
Querying the Internet with PIER

Ryan Huebsch Joseph M. Hellerstein Nick Lanham Boon Thau Loo Scott Shenker
�

Ion Stoica

EECS Computer Science Division, UC Berkeley�
huebsch@,jmh@,nickl@db.,boonloo@,istoica@ � cs.berkeley.edu,

�
International Computer Science Institute

shenker@icsi.berkeley.edu

Abstract
The database research community prides itself on
scalable technologies. Yet database systems tradi-
tionally do not excel on one important scalability di-
mension: the degree of distribution. This limitation
has hampered the impact of database technologies
on massively distributed systems like the Internet.

In this paper, we present the initial design of
PIER, a massively distributed query engine based
on overlay networks, which is intended to bring
database query processing facilities to new, widely
distributed environments. We motivate the need for
massively distributed queries, and argue for a relax-
ation of certain traditional database research goals
in the pursuit of scalability and widespread adop-
tion. We present simulation results showing PIER
gracefully running relational queries across thou-
sands of machines, and show results from the same
software base in actual deployment on a large ex-
perimental cluster.

1 Introduction
The database research community prides itself on the scala-
bility of its technologies. The challenge of supporting “Very
Large Data Bases” is core to the community’s identity, and
ongoing research on scalability has continuously moved the
field forward. Yet database systems do not excel on one
important scalability dimension: the degree of distribution.
This is the key scalability metric for global networked sys-
tems like the Internet, which was recently estimated at over
162 million nodes [9]. By contrast, the largest database
systems in the world scale up to at most a few hundred
nodes. This surprising lack of scalability may help explain
the database community’s lament that its technology has not
become “an integral part of the fabric” of massively dis-
tributed systems like the Internet [4].

In this paper, we present PIER (which stands for “Peer-
to-Peer Information Exchange and Retrieval”), a query en-
gine that comfortably scales up to thousands of participat-
ing nodes. PIER is built on top of a Distributed Hash Table

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

(DHT), a peer-to-peer inspired overlay network technology
that has been the subject of much recent work in the network-
ing and OS communities [26, 31, 29, 36]. We present sim-
ulation results showing PIER gracefully running relational
queries across thousands of machines, and initial empirical
results of the same software base in actual deployment on
our department’s largest active cluster of computers.

Our agenda in this initial paper on PIER is twofold. We
show that a system like PIER presents a “technology push”
toward viable, massively distributed query processing at a
significantly larger scale than previously demonstrated. In
addition, we present what we believe to be an important, vi-
able “application pull” for massive distribution: the querying
of Internet-based data in situ, without the need for database
design, maintenance or integration. As a team of network and
database researchers, we believe in the need and feasibility of
such technology in arenas like network monitoring.

The primary technical contributions of this work are ar-
chitectural and evaluative, rather than algorithmic. We ar-
gue that certain standard database system design require-
ments are best relaxed in order to achieve extreme scala-
bility. We present a novel architecture marrying traditional
database query processing with recent peer-to-peer network-
ing technologies, and we provide a detailed performance
study demonstrating the need for and feasibility of our de-
sign. Finally, we describe how our architecture and tradeoffs
raise a number of new research questions, both architectural
and algorithmic, that are ripe for further exploration.

2 Querying the Internet
In this section, we present some motivating applications for
massively distributed database functionality, and from them
extract design principles for a reusable system to address
these applications.

2.1 Applications and Design Principles

Peer-to-peer (P2P) filesharing is probably the best-known
Internet-scale query application today – in today’s post-
Napster, post-AudioGalaxy era, these tools truly run queries
across the Internet, and not on centralized servers. The rea-
son is not particularly noble: decentralized data spreads re-
sponsibility and tracking of copyright violation, motivating
in situ processing of file data and metadata (filenames, sizes,
ID3 tags, etc.) The wide distribution of this data comes from
massive deployment by “normal”, non-expert users. These
systems are not perfect, but they are very useful, and widely
used. In this sense, they echo the rise of the Web, but their
query functionality is richer than point-to-point HTTP, and
“closer to home” for database research.

We believe there are many more natural (and legal) appli-
cations for in situ distributed querying, where data is gener-
ated in a standard way in many locations, and is not amenable
to centralized, “warehouse”-type solutions. Warehousing can
be unattractive for many reasons. First, warehouses are best
suited for historical analysis; some applications prefer live
data. Second, warehouses can be expensive to administer, re-
quiring a data center with sufficient storage and bandwidth to
scale. Finally, socio-political concerns may discourage ware-
houses – with their centralized control and responsibility –
when distributed query solutions are available.

