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Abstract established reachability) while optimizing neighbor tables,
when there are nodes that join, leave, or fail concurrently
Constructing and maintaining consistent neighbor tables and frequently. We address the problem in this paper and
and optimizing neighbor tables to improve routing locality present a general strategy: Identify a consistent subnet as
are two important issues in p2p networks. In this paper, we large as possible, and only allow a neighbor to be replaced
address the problem of preserving consistency while opti-by a closer one if both of them belong to the subnet. To
mizing neighbor tables for p2p networks with node dynam- implement this strategy in a distributed p2p network, where
ics. We present a general strategy: identify a consistent sub-there is no global knowledge, the following problems need
net as large as possible and only replace a neighbor with a to be addressed: (1) how to identify nodes that belong to
closer one if both of them belong to the subnet. We real- such a consistent subnet with minimum cost, (2) how to ex-
ize the general strategy in the context of hypercube routing.pand the subnet when new nodes join, and (3) how to main-
First, we present a join protocol that enables the identifi- tain consistency of the subnet when nodes leave or fail.
cation of a large consistent subnet with very low cost when In this paper, we realize the general strategy in the con-
new nodes join. Next, we define an optimization rule to con-text of the hypercube routing scheme that is used in several
strain neighbor replacements to preserve consistency, andoroposed systems [10, 13, 17] to achieve scalable routing. In
present a set of optimization heuristics to optimize neighbor this scheme, givenonsisten{6] and optimal (that is, they
tables with low cost. The join protocol is then integrated store nearest neighbors) neighbor tables, it is guaranteed to
with a failure recovery protocol. By evaluating the protocols locate a nearby copy of an object with asymptotically opti-
through simulation experiments, we found our protocols and mal cost if the object exists [10].
optimization heuristics to be effective, efficient, and scalable In [6], we have proposed a join protocol for the hyper-

to a large number of network nodes. cube routing scheme. We proved that when an arbitrary
number of nodes join an initially consistent network us-
1 Introduction ing the join protocol, the network is consistent again after

o ) all joins have terminated. The protocol is later extended
Structured peer-to-peer networks are being investigated asy constructk -consistent neighbor tables to improve sys-

a platform for building large-scale distributed systems [10, tem robustness [4]. Correctness of the join protocol relies
11, 13, 14, 17]. The primary function of these networks is on preserved reachability: once a node can reach another
objectlocation, thatis, mapping an object ID to anode in the node, it always can thereafter. In order not to break estab-
network. For efficient routing, each node maintains neigh- |ished reachability when replacing neighbors (to optimize
bor pointers in a table, called |tte_|ghb0“r tabI(_aThe,ges_lgn neighbor tables), one approach is to apply optimization al-
of protocols to construct and mamta_ln_ consistent nel_ghbor gorithms without interfering with joins, that is, applying op-
tables for network nodes that may join, leave, and fail con- timization algorithms when joins have terminated and the
currently and frequently is an important issue. (Consistency network is already consistent. However, in a distributed p2p
ensures that a network is fully connected, i.e., therg existSnetwork, where nodes keep joining, it is difficult, if not im-
a path from any node to any other node.) Another impor- possible, to identify a quiescent time period in which there is
tant issue is to optimize neighbor tables so that the averagé,o node joining and which is long enough for optimizations.
distance traveled for each hop (locality) is optimized. Var- gyecuting optimization algorithms while nodes are joining,
ious ideas have been proposed to optimize neighbor tableg the other hand, may result in an inconsistent network,
for improving routing locality [1, 2, 3, 8, 12]. since replacing neighbors arbitrarily may break established
An important problem that has not been addressed adeyeachapility of some source-destination pairs, and thus af-
quately is how to preserve consistency (and thus preservgect the correctness of the join protocaol.
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long to the subnet, does not break consistency conditionstables is not addressed. Tapestry’s join and failure recov-
and thus does not break established reachability. (See Secery protocols are based upon use of a lower-layer Acknowl-
tion 2.2 for the definition of consistency.) Following the edged Multicast protocol supported by all nodes [2], which
observation, we first extend our join protocol in [4] so that also relies on established reachability. An algorithm to lo-
at any time, the set of nodes whose join processes have tereatek nearest neighbors for each table enkry: 1, is also
minated (including the nodes in the initial network) form a presented [2]. However, it is not addressed how to preserve
consistent subnet. The extended join protocol leads to solu-established reachability when nearest neighbors are located
tions to the first two problems mentioned before: (1) iden- and old neighbors are replaced. Thus it is not clear how op-
tifying whether a neighbor is in the consistent subnet or not timization operations will interfere with the correctness of
can be easily achieved by recording the state of the neigh-their join protocol.
bor to indicate whether its join process has terminated or  The rest of this paper is organized as follows. In Sec-
not; (2) the consistent subnet is expanded whenever a node’sion 2, we briefly review the hypercube routing schetfie,
join process terminates, by including the node. Next, we in- consistency, our original join protocol [4], and our theoreti-
tegrate the extended join protocol with our failure recovery cal foundation of protocol design and proofs. In Section 3,
protocol presented in [5]. (Node leave is treated as a specialve present our general strategy for consistency-preserving
case of failure.) The failure recovery protocol always tries optimization, extend the join protocol following the strat-
to repair a hole left by a failed neighbor with a qualified egy, and present an optimization rule and a set of optimiza-
node that is in the consistent subnet, thus it naturally fol- tion heuristics. Correctness of the extended join protocol is
lows the general strategy and provides a solution to problemproved and scalability of the protocol is analyzed. In Sec-
(3). Through extensive simulation experiments [5], we have tion 4, we evaluate the effectiveness of optimization heuris-
shown that the failure recovery protocol is able to maintain tics by conducting simulation experiments in which nodes
1-consistency and re-establigfrconsistency in every ex- may join and fail concurrently and frequently. In Section 5,
periment with failures, foi > 2. we explain how to initialize & -consistent and optimized
Contributions of this paper are the following: network. We conclude in Section 6.

