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Abstract

Data sharing in current P2P systems is very much re-
stricted to file-system-like capabilities. In this paper, we
present the strategies that we have adopted in our BestPeer
project to support more fine-grained data sharing, espe-
cially, relational data sharing, in a P2P context. First, we
look at some of the issues in designing a peer-based data
management system, and discuss some possible solutions
to address these issues. Second, we present the design of
our first prototype system, PeerDB, and report our experi-
ence with it. Finally, we discuss our current extensions to
PeerDB to support keyword-based queries.

1 Introduction

Peer-to-Peer (P2P) technologies have recently received
much attention from academia and industries due to many
benefits they offer. In a typical P2P system, a large number
of nodes can potentially be pooled together to share their
resources, information and services, while keeping them-
selves fully autonomous. Though many different uses for
P2P have been identified, such as distributed computation
(SETI@Home[16]), Instant messaging (ICQ [8]), data shar-
ing remains the most dominant P2P application on the inter-
net.

Nevertheless, in current data sharing P2P systems, only
file-system-like capabilities are provided while the seman-
tics of data is largely ignored. For example, in Gnutella,
queries are restricted to strings that can be contained in
a filename and directory path, that is, only simple value
searches on file names are supported. DHT-based systems
([17], [14], [15], [18]) do no better: only exact key match is
supported. From data management perspective, such kind
of data sharing is very limited.

More importantly, we believe that most PC users store
their data in common personal DBMS such as MySQL and
MSAccess. For example, our experience with genomic sci-

entists find that they store large amount of data (e.g., gene
expression) in their PCs. As another example, many doc-
tors and specialists also store their patient information in
PC databases. Peer-based data management provides a so-
lution for these users to share their data to their colleagues.
Moreover, relational data has rich structure and semantics,
and queries are at a finer granularity. To share these data,
current P2P systems must be database-enabled.

In this paper, we present our on-going work in our Best-
Peer project [3] to support relational data sharing. The Best-
Peer project was initiated in 2000 to study how P2P tech-
nologies can be employed for distributed data management.
Peer-based data management offers challenges that go be-
yond that of traditional heterogenous databases. We shall
first present some design issues, and possible solutions. We
will then present PeerDB, a prototype peer-based data man-
agement that we have developed. PeerDB employs an IR
approach to discover matching relations, and agents to as-
sist in query processing. Finally, we introduce our current
work on Keyword Join to facilitate user-friendly keyword
queries in PeerDB.

The rest of this paper is organized as follows. In the
next section, we discuss the design issues for peer-based
data management. In Section 3, we review the BestPeer
platform on which PeerDB is based. Sections 4 presents
PeerDB. In Section 5, we discuss our approach to support
keyword search. And finally, we conclude in Section 6.

2 Design Issues for Peer-Based Data Manage-
ment

While a peer-based data management system can be seen
as a distributed and heterogeneous database system, the
scale of the system and its dynamism as nodes join and
leave the network offer several major challenges.

� First, there is no predefined global schema. With each
node joining and leaving the network at anytime, as-
suming a global schema in such a dynamic environ-



ment is apparently not practical, scalable and extensi-
ble. One possible approach is to perform “mapping”
on-the-fly during querying. In other words, when a
query is issued, a schema-matching routing is per-
formed to search for nodes with matching schema [11].
An alternative solution is to allow each node to prede-
termine its mappings between its schema and its neigh-
bors’ before querying(in this case, neighbors share
common semantic content) [13, 1, 5, 9]. By transi-
tive relationship, new mappings can be learned and
thus nodes containing relevant data can potentially be
reached. However, these solutions are far from sat-
isfaction, difficulties lie in how the mappings can be
effectively described, built and maintained.

� Second, realizing efficient query processing becomes
more difficult. Initial response time is expected to be
high as relevant data have to be identified before any
optimization and query processing can be performed.
To address this, adaptive query processing techniques
[6] must be employed. Optimization may be central-
ized at the query node. In this case, partial optimiza-
tion on a subgraph of a query graph may have to be
performed as soon as some relevant data is identified.
Alternatively, distributed optimization can also be de-
ployed to allow nodes with relevant data to perform
optimization based on their available knowledge. Ideas
such as mutant query plans may be valuable here also
[12].

� Third, much information redundancy exists in the net-
work, which inevitably brings about data and compu-
tation redundancy. Unfortunately, information redun-
dancy cannot be avoided unless some control over data
placement is taken (e.g. DHT systems). Computa-
tional redundancy arises when distributed query pro-
cessing and/or optimization are employed, since each
node may only have partial knowledge, and it is pos-
sible that multiple nodes compute different subgraphs
of a query graph with significant overlap. Such re-
dundancy needs to be reduced as much as possible.
This calls for query processing nodes to interact and
exchange information.