An application category of particular interest to us is
widespread network monitoring. Network protocols like IP,
SMTP, and HTTP tend to have standard data representations,
and also have widespread server implementations that could
plausibly participate in “wrapping” the data for useful dis-
tributed query processing.

As a concrete example, we discuss the problem of network
intrusion detection. Network behaviors can be categorized by
“fingerprints”, which may be based on many kinds of data:
sequences of port accesses (e.g., to detect port scanners), port
numbers and packet contents (for buffer-overrun attacks or
web robots,) or application-level information on content (for
email spam). An intrusion is often hard to detect quickly
except by comparing its “fingerprint” to other recently ex-
perienced attacks. We believe that many standard network
servers (e.g., mail servers, web servers, remote shells, etc.)
and applications (e.g., mail clients, calendar programs, web
browsers, etc.) could bundle fingerprint-generating wrappers
to optionally participate in distributed intrusion detection.

PIER provides a way to flexibly and scalably share and
query this fingerprint information. Each attacked node can
publish the fingerprint of each attack into PIER’s distributed
index, where it will persist for some period before “aging
out” (Section 3.2.3). To determine the threat level, organi-
zations can then periodically query the system to see which
fingerprints are similar, how many reports exist, etc.

For example, in order to find compromised nodes on
the network, it may be useful to use multiple fingerprint-
wrappers to identify multiple kinds of “intrusions” from a
single domain – e.g., to identify unrestricted email gateways
(often a channel for spam) running in the same subnet as a
web robot (which may be crawling for email addresses):
SELECT S.source

FROM spamGateways AS S, robots AS R
WHERE S.smtpGWDomain

= R.clientDomain;

In a more general environment, a summary of widespread
attacks can be a simple aggregation query over a single fin-
gerprint table:
SELECT I.fingerprint, count(*) AS cnt

FROM intrusions I
GROUP BY I.fingerprint
HAVING cnt > 10;

Organizations may treat some reporters as more useful or
reliable than others, and therefore may want to weigh results
according to their own stored judgment of reputations. This
can be easily accomplished with the following query:
SELECT I.fingerprint,

count(*) * sum(R.weight) AS wcnt
FROM intrusions I, reputation R

WHERE R.address = I.address
GROUP BY I.fingerprint
HAVING wcnt > 10;

We choose intrusion detection examples because we ex-
pect many people would willingly set their servers to “opt
in” to a communal system to improve security1. How-
ever, many analogous examples can be constructed using
standard network tools available today. For example, net-
work tools like tcpdump can be used to generate traces
of packet headers, supporting queries on bandwidth utiliza-
tion by source, by port, etc. Beyond the analysis of packet
headers (which are arguably “metadata”), intrusion detection
tools like Snort [28] can take a packet stream and generate
signatures much like those described above, by examining
both packet headers and the data “payloads” that they carry.
Tools like TBIT [24] can be used to support queries about the
deployment of different software versions (TBIT reports on
TCP implementations); this can be useful for doing “public
health” risk assessment and treatment planning when secu-
rity holes are identified in certain software packages. Query
applications outside of networking are also plausible, includ-
ing resource discovery, deep web crawling and searching,
text search, etc.

We intend for PIER to be a flexible framework for a wide
variety of applications – especially in experimental settings
where the development and tuning of an application-specific
system is not yet merited. We are interested in both the de-
sign and utility of such a general-purpose system – our goal
is both to develop and improve PIER, and to use it for net-
working research.

