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Abstract Intuitively, data management and data integration tools should be well-suited for exchanging
information in a semantically meaningful way. Unfortunately, they suffer from two significant problems:
they typically require a common and comprehensive schema design before they can be used to store or
share information, and they are difficult to extend because schema evolution is heavyweight and may break
backward compatibility. As a result, many large-scale data sharing tasks are more easily facilitated by non-
database-oriented tools that have little support for semantics.

The goal of the peer data management system (PDMS) is to address this need: we propose the use
of a decentralized, easily extensible data management architecture in which any user can contribute new
data, schema information, or even mappings between other peers’ schemas. PDMSs represent a natural
step beyond data integration systems, replacing their single logical schema with an interlinked collection of
semantic mappings between peers’ individual schemas.

This paper considers the problem of schema mediation in a PDMS. Our first contribution is a flexible
language for mediating between peer schemas, which extends known data integration formalisms to our more
complex architecture. We precisely characterize the complexity of query answering for our language. Next,
we describe a reformulation algorithm for our language that generalizes both global-as-view and local-as-view
query answering algorithms. Then, we describe several methods for optimizing the reformulation algorithm,
and an initial set of experiments studying its performance. Finally, we define and consider several global
problems in managing semantic mappings in a PDMS.

Key words peer data management, data integration, schema mediation, web and databases

1 Introduction

While databases and data management tools excel at providing semantically rich data representations and
expressive query languages, they have historically been hindered by a need for significant investment in design,
administration, and schema evolution. Schemas must generally be predefined in comprehensive fashion, rather
than evolving incrementally as new concepts are encountered; schema evolution is typically heavyweight
and may “break” existing queries. As a result, many people find that database techniques are obstacles
to lightweight data storage and sharing tasks, rather than facilitators. They resort to simpler and less

expressive tools, ranging from spreadsheets to text files, to store and exchange their data. This provides a
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simpler administrative environment (although some standardization of terminology and description is always
necessary), but with a significant cost in functionality. Worse, when a lightweight repository grows larger

and more complex in scale, there no easy migration path to a semantically richer tool.

Conversely, the strength of HTML and the World Wide Web has been easy and intuitive support for ad hoc
extensibility — new pages can be authored, uploaded, and quickly linked to existing pages. However, as with
flat files, the Web environment lacks rich semantics. That shortcoming spurred a movement towards XML,
which allows data to be semantically tagged. Unfortunately, XML carries many of the same requirements
and shortcomings as data management tools: for rich data to be shared among different groups, all concepts
need to be placed into a common frame of reference. XML schemas must be completely standardized across

groups, or mappings must be created between all pairs of related data sources.

Data integration systems have been proposed as a partial solution to this problem [GMPQ*97, HKWY97,
ACPS96,LR096,DG97,MFKO1]. These systems support rich queries over large numbers of autonomous, het-
erogeneous data sources by exploiting the semantic relationships between the different sources’ schemas. An
administrator defines a global mediated schema for the application domain and specifies semantic mappings
between sources and the mediated schema. We get the strong semantics needed by many applications, and
data sources can evolve independently — and, it would appear, relatively flexibly. Yet in reality, the medi-
ated schema, the integrated part of the system that actually facilitates all information sharing, becomes a
bottleneck in the process. Mediated schema design must be done carefully and globally; data sources cannot
change significantly or they might violate the mappings to the mediated schema; concepts can only be added
to the mediated schema by the central administrator. The ad hoc extensibility of the web is missing, and as

a result many natural, small-scale information sharing tasks are difficult to achieve.

We believe that there is a clear need for a new class of data sharing tools that preserves semantics and
rich query languages, but which facilitates ad hoc, decentralized sharing and administration of data and
defining of semantic relationships. Every participant in such an environment should be able to contribute
new data and relate it to existing concepts and schemas, define new schemas that others can use as frames of
reference for their queries, or define new relationships between existing schemas or data providers. We believe
that a natural implementation of such a system will be based on a peer-to-peer architecture, and hence call
such a system a peer data management system (PDMS). (We comment shortly on the differences between
PDMSs and P2P file-sharing systems). The vision of a PDMS is to blend the extensibility of the HTML
web with the semantics of data management applications. As we explain in a related paper [HITMO3], peer-
data management systems also provide an infrastructure on which to build applications for the Semantic

Web [BLHLO1].

Ezxample 1 The extensibility of a PDMS can best be illustrated with a simple example. Figure 1 illustrates
a peer data management system for supporting a web of database research-related data. This will be a

running example thoughout the paper so we only describe the functionality here. Unlike a hierarchy of data
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Fig. 1 A PDMS for the database research domain. Arrows indicate that there is (at least a partial) mapping
between the relations of the peers. Only peer relations are shown; the stored relations at university peers are omitted.
DB-Projects is a virtual, mediating peer that has no stored data. The figure illustrates how two semantic networks
can be joined by establishing a single mapping between a pair of peers (UW and Stanford in this case).

integration systems or mediators, a PDMS supports any arbitrary network of relationships between peers.
The true novelty lies in the PDMS’s ability to exploit transitive relationships among peers’ schemas. The
figure shows that two semantic networks can be fully joined together with only a few mappings between
similar members of each semantic network (in our example, we only required a single mapping). The new
mapping from Stanford to UW enables any query at any of the five peers to access data at all other peers
through transitive evaluation of semantic mappings. Importantly, we can add our mappings between the most
similar nodes in the two semantic networks; this is typically much easier than attempting to map a large
number of highly dissimilar schemas into a single mediated schema (as in conventional data integration).

It is important to emphasize that the ability to obtain relevant data from other nodes in the network
depends on the existence of a semantic path to that node. The semantic path needs to relate the terms
used in the query with the terms used by the node providing the data. Hence, it is likely that there will be
information loss along long paths in the PDMS, because of missing (or incomplete) mappings, leading to the
problem of how to boost a network of mappings in a PDMS. This paper considers only how to obtain the
answers given a particular set of mappings, and also assumes the the mappings are correct, i.e., faithful to

the data.

Our contributions: We are building the Piazza PDMS, whose goal is to support decentralized sharing and
administration of data in the extensible fashion described above. Piazza investigates many of the logical,
algorithmic, and implementation aspects of peer data management. In this paper, we focus strictly on the
first issue that arises in such a system, namely the problem of providing decentralized schema mediation. In
paricular, we focus on the topics of expressing mappings between schemas in such a system and answering

queries over multiple schemas.

Research on data integration systems has provided a set of rich and well understood schema mediation

languages upon which mediation in PDMSs can be built. The two commonly used formalisms are the global-
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as-view (GAV) approach used by [GMPQ*97, HKWY97, ACPS96], in which the mediated schema is defined
as a set of views over the data sources; and the local-as-view (LAV) approach of [LRO96,DG97,MFK01], in
which the contents of data sources are described as views over the mediated schema. The semantics of the

formalisms are defined in terms of certain answers to a query [AD98].

Porting these languages to the PDMS context poses two challenges. First, the languages are designed
to specify relationships between a mediator and a set of data sources. In our context, they need to be
modified to map between peers’ schemas, where each peer can serve as both a data source and mediator.
Second, the algorithms and complexity of query reformulation and answering in data integration are well
understood for a two-tiered architecture. In the context of a PDMS, we would like to use the data integration
languages to specify semantic relationships locally between small sets of peers, and answer queries globally
on a network of semantically related peers. The key contributions of this paper are showing precisely when
these languages can be used to specify local semantic relationships in a PDMS, and developing a query

reformulation algorithm that uses local semantic relationships to answer queries in a PDMS.

We begin by describing a very flexible formalism, PPL, (Peer-Programming Language, pronounced
“people”) for mediating between peer schemas, which uses the GAV and LAV formalisms to specify lo-
cal mappings. We define the semantics of query answering for a PDMS by extending the notion of certain
answers [AD98]. We present results that show the exact restrictions on PPL under which finding all the

answers to the query can be done in polynomial time.

We then present a query reformulation algorithm for PP L. Reformulation takes as input a peer’s query
and the formulas describing semantic relationships between peers, and it outputs a query that refers only
to stored relations at the peers. Reformulation is challenging because peer mappings are specified locally,
and answering a query may require piecing together multiple peer mappings to locate the relevant data. In
a uniform fashion, our algorithm interleaves both global-as-view and local-as-view reformulation techniques.
The algorithm is guaranteed to yield all the certain answers when they are possible to obtain. We describe
several methods for optimizing the reformulation algorithm and describe an initial set of experiments whose

goal is to test the performance bottlenecks of the algorithm.