� Finally, the notions of correctness and completeness
of query results cannot be used in their pure meaning
as in traditional database systems: query results now
largely depends on transient network organization and
semantic mappings already established. More research
need to be done in this area.

3 BestPeer - Underlying P2P Architecture

PeerDB is built on top of BestPeer [10], a generic P2P
platform that can be used to develop P2P applications eas-
ily and efficiently. The network consists of two types of
entities: a large number of computers (nodes), and a rela-
tively fewer number of location independent global names
lookup (LIGLO) servers, which are mainly used to help
peers to recognize each other regardless of the change of
IP addresses. Each peer has a globally unique identifier.

BestPeer has several features that distinguish itself from
existing P2P systems. Here, we only list two of them that
affect upper-level query processing. First, mobile agents
technology is combined into the system. Since agents can
carry both code and data, they can effectively perform any
kind of functions. With agents performing operations at the
peers’ sites, the network bandwidth can be better utilized.
Second, a peer in the network can dynamically reconfig-
ure itself by keeping “best” peers that benefit it most as its
neighbors, based on a simple assumption: peers that benefit
it most for a query are likely to continue so for subsequent
queries. Over time, peers that benefit each other will clus-
ter together, and thus queries can always be answered by
nearby neighbors with high probability.

4 PeerDB

In this section, we present PeerDB [11], a prototype
peer-based data management system that we have devel-
oped. We shall present our approaches to address the vari-
ous issues and discuss some preliminary results.

4.1 Architecture of a PeerDB Node

Figure 1 illustrates the architecture of a PeerDB node.
The system consists of three layers, namely the P2P layer
that provides P2P capabilities (e.g., facilitates exchange of
data and resource discovery), the agent layer that exploits
agents as the workhorse, and the object management layer
(which is also the application layer) that provides the data
storage and processing capabilities.

At the data management layer, there are essentially four
components that are loosely integrated. The first component
is an object management system that facilitates storage, ma-
nipulation and retrieval of the data at the node. We note that
the interface of the object management system is essentially
an SQL query facility. Thus, the system can be used on its
own as a stand alone DBMS outside of PeerDB.

For each relation that is created (through the PeerDB in-
terface), the associated meta-data (schema, keywords, etc)
are stored in a Local Dictionary. There is also an Export
Dictionary that reflects the meta-data of relations that are
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Figure 1. PeerDB architecture

sharable to other nodes. Thus, only relations that are ex-
ported can be accessed by other nodes in the network. We
note that the meta-data associated with the Export Dictio-
nary is a subset of those found in the Local Dictionary, and
the distinction here is a logical one. The last component is a
cache manager. We are dealing with caching remote meta-
data and data in secondary storage, and the cache manager
determines the caching and replacement policies.

At the agent layer, we have a database agent system
called DBAgent that provides the environment for mobile
agents to operate on. Each PeerDB node has a master agent
that manages the query of the user. In particular, it will
clone and dispatch worker agents to neighboring nodes, re-
ceive answers and present them to the user. It also monitors
the statistics and manages the network reconfiguration poli-
cies.

There is also an user interface subsystem. This provides
a user-friendly environment for user to submit their queries,
to maintain their sharable relations, and to insert/delete rela-
tions/tuples. In particular, users search for data using SQL-
like queries.

4.2 Schema Mapping

In PeerDB, an Information Retrieval (IR) based ap-
proach is employed for schema mapping. For each rela-
tion that is created by the user, meta-data are maintained
for each relation name and attributes. These are essentially
keywords/descriptions provided by the users upon creation
of the table, and serve as a kind of synonymous names of
relation names and attributes. DBAgents are sent out to
the peers to find out potential matches and bring the corre-

sponding meta-data back. By matching keywords from the
meta-data of the relations, PeerDB is able to locate relations
that are potentially similar to the query relations.

Though this approach has little originality in itself, we
use it first in P2P context, with the consideration of its sim-
plicity and that in most scientific data sharing communities,
there always exist some generally acknowledged terms or
names among peers.

We illustrate the strategy with an example. Suppose
we have four peers that share genomic data. Peer P1 de-
fines a relation Kinases(SeqID, length, proteinSeq). Peer
P2 defines a relation Protein(SeqNo, len, sequence). Peer
P3 defines two relations ProteinKLen(ID, seqLength) and
ProteinKSeq(ID, sequence). Peer P4 defines a relation Pro-
tein(name, char). Figure 2 shows the keywords defined for
these relations by the various peers. Suppose the user at
peer P1 (he knows his own schema but not the schema of
other peers) issues the following query to look for kinases
sequences that are longer than 30 base pairs:

SELECT SeqId, proteinSeq
FROM Kinases
WHERE length > 30;

Now, since one of the keywords for Kinases (relation name)
is protein, and protein is also a keyword for P2’s re-
lation Protein and P3’s relations ProteinKLen and
ProteinKSeq, these relations match the query relation.
Similarly, we find that the attributes SeqID, proteinSeq
and length all have matching keywords in P2 and P3. For
P3, we note that the query may have to be turned into a
join query when evaluated there. For P4, we only have a
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match in relation name but not in the attributes. Thus, P4
will be ranked lower than P2 and P3. Semantically, we note
that P2’s data are not actually those that P1 is interested in
(since they are not Kinases data). As such, it is important to
have the meta-data and additional information returned to
the users before fetching the data.

