addition, the system should deterministycall

stored in the system that match it: [4,9] (stored at root in be able t the dat ¢ i This i
Figure 2) and [5,12] (stored at middle child of root). It can € able 1o map Ine data ranges 1o speciic peer(s). This is
the key mechanism in speeding up query lookups.

be shown that a parent is about as far as we need to search. . ;
The two kev properties of our rande addressable DAG In our scheme, the logical structure is a range address-
y prop 9 "able DAG with N leaves, wheréV is the number of values

_namely, that a range of lengihis stored at a node who;e taken by the search attribute in the database. In the context
interval length is close td,, and that a range query in this : : .
A . . of grid resource location, we can easily demonstrate that
structure visitsO(log n) nodes. In particular, if a range : . .
bl is stored at a node in the DAG. then the lenath of most attributes of interest can be categorically transéatm
[a, o] ' 9 to a finite value domain. For example, memory capacity

interval i(v) is at least|b — a| and at most|b — a| (See . e
Lemma A.2). Thus, the range addressable DAG has the de—Can be mapped in terms of percentages, and similarly CPU

. .~ ~availability can be mapped in terms of finite percentages.
sired property that shorter ranges are stored near thefring v PP P 9

Since the DAG hasV leaves, it follows from our dis-
of the DAG, and only the extremely long ranges are stored L . . .
o . . cussion in section 2.2 that the lookup operation will be
towards the root. In addition, there is a well-defined rela-

tion between thdengthof a range, and its position in the O(log N), which is undesirable. Latter in this section, we

DAG. We can establish the fact that our lookup finds the argue that the lookup operatlon_ can be don®pogn),
L wheren is total number of peers in the system.
shortest superset of the query range, i.ev, i the lowest

node in the DAG that contains a superset of the query rangem{;aeulr gr?gng;(g?;sl Zari;vr;lg ';nrgg;tﬁlfﬁgor;]é)fﬁgzere_
q = [z,y] then, the shortest supersetqis stored at either 9 9 g P g

v or a parent ob (See Lemma A.3). ment component handles the joining or leaving of a peer.
B look lqorith hes hofthe | The range management component handles how the under-
ecause ourlookup algorithm searcnes (the low- lying database ranges are mapped to the current set of peers
est node with a range matching and its parents, we are

. , in the system. It also defines the routing protocol used by a
guaranteed to find the shortest superset matching the que%eer to perform a lookup query.
Finally, we argue that our lookup scheme visi#élog n)
nodes (See Lemma A.4). This guarantees that there ar
O(logn) nodes that need to be searched for the shortest su-
perset range. Stl”, one needs to be careful in implementing The peer management Component is responsib|e for han-
the search described, because recursive calls to bothtparengjing the joining and leaving of peers. This component en-
can explode the search—the recursive calls can indepensyres that at any given time, the set of available peers parti
dently search the same set of nodes over and over. In our im-tion the entire t0p0|ogy DAG among themselves:; i.e., every
plementation, the lookup always goes to the left parent, whonode of the DAG is assigned to some peer. The set of nodes
then sends a query to the rlght Slbllng if needed. Becauseassigned to a peer is called tpne The zone of a peer
the DAG hasO(logn) levels, the search visit§(log n) is always aconnected subgrapérf the original DAG and
nodes. We summarize these facts in the fOIIOWing theorem.the union of all the zones is the entire DAG. The first peer
to join the system has the entire DAG as its zone. As new
Theorem 2.1 The range addressable DAG with leaves peers join, the zones get redefined, but always form a par-
hasO(n) nodes and edges, ari{log n) height. Ifarange tition of the DAG. The peer management component takes
is stored at a node of levélthen the range must have length  care of splitting and merging of these zones as peers dynam-
at least2~2. Given a range selection quegyone can find ically join and leave the system. Two pegrsandp, are
the shortest superset gfby searchingD(logn) nodes in neighbors and keep information about each other if there is
the worst-case. a parent-child relationship among any of the nodes in their
respective zones.
In the next section, we describe our peer protocol, which  In the range addressable DAG, a hode can have two par-
handles the mapping from the topology to peers and man-ents. We define a child node to belong to the zone défts
ages the peers in the system. parent Figure 3 shows an example partitioning of the DAG

