

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

DATA MANAGEMENT FOR PEER-TO-PEER COMPUTING:
A VISION

Philip A. Bernstein, Fausto Giunchiglia,
Anastasios Kementsietsidis, John Mylopoulos,
Luciano Serafini, and Ilya Zaihrayeu

2002

Technical Report # DIT-02-0013

Also in: proceedings of Web DB 2002

.

- 1 -

Data Management for Peer-to-Peer Computing: A Vision1

Philip A. Bernstein2, Fausto Giunchiglia3, Anastasios Kementsietsidis4,
John Mylopoulos3, Luciano Serafini5, and Ilya Zaihrayeu2

Abstract. We motivate special database problems introduced by peer-to-peer computing and propose the Local
Relational Model (LRM) to solve some of them. As well, we summarize a formalization of LRM, present an
architecture for a prototype implementation, and discuss open research questions.

1. Introduction

Peer-to-peer (hereafter P2P) computing consists of an open-ended network of distributed computational peers or
nodes, where each peer can exchange data and services with a set of other peers, called acquaintances. Peers are
fully autonomous in choosing their acquaintances. Moreover, we assume that there is no global control in the
form of a global registry, global services, or global resource management, nor a global schema or data
repository. Systems such as Napster and Gnutella popularized the P2P paradigm as a version of distributed
computing lying between traditional distributed systems and the web. The former is rich in services but requires
considerable overhead to launch and has a relatively static, controlled architecture. The latter is a dynamic,
anyone-to-anyone architecture with little startup costs but limited services. By contrast, P2P offers an evolving
architecture where peers come and go, choose whom they deal with, and enjoy some traditional distributed
services with less startup cost.

We are interested in data management issues raised by this paradigm, where each peer may have data to share
with other peers. For simplicity, we assume that each peer’s database is relational. Since the data residing in
different databases may have semantic inter-dependencies, we allow peers to specify coordination formulas that
explain how the data in one peer must relate to data in an acquaintance. For example, the patient database of a
family doctor and that of a pharmacy may want to coordinate their information about a particular patient, the
prescriptions she has received, and the dates when these prescriptions were filled. Coordination may mean
something as simple as propagating all updates to the Prescription and Medication relations, assumed to exist in
both databases. In addition, we'd like a query expressed with respect to one database to be able to use relevant
databases at acquaintances, acquaintances of those acquaintances, and so on. To accomplish this, we expect the
P2P data management system to use coordination formulas for recursively decomposing the query into sub-
queries that are evaluated with respect to the databases of acquaintances. Coordination formulas may also act as
soft constraints or guide the propagation of updates. In addition, peers need an acquaintance initialization
protocol where two peers exchange views of their respective databases and agree on levels of coordination
between them. The level of coordination should be dynamic, in the sense that acquaintances may start with little
coordination, strengthen it over time with more coordination formulas, and eventually abandon it when tasks and
interests change.

In such a dynamic setting, we cannot assume the existence of a global schema for all databases in a P2P network,
or even those of all acquainted databases. Moreover, peers should be able to establish and evolve acquaintances,
preferably with little human intervention. Thus, we need to avoid protracted tasks by skilled database designers
and DBAs required by traditional distributed and multi-database systems [9,10].

For more effective inter-node coordination, nodes should be able to advertise their data content by giving a name
and description (keywords or schema), presumably using a directory service. This will also help users at a node
create more relevant acquaintances and form Interest Groups with other nodes that have similar content.

This paper introduces the Local Relational Model (LRM) as a data model specifically designed for P2P
applications. LRM assumes that the set of all data in a P2P network consists of local (relational) databases, each
with a set of acquaintances, which define the P2P network topology. For each acquaintance link, domain
relations define translation rules between data items, and coordination formulas define semantic dependencies

1  2002 Bernstein, Giunchiglia, Kementsietsidis, Mylopoulos, Serafini, Zaihrayeu.
2 Microsoft Corporation, One Microsoft Way, Redmond WA, 98052-6399. philbe@microsoft.com
3 University of Trento, 38050 Povo, Trento, Italy. {fausto,ilya}@dit.unitn.it.
4 University of Toronto, Toronto, Canada, M5S 3H5. {jm, tasos}@cs.toronto.edu
5 ITC-IRST, 38050 Povo, Trento, Italy. serafini@itc.it

- 2 -

between the two databases. The main goals of the data model are to allow for inconsistent databases and to
support semantic interoperability in the absence of a global schema [13].