e \We present a general strategy to preserve consistencxé E dati
while optimizing neighbor tables for p2p networks oundation
with node dynamics. 2.1 Hypercube routing scheme

» We extend the join protocol in [4] and prove that with | this section, we briefly review the hypercube routing

the extended protocol, at any tlmethg s_et of initial _scheme used in PRR [10], Pastry [13], and Tapestry [17].
nodes plus the set of nodes whose joins have termi-consider a set of nodes. Each node has a unique ID, which
nated form a consistent subnet. The extended protocolg 5 fixed-length random binary string. A node’s ID is rep-
enables easy identification of nodes in the consistent,gganted byl digits of basé, e.g., a 160-bit ID can be rep-
subnet, and the costs of protocol extensions are shownegented by 40 Hex digitsl(= 40, b — 16). Hereafter, we
to be very low. will usez.ID to denote the ID of node, x[i] theith digit in

e We present an optimization rule. Optimization algo- ;. D, andz[i — 1]...2[0] a suffix ofz.JD. We count digits
rithms should be applied within the constraint of this jn an ID from right to left, with the Oth digit being thight-
rule to preserve consistency. To optimize neighbor ta- mostdigit. See Table 1 for notation used throughout this

bles with low cost, we present a set of heuristics that paper. Also, we will use “network” instead of “hypercube
search for nearby neighbors by primarily using infor- routing network” for brevity.

mation carried by join protocol messages.

¢ We integrate the extended join protocol with our failure | Notation Definition
recovery protocol and evaluate the protocols and the| (V:N(V)) a hypercube network?” is the set of nodes in the
optimization heuristics by simulation experiments. [ network (V) is the set of neighbor tables

o ) ] the set{0, ...,/ — 1}, £is a positive integer
e We show that the extended join protocol and the opti- [ ¢ the number of digits in a node’s ID
mization heuristics can also be used for initializing a | b the base of each digit
T

K-consistent and optimized network. ] theth digit in z. /D

~

z[i — 1]...z[0] | suffix of z.ID; denotes empty string if = 0
Among related work, both Pastry [13] and Tapestry [17] [ z.table the neighbor table of node
make use of hypercube routing. In Pastry, in additionto a| j-w digit j concatenated with suffix
neighbor table for hypercube routing, each node maintains a N (%, 5) the set of nodes ifé, j)-entry ofw.table, also

referred as thé:, j)-neighborsof nodex

set of nearest nodes on the ID ring, which is actively main- N (777 prim | the primary(_j)-neighbor of node:

tained and ensures success of routing as well as object loc
tion. Pointers for hypercube routing, on the other hand, are Table 1. Notation

used as shortcuts and maintained lazily. Therefore, how to Given a message with destination node 10D, the ob-
preserve established reachability while optimizing neighbor jective of each step in hypercube routing is to forward the




message from its current node, sgyto a next node, say,
such that the suffix match betwegrd D andz.ID is at least
one digit longer than the match betweerdD andz.ID.!
If such a path exists, the destination is reached {tog; n)
steps on the average addteps in the worst case, whete

networks. We defined consistency for a hypercube routing
network as follows [6]: A network{V, N'(V)), is consis-
tent if and only if the following conditions hold: (i) For
every table entry inV' (1), if there exists at least one qual-
ified node inV, then the entry stores at least one qualified

is the number of network nodes. Figure 1 shows an examplenode; (ii) otherwise, the entry is empty. In a consistent net-
path for routing from source node 21233 to destination nodework, any node: can reach any other nodeusing hyper-

03231 6 = 4,d = 5). Note that the ID of each intermediate

node in the path matches 03231 by at least one more suffixa neighbor sequencedth), (uo, ...,

digit than its predecessor.

9~*> -

Figure 1. An example hypercube routing path

To implement hypercube routing, each node maintains

a neighbor tablethat hasd levels with b entries at each

level. Each table entry stores link information (IDs and IP

addresses) to nodes whose IDs have the entry’s required suf!

fix, defined as follows. (Hereafter, we will use “neighbor” or
“node” instead of “node’s ID and IP address” whenever the

meaning is clear from context.) Consider the table in node

x. Therequired suffixfor entryj at leveli, j € [b], i € [d],

referred to as the(j)-entry ofx.table, is j - x[i — 1]...z[0].

Any node whose ID has this required suffix is said to be a

qualified nodefor the (, j)-entry of z.table. Nodes stored

inthe @, j)-entry ofx.table are called théi, j)-neighborsof

x, denoted byV, (7, j). Ideally, these neighbors are chosen

from qualified nodes for the entry according to some prox-

imity criterion [10], with the nearest one designated as the

primary(, 7)-neighbor Furthermore, node is said to be a

reverse{, j)-neighborof nodey if y is an ¢, j)-neighbor of

x. Each node also keeps track of its reverse-neighbors.
Note that node: has the required suffix for each £]])-

entry,i € [d], of its own table. For routing efficiency, we

fill each node’s table such that, (i, x[i]).prim = « for all

x € V, i € [d]. Figure 2 shows an example neighbor table.

