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ABSTRACT
This paper presents a decentralized, peer-to-peer web cache
called Squirrel. The key idea is to enable web browsers on
desktop machines to share their local caches, to form an ef-
ficient and scalable web cache, without the need for dedicated
hardware and the associated administrative cost. We propose
and evaluate decentralized web caching algorithms for Squir-
rel, and discover that it exhibits performance comparable to
a centralized web cache in terms of hit ratio, bandwidth us-
age and latency. It also achieves the benefits of decentraliza-
tion, such as being scalable, self-organizing and resilient to
node failures, while imposing low overhead on the participat-
ing nodes.

1. INTRODUCTION
Web caching is a widely deployed technique to reduce the
latency observed by web browsers, decrease the aggregate
bandwidth consumption of an organization’s network, and
reduce the load incident on web servers on the Internet [5, 11,
22]. Web caches are often deployed on dedicated machines at
the boundary of corporate networks, and at Internet service
providers. This paper presents an alternative for the former
case, in which client desktop machines themselves cooperate
in a peer-to-peer fashion to provide the functionality of a
web cache. This paper proposes decentralized algorithms for
the web caching problem, and evaluates their performance
against each other and against a traditional centralized web
cache.

The key idea in Squirrel is to facilitate mutual sharing of
web objects among client nodes. Currently, web browsers on
every node maintain a local cache of web objects recently ac-
cessed by the browser. Squirrel enables these nodes to export
their local caches to other nodes in the corporate network,
thus synthesizing a large shared virtual web cache. Each
node then performs both web browsing and web caching.
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There is substantial literature in the areas of cooperative
web caching [3, 6, 9, 20, 23, 24] and web cache workload char-
acterization [4]. This paper demonstrates how it is possible,
desirable and efficient to adopt a peer-to-peer approach to
web caching in a corporate LAN type environment, located
in a single geographical region. Using trace-based simula-
tion, it shows how most of the functionality and performance
of a traditional web cache can be achieved in a completely
self-organizing system that needs no extra hardware or ad-
ministration, and is fault-resilient. The following paragraphs
elaborate on these ideas.

The traditional approach of using dedicated hardware for
centralized web caching is expensive in terms of infrastructure
and administrative costs. Large corporate networks often em-
ploy a cluster of machines, which usually has to be overprovi-
sioned to handle peak load bursts. A growth in user popula-
tion causes scalability issues, leading to a need for hardware
upgrades. Another drawback is that a dedicated web cache
may represent a single point of failure, capable of denying
access to cached web content to all users in the network.

In contrast, a decentralized peer-to-peer web cache like
Squirrel pools resources from many desktop machines, and
can achieve the functionality and performance of a dedicated
web cache without requiring any more hardware than the
desktop machines themselves. An increase in the number of
these client nodes corresponds to an increase in the amount
of shared resources, so Squirrel has the potential to scale au-
tomatically.

Squirrel uses a self-organizing, peer-to-peer routing sub-
strate called Pastry as its object location service, to iden-
tify and route to nodes that cache copies of a requested ob-
ject [15]. Squirrel thus has the advantage of requiring al-
most no administration, compared to conventional coopera-
tive caching schemes. Moreover, Pastry is resilient to concur-
rent node failures, and so is Squirrel. Upon failure of multiple
nodes, Squirrel only has to re-fetch a small fraction of cached
objects from the origin web server.

The challenge in designing Squirrel is to actually achieve
these benefits in the context of web caching, and to exhibit
performance comparable to a centralized web cache in terms
of user-perceived latency, hit ratio, and external bandwidth
usage. Finally, Squirrel faces a new challenge: nodes in a
decentralized cache incur the overhead of having to service
each others’ requests; this extra load must be kept low. The
rest of the paper shows how Squirrel achieves these goals,
supported by trace-based simulation results.



Section 2 provides background material on web caching and
on Pastry. Section 3 describes the design of Squirrel, and
Section 4 presents a detailed simulation study using traces
from the Microsoft corporate web caches. Section 5 discusses
related work, and Section 6 concludes.

2. BACKGROUND
This section provides a brief overview of web caching, and
the Pastry peer-to-peer routing and location protocol.

2.1 Web caching
Web browsers generate HTTP GET requests for Internet ob-
jects like HTML pages, images, etc. These are serviced from
the local web browser cache, web cache(s), or the origin web
server – depending on which contains a fresh copy of the ob-
ject. The web browser cache and web caches receive GET
requests. For each request, there are three possibilities: the
requested object is uncacheable, or there is a cache miss, or
the object is found in the cache. In the first two cases the
request is forwarded to the next level towards the origin web
server. In the last case, the object is tested for freshness (as
described below). If fresh, the object is returned; otherwise
a conditional GET (cGET) request is issued to the next level
for validation. There are two basic types of cGET requests:
an If-Modified-Since request with the timestamp of the last
known modification, and an If-None-Match request with an
ETag representing a server-chosen identification (typically a
hash) of the object contents. This cGET request can be ser-
viced by either another web cache or the origin server. A
web cache that receives a cGET request and does not have
a fresh copy of the object forwards the request towards the
origin web server. The response contains either the entire
object (sometimes with a header specifying that the object is
uncacheable), or a not-modified message if the cached object
is unchanged [11, 21, 22].