Finally, a PDMS, being a network of semantic mappings, gives rise to several new problems as we
consider the mappings from a global perspective. For example, we want to know when a semantic mapping
is redundant, and we would like to compose semantic mappings in order to save in optimization time. These
problems are especially important given that the set of mappings change when nodes join or leave the system.
Here we consider a first fundamental problem underlying these issues, namely, when is it possible to say that
two PDMSs are equivalent to each other? We define formally the problem of PDMS equivalence and prove
that it is decidable in several interesting cases. The problem of composing semantic mappings is addressed
in [HMO3].

Before we proceed, we would like to emphasize the following points. First, this paper is not concerned with

how semantic mappings are generated: this is an entire field of investigation in itself (see [RBO1] for a recent
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survey on schema mapping techniques). Second, while a PDMS is based on a peer-to-peer architecture,
it is significantly different from a P2P file-sharing system (e.g., [Nap01]). In particular, joining a PDMS
is inherently a more heavyweight operation than joining a P2P file-sharing system, since some semantic
relationships need to be specified. Our initial architecture focuses on applications where peers are likely to
stay available the majority of the time, but in which peers should be able to join (or add new data) very easily.
We anticipate there will be a spectrum of PDMS applications, ranging from ad hoc sharing scenarios to ones
in which the membership changes infrequently or is restricted due to security or consistency requirements.
The paper is organized as follows. Section 2 formally defines the peer mediation problem and describes our
mediation formalism. Section 3 shows the conditions under which query answering can be done efficiently in
our formalism. In Section 4 we describe a query reformulation algorithm for a PDMS, and Section 5 describes
the results of our initial experiments. Section 6 discusses global PDMS considerations. Section 7 discusses

related work and Section 8 concludes.

2 Problem Definition

In this section, we present the logical formalisms for describing a PDMS and the specification of semantic
mappings between peers. Our goal is to leverage the techniques for specifying mappings in data integration
systems, extending them beyond the two-tiered architecture.

In our discussion, for simplicity of exposition we assume the peers employ the relational data model,
although in our implemented system peers share XML files and pose queries in a subset of XQuery that uses
set-oriented semantics. Our discussion considers select-project-join queries with set semantics, and we use
the notation of conjunctive queries. In this notation, joins are specified by multiple occurrences of the same
variable. Unless explicitly specified, we assume queries do not contain comparison predicates (e.g., #, <).
Views refer to named queries.

We assume that each peer defines its own relational peer schema whose relations are called peer relations;
a query in a PDMS will be posed over the relations from a specific peer schema. Without loss of generality
we assume that relation and attribute names are unique to each peer.

Peers may also contribute data to the system, in the form of stored relations. Stored relations are analogous
to data sources in a data integration system: all queries in a PDMS will be reformulated strictly in terms of
stored relations that may be stored locally or on other peers. (Note that not every peer needs to contribute
stored relations to the system, as some peers may strictly serve as logical mediators to other peers.) We
assume that the names of stored relations are distinct from those of peer relations. We will refer to the set

of stored relations at a peer as the peer’s stored schema.

Ezxample 2 In our example PDMS in Figure 1, only peer relations are shown. The lines between peers indicate

that there is a mapping (described later) between the relations of the two peers.
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Stored relations containing actual data are provided by the universities: the UPenn, UW, Stanford, and
Berkeley peers. DB-Projects is a separate peer that provides a uniform view over the UPenn and UW data.
Stanford and Berkeley, as neighboring universities, came to an agreement to map their schemas directly. The
flexibility of the PDBMS (due to its ability to evaluate transitive relationships between schemas) becomes
evident when two PDMSs are joined. In our example, once a mapping between the Stanford-Berkeley PDMS
and the UPenn-UW-DB-Projects PDMS is established, queries over any of the five peers will be able to

access all of the stored relations.

Note that our approach can support evolving schemas very naturally. A new schema version can be treated
as an additional peer schema. In general, the new version is likely to be very similar to the previous version
making the problem of specifying a mapping between the versions rather easy. In addition, the resulting

mapping is likely to be very accurate.

2.1 System Architecture

A Piazza PDMS consists of a set of network nodes (physical peers) connected to the Internet. Every peer
node is associated with a peer schema and, optionally, a stored schema. In addition, a peer can define schema
mappings as described in the following section. All this metadata information is stored in the Piazza catalog.
We assume that the catalog is accessible to all of the peers in a PDMS, which can be achieved by either

storing it centrally, at a designated peer or by employing any of the distributed hash index techniques.

2.2 A Mapping Language for PDMSs

Obviously, the power of the PDMS lies in its ability to exploit semantic mappings between peer and stored
relations. In particular, there are two types of mappings that must be considered: (1) mappings describing
the data within the stored relations (generally with respect to one or more peer relations), and (2) mappings
between the schemas of the peers. At this point it is instructive to recall the formalisms used in the context

of data integration systems, since we build upon them in defining our mapping description language.

2.2.1 Mappings in Data Integration Data integration systems provide a uniform interface to a multitude of
data sources through a logical, virtual mediated schema. The mediated schema is virtual in the sense that it
is used for posing queries, but not for storing data. Mappings are established between the mediated schema
and the relations at the data sources, forming a two-tier architecture in which queries are posed over the
mediated schema and evaluated over the underlying source relations (stored relations, in our terminology) .

A data integration system can be viewed as a special case of a PDMS.

Two main formalisms have been proposed for schema mediation in data integration systems. In the first,

called global-as-view (GAV) [SBD*81,GMPQ*97, HKWY97, ACPS96], the relations in the mediated schema
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are defined as views over the relations in the sources. In the second, called local-as-view (LAV) [LRO96,
DG97,MFK01,LKG99,FW97], the relations in the sources are specified as views over the mediated schema.
In fact, in many cases the source relations are said to be contained in a view over the mediated schema, as

opposed to being exactly equal to it. We illustrate both below.

Ezxample 3 The DB-Projects’ Member peer relation, which mediates UPenn and UW peers, may be expressed
using a GAV-like definition. The definition specifies that Member in DB-Projects is obtained by a union over
the UPenn and UW schemas. Note in our examples, that peer relations are named using a peer-name:relation-

name syntax:

DBProjects : Member(projName, member) : — UPenn : Student(sid, member, _), UPenn : ProjMember(pid, sid),
UPenn : Project(pid, projName, _)

DBProjects : Member(projName, member) : — UPenn : Faculty(sid, member, _), UPenn : ProjMember(pid, sid),
UPenn : Project(pid, projName, _)

DBProjects : Member(projName, member) : — UW : Member(mid, pid, member, _), UW : Project(pid, _, projName)
We may use the LAV formalism to specify the UW peer relations as views over mediated DB-Projects
relations. This formalism is especially useful when there are many data sources that are related to a particular
mediated schema. In such cases, it is more convenient to describe the data sources as views over the mediated
schema rather than the other way around. In our scenario, DB-Projects may eventually mediate between

many universities, and hence LAV is appropriate for future extensibility. The following illustrates an LAV

mapping for UW:

UW : Project(projID, arealD, projName) C DBProjects : Project(projID, projName),
DBProjects : ProjArea(projlD, arealD)

The fundamental difference between the two formalisms is that GAV specifies how to extract tuples for
the mediated schema relations from the sources, and hence query answering amounts to view unfolding.
In contrast, LAV is source-centric, describing the contents of the data sources. Query answering requires
algorithms for answering queries using views [Hal01], but in exchange LAV provides greater extensibility:
the addition of new sources is less likely to require a change to the mediated schema.

Our goal in PPL is to preserve the features of both the GAV and LAV formalisms, but to extend
them from a two-tiered architecture to our more general network of interrelated peer and stored relations.
Semantic relationships in a PDMS will be specified between pairs (or small sets) of peer (and optionally
stored) relations. Ultimately, a query over a given peer relation may be reformulated over stored relations

on any peer in the transitive closure of peer mappings.

2.2.2 Mappings for PDMSs We now present the PP L language, which uses the data integration formalisms
locally. First we formally define our two types of mappings, which we refer to as storage descriptions and

peer mappings.
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Storage descriptions: Each peer contains a (possibly empty) set of storage descriptions that specify which
data it actually stores by relating its stored relations to one or more peer relations. Formally, a storage
description of the form A : R = @), where () is a query over the schema of peer A and R is a stored relation

at the peer. The description specifies that A stores in relation R the result of the query @ over its schema.

In many cases the data that is stored is not ezactly the definition of the view, but only a subset of it. As in
the context of data integration, this situation arises often when the data at the peer may be incomplete (this
is often called the open-world assumption [AD98]).! Hence, we also allow storage descriptions of the form
A: R C @. Thus, storage descriptions can be of two kinds containment (or inclusion) storage descriptions

and equality storage descriptions.