The string to the right of each entry is the required suffix for

that entry. An empty entry indicates that there does not exist.

a node in the network whose ID has the entry’s required
suffix. For clarity, IP addresses are not shown in Figure 2.

Neighbor table of node 21233 ( b=4, d=5)

01233
11233
21233
31233

10233
21233
A

03233

0233
1233
2233
3233

31033
03133
21233

N

033
133
233
333

22303
13113
00123
21233

03
13
23
33

01100
33121
12232
21233

A
11233
21233

w N O

level 4 level 3 level 2 level 1 level 0

Figure 2. An example neighbor table

2.2 K-consistent networks

cube routing ink stepsk < d; more precisely, there exists
uk), k < d, such that
U ISz, ug ISy, andu, 41 € Ny, (3, y[d]), ¢ € [k].

If nodes may fail frequently in a network, a natural ap-
proach to improve robustness is to store in each table en-
try multiple qualified nodes. For this approach, we gen-
eralized the definition of consistency fé-consistency as
follows [4]. A network,(V, N'(V)), is K-consistentif and
only if the following conditions hold: (i) For every table en-
ry in N(V), if there existH qualified nodes iV, H > 0,
then the entry stores at leasin (K, H) qualified nodes; (ii)
otherwise, the entry is empty. F& > 1, K-consistency
implies consistency (in particular, 1-consistency is the same
as consistency).

2.3 Join protocol

In [4], we presented a join protocol for the hypercube rout-
ing scheme and proved that it constructs and maint&ins
consistent neighbor tables for an arbitrary number of con-
current joins. Here we briefly review the protocol design.

In designing and proving the correctness of the proto-
col for nodes to join a networkV, A/(V)), we made the
following assumptions: (iy # 0 and(V,N(V)) is a K-
consistent network, (ii) each joining node, by some means,
knows a node i/ initially, (i) messages between nodes
are delivered reliably, and (iv) there is no node leave or node
failure during the joins. Then, tasks of the join protocol are
to update neighbor tables of nodedirand to construct ta-
bles for the joining nodes so that after the joins, the network
is K -consistent again.

Each node in the network maintains a state variable
namedstatus which begins incopying then changes to
waiting, notifying andin_systemin that order. A node in
statusin_systemis called anS-node otherwise, it is aTl-
node Each node also stores, for each neighbor in its ta-
ble, the neighbor’s state, which can Béndicating that the
neighbor is an S-node @r indicating that it is not yet.

In statuscopying a joining node, say, copies neighbor
information from S-nodes to fill in most entries of its table
level by level. It copies level-0 neighbor information from
the node it knows iV (an S-node), sayy, and finds an S-
nodeg; among the level-0 neighbors gf such thayy,./D

Constructing and maintaining consistent neighbor tables isghares the rightmost digit with. D. z then copies level-1
an important design objective for structured peer-to-peernpegjghbors fromy;, and finds an S-nodeg, that shares the

1in this paper, we follow PRR [10] and use suffix matching, whereas

rightmost two digits with it, and so on. When after coping

other systems use prefix matching. The choice is arbitrary and conceptuallylevel'(i — 1) neighborsg cannot find an S-node that shares

insignificant.

the rightmost: digits with it, ¢ > 1, = changes status to



waiting. In this status; tries to “attach” itself to the net-
work, i.e., to find an S-node, say that shares at least the
rightmost: — 1 with = and storeg as a neighbor. When

is attached, its status beconmestifying Then,z seeks and
notifies nodes that share the rightmgsligits with it, where

j is the lowest level that is stored iny’s table (the attach-
level of z, as defined in [4]). Lastly, when it finds no more
node to notify,z changes status tn_systemand becomes
an S-node.

nodes are the same. (Formal definitions for C-set trees are
presented in [4, 6].)

GivenV, W andK, the structure of the C-set tree is de-
termined, which we call &-set tree templatd-or example,
supposéV = {30633,41633,10533} (b = 8,d = 5) and
V' = {02700, 14263, 62332, 72413}. The corresponding C-
set tree template is shown in Figure 4(a). Here we assume
K = 1 to simplify illustration. In this example, noti-set
of the joining nodes is the set of nodeslinwith suffix 3,

Figure 3 presents the protocol messages. In particulardenoted byl’;. Observe that the joining nodes introduce
JoinWaitMsgs the message that a joining node sends out to new suffixes to the network. For each new suffix, there is a
request for attachment. It is worth pointing out that when corresponding C-set, and all C-sets plusiggform a tree

a nodey, receives aoinWaitMsgfrom some joining node,
y processes the message and replies immediatglisifl-

ready an S-node; otherwisg saves the message to be pro-
cessed later when it becomes an S-node. That is, a joining

node is always stored as a neighbor by an S-node first.

CpRstMsgsent byz to request a copy of receiver's neighbor table.
CpRIyMsg¢.table), sent byz in response to £pRstMsg
JoinWaitMsg sent byz to notify receiver of the existence afand
request the receiver to starg whenz. status is waiting.
JoinWaitRlyMsgf(, ¢, z.table), sent byz in response to doinWaitMsg)
whenz.status is in_systemr € {negative, positivg i: an integer.
JoinNotiMsgg, x.table), sent byz to notify receiver of the existence
of z, whenz. status is notifying ¢: an integer.
JoinNotiRlyMsgf, Q, z.table, f),
sent byz in response to doinNotiMsg
r € {negative, positivg Q: a set of integersf € {true, falsg.
SpeNotiMsg¢, v), sent or forwarded by a node to inform receiver
of the existence of, wherez is the initial sender.
SpeNotiRlyMsg(, y), response to &peNotiMsg
InSysNotiMsgsent byx whenz. status changes tin_system
RvNghNotiMsgy, s), sent byz to notify y thatz is a reverse neighbg
ofy,s € {T, S}.
RvNghNotiRIlyMsgy{), sent byz in response to vNghNotiMsg
s = S if x.status is in_systemotherwises = T'.