.1. Peer Management



3.1.3. Failure Events.The basic peer protocol, described so
far, is susceptible to failures as any peer in the system know
only about a constant number of other peers (its parent and
children) in the system. Also failure of a single peer can
disconnect the DAG into two disjoint components such that
peers in one component might not be able to reach peers
in the other component. These problems can be solved by
letting a peer maintain information regarding some other
peers in the system. Therefore, we modify our peer proto-
col such that a peer not only maintains information about

Figure 3: The zone of a peer. The zones of peers its parent but also about all of its ancestors. This informa-
po andp; are shown by dashed curves. The re- tion can be further used to reduce the time it takes for a
maining part of the DAG forms the zone pf. query lookup. Instead of forwarding a query to its parent,

a peer can directly forward the query to its ancestor whose

among 3 peers. W.e will use the termentan@ch:ld PEEr sup-DAG contains the topology node corresponding to the
to convey the relation between two neighboring peers. ery

In case of a P2P system, the query lookup measures the The
number of peer a query has to go through before finding a
peer, which can service it. In a range addressable DAG, if a
query is forwarded from one node to other, such that, both
nodes belong to the same peer then the forwarding doesn’
contribute to the query lookup. Therefore, the query lookup
is no longer function of the size of the DAG but only de-

failure recovery mechanism works as follows. Dur-
ing a query lookup, if a peer finds that its parent has faiked, i
sends aone take-ovarequest to its first alive ancestor. The
ancestor checks whether some other peer has already taken
bver the zone or a part of it. If not, the requesting peer is
allowed to take over the zone. In case some other peer has
. . already taken over the zone, the requesting peer’s ancestor
pends upon how is the DAG divided among the peers. list is a/pdated and the process is rgpeatedg, SVhere the peer
Consider acoll_apsed DAG, \_/vhere we collapse each 54 19 its new ancestor to take over the remaining part of
peer’s zoneto aslngle noo_le. Itis easy to see that the lookuRpa zone. For example, in Figure 4, let pegrsp» andps
is O(h), whereh is the height of the collapsed DAG. We be responsible for node (1), (4) and (1-8) respectivelyr Pee

call ann-peer system to bbalancedf the range address- ., finqs that its ancestors who were responsible for nodes
able DAG is divided among the peers in such a way that 1 _5y anq (1-4) have failed. It sends a zone take over re-

the corresponding cqllapse_d DAG has a heigh?@bg n). uest tops. Since, no other peer has taken over the zpgpe,

A balanced system IS des'rablg a”‘?' the peer manageme llowsp; to take over them. Later on peey also notices
component should strive to achieve it. that peer responsible for nodes (1-4) and (3—4) has failed.
It also sends a zone take over requeststbut sincep; has
already taken over node (1-4), we update the ancestor list
of po andp, sends a zone take over requesptoto take
over node (3-4).

3.1.1. Join Requests.The new peep,,.,, discovers an exist-
ing peerp,1q by contacting a bootstrap directory server, and
sends a join request. On response to the join requgst,
hands out the sub-DAG (under its ownership) rooted at one
of its children to the new peet,.,,. Since each node has
at most three childrem,q4 can become (parent) neighbor
_of_at most 3 other_peer_s. By default, the first peer to s_end a The range management component is responsible for
join request tQ1q inherits the DAG rooted at the left child;  apping ranges to the peers. Since the logical structure we
the next inherits the DAG rooted at the middle child; and ¢onsjderis a range addressable DAG, the mapping of ranges
the third one inherits the DAG of the right child. to the logical structure is straightforward. In order to naap

3.2. Range Management

3.1.2. Leave RequestsWhen a peer leaves, its zone is
handed over to one of its neighboring peers (either a parent
or a child). In order to balance the zone sizes, we merge the
leaving peer’s zone with the neighbor that has the smallest
zone. Note that the newly merged zone is still a connected
DAG, preserving our scheme’s invariant. In addition to the
zone merging, we also need to modify the neighbor relation
among the remaining peers. This cost is proportional to the
number of neighbors of the leaving peer which is at most a
constant. Figure 4: Failure Recovery. Peers responsible for
crossed nodes have failed.




range to a peer, we consider the topology node correspond-
ing to a range. The range is stored at the peer whose zone
contains the topology node.