Freshness of an object is determined by a web cache using
an expiration policy. This is generally based on a time-to-live
(ttl) field, either specified by the origin server, or computed
by the web cache based on last modification time. The object
is declared stale when its ttl expires. HTTP/1.1 allows clients
to control the expiration policy for requested objects, such as
the degree of acceptable staleness [8]. For the purposes of this
paper, we assume the existence of a binary-valued freshness
function that computes the freshness of an object based on
factors such as time-to-live, time of last modification, time of
object fetch from the origin server, and the current time.

2.2 Pastry
A number of peer-to-peer routing protocols have been re-
cently proposed, including CAN [13], Chord [19], Tapestry [25]
and Pastry [15]. These self-organizing, decentralized systems
provide the functionality of a scalable distributed hash-table,
by reliably mapping a given object key to a unique live node
in the network. The systems balance storage and query
load, transparently tolerate node failures, and provide effi-
cient routing of queries. Squirrel uses Pastry to store cached
Web objects and directory information, and to efficiently lo-
cate them. Pastry is described and evaluated in [15]; for
continuity and containment, we present a brief description
here.

Pastry is a peer-to-peer location and routing substrate that
is efficient, scalable, fault resilient, and self organizing. A

number of other applications have been built on top of Pastry,
including an archival storage utility (PAST) [16] and an event
notification system (Scribe) [17]. Pastry assigns random, uni-
formly distributed nodeIds to participating nodes (say N in
number), from a circular 128-bit namespace. Similarly, ap-
plication objects are assigned uniform random objectIds in
the same namespace. Objects are then mapped to the live
node whose nodeId is numerically closest to the objectId. To
support object insertion and lookup, Pastry routes a message
towards the live node whose nodeId is numerically closest to
a given objectId, within an expected dlog2bNe routing steps.
In a network of 10,000 nodes with b = 4, an average message
would route through three intermediate nodes. Despite the
possibility of concurrent failures, eventual message delivery
is guaranteed unless bl/2c nodes with adjacent nodeIds fail
simultaneously. (l has typical value 8 ∗ log16N). Node ad-
ditions and abrupt node failures are efficiently handled, and
Pastry invariants are quickly restored.

Pastry also provides applications with a leaf set, consisting
of l nodes with nodeIds numerically closest to and centered
around the local nodeId. Applications can use the leaf set to
identify their neighbours in the nodeId space, say for repli-
cating objects onto them.

3. SQUIRREL
The target environment for Squirrel consists of 100 to 100,000
nodes (generally desktop machines) in a typical corporate
network. We expect Squirrel to operate outside this range,
but we do not have workloads to demonstrate it. We as-
sume that all nodes can access the Internet, either directly or
through a firewall. Each participating node runs an instance
of Squirrel with the same expiration policy, and configures
the web browser on that node to use this Squirrel instance
as its proxy cache. The browser and Squirrel share a sin-
gle cache managed by Squirrel; one way to achieve this is
by disabling the browser’s cache. No other changes to the
browser or to external web servers are necessary. This paper
focusses on the scenario where Squirrel nodes are in a sin-
gle geographic region. We then assume that communication
latency between any two Squirrel nodes is at least an or-
der of magnitude smaller than the latency to access external
servers, and that they are connected by a network of band-
width at least an order of magnitude more than the external
bandwidth.

We now explore the design space for Squirrel, and provide
rationale for the combinations of choices adopted. The chief
goals are to achieve performance comparable to a dedicated
web cache, avail of various potential benefits of decentral-
ization such as scalability and fault-tolerance, and keep the
overhead low. We now develop two algorithms for Squirrel:
one simple and straightforward, and the other more sophis-
ticated; we compare them in Section 4.

Web browsers issue their requests to the Squirrel proxy
running on the same node. If this proxy knows that the object
is uncacheable (as discussed in Section 4.1), it forwards the
request directly to the origin web server. Otherwise it checks
the local cache, just as the browser would normally have done
to exploit client-side locality and reuse. If a fresh copy of the
object is not found in this cache, then Squirrel essentially tries
to locate a copy on some other node. It starts by mapping the
object URL (the key) to a node in the network using Pastry,
as follows. It computes a SHA-1 [1] hash of the URL to obtain



a 128-bit objectId, and invokes the Pastry routing procedure
to forward the request to the node with nodeId numerically
closest to this objectId. It designates the recipient as the
home node for this object.

The two Squirrel approaches differ at this point, based on
the question of whether the home node actually stores the
object, or whether it only maintains a directory of informa-
tion about a small set of nodes that store the object. (These
nodes, called delegates, are nodes whose browsers have re-
cently requested the object, and are likely to have it in their
local caches). This bifurcation leads to the home-store and
the directory schemes respectively.

Home-store:

In this model, Squirrel stores objects both at client caches
and at its home node. The protocol, as depicted in Figure 1,
works as follows: if the client cache does not have a fresh
copy of the object, it may either have a stale copy or none at
all. It correspondingly issues a cGET or a GET request to
the home node. If the home node has a fresh copy, it directly
connects back to the client and responds with the object or
a not-modified message as appropriate.

If the home node instead finds a stale copy in its cache, or
if it incurs a cache miss, it issues a cGET or a GET request
to the origin server respectively. If the origin server responds
with a not-modified message or a cacheable object, then the
home node revalidates the local copy or stores the object as
appropriate, and forwards a suitable response to the initiating
client. On the other hand, if the response is a uncacheable
object, then it simply forwards the response to the initiating
client. (It does not maintain a negative cache, though that
feature may conceivably be retrofitted).
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req

home

req

req

a : object or notmod from home

b  : object or notmod from origin3

1
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(WAN)
(LAN)

origin

Request routed
through Pastry

b  : req

Figure 1: The home-store scheme (slightly simplified).

