
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.dit.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
 
 
DATA MANAGEMENT FOR PEER-TO-PEER COMPUTING: 
A VISION 

 
Philip A. Bernstein, Fausto Giunchiglia, 
Anastasios Kementsietsidis, John Mylopoulos, 
Luciano Serafini, and Ilya Zaihrayeu   
 
 
2002 
 
Technical Report # DIT-02-0013 
 
 
 
 
 
 
 
 
 
 
 
 
Also in: proceedings of Web DB 2002 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 



- 1 - 

Data Management for Peer-to-Peer Computing: A Vision1 

Philip A. Bernstein2, Fausto Giunchiglia3, Anastasios Kementsietsidis4,  
John Mylopoulos3, Luciano Serafini5, and Ilya Zaihrayeu2 

 

Abstract. We motivate special database problems introduced by peer-to-peer computing and propose the Local 
Relational Model (LRM) to solve some of them. As well, we summarize a formalization of LRM, present an 
architecture for a prototype implementation, and discuss open research questions. 

1. Introduction 

Peer-to-peer (hereafter P2P) computing consists of an open-ended network of distributed computational peers or 
nodes, where each peer can exchange data and services with a set of other peers, called acquaintances. Peers are 
fully autonomous in choosing their acquaintances. Moreover, we assume that there is no global control in the 
form of a global registry, global services, or global resource management, nor a global schema or data 
repository. Systems such as Napster and Gnutella popularized the P2P paradigm as a version of distributed 
computing lying between traditional distributed systems and the web. The former is rich in services but requires 
considerable overhead to launch and has a relatively static, controlled architecture. The latter is a dynamic, 
anyone-to-anyone architecture with little startup costs but limited services. By contrast, P2P offers an evolving 
architecture where peers come and go, choose whom they deal with, and enjoy some traditional distributed 
services with less startup cost. 

We are interested in data management issues raised by this paradigm, where each peer may have data to share 
with other peers. For simplicity, we assume that each peer’s database is relational. Since the data residing in 
different databases may have semantic inter-dependencies, we allow peers to specify coordination formulas that 
explain how the data in one peer must relate to data in an acquaintance. For example, the patient database of a 
family doctor and that of a pharmacy may want to coordinate their information about a particular patient, the 
prescriptions she has received, and the dates when these prescriptions were filled. Coordination may mean 
something as simple as propagating all updates to the Prescription and Medication relations, assumed to exist in 
both databases. In addition, we'd like a query expressed with respect to one database to be able to use relevant 
databases at acquaintances, acquaintances of those acquaintances, and so on. To accomplish this, we expect the 
P2P data management system to use coordination formulas for recursively decomposing the query into sub-
queries that are evaluated with respect to the databases of acquaintances. Coordination formulas may also act as 
soft constraints or guide the propagation of updates. In addition, peers need an acquaintance initialization 
protocol where two peers exchange views of their respective databases and agree on levels of coordination 
between them. The level of coordination should be dynamic, in the sense that acquaintances may start with little 
coordination, strengthen it over time with more coordination formulas, and eventually abandon it when tasks and 
interests change. 

In such a dynamic setting, we cannot assume the existence of a global schema for all databases in a P2P network, 
or even those of all acquainted databases. Moreover, peers should be able to establish and evolve acquaintances, 
preferably with little human intervention. Thus, we need to avoid protracted tasks by skilled database designers 
and DBAs required by traditional distributed and multi-database systems [9,10].  

For more effective inter-node coordination, nodes should be able to advertise their data content by giving a name 
and description (keywords or schema), presumably using a directory service. This will also help users at a node 
create more relevant acquaintances and form Interest Groups with other nodes that have similar content. 

This paper introduces the Local Relational Model (LRM) as a data model specifically designed for P2P 
applications. LRM assumes that the set of all data in a P2P network consists of local (relational) databases, each 
with a set of acquaintances, which define the P2P network topology. For each acquaintance link, domain 
relations define translation rules between data items, and coordination formulas define semantic dependencies 
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between the two databases. The main goals of the data model are to allow for inconsistent databases and to 
support semantic interoperability in the absence of a global schema [13]. 

The main objectives of this paper are to introduce the LRM through examples and to identify a set of open 
research questions on its design and implementation. Section 2 presents a motivating scenario. Section 3 
sketches a formalization of LRM. Section 4 offers a preliminary architecture for an LRM-based system and 
relates it to past work, while conclusions appear in section 5. 