The main objectives of this paper are to introduce the LRM through examples and to identify a set of open
research questions on its design and implementation. Section 2 presents a motivating scenario. Section 3
sketches a formalization of LRM. Section 4 offers a preliminary architecture for an LRM-based system and
relates it to past work, while conclusions appear in section 5.

2. A Motivating Scenario

Consider, again, the example of patient databases. Suppose that the Toronto General Hospital owns the TGHDB
database with schema:

Patient(TGH#,OHIP#,Name,Sex,Age,FamilyDr,PatRecord) PatientInfo(OHIP#,Record)
Treatment(TreatID,TGH#,Date,TreatDesc,PhysID) Medication(TGH#,Drug#,Dose,StartD,EndD)
Admission(AdmID,OHIP#,AdmDate,ProblemDesc,PhysID,DisDate)

The database identifies patients by their hospital ID and keeps track of admissions, patient information obtained
from external sources, and all treatments and medications administered by the hospital staff.

When a new patient is admitted, the hospital may want to establish immediately an acquaintance with her family
doctor. Suppose the view exported by the family doctor DB (say, DavisDB) has schema:

Patient(OHIP#,FName,LName,Phone#,Sex,PatRecord) Visit(OHIP#,Date,Purpose,Outcome)
Prescription(OHIP#,Med#,Dose,Quantity,Date) Event(OHIP#,Date,Description)

Figuring out patient record correspondences (i.e., doing object identification) is achieved by using the patient's
Ontario Health Insurance # (e.g., OHIP#=1234). Initially, this acquaintance has exactly one coordination formula
which states that if there is no patient record at the hospital for this patient, then the patient's record from DavisDB
is added to TGHDB in the PatientInfo relation, which can be expressed as:
 ∀fn ∀ln ∀pn ∀sex ∀pr.(DavisDB : Patient(1234,fn,ln,pn,sex,pr) →

 TGHDB : ∃ tghid ∃n ∃a.(Patient(tghid,1234,n,sex,a,Davis,pr) and n = concat(fn,ln)))
When TGHDB imports data from DavisDB, the existentially quantified variables tghid, n and a must be
instantiated with some concrete elements of the TGHDB database. This amounts to generating a new TGH# for
tghid, inserting the Skolem constant <undef-age> for a (which will be further instantiated as the patient's age) and
generating name n by concatenating her first name fn and last name ln contained in DavisDB. Later, if patient 1234
is treated at the hospital for some time, another coordination formula might be set up that updates the Event
relation for every treatment or medication she receives:
∀d ∀desc.(TGHDB : ∃tid ∃tghid ∃pid ∃n ∃sex ∃a ∃pr.(Treatment(tid,tghid,d,desc,pid) and
 Patient(tghid,1234,n,sex,a,Davis,pr)) → DavisDB : Event(1234,d,desc)
∀tghid ∀drug ∀dose ∀sd ∀ed.(
 TGHDB: Medication(tghid,drug,dose,sd,ed) and ∃n ∃sex ∃a ∃pr.Patient(tghid,1234,n,sex,a,Davis,pr)
 → DavisDB : ∀d.(sd ≤ d ≤ ed → ∃desc.(Event(1234,d,desc) and desc = concat(drug,dose,"at TGHDB"))))
This acquaintance is dropped once the patient's hospital treatment is over.