The request is handled in one of two possible ways, (a) or

(b1-b2-b3).

All external requests to an object are routed through its
home node. So this home node normally maintains the most
up-to-date copy of the object in the Squirrel network, and
does not have to search among other nodes before respond-
ing. The exception to this is when the object is evicted from
the home node’s cache; cache evictions are found to be in-
frequent even for modest cache sizes, so we keep the design
simple and perform an external request in such cases. All ob-
jects stored in each node’s cache are treated equally by the
cache replacement policy, regardless of whether the object
was stored there because the node was its home, or because
the node accessed it recently (or both).

Directory:

This approach is based on the idea that a node that recently
accessed an object can be asked to serve it to subsequent

clients. In this approach, the home node for an object re-
members a small directory of up to K (e.g., 4) pointers to
nodes that have most recently accessed the object. The key
idea is to redirect subsequent requests to a randomly chosen
node from among these (called the delegate), which would be
expected to have a copy of the object locally cached. This
protocol maintains the invariant that these copies stored at
the delegate nodes are the same version of the object, as
determined by its ETag1.

This protocol is depicted in Figure 2. Each node main-
tains a directory for objects homed at that node, along with
metadata like the object’s ETag, fetch time, last modified
time, and any explicit time-to-live and cache-control infor-
mation. Thus if the home node receives a cGET request for
the object, it can apply the expiration policy and validate the
request without storing the object itself. Moreover, since the
directory points to copies of the same version of the object,
all these copies go stale independently and simultaneously. If
the home node revalidates the object from the origin server
at a later time, and if the object is found to be unmodified
(matching ETag), then all cached copies with the same ver-
sion are known to the home node to be valid, and it marks
the directory as such.
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Figure 2: The directory scheme (slightly simplified). The

request is handled in one of five possible ways, (a), (b),

(c), (d) or (e).

In this model, a HTTP request is serviced by Squirrel as
follows. As with the home-store model, the cache on the
client node is first checked, and a cGET or a GET request
is issued to the home node. The home node may never have
seen this object before, in which case it has no directory asso-
ciated with this object (case (a) in Figure 2). It sends a brief
message back to the client, and the client makes a request
directly to the origin server. The home node treats the client
as a tentative delegate for this object, and optimistically adds
it to the directory with unknown ETag and metadata. Nor-
mally the client soon fetches the object from the origin server,
and sends a short message to the home node to update the
ETag and metadata. If the object is marked uncacheable,
then the client instead sends a suitable message asking the
home node to remove the entire directory. (Again, we do not
maintain a negative cache).

The second case is when there is a non-empty directory at
the home node, and is known to point to nodes with fresh

1If an object fetched from the origin server does not have an
ETag, then Squirrel synthesizes an ETag for internal use by
hashing the object contents.



copies of the object. If the client’s request was a cGET, and
if the ETags match, then the request can be validated imme-
diately and a not-modified reply sent to the client (case (b)).
Otherwise the request is forwarded to a randomly chosen dele-
gate from the directory, and the client is optimistically added
to the directory. The delegate receives the request, which the
home node has augmented with directory freshness and life-
time information. Therefore, if the directory is fresh and the
delegate considers its copy of the object to be stale, it is told
to update its information so the object is made fresh. (This
can happen if another delegate has accessed the object and
revalidated the directory in the interim). The delegate then
directly returns the requested object to the client (case (c)).

The final pair of cases arises when the directory is pop-
ulated with pointers to nodes that have stale copies of the
object. If the client’s request was a cGET (where the client
may or may not be a delegate), then a brief message is sent
to the client to perform its own external request (case (d)).
The client later sends an update message for the metadata,
whereupon the home node either revalidates its directory, or
replaces all entries by this client if the new version is different.

Instead, if the client’s request was a GET, then the home
node forwards it to a randomly chosen delegate from the di-
rectory (so that the entire object need not be fetched from
the origin server if unmodified). To prevent multiple del-
egates from making simultaneous external connections, the
home node temporarily removes all other entries from its di-
rectory. The delegate makes an external cGET request to
validate its copy (case (e)), and sends the object to the initi-
ating client. The delegate also sends a message to the home
node, either to reinstantiate all its earlier entries (if the dele-
gate got a not-modified response to its cGET), or to update
the metadata and set the client and the delegate as the only
two entries. Thus, (e2) in the figure can only be a cGET
request, and (e4) can only be the object.

A special case happens when a request reaching a dele-
gate finds the object missing from its local cache, despite the
home node having a pointer to it. This is observed to be
an infrequent occurrence (even with small per-node caches),
and has two possible reasons: the delegate may have either
evicted the object from its cache, or may have requested it
only very recently (so the current request is due to optimistic
addition of the delegate to the home node’s directory). In the
first case, the delegate informs the home node to remove it
from the directory for the object, and the home forwards the
request to another delegate from the directory, if any exist.
In the second case, the delegate keeps the forwarded request
pending until the first one completes.

Node arrival, departure and failure:

Both schemes need to cope with frequent variations in node
membership. The underlying Pastry network ensures reliable
routing (even in the presence of many concurrent failures),
but Squirrel needs to perform the following extra operations.