Ezxample 4 A storage description might relate the stored students relation at peer UPenn to the peer relations:

UPenn : students(sid, name, advisor) C UPenn : Student(sid,name, _), UPenn : Advisor(sid, fid),
UPenn : Faculty(fid, advisor, _, _)

This storage description says that UPenn:students stores a subset of the join of Student, Advisor and Faculty,
which reflects the fact that UPenn:students is unlikely to contain information about all students in the world;
it will probably contain data on “local” students only. Hence, if a UPenn:Affiliation peer relation with the
corresponding semantics was available, the above storage description could be specified more precisely as

follows:

UPenn : students(sid, name, advisor) = UPenn : Student(sid, name, _), UPenn : Advisor(sid, fid),
UPenn : Faculty(fid, advisor, _, -), UPenn : Affiliation(sid,' UPenn’)

Peer mappings: Peer mappings provide semantic glue between the schemas of different peers. We have
two types of peer mappings in PPL. The first are inclusion and equality mappings (similar to the concepts
for storage descriptions). In the most general case, these mappings are of the form Q;(A;) = Q2(As), (or
Q1(A;) C Q2(Ay) for inclusions) where @ and @, are conjunctive queries with the same arity and A; and
Aj are sets of peers. Query Q; (Q2) can refer to any of the peer relation in A; (A, resp.). Intuitively, such a
statement specifies a semantic mapping by stating that evaluating Q; over the peers A; will always produce
the same answer (or a subset in the case of inclusions) as evaluating Q2 over A,. Note that since PPL allows
queries on both sides of the equation, they can accommodate both GAV and LAV-style mappings (and thus
we can express any of the mappings from Section 2.2.1).

The second kind of peer mappings are called definitional mappings. A definitional mapping is a datalog
rule whose head and body are both peer relations, i.e., the body cannot contain a query. Formally, as long
as a peer relation appears only once in the head of a definitional description, such mappings can be written
as equalities. We include definitional mappings in order to obtain the full power of GAV mappings. We

distinguish definitional mappings for the following reasons:

— As we show in Section 3, the complexity of answering queries when equality mappings are restricted to

being definitional is more attractive than the general case, and

! Sometimes it may be possible to describe the exact contents of a data source with a more refined query, but very
often this cannot be done.
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— Definitional mappings can easily express disjunction: e.g., P(z) : —P;(z) and P(z) : —P2(x) means that
P is the union of P; and P, (while the pair of mappings P(z) = P;(z) and P(z) = P»(z) means that P,
P; and P» are equal).

In summary, a PDMS N is specified by a set of peers {Pi,...,P,}, a set of peer schemas {51, ..., S}
and a mapping function from peers to schemas, a set of stored relations R; at each peer P;, a set of peer
mappings Ly, and a set of storage descriptions Dy. The storage descriptions and peer mappings provided
by a peer P; may reference stored or peer relations defined by other peers, so any peer can extend another

peer’s relations or use its data.

2.8 Semantics of PPL

Given the peer and stored relations, their mappings, and a query over some peer schema, the PDMS needs to
answer the query using the data from the stored relations. To formally specify the problem of query answering,
we need to define the semantics of queries. We show below how the notion of certain answers [AD98] from
the data integration context can be generalized to our context. Our goal is to formally define what is the set
of answers to a query ) posed over the relations of a peer A. The challenge arises because the peer schemas

are virtual; in fact, some data may only exist partially, if at all, in the system.

Formally, we assume that we are given a PDMS N and an instance for the stored relations, D, i.e., a
set of tuples D(R) for each stored relation R € (R1 U ... UR,). A data instance I for a PDMS N is an
assignment of a set of tuples to each peer relation in every peer. We denote by I(R) the set of tuples assigned
to the relation R by I, and we denote by Q(I) the result of computing the query @ over the extensional
data in I. To define certain answers, we will consider only the data instances that are consistent with the

specification of N:

Definition 1 Consistent data instance. A data instance I is said to be consistent with a PDMS N and an

instance D for N'’s stored relations if:

— For every storage description in Dy, if it is of the form A: R= Q1 (A: R C 1), then D(R) = Q:(I)
(D(R) C Q1(I))
— For every peer description in Ly :
— if it is of the form Q1(A1) = Q2(Az), then Q1(I) = Q2(I),
— if it is of the form Q1(A1) C Q2(Az), then Q1(I) C Q2(I),
—if it is a definitional description whose head predicate is p, then let r1,...,ry be all the definitional
mappings with p in the head, and let 1(r;) be the result of evaluating the body of r; on the instance I.
Then, I(p) = I(r1) U...UI(ry).
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Intuitively, a data instance I is consistent with N and D if it describes one possible state of the world
(i-e., extension for each of the peer relations) that is allowable given the data and peer mappings and D. We

define the certain answers to be those that hold in every possible consistent data instance:

Definition 2 Certain answers. Let Q) be a query over the schema of a peer A in a PDMS N, and let D be
an instance of the stored relations of N. A tuple a is a certain answer to @ if a is in Q(I) for every data

instance that is consistent with N and D.

Note that in the last bullet of Definition 1 we did not require that the extension of p be the least-fixed
point model of the datalog rules. However, since we defined certain answers to be those that hold for every

consistent data instance, we actually do get the intuitive semantics of datalog for these mappings.

Query answering: Now we can define the query answering problem: given a PDMS N, an instance of the

stored relations D and a query @, find all certain answers of Q.

Advantages of a PDMS

Before we proceed, we summarize the advantages of a PDMS as an architecture for data sharing. First,
we note that a PDMS offers a generic architecture for sharing data. Data integration systems and their
variants are an instance of the PDMS architecture. An important advantage of PDMS is that they facilitate
ad-hoc extensions. When a data source wants to join the system, it can do so locally, by providing a semantic
mapping to one or few existing data sources. These data sources can be chosen to be the ones most convenient
for specifying semantic mappings, rather than a global or mediated schema. Finally, querying is easier in a
PDMS - queries at a peer can be posed using the schema of the peer, which is already familiar to the user.

Section 3 considers the computational complexity of query answering, and section 4 describes an algorithm

for finding all the certain answers.

3 Complexity of Query Answering

This section establishes the basic results on the complexity of finding the certain answers in a PDMS.
The complexity will depend on the restrictions we impose on peer mappings in PPL. The computational
complexity of finding all certain answers is well understood for the data integration context with a two-tiered
architecture of a mediator and a set of data sources [AD98]. The key contribution of this section is to show
the complexity of query answering in the global context of a PDMS, when the data integration formalisms
are used locally.

The focus of our analysis is on data complexity — the complexity of query answering in terms of the
total size of the data stored in the peers. Typically, the complexity of query answering is either polynomial,

Co-NP-hard but decidable, or undecidable. In the polynomial case, it is often possible to find a reformulation
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of the query into a query that refers only to the stored relations. The reformulated query is then further
optimized and then executed. In the latter two cases, it is not possible to find all certain answers efficiently;
but it is possible to develop an efficient reformulation algorithm that does not provide all certain answers,

but which only returns certain answers.

A basic result: We begin by showing that cyclicity of peer mappings plays a significant role in the complexity

of answering queries.

Definition 3 Acyclic inclusion peer mappings. A set L of inclusion peer mappings in PPL, is said to be
acyclic if the following directed graph is acyclic. The graph contains a node for every peer relation mentioned
in L. There is an arc from the node corresponding to R to the node corresponding to S if there is a peer

description in L of the form Q1(A1) C Q2(As) where R appears in Q1 and S appears in Q.
The following theorem characterizes two extreme cases of query answering in a PDMS:

Theorem 1 Let N be a PDMS specified in PPL.

1. The problem of finding all certain answers to a conjunctive query Q, for a given PDMS N, is undecidable.
2. If N includes only inclusion peer and storage descriptions and the peer mappings are acyclic, then a

conjunctive query can be answered in polynomial time data complexity.

The difference in complexity between the first and second bullets shows that the presence of cycles is the
culprit for achieving query answerability in a PDMS (note that equalities automatically create cycles). In a
sense the theorem also establishes a limit on the arbitrary combination of the formalisms of LAV and GAV.
The proof is based on a reduction from the implication problem for functional and inclusion dependencies
([AHV95], Theorem 9.2.4). The proof is given in the appendix.

The second bullet points out a powerful schema mediation language for PDMS for which query answering
can be done efficiently. It shows that LAV and GAV style reformulations can be chained together arbitrarily,
and extends the results of [FLM99], which combined one level of LAV followed by one level of GAV.

Cyclic PDMSs: Acyclic PDMSs may be too restrictive for practical applications. One particular case of
interest is data replication: when one peer maintains a copy of the data stored at a different peer. For example,

referring to Fig. 1, the UPenn peer may wish to replicate UW’s publication data:

UPenn : pubs(p,t,v,y) = UW : pubs(p,t,v,y)

This example illustrates that we need equality in order to express data replication, which introduces a
cyclic PDMS (the two relations mutually include each other’s contents). While in general query answering
is undecidable, it becomes decidable when equalities are projection-free, as in this example. The following
theorem shows an important special case where query answering is tractable, and two additional cases where

it is decidable.
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Theorem 2 Let N be a PDMS for which all inclusion peer mappings are acyclic, but which may also contain

equality peer mappings.