Along similar lines, the patient's pharmacy may want to coordinate with DavisDB. This acquaintance is initiated
by DavisDB when the patient tells Dr. Davis which pharmacy she uses. Once established, the patient's name and
phone are used for identification. The pharmacy database (say, AllenDB) has the schema:

Prescription(Prescr#,CustName,CustPhone#,DrugID,Dose,Repeats)
Sales(CustName,CustPhone#,DrugID,Dose,Date,Amount)

Here, we want AllenDB to remain updated with respect to prescriptions in DavisDB:
 ∀fn ∀ln ∀pn ∀med ∀dose ∀qt.(
 DavisDB: ∃ohip ∃date ∃sex ∃pr.(Prescription(ohip,med,dose,qt,date) and Patient(ohip,fn,ln,pn,sex,pr))
 → AllenDB: ∃cn ∃amount.(Prescription(cn,pn,med,qt,dose,amount) and cn = concat(fn,ln)))
Of course, this acquaintance is dropped when the patient tells her doctor that she changed pharmacy.

Suppose the hospital has no information on its new patient with OHIP# 1234 and needs to find out if she is
receiving any medication. Here, the hospital uses its acquaintance with an interest group of Toronto pharmacies,
say TPhLtd. TPhLtd is a peer that has acquaintances with most Toronto pharmacists and has a coordination
formula that allows it to access prescription information in those pharmacists’ databases. For example, if we
assume that TPhDB consists of a single relation

Prescription(Name,Phone#,DrugID,Dose,Repeats)

- 3 -

then the coordination formula between the two databases might be:
 ∀fn ∀ln ∀pn ∀med ∀dose.(
 DavisDB: ∃ohip ∃qt ∃date ∃sex ∃pr .(Prescription(ohip,med,dose,qt,date) and Patient(ohip,fn,ln,pn,sex,pr))
 → TPh: ∃name ∃rep.(Prescription(name,pn,med,dose,rep) and name = concat(fn,ln)))
Analogous formulas exist for every other pharmacy acquaintance of TPhLtd. Apart from serving as information
brokers, interest groups also support mechanisms for generating coordination formulas from parameterized ones,
given exported schema information for each pharmacy database.

On the basis of this formula, a query such as "All prescriptions for patient with name N and phone# P,"
evaluated with respect to TPhLtdDB, will be translated into queries that are evaluated with respect to databases
such as AllenDB. The acquaintance between the hospital and TPhLtd is more persistent than those mentioned
earlier. However, this one too may evolve over time, depending on what pharmacy information becomes
available to TPhLtd.

Finally, suppose the patient in question takes a trip to Trento and suffers a skiing accident. Now the Trento
Hospital database (TrentoHDB) needs information about the patient from DavisDB. This is a transient acquaintance
that only involves making the patient's record available to TrentoHDB, and updating the Event relation in DavisDB.

3. A Formal Semantics for LRM

Traditionally, federated and multi-database systems have been treated as extensions of conventional databases.
Unfortunately, formalizations of the relational model (such as [12]) don't apply to these extensions where there
are multiple overlapping databases, which may be inconsistent and may use different vocabularies. We launch
the search for implementation solutions that address the scenario described in the previous section with a
formalization of LRM.

The model-theoretic semantics for LRM is defined in terms of relational spaces each of which models the state
of the databases in a P2P system. These are mathematical structures generalizing the model-theoretic semantics
for the Relational Model, as defined by Reiter in [12]. Coordination between databases in a relational space is
expressed in terms of coordination formulas that describe dependencies between a set of databases. These formu-
las generalize many forms of inter-schema constraints defined in the literature, such as [1,2,5,8,15,17].

3.1 Relational spaces

A relational space is a finite set of relational databases. Database i is associated with a logical language Li, which
formalizes its schema. Abstractly, Li is a first order language with a set of relational symbols corresponding to
the relations of database i, no functions symbols, and a non-empty set of constants domi corresponding to the
domain of database i. For instance, the language of DavisDB contains relational symbols such as Patient(x,y,z,w,v,t)
and Visit(x,y,z,w), also the constant symbol 1234.

The content of database i is defined by a set of first order interpretations dbi of the language Li on the domain
domi. Each interpretation m ∈ dbi interprets the constant symbol d ∈ Li as itself and the relational symbol
R(x1,…, xn) as a finite set of n-tuples of elements of domi, which are the tuples in the relation R. To emphasize
that in LRM there is no global model, we call each dbi a local database.