When a node joins the Squirrel network, it automatically
becomes the home for some objects, but does not store the
objects or directories yet. If no information is passed to the
new node, then Squirrel would still continue to function cor-
rectly; but the small fraction of requests destined for this new
node would be routed to the origin server, resulting in a small
performance reduction. Squirrel overcomes this performance

drop by leveraging Pastry’s feature of informing the peer-to-
peer application of changes in a node’s leaf set2. When this
occurs, the two neighboring nodes in the nodeId space trans-
fer the necessary objects or directories to the newly joined
node. The directory approach has less state to transfer com-
pared to the home-store approach, which has to transfer the
actual objects. If this state is too large, then the neighbors
can sort objects by frequency of access, and transfer the most
frequently accessed ones. Given the Zipf-like distributions of
many web workloads, this optimization allows a lightweight
joining protocol.

Failure of a Squirrel node will result in a corresponding
fraction of objects and directories abruptly disappearing from
Squirrel. Future requests for the object will be routed to the
node that has now become numerically closest to the objec-
tId. In the home-store model, this node queries the origin
server for subsequent requests. In the directory model, this
node does not try to reconstruct the lost directory; instead,
it simply creates a new directory, and asks the client to query
the origin server. This only results in transitory and graceful
performance reduction in both cases even when many nodes
fail; the extent of damage is lesser in home-store than in di-
rectory. Finally, nodes that are capable of announcing their
desire to leave the system can transfer some of their direc-
tories or objects to their two immediate neighbors in nodeId
space.

In the directory model, a delegate node may fail without
notice; when a home node chooses this delegate and immedi-
ately discovers its inability to connect to it, it removes this
delegate from all its directories, and forwards the request to
another delegate if available.

Comparison:

The two approaches represent extremes of the design space,
based on the choice of storage location. Despite their dif-
ferences, to a first level of approximation, they both achieve
comparable performance to each other and to a centralized
web cache. Their hit ratios are comparable if the cache ex-
piration and replacement policies are the same, and if the
caches are sufficiently large. User-perceived latency is dom-
inated by requests that need to be serviced from the ori-
gin server; comparable hit ratios implies comparable user-
perceived latency, and minor differences in the number of
LAN hops are imperceptible. Section 4 evaluates these fac-
tors more thoroughly, and analyzes second-order effects due
to cache sizes, etc.

In terms of the overhead imposed on individual nodes, and
on the degree of resilience to node failures, the two schemes
are surprisingly different. The more sophisticated directory
scheme may initially appear conducive to better load balanc-
ing, since popular objects are associated with rapidly chang-
ing directories of recently accessing clients, and subsequent
load is dispersed onto them. However, in practice, it is the
simpler and more elegant home-store scheme that achieves
drastically lower load. It capitalizes on a hash function to
distribute requests evenly onto home nodes. This natural
load balancing results in low peak and sustained overhead,
and graceful performance degradation on node failures. Sec-
tion 4.4 evaluates and explains this result.

2The leaf set contains the l nodes with the numerically closest
nodeIds to node (l/2 smaller and l/2 larger).



4. EVALUATION
This section evaluates the home-store and the directory de-
signs against each other, and against a dedicated web cache.
These approaches are compared on three main metric types:
performance (latency, external bandwidth and hit ratio), over-
head (load and storage per machine), and fault tolerance.

4.1 Trace characteristics
Web caching is a domain where the merits of a solution are
largely determined by its performance on a variety of real
workloads. We evaluate Squirrel by trace-driven simulation
on two substantially different proxy cache access logs on the
boundaries of corporate intranets. The Redmond trace from
Microsoft Corporation in Redmond contains over 36,000 ac-
tive clients in one geographic location, issuing a total of 16.4
million requests in a single day. The Cambridge trace from
the Microsoft Research Lab in Cambridge contains 0.97 mil-
lion requests issued by 105 clients over 31 days.

These Microsoft ISA proxy server access logs reflect little
of the object cacheability information that it obtains from
requests and responses. In practice, different proxy servers
decide whether an object is cacheable based on some combi-
nation of checks for cache-control headers, existence of cook-
ies (in HTTP/1.0), password protection, ‘/cgi-bin/’ in the
URL, etc [5, 21, 24]. For simulation purposes, we use the
available information to approximately deduce cacheability;
our main goal is to derive an understanding of Squirrel be-
havior on diverse workloads, rather than make a case for web
caching. Thus we define static objects as those accessed with
a HTTP GET request (without SSL), without CGI-like char-
acters such as ‘?’, ‘=’, or the word ‘cgi’ in the URL. The
following simulations treat all and only these as cacheable,
so all dynamic requests are immediately forwarded by Squir-
rel on the client node to the origin server. The following table
presents some trace characteristics.

Redmond Cambridge

Trace date May ’99 July–Aug ’01
Total duration 1 day 31 days
Number of HTTP requests 16.41 million 0.971 million
Mean request rate 190 req/s 0.362 req/s
Peak request rate 606 req/s 186 req/s
Number of objects 5.13 million 0.469 million
Total object size 49.3 GB 3.37 GB
Number of clients 36782 105
Mean req/client/hr 18.5 12.42

Number of static objects 2.56 million 0.226 million
Static object requests 13.84 million 0.727 million
Mean static object reuse 5.4 times 3.22 times
Total static object size 35.1 GB 2.21 GB

Total external bandwidth 88.1 GB 5.7 GB
Hit ratio 29% 38%

Mean and peak request rate values represent the load inci-
dent on a centralized proxy server, and motivate the need for
dedicated, overprovisioned machines for a centralized cache.
The mean requests/client/hour signifies users’ average brows-
ing rate (including web pages, images, etc). Mean reuse of
static objects is the average number of times each static ob-
ject is accessed, and denotes the potential benefit of web
caching. Total external bandwidth usage is directly obtained
from the trace. It differs from the total object size due to
request and not-modified messages, and also because objects

need to be fetched again when they are modified at the ori-
gin server or evicted from the centralized cache. Finally, hit
ratio is defined as the fraction of all objects (static and dy-
namic) that get satisfied from the web cache. These numbers
(29% and 38%, derived using the status field in the log) are
found to roughly compare with various web cache hit ratios
reported in the literature [5, 24].