Peer Names Keywords

P1 Kinases protein, human
SeqID key, identifier, ID
length length

proteinSeq sequence, protein sequence
Protein protein, annexin, zebrafish

P2 SeqNo number, identifier
len length

sequence sequence
ProteinKLen protein, kinases, length

ID number, identifier
P3 seqLength length

ProteinKSeq protein, sequence
ID number, identifier

sequence sequence
Protein protein, kinases, annexin, �����

P4 name name
char characteristics, features, functions

Figure 2. Keywords for the relations/attributes
names.

4.3 Agent Assisted Query Processing

In PeerDB, we adopt a two-phase agent-assisted query
processing strategy. In the first phase, the relation matching
strategy (as described above) is applied to locate potential
relations. These relations (meta-data, database name, and
location) are then returned to the query node for two pur-
poses. One, it allows user to select the more relevant rela-
tions. This is to minimize information overload when data
may be syntactically the same (having the same keywords)
but semantically different. That is, different schemas are
mediated. Moreover, this can minimize transmitting data
that are not useful to the user, and hence better utilizes the
network bandwidth. Two, it allows the node to update its
statistics to facilitate future search process. Phase two be-
gins after the user has selected the desired relations.

In phase two, the queries will be directed to the nodes
containing the selected relations, and the answers are finally
returned (and cached). The two phases are completely as-
sisted by agents. In fact, it is the agents that are sent out to
the peers, and it is the agent that interacts with the DBMS.
Moreover, a query may be rewritten into another form by
the DBAgent (e.g., a query on a single relation may be
rewritten into a join query involving multiple relations).

4.4 Preliminary Results

To evaluate PeerDB’s performance, we conducted sev-
eral sets of experiments (see [11] for the details). We sum-
marize our findings here.

� IR based approach is effective. We used the stan-
dard IR measures, Precision and Recall, as perfor-
mance metrics to measure the approach’s effectiveness
on relation matching. Our results show that when the
threshold value is large (resulting in a large number of
relations accepted as matching), Recall is low because
of the large number of irrelevant relations that share
common keywords. However, Precision is high show-
ing that most of the retrieved relations are indeed rele-
vant to the query. This result is consistent with typical
IR applications, and demonstrated the effectiveness of
our approach.

� Self-configuration is important. With the ability to
reconfigure the network, relevant nodes will move
“closer”, and thus queries will always be directed to
the more promising node first. One reconfiguration
policy employed in PeerDB is to favor peers that have
most provided answers recently. In our experiments,
we study two versions of PeerDB: one with the recon-
figuration feature turned on, the other with the feature
turned off. Our results show that the ability to reconfig-
ure is important for performance improvement and can
lead to shorter initial response time and larger number
of answers being returned within a given time.

� Caching is helpful for reducing response time. PeerDB
supports caching of answers returned from remote
peers in order to reduce the response time for sub-
sequent answers. For every relation that the user re-
trieved, we cache the answers. Though Caching raises
many complicated issues, we did some controlled ex-
periments to evaluate the effect of caching on the per-
formance by varying the storage capacity of each peer.
We observe that as the storage capacity of each node
increases, the response time decreases. This is ex-
pected as more tuples can be found in local and neigh-
boring peers. Meanwhile, by caching previous query
results, duplicate work and data movement can be
avoided.

5 Work-In-Progress: Keyword Search
Through Keyword Join

Our on-going work is to further extend PeerDB’s capa-
bilities. In particular, we would like to support keyword
search (as most users would not be familiar with SQL)
in peer-based data management systems (This is different
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from previous works ([2], [4], [7]) where keywords are
searched over centralized databases). We need to address
the search space issue: the search space is very large - every
single relation in the P2P network is a possible candidate,
and these relations can potentially be combined in different
ways to produce answer tuples.

5.1 Keyword Join: The Issues

We introduce the concept of a keyword join to allow us
to combine relations based on the common keywords across
relations. For example, consider a relation on publication,
PUB(title, author), and another on affiliations, AFF(name,
affiliation, url). Given a query with keywords peer-to-
peer and beng chin and url, the results return not
only Beng Chin’s P2P publications, but also his url. These
two tables can be combined to return the resultant answers
through the author’s name (which is beng chin). How-
ever, the problem is complicated because the relationship
between PUB.author and AFF.name may not have been de-
fined (especially if the tables are hosted by different peers),
and hence the two tables cannot be joined (in the traditional
sense). By introducing keyword join, two tables become dy-
namically joinable on the attributes that share the common
keyword.