In LRM, there is no notion of global consistency for a set of local databases. However, we do retain a notion of
local consistency. Each local database can be in a (locally) consistent or inconsistent state, and consistent and
inconsistent databases can coexist in a single relational space. For instance the local databases dba={m1},
dbb={m2,m3}, and dbc=Ø are respectively complete, incomplete, and inconsistent. Generally, dbi is complete if
|dbi| = 1, incomplete if |dbi| > 1 and inconsistent if dbi = Ø.

In a relational space, overlapping databases represent information about a common part of the world. This
overlap has nothing to do with the fact that the same constant appears in both databases. For instance, the fact
that the constant Apple appears in a database describing computers and another describing Italian agricultural
products does not imply that these databases overlap. Rather, overlap is determined by the meaning of constants,
i.e., when the entities denoted by constants in different databases are the same.

To represent the overlap of two local databases, one may use a global schema, with suitable mappings to/from
each local database schema. As argued earlier, this is not feasible in a P2P setting. Instead, we adopt a localized
solution to the overlap problem, defined in terms of pair-wise mappings from the elements of the domain of
database i to elements of the domain of database j. Specifically, the overlap of databases i and j is represented

- 4 -

by two relations, called domain relations, rij ⊆ domi x domj and rji ⊆ domj x domi. The domain relation rij
represents the ability of database j to import (and represent in its domain) the elements of the domain of database
i. In many cases, domain relations are not symmetric, for instance when rij represents a currency exchange, a
rounding function, or a sampling function. In a P2P setting, domain relations need only be defined for acquainted
pairs of peers.

Definition (Relational space). A relational space is a pair <db, r>, where db is a set of local databases on I and r
is a function that associates to each i, j ∈ I, a domain relation from rij from i to j.

3.2 Coordination in relational spaces

Semantic inter-dependencies between local databases are expressed in a declarative language, independent of the
languages supported by local databases. The formulas of this language describe properties of schemas as well as
the contents of local databases in a relational space. This language is a generalization of interpretation constraints
defined in [3].

Definition (Coordination formula). The set of coordination formulas RF on the family of relational languages
{Li}i∈ I is defined as follows:
 RF ::= i : φ | RF → RF | RF ∧ RF | RF ∨ RF | ∃i : x.RF | ∀i : x.RF
where i ∈ I and φ is a formula of Li.

The basic building blocks of coordination formulas are expressions of the form i : φ, which means “φ is true in
database i”. Connectives have the usual meaning, while quantifiers require further consideration. The formula
∀i : x.A(x) should be read as "for all elements of the domain domi, A is true”. Likewise, ∃i : x.A(x), is read as
“there is an element in the domain domi such that A is true”. Notice that a variable x in the scope of a quantifier
∃i : x or ∀i : x, can occur in a formula j : φ(x), allowing quantification across domains. Specifically, we allow
that within the scope of a domi formula, one can quantify over another domain domj exploiting the domain
relations rij and rji.

Example. The coordination formula ∀i : x . (i:P(x) → j : Q(x)) is satisfied if whenever P(d) is true in database i
and <d, d'>∈ rij, then Q(d') is true in database j. Analogously the formula ∃i : x . (j : P (x)) is true if there is an
element d in domi such that <d, d'> ∈ rij and P(d') is true in database j. A complete formalization of truth for
coordination formulas is described in [13].

Coordination formulas can be used in two different ways. First, they can be used to define constraints that must
be satisfied by a relational space. For instance, the formula ∀1 : x . (1 : p(x) ∨ 2 : q(x)) states that any object in
database 1 either is in table p or its corresponding object in database 2 is in table q. This is a useful constraint
when we want to declare that certain data are available in a set of databases, without declaring exactly where. As
far as we know, other proposals in the literature for expressing inter-database constraints can be uniformly
represented in terms of coordination formulas.

Coordination formulas can also be used to express queries. In this case, a coordination formula is interpreted as a
deductive rule that derives new information based on information already present in other databases. For
instance, a coordination formula ∀1: x (1: ∃y.p(x, y) → 2 : q(x)) allows us to derive q(b) in database 2, if p(a, c)
holds in database 1 for some c, and <a,b> ∈ r12

Let q represent a query posed by a user to database i, and A(x) be the coordination formula body of the query.
We have the following.