2.2 Relaxed Design Principles for Scaling

The notion of a database system carries with it a number of
traditional assumptions that present significant, perhaps in-
surmountable barriers to massive distribution. A key to the
scalability of PIER is our willingness to relax our adher-
ence to database tradition in order to overcome these barriers.
Based on the discussion above, we identify four design prin-
ciples that will guide our attempt to scale significantly:
a) Relaxed Consistency
While transactional consistency is a cornerstone of database
functionality, conventional wisdom states that ACID trans-
actions severely limit the scalability and availability of dis-
tributed databases. ACID transactions are certainly not used
in any massively distributed systems on the Internet to-
day. Brewer neatly codifies the issue in his “CAP Conjec-
ture” [11] which states that a distributed data system can en-
joy only two out of three of the following properties: Consis-
tency, Availability, and tolerance of network Partitions. He
notes that distributed databases always choose “C”, and sac-
rifice “A” in the face of “P”. By contrast, we want our system
to become part of the “integral fabric” of the Internet – thus
it must be highly available, and work on whatever subset of
the network is reachable. In the absence of transactional con-
sistency, we will have to provide best-effort results, and mea-
sure them using looser notions of correctness, e.g., precision
and recall.
b) Organic Scaling
Like most Internet applications, we want our system’s scala-
bility to grow organically with the degree of deployment; this
degree will vary over time, and differ across applications of
the underlying technology. This means that we must avoid

1The sharing of such data can be made even more attractive by integrat-
ing anonymization technologies, as surveyed in e.g. [7].

architectures that require a priori allocation of a data cen-
ter, and financial plans to equip and staff such a facility. The
need for organic scaling is where we intersect with the cur-
rent enthusiasm for P2P systems. We do not specifically tar-
get the usual P2P environment of end-user PCs connected by
modems, but we do believe that any widely distributed tech-
nology – even if it is intended to run on fairly robust gateway
machines – needs to scale in this organic fashion.
c) Natural Habitats for Data
One main barrier to the widespread use of databases is the
need to load data into a database, where it can only be ac-
cessed via database interfaces and tools. For widespread
adoption, we require data to remain in its “natural habitat” –
typically a file system, or perhaps a live feed from a process.
“Wrappers” or “gateways” must be provided to extract infor-
mation from the data for use by a structured query system.
While this extracted information may be temporarily copied
into the query system’s storage space, the data of record must
be expected to remain in its natural habitat.
d) Standard Schemas via Grassroots Software
An additional challenge to the use of databases – or even
structured data wrappers – is the need for thousands of users
to design and integrate their disparate schemas. These are
daunting semantic problems, and could easily prevent aver-
age users from adopting database technology – again frus-
trating the database community’s hopes of being woven into
the fabric of the Internet. Certainly networking researchers
would like to sidestep these issues! Fortunately, there is
a quite natural pathway for structured queries to “infect”
Internet technology: the information produced by popular
software. As argued above, local network monitoring tools
like Snort, TBIT and even tcpdump provide ready-made
“schemas”, and – by nature of being relatively widespread
– are de facto standards. Moreover, thousands or millions
of users deploy copies of the same application and server
software packages, and one might expect that such software
will become increasingly open about reporting its properties
– especially in the wake of events like the “SQL Slammer”
(Sapphire) attack in January, 2003. The ability to stitch lo-
cal analysis tools and reporting mechanisms into a shared
global monitoring facility is both semantically feasible and
extremely desirable.

Of course we do not suggest that research on widespread
(peer-to-peer) schema design and data integration is incom-
patible with our research agenda; on the contrary, solutions
to these challenges only increase the potential impact of
our work. However, we do argue that massively distributed
database research can and should proceed without waiting for
breakthroughs on the semantic front.

3 PIER Architecture
Given this motivation, we present our design, implementa-
tion and study of PIER, a database-style query engine in-
tended for querying the Internet. PIER is a three-tier system
as shown in Figure 1. Applications interact with the PIER
Query Processor (QP), which utilizes an underlying DHT.
An instance of each DHT and PIER component is run on
each participating node.

3.1 Distributed Hash Tables (DHTs)

The term “DHT” is a catch-all for a set of schemes sharing
certain design goals ([26, 31, 29, 36], etc.); we will see an ex-

Core

Relational

Execution

Engine

Provider
Storage

Manager

Overlay

Routing

Catalog

Manager

Query

Optimizer

Network

Monitoring

Other User

Apps

PIER

DHT

Applications

Figure 1: PIER Architecture

ample shortly in Section 3.1.1. As the name implies, a DHT
provides a hash table abstraction over multiple distributed
compute nodes. Each node in a DHT can store data items,
and each data item is identified by a unique key. At the heart
of a DHT is an overlay routing scheme that delivers requests
for a given key to the node currently responsible for that key.
This is done without any global knowledge – or permanent
assignment – of the mapping of keys to machines. Routing
proceeds in a multi-hop fashion; each node maintains only a
small set of neighbors, and routes messages to the neighbor
that is in some sense “nearest” to the correct destination.