=

Figure 3. Join protocol messages
2.4 C-settree

C-set treeis a conceptual foundation for guiding our pro-
tocol design and reasoning abdkitconsistency [4, 6]. To
introduce C-set trees, we first present the notionagffica-
tion set ofx regardingV’, denoted by, No!/¥ [4]. Suppose
a set of node$V join a K-consistent networkV, N'(V))
andx € W. Intuitively, V,V°/¥ is the set of nodes ilf that
need to update their tablesifwere the only node that joins
(VIN(V)).

Intuitively, a C-set tree organizes noded/irthat need to
update their tables as well as nodeddhinto a tree struc-
ture, if the notification sets regarding (noti-setsin short)

of all nodes inl¥ are the same. Generally, the noti-sets of

all nodes inlW may not be the same. Then, nodeglinwith

according to their suffixes.

(a) Template

(b) Realization
Figure 4. C-set tree example

The task of the join protocol is to construct and up-
date neighbor tables such that paths are established between
nodes;conceptuallynodes are filled into each C-set. For
instance, in the above example, when 14263 stores a node
with suffix 33, say node 30633, in it$,(3)-entry, then con-
ceptually 30633 is filled inta’33. We call the C-set tree
realized at the end of all joins@-set tree realizationFig-
ure 4(b) shows one possible realization of the template in
Figure 4(a). At the end of joins, we check whether some
correctness conditions [4] are satisfied by the C-set tree re-
alization. If they are, then neighbor tables of nodéginiv’
are guaranteed to bi€-consistent.

3 Consistency-preserving Optimization

To date, correctness of proposed join protocols for the hy-
percube routing scheme [2, 4, 6] depends on preserved
reachability, i.e., once a node can reach another node, it
always can thereafter. Therefore, if optimization opera-
tions are to be performed, they should preserve reachabil-
ity. There is a common operation in all optimization algo-
rithms: replacing an old neighbor with a new one that is
measured to be closer. However, if there is no constraint
on such a replacement, it may break reachability of some
source-destination pairs, affect correctness of the join pro-
tocol, and result in amconsistenhetwork after nodes join.
For example, suppose nodes 41633 énd 30633 ¥)
join a network concurrently with some other nodes. st

the same noti-set belong to the same C-set tree and the Cbe the time that neighbor pointers along the path frota

set trees for all nodes i form a forest. Each C-set tree in

y are completely established. Therannot reacly before

the forest can be treated separately in proving protocol cor-time ¢,. If at some timetq, t; < t2, Some node that has
rectness. In the rest of this subsection, we focus on a singlestoredy, say node 14263u), findsz to be closer and re-
C-set tree, i.e., we assume that the noti-sets of the joiningplacesy with x, then after the replacement,cannot reach



y until timet,, as illustrated by Figure 5. In this case, reach- preserving neighbor table optimization in presence of node
ability of pair (u,y) is not preserved by the optimization dynamics.
operation even if both join processesmxofindy have ter- A general strategy for consistency-preserving opti-
minated by time;, since some nodes along the path from mization: Identify a consistent subnet as large as possible;
x to y may be still joining and neighbor pointers are still only allow a neighbor to be replaced by a closer one if both
being established. Then, during the perioed {:], joining of them belong to the subnet; expand the consistent subnet
nodes that are supposed to find gtitroughu will fail to do after new nodes join; and maintain consistency of the subnet
so and thus cannot construct their neighbor tables correctlywhen nodes fail.
Even worse, the period may be arbitrarily long, if messages The join protocol in [4] guarantees that when a set of
are delayed arbitrarily long in the network, or if reachability nodes join an initiallyK -consistent network, the network is
of some source-destination pair along the path fioto y K-consistent (and thus consistent) again after all join pro-
is also broken. cesses terminate. To implement the above strategy, we need
another property from the join protocoat any time, the
subnet consisting of all nodes whose join processes have
arter (14263 )—=— (41633 ) --- [ }--- (o833 ) terminated plus nodes in the initial network is consistent
With this property, identifying nodes or neighbors that be-
. ) ) long to the consistent subnet becomes easy: if the join pro-
To construct and optimize neighbor tables without break- ¢eqq of & node has terminated, then it belongs to the subnet:
ing established reachability when new nodes join a ”etwork’otherwise, it is not. The property also ensures that the con-
one possible approach is to first _construct and updat_e r_‘eigh'sistent subnet keeps growing when more join processes ter-
bor tables so that they aré-consistent, and then optimize - inate  To maintain consistency of the subnet when nodes
neighbor tables after the joins. However, this approach IStail, a failure recovery protocol is needed to recoveér
not practical in a distributed p2p network, since nodes keepqnsjstency. The failure recovery protocol should always
joining and none of them is aware of any quiescent time pe-, 14 recover a hole left by a failed neighbor with a quali-
riod in which there is no node joining and which is 10ng  fiaq node that is in the consistent subnet.
enough for optimization operations, if such a period exists. Recall that in our protocol design, when a node’s join