Definition (i-query). An i-query on a family of relational languages {Li}i∈ I , is a coordination formula of the
form A(x) → i : q(x), where A(x) is a coordination formula, q is a new n-ary predicate symbol of Li and x
contains n variables.

Definition (Global answer to an i-query). Let <db, r> be a relational space on {Li}i∈ I . The global answer of an
i-query of the form A(x) → i : q(x) in <db, r> is the set:

{d ∈ (domi)
n | <db, r> |= ∃i : x.(A(x) ∧ i : x = d)}

An intuitive reading of the above formulas is as follows. The global answer to an i-query is computed by locally
evaluating in dbi all atomic coordination formulas ik : φ in A, and by recursively composing and mapping (via the
domain relations) these results according to the connectives and quantifiers that comprise the coordination
formula A. For instance, to evaluate the query

i : P(x) ∨ j : Q(x) ∧ k : R(x,y) → h : q(x,y)

- 5 -

we separately evaluate P(x), Q(x) and R(x,y) in databases i, j and k, respectively. We map these results via rih, rjh
and rkh respectively obtaining three sets AP, AQ, and AR in the domain domh. We then compose AP, AQ, and AR
using query connectives, obtaining AP × AQ ∩ AR. This is the global answer to q(x,y).

4. A Preliminary Architecture for LRM

Databases in a P2P system resemble heterogeneous distributed databases, often called multi-database systems,
e.g., Multibase [14], TSIMMIS [4], Garlic [1], and Information Manifold [8]. In most systems of this sort, a user
issues queries to a global schema, and the system (called a mediator in [16]) maps the queries to subqueries on
the underlying data sources. Each data source has a wrapper layer that maps subqueries into its native query
language. A database designer is responsible for creating the global schema and the mappings that define its
relationship to the data sources, and for maintaining the schema and mappings as data sources enter and leave the
system and as their schemas evolve. At this level of detail, the overall architecture has not changed since the
earliest multi-database prototypes, over 20 years ago.

Like most multi-database systems, we assume that all peer nodes have identical architectures consisting of an
LRM layer running on a local data server (e.g., a DBMS). As shown in Figure 1, the LRM Layer has four
modules: User Interface (UI), Query Manager (QM), Update Manager (UM) and Wrapper. UI allows a user to
define queries, receive results and messages from other nodes, and control other modules of the LRM Layer. QM
and UM are responsible for query and update propagation. They manage domain relations, coordination
formulas, coordination rules, acquaintances, and interest groups. Wrapper provides a translation layer between
QM and UM, and LIS.

Figure 1: Architecture of an LRM node

Peers communicate through QM and UM using XML messages. Inter-module communication is also XML-
based, shown as white arrows. The shaded arrow that connects Wrapper and LIS is different because the
communication language is LIS-dependent (SQL, HTTP, …).

Strategies for query and update propagation are encoded in a set of coordination rules, which in most cases are
expressed as ECA (Event Condition Action) rules. Coordination rules describe when, how and where a query or
update must be propagated. A single formula may result in several rules. Some of these express parts of LIS as
views of acquaintances, while others describe update propagations. For instance, consider the formula ∀x.(1 :
T(x) → 2 : S(x)). A reasonable coordination rule for query propagation from peer 2 might be: E = “receive a
query Q”, C= “S(x) occurs in the query Q”, A = “submit the query T(x) to peer 1”.

Although most of this architecture is merely a modernized version of conventional multi-databases, the LRM
Layer also needs to address new problems, each of which is an opportunity for future research:

• The LRM Layer needs a protocol for establishing an acquaintance dynamically. This protocol can use a
distributed system protocol for discovering a peer by name and establishing a session, after which each peer
sends the schemas it chooses to export and with what privileges.

- 6 -

• After an acquaintance is established, formulas and rules are needed. The LRM Layer could offer semi-
automated support for generating coordination formulas, e.g., by using schema matching [11]. It might also
automatically derive domain relations using data mining and other techniques; e.g., if rows of two relations
have the same key, then values in matching non-key columns have the same meaning. Scrubbing rules for
dirty data also need attention − a multi-database problem that's harder to cope with in a dynamic P2P setting.