For both traces, we create simulated networks consisting of
one node for each web client from the trace; all of these act
as Squirrel proxy nodes. At initialization, the Squirrel cache
is warmed by inferring freshness of objects as follows. On the
first request for each object in the trace, if the centralized
web cache has returned a valid copy or a not-modified mes-
sage, then we warm the Squirrel home node or a randomly
chosen delegate (depending on the approach) with this ob-
ject. In the not-modified case, we also warm the cache at
the requesting client with a stale copy. During the experi-
ment, the nodes issue requests from the log at moments in
time specified therein. We use the log status field to infer
the expiration policy decision of the centralized cache for the
requested object (so that the simulation does not have to
adopt a separate expiration policy), and also whether the ob-
ject was found to be modified at the origin server. For the
centralized cache numbers below, we use the same inferred
values for fair comparison.

4.2 External bandwidth and hit ratio
We define external bandwidth as the number of bytes trans-
ferred between Squirrel and the origin servers. In this section,
we compare external bandwidth savings achieved by the two
Squirrel algorithms, and measure the impact of limiting the
per-node cache size. We need to know the size of each mes-
sage to compute external bandwidth traces, so we assume
values from the following table.

Request headers 350 bytes (estimate)

Object transfer and Response-size field
response headers in the proxy log

Not-modified responses 150 bytes (estimate)

Figure 3 shows the external bandwidth in GB over the
entire period of each trace. The local cache on each node is
limited to different sizes (as depicted on the horizontal axis)
by using an LRU cache replacement policy. The two dotted
horizontal lines represent the external bandwidth if no cache
is used, and if a centralized cache with a sufficiently large
disk storage capacity is used. These two are calculated by
projecting the inferred expiration policy, the above message
size estimates, and the object cacheability estimate on the
centralized cache model with infinite storage. (Observe that
these centralized cache bandwidths roughly tally with those
measured from the trace, thus supporting the validity of our
inferences). The difference between the two values denotes
the maximum external bandwidth reduction that web caching
obtains; as expected, the greater degree of sharing in the
Redmond trace implies a larger saving.

First consider only the home-store curves in both graphs.
Note that a reasonable amount of disk space, e.g. 100MB,
donated to Squirrel by every node proves sufficient to lower
external bandwidth consumption to that close to a dedicated
web cache. The fact that this is true for both traces speaks
strongly to the effective utilization of per-node caches in the
Squirrel network. The horizontal axis is logarithmic, so ex-
ternal bandwidth gradually rises if this per-node contribu-



tion is drastically decreased. This indicates that even a very
small amount of cache space donated by each node aggregates
across nodes to achieve a significant benefit.

85

90

95

100

105

0.001 0.01 0.1 1 10 100

T
ot

al
 e

xt
er

na
l b

an
dw

id
th

 (
in

 G
B

)

Per-node cache size (in MB)

Directory

Home-store

No web cache

 Centralized cache

(a) Redmond

5.5

5.6

5.7

5.8

5.9

6

6.1

0.001 0.01 0.1 1 10 100

T
ot

al
 e

xt
er

na
l b

an
dw

id
th

 (
in

 G
B

)

Per-node cache size (in MB)

Directory

Home-store

No web cache

 Centralized cache

(b) Cambridge

Figure 3: Total external bandwidth usage as a function

of per-node cache size. Note that lower values are better,

and that Y-axes start from non-zero positions.

Next consider the difference between the home-store and
the directory designs. The home-store approach uses a hash
function to uniformly distribute objects across nodes. The
directory scheme, on the other hand, only stores objects in
the respective client caches. To maintain the cache size limit,
a node that rapidly browses many objects will have to evict
fairly recently accessed objects from its cache. This results in
an imbalance, where the heavily browsing nodes are forced to
evict fairly recently accessed objects, while less active nodes
may cache much less recently accessed objects. Cache evic-
tions from the heavily browsing nodes therefore lead to in-
creased cache misses and higher external bandwidth use, as
compared to the home-store approach.

As quantified in the next paragraph, the home-store ap-
proach requires more per-node and total storage than the
directory approach, due to copies stored both at clients and
at home nodes. Despite this extra storage requirement, it
is interesting to observe that the home-store scheme makes
overall more effective use of the available cache storage, as in-
dicated by its lower external bandwidth for a given per-node
cache size.

The table below describes the maximum possible storage
used by the two schemes for the Redmond trace, and is mea-
sured by letting all nodes potentially contribute infinite stor-
age. Note that the difference between total storage for the
two schemes (i.e., 35989MB = 35.1GB) is equal to the to-
tal static object size from the trace characteristics table; also

note that a dedicated web cache with this much disk space
can store the entire content. Secondly, although the max-
imum storage on some nodes is relatively high (1.6GB), we
have shown that limiting it to say 100MB only causes a slight
increase in external bandwidth.