process terminates, it becomes an S-node. (Nodes in the
initial network are also S-nodes.) Hence, more specifically,
We observe that for the hypercube routing scheme, within our goals are to (1) design a join protocol so that at any time,
a subnet that is already consistent, replacing any neighbothe set of S-nodes form a consistent subnet, and (2) design
with any other neighbor does not break consistency con-a failure recovery protocol that recoveiSconsistency of
ditions if both neighbors belong to the consistent subnet. the subnet by repairing holes left by failed neighbors with
(Basically, consistency conditions require that for each ta- qualified S-nodes. The failure recovery protocol presented
ble entry, if there exists qualified nodes in the subnet, thenin [5] naturally fits into the general strategy with minor ex-
the entry is filled with at least such a node.) If a neighbor tensions. Basically, it works in the following way. When a
replacement does not break the consistency conditions, theneighbor failure is detected by a node, a recovery process
after the replacement, nodes that are previously reachablés initiated. The process always tries to repair a hole left
via the old neighbor can now be reached via the new neigh-by the failed neighbor with a qualified S-node, by searching
bor. This observation is also applicable to other structuredin the node’s own neighbor table and querying the node’s
p2p networks, such as the system proposed in [9]. neighbors. Only when it fails to find a qualified S-node will
When new nodes are joining a network, if we can iden- it repair the hole with a T-node. The failure recovery proto-
tify a “core” of the network such that if we only consider col has been shown to maintain consistency and re-establish
the nodes in this core, their neighbor tables are consistent/-consistency for networks with’ > 2. Therefore, in this
and they can reach each other, then we know that replac-section, we focus on how to extend the join protocol in [4]
ing a neighbor with a closer neighbor, both of which are in to achieve goal (1).
the core, is a safe operation and will not break established
reachability. Note that before the joins start, the initial net- 3.2 Extended join protocol

work is consistent and thus is the “core” of the network. T4 extend the join protocol, we first consider the basis of

_However, if we optimize neighbor tables by only FODSiqu the proofs of protocol correctness. Proofs in [4] rely on the
ing nodes in the initial network, the extent of optimization {q|iowing properties of a network.

would be greatly limited. It is desired that after a node has

joined the network, it becomes part of the core so thatitcan 1. Once two S-nodes can reach each other, they always
also be considered for optimization. It is also desired that can thereafter.

when no_des fail, consistency of the core is mamtam.ed- To 2K -consistency provides redundancy in neighbor tables to ensure that
summarize, we present a general strategy for consistencya dynamically changing network remains fully connected.

u y
before [ 14263 —=—( 30633 |

Figure 5. Paths before and after neighbor replacement

3.1 Our strategy




2. Once a T-node can reach an S-node, it always can the message). It is in statuscsetwaiting, it sends a

thereatfter. SameCsetMsg(Tack immediately if it has not done
3. After a T-node, say, is stored by another node, sgy so, and removes the sender fraMges waiz. If = is
2 remains in the table of whenz is still a T-node. in any other statusy saves the sender iN@cset_reco
If there is no table optimization involved during the joins, E:Os:v?/Ztliitger when: changes status fromotifyingto

i.e., no neighbor in any entry would be replaced, the above
properties hold trivially: once a path is established, the
neighbor pointers from one hop to another along the path
are always there and remain the same. When there are op- The above extensions add extra delay into each join pro-
timization operations that happen concurrently with joins, cess. With the extra delay, a joining node will not become an
the above three properties must be preserved to ensure th&-node until it believes that nodes currently in the same C-
correctness of the join protocol. To preserved property 3 is set with it (conceptually) have all entered statsetwaiting
not difficult: we require that if a neighbor is still a T-node, it Or in_system Since only after a node becomes an S-node
cannot be replaced even if another node is found to be closegan it store another joining node that has requested it for at-
than it. To preserve properties 1 and 2, goal (1) stated abovdachment (by sendinginWaitMsg, the above extensions
needs to be achieved and neighbor replacement should bensure that only after a set of nodes in a parent C-set have
constrained to neighbors that are S-nodes. all finished their joining tasks, will new joining nodes be
We extend the join protocol to achieve goal (1) as fol- attached to these nodes and filled into children C-sets. In
lows. In short, a new statussetwaiting, is inserted be-  the correctness proof [7], we show that when a new node is
tweennotifyingandin_systemWhen a joining node has fin-  filled into a child C-set, neighbor pointers among the nodes
ished its tasks and exited statustifying, it will not change  that have been filled in ancestor C-sets have been established
to statusn_systemand become an S-node immediately. In- and those nodes already can reach each other.
stead, the node waits in statosetwaiting for some nodes ) k k }
that are joining concurrently and are likely to be in the same 3§j$§’“263'62332-§ﬂ§' 02700, 14265, 62332 | .| T e |
C-set with it (conceptually). When it is confirmed that all =~ *----—--————— / L LA J
these nodes have exited stanifying, it changes status
to in_system (Pseudo-code of the extended join protocol Figure 6. Evolution of consistent subnet
is presented in [7].) The extensions ensure that when two

nodes have both become S-nodes, paths between them (in For insr;[ance, consider tr|1e ex?mr?lehmenti?];;d in Sec-
both directions) have already been established. pon 24(t e stet tree temp afce orwhich, assunfing: L
is shown in Figure 4(a)). With the extended join proto-

e A new joining statusgsetwaiting, is added after sta-  ¢o|, the C-set tree is realized in the following way: only
tus notifying Moreover, one more join protocol mes-  after C-selCs; is filled and nodes in it have all entered sta-
sage,SameCsetMsg], is introduced, wherg is Sis  tys csetwaiting or in_systemwill new nodes (nodes other
the sender is already an S-node dnatherwise. than those inCs3) be filled into the children C-sets/s33

e When a node, say, receives aJoinNotiMsgor a  and (533, and so orf. For example, for the realization as
JoinNotiRlyMsg the message includes a copy of the shown in Figure 4(b), it is realized as follows: only after
sender’s table. Ifc is in statusnotifying when it re- nodes 41633 and 30633 (nodes(h;) have entered sta-
ceives the message, and if from the copy of the sender'stus csetwaiting or in_systemwill node 10533 be filled into
table, x finds a T-node, say, that shares withr a Cs33. Figure 6 shows the corresponding evolution of the
suffix of lengthk, &k > z.att_level, z savesy in set consistent subnet.