1. If the following two conditions hold: (1) whenever a storage or peer description in N is an equality de-
scription, it does not contain projections, and (2) a peer relation that appears in the head of a definitional
description does not appear on the right-hand side of any other description, then the query answering
problem is in polynomial time.

2. If condition (2) of the first bullet holds but condition (1) doesn’t, i.e., some equality storage descriptions
contain projections, then the data complexity of the query answering problem is co-NP complete.

3. If condition (1) of the first bullet holds but condition (2) doesn’t, i.e., some of the queries on the right-
hand side of the peer mappings contain disjunction, the data complexity of query answering is co-NP

complete.

Note that the first bullet in the theorem allows definitional mappings to be disjunctive, if there are
multiple mappings with the same head predicate. The conditions of the first bullet describe the most relaxed
conditions under which query answering is tractable, and extends the results of [AD98] for purely LAV
mappings. In fact, the proof is an extension of the proofs given in [AD98] to the PDMS context. The
algorithm described in the next section will find all the certain answers under these conditions. The two
subsequent bullets show that relaxing the conditions of the first bullet cause the query answering problem

to be intractable.

Adding comparison predicates: Many applications will make extensive use of comparison predicates in peer
mappings. Comparison predicates are especially useful when many peers model the same type of data, but
they are distinguished on ranges of certain values of attributes (e.g., author names, years of publication, price
ranges, geographic location). The following theorem shows what happens when comparison predicates are
introduced into the peer mappings of a PDMS. We note that the algorithm we describe in the next section

finds all the certain answers when the PDMS satisfies the conditions of the first bullet.

Theorem 3 Let N be a PDMS satisfying the same conditions as the first bullet of Theorem 2, and let Q be

a conjunctive query.

1. If comparison predicates appear only in storage descriptions or in the bodies of definitional mappings, but
not in @, then query answering is in polynomial time.

2. Otherwise, the query answering problem is co-NP complete.

The crux of the proof of the first bullet is based on the observations that the complexity results on finding
certain answers in the LAV setting [LRO96] carry over to the case where the views contain comparison
predicates, but the query does not. The second bullet follows from the hardness result in [AD98] for the LAV
setting.
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PDMS consistency

We say that a PDMS N and an assignment D to the stored relations are said to be inconsistent if there
is no consistent data instance w.r.t. N and D. A natural question that arises is whether the mappings in
a PDMS can entail that a PDMS has inconsistent data. As it turns out, the following theorem shows that

inconsistency is possible only if we introduce equalities in storage descriptions.

Theorem 4 Let N be a PDMS specified in PPL. If all storage descriptions in N are inclusions, then for
any assignment D to its stored relations there is always a consistent data instance w.r.t. N and D. If storage
descriptions contain equalities, it may be possible to construct an assignment D to the stored relations such

that there is no consistent data instance w.r.t. N and D.

The theorem also sheds some light on the complexity of the query answering problem. When the PDMS
may be in an inconsistent state, it is because the relationships between the stored relations are more subtle,
and hence answering queries is also more expensive. When inconsistency is not possible, we can build a
minimal canonical instance of the data in the PDMS efficiently, and all the certain answers can be obtained

from that instance.

Summary: with arbitrary use of the data integration formalisms in a PDMS, query answering is undecidable.
However, this section has shown that there is a powerful subset of PP L in which query answering is tractable.
The subset allows both the LAV and GAV mediation languages, and it supports a limited form of cycles in
the peer mappings and as well as limited use of comparison predicates. Hence, we obtain a flexible language

for mediating between PDMS peers.

4 Query Reformulation Algorithm

In this section we describe an algorithm for query reformulation for PDMSs. The input of the algorithm
is a set of peer mappings and storage descriptions and a query ). The output of the algorithm is a query
expression ' that only refers to stored relations at the peers. To answer ) we need to evaluate Q' over the
stored relations. The precise method of evaluating @' is beyond the scope of this paper, but we note that
recent techniques for adaptive query processing [[HWO01] are well suited for our context.

The algorithm is sound and complete in the following sense. Evaluating )’ will always only produce certain
answers to (). When all the certain answers can be found in polynomial time (according to Section 3), Q'

will produce all certain answers.

4.1 Algorithm overview

Before we describe the details of the algorithm, we first provide some intuition on its working and the

challenges it faces. Consider a PDMS in which all peer mappings are definitional (similar to GAV mappings
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Q(rl,r2) Query:

@Q(rl, r2) :— SameProject(rl,r2,p),
Author(rl,w), Author(r2,w)

Peer descriptions:
@SameProject(rl, 12, p) :— ProjMember(r1,p),
SameProject(rl,r2,p) Author(rl,w)  Author(r2,w) ProjMember(12,p)
_ -

B’\\ @CoAuthor(rl,rZ) < Author(rl,w), Author(r2,w)
@ GP Storage descriptions:

CoAuthor(r1,r2)  CoAuthor(r2,r1) @Sl(rs p.a) & ProjMember(r,p), Area(p,a)

ProjMember(rl,p) ProjMember(r2,p) % @SZ(rl, r2) = CoAuthor(rl,r2)

Reformulated query:
Q’'(r1,r2) :— S1(rl,p, ), S1(12,p,_), S2(r1,r2) U
S2(rl,r2)

S1(rl,p, ), S142,p,.), S2(2,r1)
S1(rlp,.) S1(2.p..) 52(12.r1) P P

Fig. 2 Reformulation rule-goal tree for the database reseearch domain. Dashed lines represent nodes that are
included in the unc label (see text).

in data integration). In this case, the algorithm is a simple construction of a rule-goal tree: goal nodes
are labeled with atoms of the peer relations, and rule nodes are labeled with peer mappings. We begin by
expanding each query subgoal according to the relevant definitional peer mappings in the PDMS. When
none of the leaves of the tree can be expanded any further, we use the storage descriptions for the final step

of reformulation in terms of the stored relations.

At the other extreme, suppose all peer mappings in the PDMS are inclusions in which the left-hand side
has a single atom (similar to LAV mappings in data integration). In this case, we begin with the query
subgoals and apply an algorithm for answering queries using views (e.g., [Hal01]). We apply the algorithm
to the result until we cannot proceed further, and as in the previous case, we use the storage descriptions

for the last step of reformulation.

The first challenge of the complete algorithm is to combine and interleave the two types of reformulation
techniques. One type of reformulation replaces a subgoal with a set of subgoals, while the other replaces a
set of subgoals with a single subgoal. The algorithm will achieve this by building a rule-goal tree, while it
simultaneously marks certain nodes as covering not only their parent node, but also their uncle nodes (as

described in the example below).

Ezample 5 To illustrate the rule-goal tree?, Figure 2 shows an example for a simple query. We begin with
the query, @), which asks for researchers who have worked on the same project and also co-authored a paper.
@ is expanded into its three subgoals, each of which appears as a goal node. The SameProject peer relation
(indicating which researchers work on the same project) is involved in a single definitional peer description
(ro), hence we expand the SameProject goal node with the rule 7y, and its children are two goal nodes of the

ProjMember peer relation (each specifying the projects an individual researcher is involved in).

2 More precisely, we actually build a rule-goal DAG, as illustrated in the example.
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The Author relation is involved in an inclusion peer description (r1). We expand Author(rl,w) with the
rule node 71, and its child becomes a goal node of the relation CoAuthor. This “expansion” is of different
nature because of the LAV-style reformulation. Intuitively, we are reformulating the Author(rl,w) subgoal to
use the left-hand side of r1. The right-hand side of r; includes two subgoals of Author (with the appropriate
variable patterns), so we also mark r; as covering its uncle node. (In the figure, this annotation is indicated
by a dashed line.) Since the peer relation Author is involved in a single peer description, we do not need to
expand the subgoal Author(r2,w) any further. Note, however, that we must apply description 71 a second
time with the head variables reversed, since CoAuthor may not be symmetric (because it is C rather than
=).

At this point, since we cannot reformulate the peer mappings any further, we consider the storage
descriptions. We find stored relations for each of the peer relations in the tree (S and S2), and produce the
final reformulation. Reformulations of peer relations into stored relations can also be either in GAV or LAV
style. In this simple example, our reformulation involves only one level of peer mappings, but in general, the

tree may be arbitrarily deep.