2. A Motivating Scenario 

Consider, again, the example of patient databases.  Suppose that the Toronto General Hospital owns the TGHDB 
database with schema: 

Patient(TGH#,OHIP#,Name,Sex,Age,FamilyDr,PatRecord) PatientInfo(OHIP#,Record) 
Treatment(TreatID,TGH#,Date,TreatDesc,PhysID)   Medication(TGH#,Drug#,Dose,StartD,EndD) 
Admission(AdmID,OHIP#,AdmDate,ProblemDesc,PhysID,DisDate) 

The database identifies patients by their hospital ID and keeps track of admissions, patient information obtained 
from external sources, and all treatments and medications administered by the hospital staff. 

When a new patient is admitted, the hospital may want to establish immediately an acquaintance with her family 
doctor. Suppose the view exported by the family doctor DB (say, DavisDB) has schema: 

Patient(OHIP#,FName,LName,Phone#,Sex,PatRecord)  Visit(OHIP#,Date,Purpose,Outcome) 
Prescription(OHIP#,Med#,Dose,Quantity,Date)  Event(OHIP#,Date,Description) 

Figuring out patient record correspondences (i.e., doing object identification) is achieved by using the patient's 
Ontario Health Insurance # (e.g., OHIP#=1234). Initially, this acquaintance has exactly one coordination formula 
which states that if there is no patient record at the hospital for this patient, then the patient's record from DavisDB 
is added to TGHDB in the PatientInfo relation, which can be expressed as: 
       ∀fn ∀ln ∀pn ∀sex ∀pr.(DavisDB : Patient(1234,fn,ln,pn,sex,pr) →  

  TGHDB : ∃ tghid ∃n ∃a.(Patient(tghid,1234,n,sex,a,Davis,pr) and n = concat(fn,ln))) 
When TGHDB imports data from DavisDB, the existentially quantified variables tghid, n and a must be 
instantiated with some concrete elements of the TGHDB database. This amounts to generating a new TGH# for 
tghid, inserting the Skolem constant <undef-age> for a (which will be further instantiated as the patient's age) and 
generating name n by concatenating her first name fn and last name ln contained in DavisDB. Later, if patient 1234 
is treated at the hospital for some time, another coordination formula might be set up that updates the Event 
relation for every treatment or medication she receives: 
∀d ∀desc.(TGHDB : ∃tid ∃tghid ∃pid ∃n ∃sex ∃a ∃pr.(Treatment(tid,tghid,d,desc,pid) and 
                   Patient(tghid,1234,n,sex,a,Davis,pr)) → DavisDB : Event(1234,d,desc) 
∀tghid ∀drug ∀dose ∀sd ∀ed.( 
      TGHDB: Medication(tghid,drug,dose,sd,ed) and ∃n ∃sex ∃a ∃pr.Patient(tghid,1234,n,sex,a,Davis,pr)  
            → DavisDB : ∀d.(sd ≤ d ≤ ed → ∃desc.(Event(1234,d,desc) and desc = concat(drug,dose,"at TGHDB")))) 
This acquaintance is dropped once the patient's hospital treatment is over.  

Along similar lines, the patient's pharmacy may want to coordinate with DavisDB. This acquaintance is initiated 
by DavisDB when the patient tells Dr. Davis which pharmacy she uses. Once established, the patient's name and 
phone are used for identification. The pharmacy database (say, AllenDB) has the schema: 

Prescription(Prescr#,CustName,CustPhone#,DrugID,Dose,Repeats) 
Sales(CustName,CustPhone#,DrugID,Dose,Date,Amount) 

Here, we want AllenDB to remain updated with respect to prescriptions in DavisDB: 
  ∀fn ∀ln ∀pn ∀med ∀dose ∀qt.( 
     DavisDB: ∃ohip ∃date ∃sex ∃pr.(Prescription(ohip,med,dose,qt,date) and Patient(ohip,fn,ln,pn,sex,pr)) 
   → AllenDB: ∃cn ∃amount.(Prescription(cn,pn,med,qt,dose,amount) and cn = concat(fn,ln))) 
Of course, this acquaintance is dropped when the patient tells her doctor that she changed pharmacy. 