• The LRM Layer can use classical approaches to query processing, since coordination formulas are
effectively views. However, it needs to incorporate a domain mapping logic, such as that offered by LRM. It
also needs a policy on how far to propagate subqueries transitively through chains of P2P connections,
which can be arbitrarily long and cyclic. In addition, standard query optimization approaches may need to be
modified, e.g. with new protocols to exchange cost and utility information.

• The problem of selecting materialized views and placing them at particular nodes becomes more difficult in
a P2P scenario [7].

5. Conclusions

We have highlighted two main requirements introduced by P2P databases that distinguish them from other kinds
of distributed databases. First, the mappings between databases are exclusively local, with no global schema. In
support of this, we have proposed a data model for expressing such mappings between peers. Second, the set of
peers is highly dynamic, requiring semi-automated solutions to problems that were formerly considered design-
time, such as establishing configurations and mappings. These requirements lead to a variety of interesting, hard
research problems that stretch today’s multi-database solutions beyond their current limits.

References

1. M.J. Carey, L.M. Haas, P.M. Schwarz, Manish Arya, W.F. Cody, R. Fagin, M. Flickner, A. Luniewski, W. Niblack, D.
Petkovic, J. Thomas II, J.H. Williams, E.L. Wimmers: Towards heterogeneous multimedia information systems: The
Garlic approach. RIDE-DOM 1995: 124-131.

2. T. Catarci and M. Lenzerini. Representing and using interschema knowledge in cooperative information systems.
International J. of Intelligent and Cooperative Info. Sys., 2(4), 375-398, 1993.

3. S. Ceri and J. Widom. Managing semantic heterogeneity with production rules and persistent queues. In Proceedings 19th
VLDB (1993), 108-119.

4. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.D. Ullman, J. Widom. The TSIMMIS
Project: Integration of heterogeneous data sources. 16th Meeting of Information Processing Society of Japan, 1994, 7–18.

5. A. Gupta and J. Widom. Local verification of global integrity constraints in distributed databases. In Proc. ACM
SIGMOD Conference, 49-58, 1993.

6. A. Y. Halevy. Answering queries using views: A survey. VLDB J. 10:4 (2001), 270-294.
7. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, D. Suciu. What can databases do for peer-to-peer? WebDB Workshop on

Databases and the Web, June 2001.
8. A.Y. Levy, Anand Rajaraman, J.J. Ordille. Querying heterogeneous information sources using source descriptions. In

Proceedings VLDB 1996, pp. 251-262.
9. W. Litwin, L. Mark, N. Roussopoulos. Interoperability of multiple autonomous databases. ACM Computing Surveys 22:3

(1990), 267-293.
10. M.T. Öszu and P. Valduriez. Principles of Distributed Database Systems. Prentice-Hall, 1999.
11. E. Rahm, P.A. Bernstein. A survey of approaches to automatic schema matching. VLDB J. 10:4 (2001), pp. 334:350.
12. R. Reiter. Towards a logical reconstruction of Relational Database Theory. In On Conceptual Modeling, pp. 191-233.

Springer-Verlag, 1984.
13. L. Serafini, F. Giunchiglia, J. Mylopoulos, P.A. Bernstein. The local relational model: Model and proof theory.

Technical Report 0112-23, ITC-IRST, 2001.
14. Smith, J. M., P.A. Bernstein, U. Dayal, N. Goodman, T. Landers, K.W.T. Lin, E. Wong. MULTIBASE -- Integrating

heterogeneous distributed database systems. Proceedings of 1981 National Computer Conference, AFIPS Press, 487-499.
15. J.D. Ullman. Information integration using logical views. In Proceedings of the 6th International Conference on

Database Theory (ICDT), 1997.
16. G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer 25:3, 38-49, 1992.
17. J. Widom, P.W.P.J. Grefen. Integrity constraint checking in federated databases. In Proceedings First IFCIS

International Conference on Cooperative Information Systems, 38-47, 1996.