(Redmond) Home-store Directory
Total 97641 MB 61652 MB
Mean per-node 2.6 MB 1.6 MB
Maximum per-node 1664 MB 1664 MB

Hit ratio of the Squirrel cache is indirectly related to ex-
ternal bandwidth. With increasing per-node contributions,
the hit ratio approaches that of a centralized cache with
enough storage. At about 100MB per node, Squirrel achieves
28% and 37% for Redmond and Cambridge traces (with ei-
ther model), consistent with the trace characteristics in Sec-
tion 4.1.

4.3 Latency
User-perceived latency is the time between issuing a request
and receiving a response back at the client. We assume that
communication latencies within the LAN are of the order of
a few milliseconds, and are at least an order of magnitude
smaller than external latency (say across or between conti-
nents). Also, request processing at a node (excluding transfer
time) rarely takes more than a few milliseconds. Since hit ra-
tio for Squirrel is comparable to that of a centralized cache,
the user-perceived latency per request will approximately be
the same, even though Squirrel makes a small number of LAN
hops. For large objects, the higher LAN bandwidth implies
that the reduction in overall latency is considerable. The
purpose of the following experiment is to measure the num-
ber of application-level hops for requests within the Squirrel
cache, and show that this number is small. By the side, we
will also make some observations about forwarding behavior
of the directory model.

Consider Figure 4. A centralized web cache always incurs
two hops within the LAN – request and response. Con-
sider the Redmond case; most requests in the home-store
model take between four and five hops, since for Pastry,
4 < log

16
(N = 36782)+1 < 5. The directory model incurs an

extra hop per request that is actually forwarded. The differ-
ence between the mean number of hops for the two schemes
is 4.56 − 4.11 = 0.45, and is smaller than 1; therefore more
than half the requests in the directory scheme are handled
by the home node itself, and do not have to get redirected.
These are when the parent responds with short messages like
‘go to the origin server’ in cases (a) or (d), or ‘not-modified’
in case (b) of Figure 2.

About 10% of requests for the Redmond trace, and about
28% of requests for the Cambridge trace are serviced from the
local node3. This is due to two reasons. First, some cGET
queries issued by the browser (usually IE) actually get satis-
fied by the centralized web cache (ISA), due to a difference
between their default cache expiration policies. Secondly, in
the home-store model, a small fraction of requests (1% for
Cambridge) is due to client nodes that are coincidentally also
home nodes for the requested object.

3The traces exclude information about local browser cache
hits, so these are requests that were originally satisfied by
the centralized web cache that are now being satisfied by
Squirrel on the local node.
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(a) Redmond: Mean 4.11 hops for
home-store and 4.56 hops for direc-
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(b) Cambridge: Mean 1.8 hops for
home-store and 2.0 hops for directory.

Figure 4: Number of LAN hops per request satisfied by

Squirrel.

In intranets with higher communication latency, multiple
hops may become significant. In such environments, a sim-
ple optimization called route-caching can be used to gener-
ally reduce the number of hops. In essence, each node can
maintain a loosely consistent cache of nodeId to IP address
mappings of other nodes in the network. Subsequent requests
dispatched to the same node can use this cache to connect di-
rectly and bypass Pastry routing. Route-caching is not used
in the above experiments, but a separate test is seen to yield
98% and 48% hit rates on the route cache for the Cambridge
and Redmond workloads.

To summarize, the latency induced by Squirrel is small on
a cache hit, and is otherwise overshadowed by latency to the
origin server.

4.4 Load on each node
We measure the extra overhead on a node as a result of its
participation in Squirrel, in terms of the number of objects
served or validated, the number of bytes transferred, and the
number of connections processed. To capture the essence of
bursty versus sustained load, we separately measure incident
load per second and per minute. Frequency plots for the
maximum number of objects served by any node on these two
timescales are shown in Figures 5 and 6. For presentational
clarity, the horizontal axes in some graphs are sampled by
displaying only every second or fourth bar. Care was taken
not to remove any spikes as a result of this sampling.

Figure 5 indicates that nodes in the directory model incur
bursts of relatively high load, up to 48 and 55 objects/s in

the two traces. Moreover, in an average second, there is some
node in the network that has to serve as many as 6.6 requests
in the Redmond case. In contrast, nodes in the home-store
model are never observed to serve more than 8 and 9 objects
per second, for the two traces.

While the objects/second metric depicts bursts of load,
measurements of objects/minute (in Figure 6) represent more
sustained periods of load. Again, there is a certain minute
during the course of the experiments, when some node in the
directory model serves as many as 388 and 125 objects (for
the two traces). The home-store model produces a far lower
load on the nodes, and incurs a peak load of only 65 and
35 objects (for the two traces) served by some node on two
occasions. Moreover, for home-store, the similarity between
the maximum load numbers for the two traces, both on per-
second and per-minute granularities speaks to the scalability
of the system.
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(a) Redmond: Average maximum load
for a node is 1.5 objects/s and 6.6 ob-
jects/s for home-store and directory
respectively.
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(b) Cambridge: Average maximum
load for a node is 0.038 objects/s and
0.027 objects/s for home-store and di-
rectory respectively.

Figure 5: Load, in maximum objects served per second.

E.g., the point marked × in (a) says that there are a

hundred individual seconds over the day during which

some node services 23 requests. Note that Y-axes are on

a logarithmic scale.