Qesetwait- (x.att_level is the attach-level of in the
network [4], which is the lowest levelis storedinthe 3.3 Correctness and scalability of join protocol

table of the first S-node that storeq We first present Theorem 1, which shows that when a set of
e When a node in statusotifyingfinds that it is notex-  new nodes join a network using the extended join protocol,
pecting any mordoinNotiRlyMsgor SpeNotiRlyMsg  at any time, all S-nodes at that time belong to a consistent
it changes status tesetwaiting. It then sends a  sypnet. This property guarantees that replacing a neighbor
SameCsetMsg(Ttp each node in se@cserwait @A with another one is safe if both of them are S-nodes. Proof
waits for their replies. It also I’eplies to each node in of Theorem 1 is based on the assumptions stated in Sec-
Set Qcset.reco (S€€ discussion below) with @8ameC-  tion 2.3. Proof details are presented in [7] and are omitted
setMsg(T) Each node that is in bot).sct_rccy @and here due to space limitation.
Qeset_wait 1S then removed fron®cser wait- . — _ _ _ _
» When anode, say, receives SameCsetMsg], fitis 0ol o8 oo c o e e ilod im0 A G et

alreaqy in stgtum_s'ys.temiF SEIl’ldS aSamengtMsg(S) it is automatically filled into descendant C-sets. For instance, when 41633
back immediately ifs is T (if s is S, = simply ignores is filled into C3, it is automatically filled intcCs33, C1633, andCa1633 -

e When a node is in statussetwaiting and finds that
Qesetwait IS €MPLyY, it changes statusitnsystem




Theorem 1 Suppose a set of nodeB/ = {z1,...zn},
m > 1, join a K-consistent networkV, A/(V)) using the
extended join protocol. Then at any timeany node in set
S(t) can reach any other node ifi(t), whereS(¢) is the set
of S-nodes at time

Next, we demonstrate the scalability of the extended join
protocol by analyzing communication costs of protocol ex-
tensions through simulation experiments. We implemented
the extended join protocol in an event-driven simulator, and
used the GTITM package [15] to generate network topolo-
gies. For a generated topology with a set of routers, overlay
nodes (end hosts) were attached randomly to the routers.
For the simulations reported in this paper, two topologies
were used: a topology with 1056 routers to which 1000
overlay nodes were attached, and a topology with 2112
routers to which 4000 overlay nodes were attached. We sim-
ulated the sending of a message and the reception of a mes-

sage as events, but abstracted away queueing delays. The

end-to-end delay of a message from its source to destination
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Figure 7. Join durations with/without protocol extensions
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was modeled as a random variable with mean value proporyhis paper we only need to study the number of the new mes-
tional to the shortest path length in the underlying network. sage SBameCsetM3gent by a joining node.

Figure 8 presents average numberSafmeCsetMsgent

For the 1056-router topology, end-to-end delays are in the

range of 0 to 329 ms, with the average being 113 ms; for the,y, inining nodes as a function & . The numbers are small

2112-router topology, end-to-end delays are in the range ofjy yaneral and increase whénincreases. This is because

0 to 596 ms, with the average being 163 ms. In each expery,hen i increases, more neighbors are stored in each en-
iment, we letm nodes join an initial network of. nodes,

4 try and thus each C-set tends to contain more nodes. By
m > n. We set parametetelo be 16 andi to be 8. comparing the two curves in each diagram, we observe that
We first study the extra delay caused by the new status,iy the simulations where joins did not start at exactly the
csetwaiting. We define thgoin duration of a node to be same time, average numbersSgmeCsetMsgere greatly
the duration from the time the node starts joining to the time .4 ,ceqd. Moreover, comparing Figure 8(a) and Figure 8(b),
it changes status tm_system Figure 7(a) plots the aver- o see that with other parameters being the same, the av-
age join durations for 990 nodes joining an initial network

; . . i erage number oBameCsetMsgemained almost the same
of 10 nodes, as a function d@f, for simulations using the

o X X when the number of concurrent joins:] was increased
original join protocol (presented in Section 2.3) and the ex- from 990 to 1990.

tended join protocol, respectively. The underlying topology
was the 1056-router topology. In each experiment, all joins
started at exactly the same time. As shown in the figure, the
average join durations for the extended protocol are only
slightly longer than those for the original protocol, which
indicates that the extra delay caused by waiting in status
csetwaiting is small. The same conclusion can be drawn We now have an extended join protocol that expands the
from Figure 7(b), where 1990 nodes joined an initial net- consistent subnet while nodes join a network, and a failure
work of 10 nodes and the underlying topology is the 2112- recovery protocol [5] that maintains consistency of the con-
router topology. Error-bars in Figure 7 show the minimum sistent subnet when nodes fail. To implement the general
and maximum join durations observed from simulations us- strategy (Section 3.1), we also need the following rule.
ing the extended join protocol. Optimization Rule When a nodeg, intends to replace
Next, we study communication costs of the extended join a neighbory, with a closer onez, the replacement is only
protocol in terms of numbers of messages sent by a joiningallowed when botly andz are S-nodes.
node. In [4], we have analyzed numbers of protocol mes-  Recall that for each neighbor, a node stores the state of
sages sent by a joining node, for all message types excepthe neighbor. Stat8indicates that the neighbor is in status
the one introduced in this paper, and showed that the com-in_system while stateT indicates it is not yet. To imple-
munication costs are scalable to large networks. Hence, inment the above rule, when intends to replaceg with z,
it only does so when the states associated with lpctind
z areS. With the extended join protocol and the optimiza-
tion rule, the three properties stated in Section 3.2 will be