DHTs provide strong theoretical bounds on both the num-
ber of hops required to route a key request to the correct desti-
nation, and the number of maintenance messages required to
manage the arrival or departure of a node from the network.
By contrast, early work on P2P routing used “unstructured”,
heuristic schemes like those of Gnutella and KaZaA, which
provide no such guarantees: they can have high routing costs,
or even fail to locate a key that is indeed available somewhere
in the network.

In addition to having attractive formal properties, DHTs
are becoming increasingly practical for serious use. They
have received intense engineering scrutiny recently, with sig-
nificant effort expended to make the theoretical designs prac-
tical and robust.

3.1.1 Content Addressable Network (CAN)

PIER currently implements a particular realization of DHTs,
called a Content Addressable Network [26]. CAN is based
on a logical � -dimensional Cartesian coordinate space, which
is partitioned into hyper-rectangles, called zones. Each node
in the system is responsible for a zone, and a node is identi-
fied by the boundaries of its zone. A key is hashed to a point
in the coordinate space, and it is stored at the node whose
zone contains the point’s coordinates2. Figure 2(a) shows a
2-dimensional � �������	��
�� �������	� CAN with five nodes.

Each node maintains a routing table of all its neighbors
in the coordinate space. Two nodes are neighbors in a plane
if their zones share a hyper-plane with dimension � -1. The
lookup operation is implemented by forwarding the message
along a path that approximates the straight line in the co-
ordinate space from the sender to the node storing the key.

2To map a unidimensional key into the CAN identifier space, we typi-
cally use
 separate hash functions, one for each CAN dimension.

((8, 8), (16, 16))

(16, 16)

(0, 0) (0, 16)

(a) (b)

((12, 12), (16, 16))

((12, 0),
 (16, 8)) (12, 8))

((8, 0),

((8, 0), (16, 8))

((0, 0), (8, 8))

(16, 0)

key = (15, 14)

(16, 16)(16, 0)

(0, 16)(0, 0)

Figure 2: (a) A 2-dimensional � ���������
	�� ���
�
��� CAN with five
nodes; the zone owned by each node is represented by its bottom-
left and the top-right coordinates. (b) An example of a lookup for
key �������
�
��� initiated by node owning the zone ������������������������� .

lookup(key) � ipaddr
join(landmark)
leave()

locationMapChange()

Table 1: Routing Layer API

Figure 2(b) shows the path followed by the lookup for key� ��� ����� � . Each node maintains ! � � � state, and the average
number of hops traversed by a message is "# $&%�' " , where $ is
the number of nodes in the system (see [26] for details). We
have chosen �)(*� in our simulations and experiments, lead-
ing to a growth behavior of $,+- . However, this growth can be
reduced to logarithmic by setting �.(*/10324$ or using a differ-
ent DHT design [31, 29, 36]. Thus, the scalability results we
show here could be improved yet further via another DHT.

3.2 DHT Design

There is active debate within the DHT research community
as to how to best factor DHT functionality into subsidiary
components. In this paper we have chosen one particular
split, which we present here. We expect that we can adapt our
design to “conventional wisdom” as it accrues in the DHT
community. As a validation exercise, we also deployed PIER
over a competing DHT design called Chord [31], which re-
quired a fairly minimal integration effort.

3.2.1 Routing Layer

As mentioned in Section 3.1, the core of the DHT is the dy-
namic content routing layer, which maps a key into the IP
address of the node currently responsible for that key. The
API for this layer is small and simple, providing just three
functions and one callback as shown in Table 1.

lookup is an asynchronous function which will issue a
callback when the node has been located3. The mapping be-
tween keys and nodes is constantly changing as nodes enter
and leave the network. The locationMapChange call-
back is provided to notify higher levels asynchronously when
the set of keys mapped locally has changed.

The join and leave calls provide for creating a new
overlay network, attaching to an existing network, and grace-

3If the key maps to the local node, then the lookup call is synchronous,
returning true immediately with no callback.

store(key, item)
retrieve (key) � item
remove(key)

Table 2: Storage Manager API

get(namespace, resourceID) � item
put(namespace, resourceID, instanceID,

item, lifetime)
renew(namespace, resourceID, instanceID,

item, lifetime) � bool
multicast(namespace, resourceID, item)5
scan(namespace) � iterator

newData(namespace) � item

Table 3: Provider API

fully leaving the network. For pre-existing networks, the
joinmethod simply requires the socket address of any node
already in the network (or NULL to start a new network). For
popular networks, it is assumed that there would be a list of
landmarks in a well known location (a la www.napigator.
com).