3.2.1. Range Lookup.Suppose the query begins at a peer i Z

nodep. We use the algorithm described in Section 2.2 t0 @3 GDGED GG

move to a parent or a child peerafuntil we find a peep’

that contains a range that is the superset of the queat

this point, it is guaranteed from the property of RAN topol- Figure 5: Range Addressable DAG with Cross

ogy that the answer can be foundpaior a parent op’. It Pointers

should be noted that dgrlng moving up or down the_range are in its parent’s level. Similarly, if is the middle child of

zgr?]rgzsc;t:aleaaﬁ?\'er:ggl\?vliﬁ lt?(\a/eclzr?tfrgllli dDﬁGt%in;Z:qlg theeerits parent, then it may keep cross pointers to all the middle

The query needs to be forwarded to a neigr?/boring peerFzmly'children pf nodes that are in its parent’s level. _Npte 'Fhat a
cross pointer needs to be stored at a peer only if it points to

when the traversal in the DAG crosses zone boundaries. Ina topology node in other peer’s zone.

that case, the peers will be neighboring peers and have in- The cross pointers also improve the robustness of the
formation about each other. -

system by providing alternate routes between any two peers
in the system. A substantial number of these paths will be
disjoint, which ensures that in case of failures, with high
probability a path will exist between two peers .

3.2.2. Range Update.As a result of database updates, tu-
ples belonging to different ranges can get affected. In the
absence of any control mechanism, the only alternative is to
ropagate the change to every peer in the system. Clearl . : .
I[s)ucla zgn approach isgnot feasiglg for P2P sysytems where nyg"?"lg' IToaﬁ Balancmg byl Peer Samplmg.As O.“SCLljssed
single site has complete knowledge about the system. In the-arterin .t e section, a balanced system is desirable becau
range addressable network, database and range updates c% Its .optlmal Iookup performance. Therefore when a new
be handled easily as follows. When a tuple is updated, weP€erjons, we Wf"‘”‘ it to split the zone with a_nother PEEr,
search for the peer responsible for that tuple. The searchsu.Ch that the_helght pf collapsed ZOne remains same. .Thls
locates the pegrwith the shortest range containing that tu- IS in general impossible to ensure in the worst-case, since

ple. Once again the property of RAN topology ensures thatKvét:v?’ztts;tigtrragﬁg S\/?/revsel:’ theesltdz:nnc?itr{wm If:rlgg:]tbtigirgea of
all other peers containing ranges with this tuple are among P ' 99 P

the ancestors of this pepr We, therefore, propagate the peer samplingo poll a small number of peers to determine

update up the DAG through the left parentpfwho also which \|;)Veher’s zone should be S.p“t W.'tth thg nelwly Jl(l);"ng
notifies any right sibling that needs to be updated. peer. €N & NEW PEPhew ATIVES, 1t randomly po

peers in the system, whekds a tunable parameter. Among
thesek polled peersp,., chooses to join the one whose
zone is rooted closest to the root.

In this section, we discuss several techniques that can
improve system performance via better load balancing and4, Experimental Evaluation
guery routing. In particular, we discuss two techniques:
cross pointerswhich are additional links among the peers ~ We have performed simulations to evaluate the perfor-
to provide shortcuts during the query routing; greer sam-  mance of our scheme and compare the relative merits of
pling, which addresses load balancing by finding peers with the different policies and techniques proposed in this pa-
large zones to split . per. We have used different metrics in order to evaluate
the performance from the perspective of system as well as
3.3.1. Improved Routing and Robustness through Cross applications. The primary performance metric from an ap-
Pointers (CP).We can improve query routing in the net- plication’s perspective is thiatencyof answering a range
work by adding some well-placed cross pointers among thequery. We measure latency in termsrofite length which
peers. In Figure 5, the link from node (3—-4) to (5-6) is is the number of peers through which a query was routed
an example of a cross pointer. When cross pointers arein the P2P overlay network, before the intended peer was
present, queries can be routed faster, since the queries calocated. From a system’s perspective, the quality of our
be forwarded within a given level of the DAG without going scheme can be measured by theery loadexperienced by
through the hierarchical route. various peers in the system. The query load can be further
In particular, if a node is the left child of its parent, then  divided into aquery forwardingoad, which measures the
it keeps cross pointers to all the left children of nodes that number of range queries a peer forwards to its neighbors,