The second challenge we face is that the rule-goal tree may be huge. First, the tree may be very deep,
because it may need to follow any path through semantically related peers. Second, the branching factor of
the tree may be large because data is replicated at many peers. Hence, it is crucial that we develop effective
methods for pruning the tree and for generating first solutions quickly. It is important to emphasize that
while many sophisticated methods have been developed for constructing rule-goal trees in the contexts of
datalog analysis (e.g., [HMSS01,SR92]) and static analysis of logic programs [BDSK89)], the focus in these
works has been developing termination criteria that provide certain guarantees, rather than optimizing the

construction of the tree itself.

Before proceeding, we recall the main aspect of algorithms for rewriting queries using views [PHO1] that
is germane to our discussion. Suppose we have the following query @ and views (we use the terminology

of [PHO1)):

QIX)Y) : —e1(X,Z2),e2(Z,Y),e3(X,Y)
‘/1(‘47 B) i el(Aa 0)762(01 B)
V2(D1E) B e3(X,Y),€4(Y)

V3(U) :—e(U, 2)

To find a way of answering () using the views, we first try to find a view that will cover the subgoal
e1(X, Z) in the query. We realize that V; will suffice, so we create a Minicon description (MCD) for it. The
MCD specifies that an atom V;(X,Y) will cover the subgoal e; (X, Z), but it also specifies that the atom
will cover the first two subgoals in (. Similarly, we create an MCD for V5 and the third subgoal, and finally

we combine the MCDs to produce the rewriting:

Q(X,)Y): — (X,Y),h(X,Y)
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The important point to note is that the MCD may tell us that it covers more than the original subgoal
for which it was created. Furthermore, MCDs will only be created when the views are guaranteed to be
useful. For example, in the case of V3, since the variable Z is projected from the answer, the view is useless

and an MCD will not be created.

We now describe the construction of the rule-goal tree in detail, deferring a discussion of the order in

which we expand nodes in the tree. Later, we describe several methods for optimizing the tree’s construction.

4.2 Creating the rule-goal tree

The algorithm takes as input a conjunctive query Q(X) that is posed at some peer, and a set of peer
mappings and storage descriptions in PP L. We first describe the algorithm for the case in which there are

no comparison predicates in the PDMS or the query.

Step 1: The algorithm transforms every equality description into two inclusion mappings. It then transforms
every inclusion description of the form @)1 C @2 into the pair: V C ()2, and V' : — (@1, where V is a new

predicate name that appears nowhere else in the peer mappings.

Step 2: The algorithm builds a rule-goal tree T. When a node n in T is a goal node, it has a label [(n) which
is an atom whose arguments are variables or constants. The label I(n) of a rule node is a peer description
(except that the child of the root is labeled with the rule defining the query). Finally, a rule node n that is
labeled with an inclusion description also has a label unc(n): this label always includes at least the father of
n, but may also include nodes that are siblings of its father goal node. As described earlier, the reason for

this label is that an MCD can cover more that the subgoal for which it was created.

The root of T is labeled with the atom Q(X), and it has a single rule-node child whose children are the
subgoals of the query. The tree is constructed by iterating the following step, until no leaf nodes can be

expanded further.

Choose an arbitrary leaf goal node n in T whose label is I(n) = p(Y), and p is not a stored relation.
Perform all the expansions possible in the following two cases. In either case, never expand a goal node n
with a peer description that was used on the path from the root to n. This guarantees termination of the
algorithm even in a cyclic PDMS.

1. Definitional expansion: this is the case where peer relations appear in GAV-style mappings. If p appears
in the head of a definitional description r, expand n with the definition of p. Specifically, let ' be the result
of unifying p(Y) with the head of r. Create a child rule n,., with I(n,) = ', and create one child goal-node
for m, for every subgoal of 7' with the corresponding label. Existential variables in 7' should be renamed so
they are fresh variables that do not occur anywhere else in the tree constructed thus far.

2. Inclusion expansion: this is the case where peer relations appear in LAV-style mappings. If p appears in
the right-hand side of an inclusion description or storage description r of the form V C Q1 (or V = @Q1), we

do the following. Let n1, .. .,n,, be the children of the father node of n, and p1, ..., pm be their corresponding
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labels. Create an MCD for p(Y) w.r.t. p1,...,pn and the description r. Recall that the MCD contains an

atom of the form V(Z) and the set of atoms in py,...,p,, that it covers.

Create a child rule node n, for n labeled with r, and a child goal node n, for n, labeled with V(Z).
Set unc(ng) to be the set of subgoals covered by the MCD. Repeat this process for every MCD that can be

created for p(Y') w.r.t. p1,...,pm and the description 7.

Step 3: we construct the solutions from 7. The solution is a union of conjunctive queries over the stored
relations. Each of these conjunctive queries represents one way of obtaining answers to the query from the
relations stored at peers. Each of them may yield different answers unless we know that some sources are
replicas of others.

Let us consider the simple case, where only definitional mappings are used, first. The answer would be
the union of conjunctive queries, each with head Q(X) and a body that can be constructed as follows. Let
T' be a subset of T" where we arbitrarily choose a single child at every goal node, and for which all leaves

are labeled by stored relations. The body of a conjunctive query is the conjunction of all the leaves of T".

To accommodate inclusion expansions as well, we create the conjunctive queries as follows. In creating
T's we still choose a single child for every goal node. This time, we do not necessarily have to choose all the
children of a rule node n. Instead, given a rule node n, we need to choose a subset of the children nq,...,n;

of n, such that unc(nq) U...Uunc(n;) includes all of the children of n.

Remark 1 We note that in some cases, an MCD may cover cousins or uncles of its father node, not only its
own uncles. For brevity of exposition, we ignore this detail in our discussion. However, we note that we do
not compromise completeness as a result. In the worst case, we obtain conjunctive rewritings that contain

redundant atoms. O

Incorporating comparison predicates: as we stated earlier, comparison predicates provide a very useful
mechanism for specifying constraints on domains of stored relations or peer relations, and therefore exploit-
ing them can lead to significant pruning of the tree. When the query or the peer mappings and storage
descriptions include comparison predicates we modify the algorithm as follows. We associate with each node
n a constraint-label ¢(n). The constraint label describes the conjunction of comparison predicates that are
known to hold on the variables in I(n).

As we build T, constraints get added and propagated to child nodes. Specifically, suppose we expand a
node n with a definitional description 7, and let ¢1 A ... A ¢, be the comparison predicates in 7. Then we
set ¢(r) to be e(n) Aer A... Aem, and the labels of its children are the projections of ¢(r) on the variables of

the child.> When we expand a goal node with an inclusion peer description then the MCD will be created

3 When a conjunction of constraints is projected on a subset of the variables, the result may be a disjunction
of constraints. The algorithm can either choose to manipulate such disjunctions or approximate them by the least
subsuming conjunctions.
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w.r.t. the constraints in the parent and in the peer description. Finally, we do not expand a node in the tree

if its label is not satisfiable (this implies that it can only yield the empty set of answers to Q).

In step 3, when we construct the conjunctive queries, we add to them the conjunction of their constraint
labels. If the resulting conjunctive query in unsatisfiable, we discard it. Note that constraints can also
be propagated up the tree (in the same spirit at the predicate move-around algorithm [LMS94]), thereby

detecting additional unsatisfiable labels during the construction of the tree.

4.8 Optimizations

As explained earlier, a major challenge for reformulation in the context of PDMS is optimizing the construc-
tion of the rule-goal tree. Up to this point we described which nodes need to be in the tree. We now describe
several optimization opportunities for this context. We note that some of these optimizations are borrowed
from evaluation of datalog and logic programs, and we lift from the data level to the expression level to

apply them during the construction of the tree.

Memoization: an obvious optimization is to memoize nodes as we construct the tree, and therefore not
have to do any repeated work. If two nodes in the tree have isomorphic labels, then only one of them needs
to be expanded. Note that this is especially important in the PDMS context, because we may have many

paths between a pair of peers (or more precisely, between two relations located on different peers).

Detecting dead ends and useless paths: there are several cases in which we can prune certain parts of
the rule-goal tree. The simplest one is when we detect that a peer relation R is not reachable from the stored
relations, meaning that we cannot find data for R anywhere. One common case in which this may happen is
if certain peers leave the system or are currently unavailable. In such a case, if the label of a goal node n is
an atom of R, then we can mark its parent rule-node as unreachable as well. Furthermore, there is no need

to expand any of the siblings of n, unless they are memoizing computation for other nodes in the tree.

Another way in which a node n can become unreachable is if its constraint label ¢(n) is unsatisfiable.
This may occur because the stored relations we have access to contain data that is known to be disjoint
from what is requested in the query. The techniques of [HMSS01,SR92] can be used to efficiently detect

unsatisfiable labels during the expansion of the tree.