Suppose the hospital has no information on its new patient with OHIP# 1234 and needs to find out if she is 
receiving any medication. Here, the hospital uses its acquaintance with an interest group of Toronto pharmacies, 
say TPhLtd. TPhLtd is a peer that has acquaintances with most Toronto pharmacists and has a coordination 
formula that allows it to access prescription information in those pharmacists’ databases. For example, if we 
assume that TPhDB consists of a single relation 

Prescription(Name,Phone#,DrugID,Dose,Repeats) 
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then the coordination formula between the two databases might be: 
  ∀fn ∀ln ∀pn ∀med ∀dose.( 
     DavisDB: ∃ohip ∃qt ∃date ∃sex ∃pr .(Prescription(ohip,med,dose,qt,date) and Patient(ohip,fn,ln,pn,sex,pr)) 
            → TPh: ∃name ∃rep.( Prescription(name,pn,med,dose,rep) and name = concat(fn,ln) ) ) 
Analogous formulas exist for every other pharmacy acquaintance of TPhLtd. Apart from serving as information 
brokers, interest groups also support mechanisms for generating coordination formulas from parameterized ones, 
given exported schema information for each pharmacy database. 

On the basis of this formula, a query such as "All prescriptions for patient with name N and phone# P," 
evaluated with respect to TPhLtdDB, will be translated into queries that are evaluated with respect to databases 
such as AllenDB. The acquaintance between the hospital and TPhLtd is more persistent than those mentioned 
earlier. However, this one too may evolve over time, depending on what pharmacy information becomes 
available to TPhLtd. 

Finally, suppose the patient in question takes a trip to Trento and suffers a skiing accident. Now the Trento 
Hospital database (TrentoHDB) needs information about the patient from DavisDB. This is a transient acquaintance 
that only involves making the patient's record available to TrentoHDB, and updating the Event relation in DavisDB. 

3. A Formal Semantics for LRM 

Traditionally, federated and multi-database systems have been treated as extensions of conventional databases. 
Unfortunately, formalizations of the relational model (such as [12]) don't apply to these extensions where there 
are multiple overlapping databases, which may be inconsistent and may use different vocabularies. We launch 
the search for implementation solutions that address the scenario described in the previous section with a 
formalization of LRM. 

The model-theoretic semantics for LRM is defined in terms of relational spaces each of which models the state 
of the databases in a P2P system. These are mathematical structures generalizing the model-theoretic semantics 
for the Relational Model, as defined by Reiter in [12].  Coordination between databases in a relational space is 
expressed in terms of coordination formulas that describe dependencies between a set of databases. These formu-
las generalize many forms of inter-schema constraints defined in the literature, such as [1,2,5,8,15,17]. 

3.1 Relational spaces 

A relational space is a finite set of relational databases. Database i is associated with a logical language Li, which 
formalizes its schema.  Abstractly, Li is a first order language with a set of relational symbols corresponding to 
the relations of database i, no functions symbols, and a non-empty set of constants domi corresponding to the 
domain of database i. For instance, the language of DavisDB contains relational symbols such as Patient(x,y,z,w,v,t) 
and Visit(x,y,z,w), also the constant symbol 1234. 

The content of database i is defined by a set of first order interpretations dbi of the language Li on the domain 
domi. Each interpretation m ∈ dbi interprets the constant symbol d ∈ Li as itself and the relational symbol 
R(x1,…, xn ) as a finite set of n-tuples of elements of domi, which are the tuples in the relation R.  To emphasize 
that in LRM there is no global model, we call each dbi a local database. 

In LRM, there is no notion of global consistency for a set of local databases. However, we do retain a notion of 
local consistency. Each local database can be in a (locally) consistent or inconsistent state, and consistent and 
inconsistent databases can coexist in a single relational space. For instance the local databases dba={m1}, 
dbb={m2,m3}, and dbc=Ø are respectively complete, incomplete, and inconsistent. Generally, dbi is complete if 
|dbi| = 1, incomplete if |dbi| > 1 and inconsistent if dbi = Ø. 

In a relational space, overlapping databases represent information about a common part of the world.  This 
overlap has nothing to do with the fact that the same constant appears in both databases.  For instance, the fact 
that the constant Apple appears in a database describing computers and another describing Italian agricultural 
products does not imply that these databases overlap. Rather, overlap is determined by the meaning of constants, 
i.e., when the entities denoted by constants in different databases are the same. 