All the above constitute the maximum loads incurred in
any given second or minute. However, the average load on
any node during any second or minute (not shown in graph
captions) is extremely low, at 0.31 objects/minute for Red-
mond with both models. This indicates that Squirrel per-
forms the task of web caching with a negligible fraction of



total system resources.

It is interesting to observe why the home-store model causes
drastically lower load on machines compared to the directory
model. It may seem as though the opposite were true. In the
home-store model, the home node for a popular web object
may be compelled to serve the object to many simultaneously
accessing clients, and is vulnerable to high load. In the di-
rectory scheme, the load to serve an object gets distributed
among the most recently accessing delegate nodes from the
directory. For a popular object, these nodes keep changing
rapidly. Hence one might expect the directory approach to
be superior; however, in practice, this contrary proves true,
for the following reason.
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(a) Redmond: Average maximum load
for a node is 36 objects/minute and
60 objects/minute for home-store and
directory respectively.
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(b) Cambridge: Average maximum
load for a node is 1.13 objects/minute
and 0.7 objects/minute for home-store
and directory respectively.

Figure 6: Load, in maximum objects served per minute.

Note that Y-axes are on a logarithmic scale.

There is a drawback with the directory approach, viz. it
implicitly relies on access patterns to distribute load, whereas
the home-store scheme simply uses a hash function. Con-
sider, in the directory scheme, a node Q that accesses a web
page with many embedded images. Then home nodes cor-
responding to each of these images add Q to their respec-
tive directories. If another client subsequently requests the
same web page, then it will simultaneously issue requests for
a large number of images. These requests are routed to a
widely distributed set of home nodes, but all get forwarded
to delegate Q, and cause a burst of substantially high load on
Q. Similarly, a heavily browsing client may traverse several
rich webpages, and may induce many home nodes to point

to it. Later, another client may access the same set of re-
lated documents and subject this node to periods of heavy
load. There is implicit evidence for this: consider the 388
objects/minute maximum; this is likely to be the result of
heavy browsing than a web page with many images. The
home-store approach, in contrast, does not have this bursty
incident load problem, due to the low probability that many
popular objects map via the hash function to a single home
node.

In summary, the home-store model shows far less overhead
than the directory model on two very different workloads. We
have performed analogous experiments on two other publicly
available traces, and with other metrics such as bandwidth
and number of incident and forwarded connections, and have
obtained similar results.

4.5 Fault tolerance
This section evaluates the resilience to failure of Squirrel and
centralized caches. We distinguish between connectivity loss
and performance degradation due to unavailability of cached
content. Network connectivity for individual nodes is inde-
pendent of web caching, so this section focusses on the latter
aspect.

Both Squirrel and a centralized web cache can lose connec-
tivity to the Internet due to a link, router or firewall failure.
In this event, they both continue to serve cached content to
their clients. A second failure mode is when an internal router
or link fails, partitioning the nodes into two sets. The cen-
tralized cache would provide cached content only to nodes in
its own partition. The Squirrel peer-to-peer network would
automatically reorganize itself into two separate systems, if
the partitions are sufficiently large. Each would provide its
clients access to a fraction of the cached content.

The third, and more prevalent scenario is when connectiv-
ity exists to the Internet, but web cache nodes individually
fail. If a centralized cache is composed of a single machine,
then its failure would imply complete loss of cached content.
In cluster-based web caches, there is a graceful, but significant
degradation with the failure of each node. In contrast, Squir-
rel nodes, usually being desktop machines, are expected to
fail, or be rebooted or be switched off at night regularly [2].
As seen in Section 3, unannounced node failures result in
losing a fraction of the cached content, so Squirrel’s overall
performance degrades gracefully with the number of failed
nodes.

We analyze the impact of a single node failure on the hit
ratios observed by other nodes. Let N and O be the number
of nodes and (static) objects, H̄ and Hmax be the per-node
mean and maximum number of objects homed at that node,
and S̄ and Smax be the per-node mean and maximum number
of objects that are the sole entries from their home node’s
directories. Then the average and worst-case impact of one
failed node in the home-store model are H̄/O (= 1/N) and
Hmax/O, whereas those for the directory model are (H̄ +
S̄)/O and max {Hmax, Smax}/O respectively.

Measurements for the Cambridge trace give us average
and worst-case system performance reductions of 0.95% and
3.34% per failed node in the home-store scheme, compared
to 1.68% and 12.4% in the directory scheme. The directory
scheme thus proves slightly more vulnerable in the average
case when either the home node or the delegate fails, but in



the worst case, a node storing say a large web page with many
embedded images can fail and lose considerable data. The
corresponding numbers for the Redmond trace are 0.0027%
and 0.0048% for home-store, and 0.198% and 1.50% for the
directory scheme. Thus the directory scheme is somewhat
more vulnerable to node failures, especially in the patholog-
ical case. The average impact due to multiple node failures
can be estimated by linearly scaling the average impact num-
bers for single node failures.

Machines being rebooted have little effect on Squirrel per-
formance, as they are back online within a few minutes (as-
suming the objects/directories being cached on the machine
are stored on disk). The Farsite study [2] of the Microsoft
Corporation internal network shows that about 15% of the
machines are likely to be switched off each night or weekend;
this means that on average 15% of the cached content in the
home-store approach may be lost. However, in reality the
impact may be much less, because most machines are shut
down gracefully, so the most popular cached content on a
node can be transferred to the new home nodes.