However, for keyword joins to be practical and useful,
there are several challenges to be overcome:

� First, it must be semantically meaningful to combine
on the attributes containing the keyword. It is clearly
possible that some unrelated attributes can be com-
bined (for example, selling price and cost price of
items). To determine automatically (without human in-
tervention) whether two attributes can be combined in
a meaningful way is a very difficult problem.

� Second, it is computationally expensive to consider all
combinations. For example, given � common key-
words, we may end up with ��� combinations to ex-
amine. This calls for mechanisms to prune away com-
binations that are not meaningful quickly.

� Third, even for attributes that can be combined mean-
ingfully, the values may be different. Using the same
example, the name Beng Chin Ooi in PUB may be
listed as Ooi Beng Chin in AFF. As another example,
the term protein may be used in one attribute, but ki-
nases may be used in another. This implies that key-
word join is a form of similarity join, and needs a sim-
ilarity metric to determine the degree of similarity be-
tween two values.

To address the first two problems, we can exploit two
sources of semantics that are available. First, we propose to
maintain meta-data on attributes of a relation. Techniques

from automatic semantic integration can be applied here to
compare attributes based on their meta-data. For example,
two attributes with significant overlap in their data values
are more likely to be semantically similar. Second, the do-
main of the attributes can also provide some insights, e.g.,
attributes cannot be joined if their domains are not compat-
ible. Moreover, the schema matching scheme in PeerDB
can also be applied here. The last issue can be addressed
by tapping into techniques from similarity matching in text
databases, e.g., the use of WordNet and/or thesaurus to con-
sider synonyms and faciliate retrieval based on semantics.
We are currently working on these.

5.2 A Brute-Force Query Processing Strategy

A straightforward strategy to evaluate a keyword-based
query in a P2P environment is shown in Figure 3. The
algorithm comprises several steps. In the first step, the
query is broadcast to neighboring nodes. Here, neighbors
are nodes within TTL hops for some TTL

�
1. A remote

node within TTL hops away will perform a local search for
matching keywords.For local keyword search, we adopt a
DISCOVER[7]-like method. Each peer maintains an in-
verted index for keyword search. After receiving a query,
the peer will first look up the index to see whether some
or all of the keywords in the query are contained in its
database. It is possible that the keywords may appear in
multiple local tables, in which case these tables will have
to be joined to produce the answer tuples (according to the
local database schema). Unlike DISCOVER or other key-
word search schemes, we do not return the tuples. Instead,
we return the schema and meta-data of top few ranked rela-
tion(s).

The results returned from remote nodes fall into two cat-
egories. In the first category, tuples at remote nodes contain
all the keywords. In this case, the relations are displayed
to the users for selection. Those selected relations will then
be retrieved from the remote nodes. In the second cate-
gory, each remote node can only contribute tuples that con-
tain some, but not all, of the keywords. In this case, the
query node will determine how these relations can be com-
bined, and ranked them accordingly. We note that this step
is computationally expensive. Moreover, many of the rela-
tions returned by neighboring nodes may not be related and
relevant. There are two ways in which relations can be com-
bined. If there is a known relationship (e.g., key-foreign-
key relationship) on some attributes, then this should be
used to combine the relations; otherwise, a keyword join
can be used. Note also that relations are only combined if
combining them can potentially increase leading to answers
with all keywords. The meta-data will be used here to facil-
itate the semantic integration.

We are currently exploring how to distribute the process-
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ing across multiple peers (instead of the query node).

Query node

1. Broadcast query with a specified TTL
2. Obtain relations and meta-data from remote peers

// those containing all keywords
3. for all relations that can produce answer tuples

containing all keywords,
4. return to users to select
5. for those selected relations, the answer tuples are

retrieved from the corresponding remote peers
// those missing some keywords

6. for each relation
�

7. for each relation �
8. if joinable(R,S) or keywordJoinable(R,S)
9. RS = join(R,S)
10. if RS contains all keywords,
11. goto 3
12. else
13. return to pool

Remote node
1. if keyword query,
2. perform a local search
3. Return matching relations and meta-data
4. else // retrieval query
5. access the relations
6. return the answer tuples containing the keywords

Figure 3. A brute-force strategy.

6 Conclusion

We have examined the problem of relational data shar-
ing in P2P data management systems, and highlighted some
query processing issues. We have also presented our so-
lutions to these problems, and discuss our on-going work
to support keyword search. We are currently evaluating
the proposed keyword search strategy. We plan to explore
caching as well as optimization and query processing issues
to minimize redundant information and computation in the
next phase of our research.
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