To represent the overlap of two local databases, one may use a global schema, with suitable mappings to/from 
each local database schema.  As argued earlier, this is not feasible in a P2P setting.  Instead, we adopt a localized 
solution to the overlap problem, defined in terms of pair-wise mappings from the elements of the domain of 
database i to elements of the domain of database j.  Specifically, the overlap of databases i and  j is represented 
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by two relations, called domain relations, rij ⊆ domi x domj and rji ⊆ domj x domi. The domain relation rij 
represents the ability of database j to import (and represent in its domain) the elements of the domain of database 
i.  In many cases, domain relations are not symmetric, for instance when rij represents a currency exchange, a 
rounding function, or a sampling function. In a P2P setting, domain relations need only be defined for acquainted 
pairs of peers. 

Definition (Relational space). A relational space is a pair <db, r>, where db is a set of local databases on I and r 
is a function that associates to each i, j ∈ I, a domain relation from rij from i to j.   

3.2  Coordination in relational spaces 

Semantic inter-dependencies between local databases are expressed in a declarative language, independent of the 
languages supported by local databases. The formulas of this language describe properties of schemas as well as 
the contents of local databases in a relational space. This language is a generalization of interpretation constraints 
defined in [3]. 

Definition (Coordination formula). The set of coordination formulas RF on the family of relational languages 
{Li}i∈ I is defined as follows: 
                    RF ::= i : φ | RF → RF | RF ∧ RF | RF ∨ RF | ∃i : x.RF | ∀i : x.RF 
where i ∈ I and φ is a formula of Li. 

The basic building blocks of coordination formulas are expressions of the form i : φ, which means “φ is true in 
database i”. Connectives have the usual meaning, while quantifiers require further consideration.  The formula 
∀i : x.A(x) should be read as "for all elements of the domain domi, A is true”. Likewise, ∃i : x.A(x), is read as 
“there is an element in the domain domi such that A is true”. Notice that a variable x in the scope of a quantifier 
∃i : x or ∀i : x, can occur in a formula j : φ(x), allowing quantification across domains. Specifically, we allow 
that within the scope of a domi formula, one can quantify over another domain domj exploiting the domain 
relations rij and rji. 

Example. The coordination formula ∀i : x . (i:P(x) → j : Q(x)) is satisfied if whenever P(d) is true in database i 
and <d, d'>∈ rij, then Q(d') is true in database j. Analogously the formula ∃i : x . (j : P (x)) is true if there is an 
element d in domi  such that <d, d'> ∈ rij and P(d') is true in database j.    A complete formalization of truth for 
coordination formulas is described in [13].  

Coordination formulas can be used in two different ways.  First, they can be used to define constraints that must 
be satisfied by a relational space.  For instance, the formula ∀1 : x . (1 : p(x) ∨ 2 : q(x)) states that any object in 
database 1 either is in table p or its corresponding object in database 2 is in table q. This is a useful constraint 
when we want to declare that certain data are available in a set of databases, without declaring exactly where. As 
far as we know, other proposals in the literature for expressing inter-database constraints can be uniformly 
represented in terms of coordination formulas. 

Coordination formulas can also be used to express queries. In this case, a coordination formula is interpreted as a 
deductive rule that derives new information based on information already present in other databases.  For 
instance, a coordination formula ∀1: x ( 1: ∃y.p(x, y) → 2 : q(x)) allows us to derive q(b) in database 2, if p(a, c) 
holds in database 1 for some c, and <a,b> ∈ r12 

Let q represent a query posed by a user to database i, and A(x) be the coordination formula body of the query. 
We have the following. 

Definition (i-query). An i-query on a family of relational languages {Li}i∈ I , is a coordination formula of the 
form A(x) → i : q(x), where A(x) is a coordination formula, q is a new n-ary predicate symbol of Li and x 
contains n variables.                                                                                     

Definition (Global answer to an i-query).  Let <db, r> be a relational space on {Li}i∈ I . The global answer of an 
i-query of the form A(x) → i : q(x) in <db, r> is the set: 

{d ∈ (domi)
n | <db, r> |= ∃i : x.(A(x) ∧ i : x = d)} 

An intuitive reading of the above formulas is as follows. The global answer to an i-query is computed by locally 
evaluating in dbi all atomic coordination formulas ik : φ in A, and by recursively composing and mapping (via the 
domain relations) these results according to the connectives and quantifiers that comprise the coordination 
formula A. For instance, to evaluate the query 

i : P(x) ∨ j : Q(x) ∧ k : R(x,y) → h : q(x,y) 
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we separately evaluate P(x), Q(x) and R(x,y) in databases  i, j and k, respectively. We map these results via rih, rjh 
and rkh respectively obtaining three sets AP, AQ, and AR in the domain domh. We then compose AP, AQ, and AR 
using query connectives, obtaining  AP × AQ  ∩ AR. This is the global answer to q(x,y). 