4.6 Discussion
There are two secondary effects that have the potential to fur-
ther increase the benefits due to decentralized web caching.
Firstly, web workloads often have poor locality, so web caches
incur substantial disk traffic. Disk throughput may limit the
performance of a centralized web cache to be disk bound,
whereas distributing the data across many nodes allows many
disks to fetch data in parallel, improving throughput. Sec-
ondly, Squirrel pools main memory from many participating
nodes. Figure 3 suggests that even a small cache size (such as
10MB) on each node suffices to capture most cache hits. This
pooled memory may allow most cache hits to be serviced from
memory rather than from disk, whereas a centralized cache is
less likely to have sufficient main memory for this to happen.
Our simulation does not consider these two factors.

While evaluating the home-store model, the two trace-
based workloads we studied achieve low overhead and good
load balancing among the participating nodes. This suggests
that the natural load balancing achieved in Squirrel through
its hash function works well in practice. Yet, workloads with
highly popular objects can in theory overload a home node.
To address this case, Squirrel maintains a threshold of max-
imum acceptable rate of requests incident on each node per
document. If this limit is exceeded, the hotspot node sheds
load by replicating the object on the previous node along the
Pastry route from a client. The locality properties of the
Pastry overlay network ensure that each of these additional
cached copies absorbs a significant fraction of client requests,
and that these copies are placed in proximity of interested
clients. This technique is proposed and evaluated in [16]; it
dynamically adapts the number of cached copies to match de-
mand, and is found to effectively disperse load arising from
popular objects.

The benefits of web caches are significant enough to war-
rant their extensive deployment across the Internet. We be-
lieve that a cheap, low-management and fault resilient solu-
tion like Squirrel might be the preferred alternative for web
caching in large intranets. Furthermore, the experiments in
this section let us conclude that under our assumptions, the
simpler home-store algorithm is the superior choice.

However, under different sets of assumptions, like geograph-
ically distributed Squirrel networks with higher internal la-
tency, some design choices in Squirrel may have to be reeval-
uated; in fact, the directory approach may prove to be more
attractive. We plan to study such scenarios in future work.

5. RELATED WORK
Squirrel can be seen as a combination of cooperative web
caching, where caches share Internet objects among them-
selves [3, 6, 9, 20, 23, 24], and peer-to-peer request rout-
ing, characterized as decentralized, self-organizing, and fault-
resilient [13, 15, 19, 25].

Cooperative web caching (where autonomous web caches
coordinate and share content) is found to be useful in im-
proving hit ratio in a group of small organizations. There
are many forms, viz. (1) a hierarchical web cache, where up-
per layers of the hierarchy often cover geographically larger
domains [6], (2) hash-based schemes, where clients hash a
request to one of multiple dedicated caches, (3) directory-
based schemes that maintain a centralized table of references
for redirecting every client request, and (4) multicast-based
schemes [22].

In view of the problems arising due to weak integration
between separate cache nodes in the above methods, a Dis-
tributed WWW cache has been proposed, with an approach
analogous to the xFS file system. A cluster of dedicated web
proxy machines is organized into a hierarchy, with frontends,
backends and managers. These coordinate to achieve explicit
hotspot elimination, fault tolerance and scalability [10].

Squirrel adopts a different paradigm from all the above,
in requiring no more infrastructure than the client browser
caches themselves. In terms of object location, Squirrel is
a peer-to-peer routing-based scheme. It can be viewed as a
hash-based caching scheme that is self-organizing and fully
decentralized. The directory model for Squirrel ties in with
directory-based cooperative caching, but instead of a single
directory, Squirrel decentralizes the directories for each object
onto randomly distributed home nodes. Just as in the Dis-
tributed WWW cache, Squirrel achieves fault tolerance and
scalability, and performs sufficient load balancing to avoid
hotspots.

MangoSoft’s CacheLink product [14] supports sharing of
web browser caches, as in Squirrel. The details of how Cache-
Link achieves this and its general performance are not avail-
able. Currently, 250 is the maximum number of machines
supported by CacheLink; in comparison, Squirrel scales to
many tens of thousands of nodes.

Several systems have recently been proposed to address
the problem of flash crowds [12, 18]. Like Squirrel, they use
the peer-to-peer paradigm to leverage pooled resources to
improve web performance. Unlike Squirrel, they focus on the
complementary problem of shielding servers from load spikes
resulting from flash crowds.

Distributed storage systems come in many flavors, like per-
sistent peer-to-peer stores such as PAST [16] and CFS [7],
distributed filesystems, distributed shared memory systems,
etc. with different objectives and tradeoffs. From a concep-
tual standpoint, Squirrel explores a combination of tradeoffs
associated with the closely related class of peer-to-peer ap-
plications that maintain soft state and desire low latency of
access. Ideas from Squirrel may prove pertinent in the design



of similar systems, particularly in a peer-to-peer context.

6. CONCLUSION
This paper designs and evaluates a decentralized, peer-to-
peer web cache called Squirrel, and shows it to be feasible,
efficient, and comparable in performance to a dedicated web
cache in terms of latency, external bandwidth and hit ratio.
At the same time, Squirrel has the advantages of being in-
expensive, highly scalable, resilient to node failures and of
requiring little administration. Squirrel imposes a small ex-
tra load on each machine, but for the proposed design, this
load is shown to be low on a range of real workloads. Fi-
nally, given a peer-to-peer routing substrate, it is very easy
to deploy Squirrel in a corporate network.
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