3.3. Improving System Performance



and aquery processingpad, which measures the number the growing number of peers in the system.
of range queries answered by the peer.
In Section 3.3, we proposed two techniques to improve 4.2, Query L oad
the performance of the basic scheme: cross pointers and )
peer sampling. The cross pointers only effect the route The experiment measures t_he query load as the number
length and query forwarding load. For both of these met- Of queries vary in a system with 10000 peers. We varied
rics, we compare the basic scheme (BS) with the modified the number of queries fro0° to 10° in steps ofL0°. The
scheme that uses cross pointers (BS-CP). In all our simula-Values shown in the graphs are averaged ageuns. The
tions we have used peer sampling, where each peer sampleg0SS pointers only affect h_OW the query is routed to th_e
a constant number of peers before joining the system. destination peer but has no impact on t_he query processing
In all our experiments, we consider a database of sizeload of a peer. Therefore, we only consider them in case of
223 tuples. The set of range queries has been generated buery forwarding. _
picking query ranges uniformly at random fromthe setofall ~ Figure 7 plots th_e percentage of queries processeq of_the
possible range queries within range lengthgbaind2!3. peer with th_e maximum load as the number of queries in-
In addition, we assume that the data is distributed unifprm|  Créases. Itis interesting to notice that irrespective tflto
Peers submit queries uniformly at random to the system. ~number of queries, the maximal loaded peer always process
We also evaluate the behavior of the system in presence2found.22% of the total queries.
of failures. We measure the robustness of our scheme us- T1he next plot, Figure 8, shows the average forwarding
ing thequery success ratendfailure messagesThe query load on peers. Qsmg cross pointers reduces the _Ioad _by a
success rate measures the fraction of queries, which are arfactor of 3. In Figure 9, we compare the forwarding dis-
swered using the cached queries. The failure messages medtbution for BS and BS-CP for the case with® queries.
sures the number of extra messages a peer has to process € distribution for BS-CP is more even with more than 90

order to maintain the logical structure in presence of failu ~ Percent of the peers having a forwarding load between 64
and 4096 queries. Thus, the cross pointers not only help

4.1. Route Length :{n retljucing the load but also in distributing them more uni-
ormly.

In this experiment, we measure the average route length d
as the number of peers grow in the system. The number ofg 3 Failure
peers are varied in powers of two: fratf to 23, Figure 6
shows the result for the experiment, which is averaged over  The experiment evaluates the performance of the failure
15 runs. In Section 3.1, we argued that in a balanced sys-recovery mechanism under a worst case failure scenario. In
tem the route length i©(logn) wheren is the number of ~ the simulation, first we run0000 range queries, then we
peers in the system. In case of BS, the average path lengtfnduce failure ofv percent of random peers and run another
increases logarithmically with the number of peers in the 90000 range queries. We experimented witHifferent val-
system. This implies that our peer joining strategy along ues ofz: 1, 5, 10, 20 and50. The reported results are
with peer sampling achieves a balanced system. The experaveraged over2 runs.
iment also clearly validates the usefulness of cross point-  In the absence of failures, a large fraction of queries can
ers, where route length is reduced significantly. In addjtio b€ answered by the cached queries. Failures increase the
with cross pointers the route length is not much affected by number of cache miss because of two reasons: First, due to
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Figure 6: Average route length for the four vari- Figure 7: Query Processing Load: Percentage of