4.  A Preliminary Architecture for LRM 

Databases in a P2P system resemble heterogeneous distributed databases, often called multi-database systems, 
e.g., Multibase [14], TSIMMIS [4], Garlic [1], and Information Manifold [8]. In most systems of this sort, a user 
issues queries to a global schema, and the system (called a mediator in [16]) maps the queries to subqueries on 
the underlying data sources. Each data source has a wrapper layer that maps subqueries into its native query 
language. A database designer is responsible for creating the global schema and the mappings that define its 
relationship to the data sources, and for maintaining the schema and mappings as data sources enter and leave the 
system and as their schemas evolve. At this level of detail, the overall architecture has not changed since the 
earliest multi-database prototypes, over 20 years ago. 

Like most multi-database systems, we assume that all peer nodes have identical architectures consisting of an 
LRM layer running on a local data server (e.g., a DBMS). As shown in Figure 1, the LRM Layer has four 
modules: User Interface (UI), Query Manager (QM), Update Manager (UM) and Wrapper. UI allows a user to 
define queries, receive results and messages from other nodes, and control other modules of the LRM Layer. QM 
and UM are responsible for query and update propagation. They manage domain relations, coordination 
formulas, coordination rules, acquaintances, and interest groups. Wrapper provides a translation layer between 
QM and UM, and LIS.  
 

 
Figure 1: Architecture of an LRM node 

Peers communicate through QM and UM using XML messages. Inter-module communication is also XML-
based, shown as white arrows. The shaded arrow that connects Wrapper and LIS is different because the 
communication language is LIS-dependent (SQL, HTTP, …). 

Strategies for query and update propagation are encoded in a set of coordination rules, which in most cases are 
expressed as ECA (Event Condition Action) rules. Coordination rules describe when, how and where a query or 
update must be propagated. A single formula may result in several rules. Some of these express parts of LIS as 
views of acquaintances, while others describe update propagations. For instance, consider the formula ∀x.(1 : 
T(x) → 2 : S(x)). A reasonable coordination rule for query propagation from peer 2 might be: E = “receive a 
query Q”, C= “S(x) occurs in the query Q”, A = “submit the query T(x) to peer 1”.  

Although most of this architecture is merely a modernized version of conventional multi-databases, the LRM 
Layer also needs to address new problems, each of which is an opportunity for future research: 

• The LRM Layer needs a protocol for establishing an acquaintance dynamically. This protocol can use a 
distributed system protocol for discovering a peer by name and establishing a session, after which each peer 
sends the schemas it chooses to export and with what privileges. 
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• After an acquaintance is established, formulas and rules are needed. The LRM Layer could offer semi-
automated support for generating coordination formulas, e.g., by using schema matching [11]. It might also 
automatically derive domain relations using data mining and other techniques; e.g., if rows of two relations 
have the same key, then values in matching non-key columns have the same meaning. Scrubbing rules for 
dirty data also need attention − a multi-database problem that's harder to cope with in a dynamic P2P setting. 

• The LRM Layer can use classical approaches to query processing, since coordination formulas are 
effectively views. However, it needs to incorporate a domain mapping logic, such as that offered by LRM. It 
also needs a policy on how far to propagate subqueries transitively through chains of P2P connections, 
which can be arbitrarily long and cyclic. In addition, standard query optimization approaches may need to be 
modified, e.g. with new protocols to exchange cost and utility information. 

• The problem of selecting materialized views and placing them at particular nodes becomes more difficult in 
a P2P scenario [7].  

5. Conclusions  

We have highlighted two main requirements introduced by P2P databases that distinguish them from other kinds 
of distributed databases. First, the mappings between databases are exclusively local, with no global schema. In 
support of this, we have proposed a data model for expressing such mappings between peers. Second, the set of 
peers is highly dynamic, requiring semi-automated solutions to problems that were formerly considered design-
time, such as establishing configurations and mappings. These requirements lead to a variety of interesting, hard 
research problems that stretch today’s multi-database solutions beyond their current limits. 
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