It is important to note that locality in the key space does
not guarantee locality in the network, although some pro-
posed algorithms do try to minimize network distance for
nearby keys. We return to this issue in Section 7.

3.2.2 Storage Manager

The storage manager is responsible for the temporary storage
of DHT-based data while the node is connected to the net-
work. The API for this layer is shown in Table 2. The API
is designed to be easily realized via standard main-memory
data structures, a disk-based indexing package like Berke-
ley DB [22], or simply a filesystem. All we expect of the
storage manager is to provide performance that is reason-
ably efficient relative to network bottlenecks. The data in the
DHT is distributed among many machines, and in many ap-
plications each machine will store a relatively small amount
of queryable information. (This is even true for filesharing,
for example, with respect to the index of filenames that gets
queried). For simplicity in our early work, we use a main-
memory storage manager. The modularity of the overall de-
sign allows for more complex and scalable storage managers
to be used as required.

3.2.3 Provider

The provider is responsible for tying the routing layer and
storage manager together while providing a useful interface
to applications. The complete API is shown in Table 3.

Before describing the API, some notes on our DHT nam-
ing scheme are appropriate. Each object in the DHT has a
namespace, resourceID, and instanceID. The namespace and
resourceID are used to calculate the DHT key, via a hash
function. The namespace identifies the application or group
an object belongs to; for query processing each namespace
corresponds to a relation. Namespaces do not need to be pre-
defined, they are created implicitly when the first item is put
and destroyed when the last item expires (as described be-
low). The resourceID is generally intended to be a value that

carries some semantic meaning about the object. Our query
processor by default assigns the resourceID to be the value
of the primary key for base tuples, although any attribute (or
combination) could be used for this purpose. Items with the
same namespace and resourceID will have the same key and
thus map to the same node. The instanceID is an integer
randomly assigned by the user application, which serves to
allow the storage manager to separate items with the same
namespace and resourceID (which can occur when items are
not stored based on the primary key). The put and get
calls are based directly on this naming scheme. Note that –
as with most indexes – get is key-based, not instance-based,
and therefore may return multiple items.

In order to adhere to our principle of “relaxed consis-
tency”, PIER uses the common Internet approach of soft state
to achieve reliability and limit overheads in the face of fre-
quent failures or disconnections [8]. This is the purpose of
the “lifetime” argument of the put call – it gives the DHT
a bound on how long it should store the item after receipt.
Each producer of data can also periodically invoke the re-
new call to keep their information live for as long as they
like. If a data item is not refreshed within the lifetime, then
the item is deleted from the DHT on the responsible node.
Thus, when a node fails or is disconnected, DHT entries are
lost. However, these entries will be restored to the system as
soon as the node re-sends that information when renewing.

To run a query, PIER attempts to contact the nodes that
hold data in a particular namespace. A multicast com-
munication primitive is used by the provider for this pur-
pose [18]. The provider supports scan access to all the data
stored locally on the node through the � scan iterator. When
run in parallel on all nodes serving a particular namespace,
this serves the purpose of scanning a relation. Finally the
provider supports the newData callback to the application
to inform it when a new data item has arrived in a particular
namespace.

3.3 QP Overview

The PIER Query Processor is a “boxes-and-arrows” dataflow
engine, supporting the simultaneous execution of multiple
operators that can be pipelined together to form traditional
query plans. In our initial prototype, we started by imple-
menting operators for selection, projection, distributed joins,
grouping, and aggregation.

Unlike many traditional databases, we do not employ an
iterator model to link operators together [13]. Instead oper-
ators produce results as quickly as possible (push) and en-
queue the data for the next operator (pull). This intermediate
queue is capable of hiding much of the network latency when
data must be moved to another site. Since networking is such
a fundamental aspect of our design, we chose not to encap-
sulate it away as in Volcano [12].