ants of our scheme. queries processed by maximum loaded peer.
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failures, some of cached ranges are lost and second, filure  pop systems have become a prevalent technology to
might temporarily disconnect the structure due to which a share media objects over a wide-area network. Several com-
peer might be unable to access certain cached ranges. In o4fiercial P2P systems are already in use and research proto-
simulation scenario, the second case is aggravated becau9¢9pes are underway to address the scalability, performance
of simultaneous failure. In real World, the failures are mor and fault-tolerance issues associated with commercial P2P
gl’adual and the failure handling mechanism has more timesystemsl However’ the functiona"ty of commercial Sys-
to recover. tems and research prototypes is limited to providing object
Let QA(x) be the number of queries answered when  lookup in a distributed manner. In that, such systems ba-
percent of peers have failed. We cannot judge a failure re-sically support distributed directory service for file-bes
covery mechanism solely based QM (x) because some objects scattered over a wide-area network.
range query sequence can have a lot of cache misses evenin |n this paper, we explore the possibility of using the P2P
absence of failures. Therefore, we evaluate the performanc paradigm to design a large-scale data sharing architecture
using the ratia) A(x)/QA(0), which we call agyuery suc-  with limited database query processing capabilities which
cess rate Figure 10 plots the query success rate as the valuewill be a useful middleware for grid computing applica-
of = increases. The high query success rate even in case ofions. The ultimate goal is to design a P2P database archi-
high failure rates, indicates the usefulness of our faitere  tecture in which data is scattered over the peers, and peers
covery mechanism. can access such data by issuing SQL-like queries. As a first
Figure 11 plots the maximum number of overhead mes- step towards building such an architecture, we present a de-
sages processed by any peer. The number increases with th&gn of a distributed data-structure, referred to aarme
increase in failure rate but even for the higher failuresate addressable networkhat facilitates range query lookups
the value is around 30 messages, which is neglicomparednd range query processing. This data structure is based on
to the query forwarding and processing load a peer woulda logical abstraction of a directed acyclic graph and main-
have to bear. tains enough information about ranges so that range lookups



can be processed efficiently. The efficiency measure ensureg$15] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scal-

that a range query is processed using a smallest superset
of the query range (if one exists) and route length of the
lookup request grows only logarithmically in the size of the
network.
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A. Appendix

LemmaA.1 The range addressable DAG anleaves has
at mostlogn + 1 levels, andD(n) nodes and edges.

Proof: The bounds on the number of levels and nodes
follow from the fact that there art! — 1 nodes at dis-
tancei from the root. The bound on the number of edges
follows because there are at mage‘+! — 1) edges be-
tween the nodes of levelsandi + 1. |

Lemma A.2 (Rangeto Node Mapping) If arangefa,b]is
stored at a node in the range addressable DAG, then the
length of interval(v) is at leastb — a| and at most|b — a.

Proof: By definition, if [a,b] is stored atv, then the
length ofi(v) cannot be smaller thah — a|. Thus, we
only need to show thatv) is at mostt|b — a|. Consider
the partition ofi(v) into four equal parts, and call these
sub-intervalsry, 02, 03 andoy. By construction, the in-
tervals associated with the three childrem @irec; Uos,
o9 Uog andos U o4. Becausda, ] is stored a, and
not at its children, it must be the case tlj@tb] is not
contained in the union of any two consecutivgs, for
Jj =1,2,3,4. Thus,|b — a| must be strictly longer than
anyo;. Butthat guarantees thigt—a| > |o;| = 1[i(v)],
which proves the lemma. i

(14]

A. Kementsietsidis, M. Arenas, and R. J. Miller. Mappin ~L€mmaA.3 (Shortest Superset) Suppose is the lowest
data in peer-to-peer systems: Semantics and algorithmic is Node in the DAG that contains a superset of the query range
sues. InProceedings of the 2003 ACM SIGMOBCM q = [z, y]. Then, the shortest superseta$ stored at either
Press, June 2003. v Or a parent ofv.



Proof: Supposéa, b] is a range stored atthat matches

q. We show that no ancestor higher thas parent can
contain a range that matchesand has length smaller
than|b — a|. Letw be a grandparent or higher ancestor
of v. Then, since the interval length doubles at each level
of DAG, we havei(w)| > 22]i(v)|. By Lemma A.2, the
shortest range stored athas length strictly bigger than
|i(w)|/4. On the other hand, sinde, b] is stored at,
|b—al < |i(v)]. Thus, ifr is any range stored at, then

it must be thatr| > 1|i(w)| > [b—al. |

Lemma A.4 (Range Ancestors) Consider a node in the
range addressable DAG and its intervigb). At any level
of the DAG, there are at most two ancestors efhose in-
tervals overlap withi(v). In addition, these ancestors are
mutual siblings, the left ancestor is reachable from the lef
parent ofuv.

Proof: The key observation in establishing this lemma is
this: at any level of DAG, the intervals of any twmn-
sibling nodes ardisjoint This follows from the DAG
construction. Thus, any two nodes whose intervals over-
lapi(v) must be siblings. If a node has two parents, then
its interval overlaps with that of its left parent. Induc-
tively, this gives a path to the left ancestorof i