Finally, a more subtle optimization can detect useless paths as follows. Suppose we have two sibling goal
nodes with labels p;(X) and py(Y), and suppose that p; appears in a single inclusion peer description of
the form V(Z) C py(X),p2(Y), and that predicate ps appears on the right-hand side of numerous inclusion
peer mappings. In this case, the only way to reformulate p; will be through V', and V already satisfies the

subgoal p2(Y). Hence, there is no need to explore any of the other ways of reformulating p,: they are all

redundant.

Ordering the expansion of the tree: While the above three optimizations have significant potential,

they must be complemented with a search strategy that orders the expansion of the nodes. The goal is to



Schema Mediation for Large-Scale Semantic Data Sharing 19

find the dead ends as early as possible to maximize the pruning. Clearly, neither breadth-first or depth-first
construction of the tree may yield the optimal construction order. It may be desirable, however, to defer
(or complete avoid) following very long semantic paths. Since every reformulation step is likely to introduce

some information loss, applying too many such steps will probably result in a poor refomulated query.

Finding first reformulations quickly: in many contexts, there will be a large number of reformulations,
and hence an important optimization is to generate the first reformulations quickly so query execution can
begin. Alternatively, we may assign a utility to reformulations, and try to generate the good ones first (as
in [DHO2] for the data integration context). We note that the execution engine or Piazza (based on the
Tukwila query processor [[HWO03]) answers queries as the data is streaming in from the network. Hence,
coupled with finding the first optimizations fast, users experience little delay in obtaining first answers to

the query.

Filter descriptions: when many data sources contain elements of the same type (e.g., publications, prod-
ucts), filter descriptions can be an important source of optimization. Filter descriptions are a mechanism that
enables a peer to publish a summary of the values that it currently stores for one or more of its attributes.
The summary can be used as a filter against data requests: if the data at the peer is disjoint with the query
answers, the peer will not be used. Filter descriptions might take any of several forms. At one extreme, the
summary can be the actual set of values, i.e., a projection from one or more tables. In other cases, it can be a
histogram on the values. For example, in the case of publications, the summary can be the list of authors of
the papers in the collection, or a histogram on the years of publication. (Note that when the set of available
values can be described using a conjunction of arithmetic comparisons, these can be directly incorporated
within peer mappings as comparison predicates.)

Filter descriptions can be used directly during tree construction in the same fashion as comparison
predicates: each filter describes a set of possible values, and combining filters amounts to intersecting them.

Alternatively, they can be used at a later stage, when obtaining rewritings or even during query optimization.

5 Experiments

This section describes an initial set of experiments concerning the performance of our reformulation algo-
rithm. Our goals with the experiments were modest. First, our goal was to demonstrate that answering
queries in a PDMS by following chains of peer descriptions is viable. Second, our goal is to identify the key
bottlenecks in implementing a PDMS, in order to focus future work on optimization.

The major (yet, natural) impediment to performing experiments at this point is the lack of existing
PDMS to test on. Hence, our experiments are based on a workload generator that produces PDMS for
several reasonable topologies of PDMS. The generator takes as input two main parameters: (1) the number
of peers R in the system, and (2) the expected diameter £ of the PDMS (i.e., the longest chain of peer

mappings that can be constructed). Intuitively, the diameter of the PDMS will correspond to the number
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Fig. 3 The size of the rule/goal tree for different diam- Fig. 4 The time to first answers (96 peers).
eters of a 96-peer PDMS.

of levels of goal nodes in the tree. We call each such level a stratum, and to create the PDMS, we assign a
number of peers to each stratum. The query is expressed in terms of the relations in the uppermost stratum,

while the stored relations are in the lowest stratum.

The generator also controls the percent of peer mappings that are definitional versus inclusions. Finally,
the right-hand sides of the peer mappings are usually chain queries over a set of relations that was selected
randomly from the stratum below (for definitional mappings) and above (for inclusions). In our figures, each

data point is generated from the average of 100 runs.

Because of the synthetic nature of the environment, our experiments cannot yield conclusive real-world

results. However, they do clearly point out two important facts:

— The key bottleneck of the algorithm is the time to find the rewritings from the rule-goal tree (step
3), whereas step 2 scales up to rather large trees. Hence, an important issue is to tune the algorithm
to produce the first rewritings as quickly as possible. We note that these findings are consistent with
the experiments reported in [PHO1], where the main factor affecting the running time of the MiniCon
algorithm was the number of resulting rewritings.

— The main factor determining the size of the rule-goal tree is the diameter of the PDMS. In contrast, the
number of peers at every stratum has a relatively little effect, because it is usually the case that most of

them are irrelevant to a given query.

Figure 3 shows the size of the tree (number of nodes) as a function of the number of strata, and the
percent of definitional peer mappings (in the figure, %dd denotes the percent of definitional mappings). As
shown, with 8 strata, the size of the tree grows to 30,000 nodes. On average, the algorithm generates nodes
at a rate of 1,000 per second (with relatively unoptimized code). We note that the size of the tree grows
with the relative percent of definitional mappings. The reason for this is that we get more peer relations that

are defined as unions of conjunctive queries, and hence a higher branching factor in the tree. In addition,
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unfolding a definitional mapping replaces one peer relation with a set of relations (the body of the mapping)

which also increases the branching factor.

Figure 4 shows that despite the large trees, the first rewritings can be found efficiently. For example, even
with a diameter of 8, finding the first few rewritings can be done in under 3 seconds. Hence, we believe that

in practice our algorithm will scale gracefully to large PDMS.

The experiments point to an important optimization problem for future work, namely, extracting the
rewritings efficiently from the rule-goal tree. We have designed, but not implemented, a method that in-
terleaves steps 2 and 3 of the algorithm. The method maintains a link structure among the nodes in the
tree that records which combinations of nodes are used together in a conjunctive reformulation. Hence, the
moment we construct a leaf, it is already linked to all relevant reformulations. A possible disadvantage of

the method is higher memory requirements.

6 Global PDMS Considerations

Up to this point, we considered the problem of answering queries in a PDMS. However, the ad hoc nature
of PDMSs raises several fundamental issues concerning the global management of semantic mappings. Since
there is no central control of a PDMS, it can evolve substantially in structure and content, particularly as
peers leave and join the system at will. We are interested in when a semantic mapping is redundant, and we
would like to compose semantic mappings in order to speed up query reformulation. A fundamental problem
in the global management of a PDMS is whether given two PDMSs, they are in some sense equivalent. In
this section we first formalize this question, and then we provide two fundamental results regarding it. The
first result shows that the answer subtly depends on the language we consider for queries, and the second

shows that the problem is decidable in some important cases.

Formally, we consider two PDMSs, N; and N, and assume w.l.o.g. that they have the same set of peers,
peer relations, and stored relations. We say that Np is equivalent to Ny if for every instance of the stored
relations, T, and every query @ posed at a peer, the set of certain answers of () in Ny is equal to the set of
certain answers of () in Nas. Depending on the query language for @), we get different notions of equivalence.
In our discussion we consider two cases: when () ranges over all queries in First Order Logic (FO), and when
@ ranges over conjunctive queries (CQ). To emphasize the language, we will refer to FO-equivalence and
CQ-equivalence.

FO-equivalence differs from CQ-equivalence. To see this, assume two peers, the first holding a stored
relation R and peer relation P;, the second holding peer relations Ps, P;. Define two PDMSs, N; and Ns:

N : R(z) € Pi(s) Pi(2) C Pa(a) Pa() C Py(a)

Ny : R(z) C Pi(z) Pi(z) C Py(z) Pi(z) C Ps(x)
The PDMS N; and Nj are not FO-equivalent because the set of certain answers of the query {z | Ps(z) A
Vz.(P2(z) = P3(z))} in Ny is all the tuples in R, while in N, is ). However, N1 and N, are CQ-equivalent,
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because any CQ query @ in Py, P, P3 is monotone in these three tables, hence, given an instance of the
stored relation I(R), the set of its certain answers is the result of () on the smallest data instance compatible
I(R), if such a smallest instance exists. For both PDMS N; and N, the smallest instance exists and is given
by I(Py) = I(P,) = I(P;) = I(R). Hence Ny and N, are CQ-equivalent.

In practice, we are interested in a more general notion, which we call relative equivalence. Consider two
PDMSs, Ny, Na, and a set of peer-relation names, P = {Py,..., P,,}. We say that Ny, Ny are equivalent
relative to P if, for every instance of the stored relations 7" and any query () over the peer relations in P,
the set of certain answers of Q in N; is the same as that in N,. For a set of peers A, we say that N; is
equivalent to N> relative to A if Ny is equivalent to N, relative to all peer relation names occurring in A.

In the previous example, it can be seen that N; and N> are FO-equivalent relative to Py, P3: that is, if
we can only ask queries over P, and P, then no FO query can distinguish Ny from Ns.