We conclude that the communication costs of the proto-
col extensions are very low and the extended join protocol
is scalable to a large number of network nodes.

3.4 Optimization rule and heuristics

4In Tapestry,h = 16 andd = 40. In Pastry,b = 16 andd = 32.
We found that the value af is insignificant wherb? > n, wheren is the
number of nodes in a network.



preserved even when optimization operations happen contimization and evaluate the effectiveness of the heuristics
currently with joins [7]. through simulation experiments. To evaluate the optimiza-

To optimize neighbor tables, an algorithm is needed to tion heuristics, we use a metric called p-ratio, defined be-
search for qualified nodes that are closer than current neighiow. Recall that the closest neighbor in an entry is called the
bors. We next present a set of heuristics to optimize neigh-primary-neighbor of that entry. For a table entry of a node,
bor tables when new nodes are joining a network and newsay z, suppose the primary-neighbor of the entryjsand
tables are constructed. To search for closer neighbors withthe closest node among all qualified nodes of the entey is
low cost, the heuristics are designed by primarily utilizing We definep-ratio of the entry to be the ratio of the com-
information carried in join protocol messages. Notice that munication delay fronx to y to the delay fromz to z. A
whenever a closer neighbor is found for a table entry, it can p-ratio of 1 indicates thag andz are of the same distance.
be used to replace an old neighlomiy if the replacementis  If for every table entry in a network, p-ratio is 1, then the
allowed by the optimization rule. neighbor tables are optimal.

Heuristic 1: Copy neighbor information from nearby
nodes.Recall that in thecopyingstatus, a joining node;,
constructs most part of its neighbor table by copying neigh- In each experiment where optimization happened concur-
bor information from other nodes (S-nodes). Supppse rently with joins, we letn nodes join an initial-consistent
the node that starts joining with. Instead of directly copy- network ofn nodes,,m > n. Neighbor tables were then
ing level-0 neighbors fromy, « chooses the closest node constructed, updated, and optimized according to the ex-
from y's neighbors, sayjy, and copies level-0 neighbors tended join protocol and the optimization heuristics. In the
from g¢. If the level-0 neighbors of, are close tqj,, and protocol implementation, an old neighbor is only replaced
go andx are close to each other, then it is highly likely that by a new neighbor if the distance of the new one is measured
these level-0 neighbors are also close {&]. To copy level- to be 10% shorter than the old one (plus that the replace-
1 neighborsg chooses a level-0 neighbor gf that shares  ment is allowed by the optimization rule). This is to prevent
suffix z[0] with it, say z, if such a node exists. Then from oscillation, since each end-to-end delay is modeled as a ran-

4.1 Optimization during joins

the level-1 neighbors of (whose IDs all have suffix[0]), dom number with a mean value proportional to the shortest
x chooses the closest one to copy level-1 neighbors from,path length in the underlying network. When all join pro-
and so on. cesses had terminated, we checked wheilti@onsistency

Heuristic 2: Utilize protocol messages that include was maintained and calculated p-ratio for every table entry.
copies of neighbor tablesDuring statuswaiting and no-
tifying, a joining nodey, sends out message®{nWaitMsg
andJoinNotiMsg to some nodes to notify them aboutitself.
Replies to these messages all include copies of the neighbor;
tables of the senders. From each reply messagearches & A
for qualified nodes that are closer than some current neigh- e Oy
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bors for every table entry. Moreover, whenis in status ol G- 5 M
notifying, a notification message sent byincludes a copy oo s ’ S
of x.table. The receiver of such a message also searches for (@)n =10, m = 990 (b) n =10, m = 1990
closer nodes in:.table to replace old neighbors. Figure 9. Effectiveness of optimization heuristics

Heuristic 3: Optimize neighbor tables when anode’sjoin ~ Figures 9 presents results from experiments with 10
process terminatesWhen a joining nodegz, changes sta- andm = 990, and from experiments with, = 10 and
tus toin_systemit informs its reverse-neighbors (nodes that ™ = 1990. In each experiment, starting times of the joins
have stored: as a neighbor) as well as its neighbors that it were drawn randomly from range [Os, 60s] (i.e., all nodes
becomes an S-node. These nodes then update the state {ffined within 1 minute). The results show that by primar-
x to beSin their tables and try to optimize their table en- ily using information carried in join protocol messages, ta-
tries for whichz is a qualified node. In addition to inform-  ble entries can be greatly optimized. For instance, in Fig-
ing neighborsz: exchanges neighbor tables with its neigh- ure 9(a), without any optimization, the average p-ratio for
bors (not including reverse-neighbors) so that betind its K = 1 is more than 6.82, and the 95th percentile of p-ratio
neighbors can optimize their tables at this time. for K = 1is 26.67 (i.e., 95% of p-ratios are no greater than
26.67); with the optimization heuristics, the values drop to
2.21 and 7.51, respectively. We also found that in every ex-
periment, K -consistency was maintained after all joins had
We have integrated the extended join protocol with our fail- terminated, which demonstrates that our strategy preserves
ure recovery protocol and the optimization heuristics, un- consistency and ensures correctness of the join protocol.
der the constraint of the optimization rule. In this sec- Results in Figure 9 also show that wh&his increased,
tion, we validate our strategy for consistency-preserving op-the average p-ratio decreases. The reason is that ithen

4 Experimental Results



2000 nodes initially, 968 joins, 1032 failures ——+—
1000 nodes initially, 494 joins, 506 failures - DKen 1

becomes larger, more neighbors are stored in each table en-
try, thus more neighbor information is carried in protocol
messages. Clearly, there is a tradeoff between the benefits
and maintenance costs Af-consistency.

Average p-ratio
o L N w » 14 (2] ~ o]

4.2 Optimization with concurrent joins and failures

The extensions to the join protocol presented in this paper 0 1 2 3 3 5
do not affect failure recovery actions, thus integrating the :
extended join protocol with the failure recovery protocol Figure 10. Optimization with massive joins and failures

should not affect success of failure recoveries. On the other ] ]

hand, since a substitute for a failed neighbor is searched lo-€XPeriment, we took snapshots of the neighbor tables of all
cally (see Section 3.1), if neighbor tables have been opti- S-nodes (the “core” of the network). For each snapshot, we
mized, the substitute node would not be too far away. Hencec@/culated the average p-ratio as an indicator of how well ta-
the average p-ratio would not be affected too much after able entries were optimized at the moment. We also checked
recovery action. Therefore, integration of the extended join Whether consistency was maintained at each snapshot.
protocol, the failure recovery protocol, and the optimization ~ Figure 11 presents results from an experiment itk
heuristics should be effective and stable in both consistencyl: i-€., join events were generated at a rate of 1 per second
maintenance and neighbor table optimizaiofio demon- ~ and so were the failure events. The initlétconsistent net-
strate this, we conducted experiments with concurrent joinsWork of 2000 nodesis” = 3, was constructed and optimized
and failures as well as churn experiments. by letting 1990 nodes join a network of 10 nodes. In the ex-

Massive joins and failures We first conducted simula- ~ Periment, join and failure events were generated from the
tions in which massive number of joins and failures hap- 1,000th second to the 4,000th second (simulated time). Af-
pened concurrently. Each experiment began wittka  ter that, no more join or failure events was generated and
consistent networkV, A(V)), which was constructed and  the experiment continued until all join, failure recovery, and
optimized by the extended join protocol and optimization OPtimization processes terminated. Snapshots were taken
heuristics. Then, a sé¥’ of nodes joined and a sét of every 50 seconds. The lower curve in Figure 11(a) plots
randomly chosen nodes failed. Join and failure events werethe average p-ratio for each snapshot. Although there were
generated according to a Poisson process at the rate of 1§0ntinuous joins and failures, neighbor tables remained op-
events every second. timized to a certain degree: The average p-ratio increased

From the experiments, we found thitconsistency was ~ Slightly at first, when joins and failures started to happen; it
maintained when all join and failure recovery processes hadthen remained below 2.3. (For comparison, the upper curve
terminated, in every experiment wifli > 2. Thisresultin-  Shows the average p-ratios from an experiment with the
dicates that our protocols are effective in consistency main-s@me simulation setup, in which no optimization heuristics
tenance. Figure 10 presents results of average p-ratios at/ere applied.) We also found that consistency was main-
the end of the simulations. The lower curve presents resultsiained at every snapshot, andconsistency K = 3) was
from simulations where 494 joins and 506 failures happenedrécovered at the end of the simulation. Figure 11(b) plots
in a network that initially had 1000 nodes. The upper curve the number of nodes in the network (T-nodes and S-nodes)
presents results from simulations where 968 joins and 1032versus the number of S-nodes for each snapshot. Note that
failures happened in a network that initially had 2000 nodes. the two curves are very close to each other, which demon-

As shown in the figure, even with massive joins and failures, Strates that at the given churn rate, the size of the subnet
the table entries were still optimized greatly: Her > 2, formed by S-nodes is consistently close to that of the entire

average p-ratios were less than 3. network. It also demonstrates that with the given churn rate
Churn experiments We also investigated the impact and the network size, our protocols can sustain a large sta-

of continuous node dynamics on protocol performance. To Ple “core” over the long term even when joins, failures, and

simulate node dynamics, Poisson processes with igtgs ~ Neighbor table optimization happen concurrehtly.

and\s,;; were used to generate join and failure events, re- o

spectively. We sed,i, = Ay = A, which is said to be 9 Network Initialization

the churn rate For each join event, a new node (T-node) T4 injtialize a K -consistent and optimized network of

was given a randomly chosen S-node to begin its join pro- nodes, we can put any one of the nodes, sain V, and

cess. For each failure event, an S-node or a T-node Wagonstructz.table as follows. (Letw.state(y) denote the
randomly chosen to fail and stay silent. Periodically in each gi5te of neighboy stored in the table of.)

5In [5], we had investigated the tradeoff in detail. o N, (i,z[i]).prim = x, z.state(x) = S, i € [d].
6In [5], we have shown that the integration of the original join proto- N . . . -
col and the failure recovery protocol is effective and stable in consistency * No (Z’ ‘7) =0ie [d]' Je [b] and; # x[t]
maintenance. “In [5], we have studied “sustainable churn rates” in detail.
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