Deciding relative equivalence is a key problem in PDMSs, because peers can join and leave at will, and
we need to assess whether the system maintains the same semantics. Starting in some PDMS N;, after some
peers leave (or join) we end up in a PDMS Ns. The problem is whether Ny, No are equivalent relative to A,
where A are the peers common to Ny and Ns.

Our first result is providing an alternative characterization of the PDMS equivalence problem. While we
defined PDMS equivalence in terms of answers to queries, the following theorem characterizes the problem
in terms of the consistent data instances of the PDMS. A consequence of the theorem is to show that
CQ-equivalence is different from FO-equivalence. The proof of the theorem is given in the appendix.

For a PDMS N and an instance of the stored relations 7', we denote Inst(N,T') the set of consistent data
instances with N (Def. 1). If P is a subset of the peer relation names defined by N, and I € Inst(N,T),

then I(P) denotes the instances of the relations in P.

Theorem 5 Consider two PDMSs, N1, Ny, and P, a set of peer relation names.

1. Ny and Ny are FO-equivalent relative to P iff for every storage instance T, VI € Inst(N1,T), 3J €
Inst(N2,T) s.t. I(P) = J(P), and VJ € Inst(N2,T),3I € Inst(Ny,T) s.t. I(P) = J(P).
2. Ny and Ny are CQ-equivalent relative to P only if for every storage instance T, VI € Inst(Ny,T),

3J € Inst(Ny,T) s.t. [(P) D J(P), and VJ € Inst(N»,T),3I € Inst(Ny,T) s.t. I(P) C J(P).

Our main result of this section shows that checking PDMS equivalence is decidable in certain important
cases. Importantly, the proof, given in the appendix, exploits the characterization of the PDMS equivalence

given by Theorem 5.

Theorem 6 Let N1, N2 be two PDMS with only inclusion peer descriptions that are also acyclic PDMS, and

in which the storage descriptions do not have both projections and inclusions. Then:

— It is decidable whether N1, Ny are FO-equivalent.
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— If the peer descriptions in both N1, Ny have only one atom on the left hand side, then for every set of
peer relations P, it is decidable whether Ny, Ny are CQ-equivalent w.r.t. P.

7 Related Work

The idea of mediating between different databases using local semantic relationships is not new. Federated
databases and cooperative databases have used the notion of inter-schema dependencies to define semantic
relationships between databases in a federation (e.g., [LMR90,KLK91,RSK91,CL93]).

Most existing projects on semantic inter-operability such as SIMS [ACHK94], Information Manifold [LRO96],
and InfoSleuth [Bea97] assume a single schema (or an ontology) that is used to pose queries. Data sources
are described by their local schemas and capabilities. Given a query over the global schema, the system
translates the query into the local schemas of the data sources. As a result, the user can access multiple
heterogeneous data sources using a single schema.

The OBSERVER system [MKIAQO] allows the user to select any of the known ontologies. The system
can translate queries into other relevant ontologies automatically. Unlike Piazza, OBSERVER does not
chain translation steps; rather every pair of ontologies are assumed to be mapped into each other. An IR~
based approach to querying is supported. The system can return unsound as well as incomplete answers.
OBSERVER tries to reduce the information loss caused by query translation and also provide a measure of
information loss (both on recall and precision) with every query answer.

Similar to our work, Semantic Gossiping [ACMHO02] considers a P2P environment where peers use differ-
ent schemas, and define semantic mappings to other peers. The focus of their work, however, is on analyzing
the resulting semantic network in order to design a single “consensus” schema and identify potential incon-

sistencies.

In [GHIT01] we described some of the challenges involved in building a PDMS, focusing on intelligent
data placement, a technique for materializing views at nodes in the network in order to improve performance
and availability. Maintenance of materialized views has recently received much attention in the context of
data warehousing [AI95]. In [KNO102] the authors study a variant of the data placement problem, and
focus on intelligently caching and reusing queries in an OLAP environment. Recently, [BGK T 02] described
local relational models as a formalism for mediating between different peers in a PDMS, and a sound and
complete algorithm for answering queries using the formalism, but do not describe the expressive power of

the formalism compared to previous ones in the data integration literature.

The work [NOTZ03] describes PeerDB, a P2P-based system for distributed data sharing. Similar to Pi-
azza, PeerDB does not require a global schema. Unlike Piazza, PeerDB does not use schema mappings for
query reformulation. Instead, PeerDB employs an Information Retrieval -based approach for query refor-
mulation. In their approach, a peer relation (and each of its columns) is associated with a set of keywords.

Given a query over a peer schema, PeerDB reformulates the query into other peer schemas by matching
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the keywords associated with the two schemas. Unlike Piazza, PeerDB does not need to chain multiple re-
formulation steps as the keywords in any pair of schemas can be matched directly. Also, in PeerDB, some

reformulated queries may not be meaningful, and the user has to decide which queries are to be executed.

8 Conclusions

The concept of the peer data management system emphasizes not only an ad hoc, scalable, distributed peer-
to-peer computing environment (which is compelling from a distributed systems perspective), but it provides
an easily extensible, decentralized environment for sharing data with rich semantics. This is in contrast to
data integration systems or other mediator architectures, which have a centralized mediated schema and
administrator, and which impede small, point-to-point collaborations.

We presented a solution to schema mediation in peer data management systems. We described PPL, a
flexible mediation scheme for PDMSs, which uses previous mediation formalisms at the local level to form
a network of semantically related peers. We characterized the theoretical limitations on answering queries
in PPL-PDMSs. Next, we described a query reformulation algorithm for PPL. The primary contribution
of the algorithm is that it combines both LAV- and GAV-style reformulation in a uniform fashion, and it is
able to chain through multiple peer descriptions to reformulate a query. We described optimization methods
for reformulation, and some initial experimental results that show its utility. The final result is a practical
solution for schema mediation in PDMS. In addition, we introduced global considerations in a PDMS and

addressed the PDMS-equivalence problem.

Future research includes extending our results to the XML data model and the XQuery query language
(see [HITMO3] for the first step in that direction). We are also looking at the problem of optimizing the
topology of a PDMS to improve performance and decrease information loss. Some of the possible directions
in this area are: identifying redundant mappings, minimizing the “diameter” of a PDMS, and detecting
semantic paths that have a zero combined information flow. Addressing these problems requires the ability
to compose mappings, which is a difficult problem on its own [HMO3]. In addition, it is important to be able
to identify ill-defined mappings that are either inconsistent or too “narrow”. An automatic schema matching

technique can be applied here to help the user define a better topology.
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Appendix: Proof of selected theorems

Proof of Theorem 1

We begin by sketching the proof of item (2). In the proof, we transform the peer and storage descriptions

in N into inverse rules. More precisely, given a storage or peer description:
Q1(X) C Q2(X)

we generate inverse rules of the form:

pj(Xj) 1 —Q1(X)
for every atom p; in @2, as in the inverse rules described at the beginning of Sec. 2. To this, we add a rule
for the query:

Answ(X) : —Q(X)

This results in a datalog program, in which the stored relations are the EDBs and all peer relations, including
Answ, are IDBs. The program is non-recursive (because N is acyclic) and has Skolem terms. Hence, it can be
evaluated in polynomial time data complexity over the stored instance T'. The certain answers are precisely

the tuples in Answ that do not contain any Skolem terms. O

Next, we prove item (1) by reduction from the implication problem for functional and inclusion depen-

dencies.

The reduction results in a restricted version of our query answering problem which we call Unary Peer
Answering Problem, UPA, having the following restrictions: (1) the PDMS, N, has only one stored relation,
R, which is unary, (2) the stored instance, T'(R), has a single value a in R, (3) the query is also unary: Q(y).
We write (N, a,Q) for a UPA. It is easy to show that the set of certain answers is either §) or {a}: indeed,
define I to be the instance in which every peer relation contains a unique tuple, (a,a,...,a). Q’s answer on
I is a, hence there are no other certain answers besides possibly a. (IV,a, @) is a decision problem, asking
whether a is a certain answer. The following is easy to prove: (N, a, Q) is true iff (N, b, Q) is true, for any

constants a and b, hence we will describe the UPA problem as (N, @), without mentioning the constant a.
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As background, given a relational schema P, we consider functional dependencies (fd’s) P : C — D and
inclusion dependencies (ind’s) P;[C] C P;[D] with the standard meaning, where C, D are attribute names
in the relations. For a database instance I(P) we write I(P) k= o if the fd or ind ¢ holds in I(P); same for
I(P) = X for a set of fd’s/ind’s X. Given such a set ¥ and a unary ind o, we write X | o if VI(P), if

I(P) £ X then I(P) = 0. It is known that it is undecidable whether X = o (see [AHV95], Theorem 9.2.4,

pp. 199). Thus, the implication problem for dependencies is undecidable.

Given an implication problem described by P, X, o we reduce it to the following UPA (N, Q). Assume
o to be P;[C] C P;[D]. The peer relations in N are P, and there is a single stored relation R, and a single

storage description in N:

R C P[C]

We now define the peer descriptions in N. There will be one peer description for every fd and every ind in

Y. Consider an fd P : C — D first. The corresponding peer description is:
P[C,D1] X P[C,Ds] C 0p,=p,(P[C,D1] X P[C, Dy)) (1)
Consider an inclusion dependency P;[C] C P;[D]. The corresponding peer description is:
P[C] C P[D] (2)
This completes the definition of N. The query @ is P;[D]. Next we prove two lemmas.
Lemma 1 If ¥ |= o then the UPA (N, Q) is true.

Proof Consider some constant a. Recall that in the UPA (N, Q) the stored instance is T'(R) = {a}. Let I
be a consistent data instance for the PDMS N. In particular I satisfies equations (1) and (2)). From the
storage description it follows that a is in P;[C]. From the peer descriptions it follows that I(P) = X. Hence,
I = 0. Hence a is in P;[D], i.e. in ()’s answer. Since this was true for every consistent instance I, it follows

that a is a certain answer.

Lemma 2 If the UPA (N, Q) is true, then X = o.

Proof Let I'(P) be some instance satisfying X. It follows that I'(P) also satisfies the peer descriptions (2)
and (1). We want to prove that, for this instance, P;[C] C P;[D]. Let a € Pj[a]. Since (N,a,Q) is true, it

means that a is a certain answer of (). Hence it is in P;[D].

These two lemmas complete the proof of item (1). O

Proof of Theorem 5

Proof (Sketch) Let P = {P;,..., P}
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(1), “only if”: Let () be a query over the relations P, let T be a stored instance, and let @ be a certain
answer for @) in N;. We show that it is also a certain answer for @ in Ny. Let J € Inst(N2,T), we need to

show that @ € Q(J(P)). This follows from the fact that 31 € Inst(Ny,T) s.t. I(P) = J(P) and a € Q(I(P)).

“f”: Let T be a storage instance and I € Inst(Ny,T). We will write a boolean query Q(P) which is
true only on instances that are different (non-isomorophic) to I(P). Consider all data values that occur in
T and I(P): ay,...,a,, and assume that the first n occur in 7' and the remainig m — n do not occur in 7.
Then @ is an n-ary query, Q(z1,...,%n) = ~Qr, where Q1 = (3zpt1 - .. Izn-(A;; (7 # 7)) ACL A ... Cy),
where each C; checks precisely the tuples in I(P;). For example, assuming I(P;) = {(az,a3),(as,as5)},
then C; = Py(x2,3) A Pi(zs,25) A (Vo,y.(P(z,y) = (x = 22 Ay = x3) V (x = 25 Ay = 5))). The set
of certain answers of @@ in N; is the empty set, since Q(I(P)) = (. Hence it must be the same in Ns.
Hence, 3J € Inst(N»,T) s.t. (a1,...,a,) € Q(J), i.e. J satisfies Qr(a1,...,a,). This means that J(P) is
ismomorphic to I(P), with the isomorphism preserving the values in 7', hence it can be replaced by some J'
s.t. I(P) = J(P) (details omitted).

(2), “only if”: this is shown as in (1), but we use the monotonicity of ). We leave the details to the full

paper.
Proof of Theorem 6

Proof (Sketch) The algorithms for deciding FO-equivalence consists of enumerating all storage descriptions
To and instances Iy up to a certain size, and checking whether Iy € Inst(N1,Ty) < Iy € Inst(No,Tp).
We need to prove that we can find a bound for the size of Ty and Iy. For that suppose that 7', I are such
that I € Inst(Ny,T) and I ¢ Inst(Na,T). We will construct a “small” subset Ty C T,1y C I with the
same property. Since I & Inst(Na,T), there exists a peer description @; C @2 which is violated by I. More
precisely there exists an answer a € Q1(I) s.t. @ € Q2(I). Since @, is a conjunctive query, there is a “small”
subset I' of I s.t. @ € Q1(I'"): when constructing Iy C I we will ensure that I' C Iy: this implies both
a € Q1(l) and @ ¢ Q2(lp), hence it is the case that Iy & Inst(N2,Tp). Now we turn to Ny, and construct
a “small” stored relation T, and instance Iy that is still consistent with Ty and contains I’. For that we
partition the relation names into strata, s.t. for every k, if (J; C ()2 is a peer or storage description at Ny,
and all relations in (); are in strata k and lower, then all relations in ()2 are in strata k + 1 or higher. It
follows that the stored relations are in stratum 0, all others in higher strata. Now we define I; for each
stratum. At stratum 0 we define Iy(R) = I'(R) for each stored relation R: this defines Ty. At stratum k + 1,
we consider all peer or storage descriptions @)1 C Q)2 defining this stratum. Let ay,...,a, be all the answer
in Q1(lo). For each i, a; € Q2(I). Hence there exists a “small” subset of I on the relations in stratum & + 1

on which s still returns a;. Take Iy at this stratum to be the union of all these subsets and of I'. Thus, we



Schema Mediation for Large-Scale Semantic Data Sharing 29

construct Iy stratum by stratum, ensure at each step that the peer descriptions in N; at that stratum are
satisfied. This completes the proof. Notice that at each new stratum we increase the size of Iy by a factor

equal to the size of the queries in N7, hence Iy will have a size which is exponential in V;.

The algorithm for deciding CQ-equivalence consists of eliminating all interemediate levels and “flattening”
both PDMS Ny, Ns, then checking equivalence of flat PDMS. Flattening for Ny proceeds as follows (for N
is similar, of course). Consider some peer relation name P. Assume it occurs in the peer description P C Q2
and in several peer descrptions of the form @; C Q(P). Define N to be obtained from N; by deleting the
peer description P C @, and replacing each Q; C Q(P) with Q; € Q(P N Q3), when P is in the set P
relative to which we check equivalence, or with Q; C Q(Q2) if P ¢ P. Here we assumed @Q to be expressed
as a select-project-join query, hence Q(P N @2) means “substitute the base relation P with P N Qy”. It is
easy to prove, using Theorem 5 that N7 and N| are CQ-equivalent. Indeed, let J be a consistent instance for
N{. We construct out of it a smaller consistent instance I for N1 by defining I to be identical to J except
for the relation P, where I(P) = J(P) N Q2(J), in the case P € P, or I(P) = Q5(J) otherwise. The other

direction is trivial: given I, take J to be identical to I.

Ezxample 6 For a simple example, consider the PDMS N; in presented earlier, and suppose we want to

eliminate P,. The construction above yields:
Ni : R(z) C Pi(z) Pi(z) C Pa(x), P3()
which is semantically equivalent to N». For a more complex example, consider the PDMS:

Ny : A(z,y) C B(z,2), B(2,9)

B(z,y) € C(x,2),C(2,y)
and assume we eliminate B. We get:

N1 : A(IB, y) Cc B(.’IJ, Z), C(.’L‘, U), C(U, Z),
B(z,y),C(y,v),C(v,y)
Returning to the proof of Th. 6, after repeatedly applying the elimination procedure to N; we arrive at

a “flat” PDMS which has a single stratum, that is, it consists only of storage descriptions. Similarly, N2 will

be transformed into something similar, i.e.:

le ngQl(P)aaRnan(P) (3)

Ny: Ry CQi(P),...,R, CQ,(P) (4)
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Notice that only the relations P occur in the right-hand side, relative to which we check containment, since

all the others have been eliminated. The following proposition concludes the proof of the theorem.

Proposition 1 Consider two flat PDMS N1, No consisting only of storage descrptions (3), (4). Then Ny is
CQ-equivalent to Ny iff N1 is FO-equivalent to No iff for each i, Q; is equivalent (as a conjunctive query)
to Q.

Proof Clearly if @1 = Q},...,Qn = Q!, then Ny, Ny are both FO- and CQ-equivalent. For the converse,
assume they are CQ equivalent. Rename all variables in all 2n queries to be distinct. For each i = 1,...n,
define @) to be the conjunctive query @;, and consider the stored instance T for which R; contains precisely
one tuple given by the head variables, Z;, in R;(Z;) C Qi(Z;), and all the other R;’s are empty. Clearly Z; is
a certain answer for () in Ny, hence it is a certain answer for ) in N». Consider the instance I defined by
the body of Q}: this is a consistant instance for Ny w.r.t. T, hence Z; € Q(I). This gives us a containment

mapping from @Q;(= Q) to Q'(= I), proving Q} C @;. The other direction is proved similarly.