We intend in the future to add additional functionality to
PIER’s query processor, including system catalogs, an ex-
tensible operator interface, and declarative query parsing and
optimization. Note that such additional modules are comple-
mentary to the query processor itself: a parser and optimizer
will be layered above the existing query processor4, and the

4This would not be the case if we choose a continuously adaptive scheme
like [1], which operates within a query plan. We discuss this further in
Section 7.

catalog facility will reuse the DHT and query processor.
Following our “natural habitat” design principle, we do

not currently provide facilities within PIER for modifying
data managed by wrappers. Currently, we expect wrappers to
insert, update, and delete items (or references to items) and
tables (namespaces) directly via the DHT interface. Once we
add a query parser, it would be fairly simple to provide DDL
facilities for PIER to drive these DHT-based data modifica-
tions. But even if we did that, the updates would go to the soft
state in the DHT, not to the wrappers. If the need to provide
data-modification callbacks to updatable wrappers becomes
important, such facilities could be added.

3.3.1 Data Semantics for PIER Queries

Given our “relaxed consistency” design principle, we provide
a best effort data semantics in PIER that we call a dilated-
reachable snapshot. First, we define a “reachable snapshot”
as the set of data published by reachable nodes at the time
the query is sent from the client node. As a practical matter,
we are forced to relax reachable snapshot semantics to ac-
commodate the difficulty of global synchronization of clocks
and query processing. Instead, we define correct behavior
in PIER based on the arrival of the query multicast message
at reachable nodes: our reference “correct” data set is thus
the (slightly time-dilated) union of local snapshots of data
published by reachable nodes, where each local snapshot is
from the time of query message arrival at that node. For the
applications we are considering, this pragmatic asynchrony
in snapshots seems acceptable. Of course, our actual query
answers may not even provide this level of consistency, be-
cause of failures and partitions (published data from a reach-
able node may be transiently indexed by the DHT at a now-
unreachable node), and soft state (the DHT may transiently
index data at a reachable node that was published by a now-
unreachable node).

4 DHT-Based Distributed Joins
Our join algorithms are adaptations of textbook parallel and
distributed schemes, which leverage DHTs whenever possi-
ble. This is done both for the software elegance afforded by
reuse, and because DHTs provide the underlying Internet-
level scalability we desire. We use DHTs in both of the
senses used in the literature – as “content-addressable net-
works” for routing tuples by value, and as hash tables for
storing tuples. In database terms, DHTs can serve as “ex-
change” mechanisms [12], as hash indexes, and as the hash
tables that underlie many parallel join algorithms. DHTs pro-
vide these features in the face of a volatile set of participat-
ing nodes, a critical feature not available in earlier database
work. As we will see below, we also use DHTs to route mes-
sages other than tuples, including Bloom Filters.

We have implemented two different binary equi-join al-
gorithms, and two bandwidth-reducing rewrite schemes. We
discuss these with respect to relations � and � . We assume
that the tuples for � and � are stored in the DHT in separate
namespaces ��� and ��� . We note here that PIER also pro-
vides a DHT-based temporary table facility for materializing
operator output within query plans.

4.1 Core Join Algorithms

Our most general-purpose equi-join algorithm is a DHT-
based version of the pipelining symmetric hash join [35], in-

terleaving building and probing of hash tables on each input
relation. In the DHT context, all data is already hashed by
some resourceID, so we speak of rehashing a table on the
join key. To begin rehashing, each node in � � or � � per-
forms an � scan to locate each � and � tuple. Each tuple
that satisfies all the local selection predicates is copied (with
only the relevant columns remaining) and must be put into a
new unique DHT namespace, ��� . The values for the join at-
tributes are concatenated to form the resourceID for the copy,
and all copies are tagged with their source table name.

Probing of hash tables is a local operation that occurs at
the nodes in � � , in parallel with building. Each node regis-
ters with the DHT to receive a newData callback whenever
new data is inserted into the local � � partition. When a tu-
ple arrives, a get to the ��� is issued to find matches in the
other table; this get is expected to stay local. (If the local
DHT key space has been remapped in the interim, the get
will return the correct matches at the expense of an additional
round trip.). Matches are concatenated to the probe tuple to
generate output tuples, which are sent to the next stage in the
query (another DHT namespace) or, if they are output tuples,
to the initiating site of the query.

The second join algorithm, Fetch Matches, is a variant of a
traditional distributed join algorithm that works when one of
the tables, say � , is already hashed on the join attributes. In
this case, ��� is � scanned, and for each � tuple a get is is-
sued for the corresponding � tuple. Note that local selections
on � do not improve performance – they do not avoid gets
for each tuple of � , and since these gets are done at the
DHT layer, PIER’s query processor does not have the oppor-
tunity to filter the � tuples at the remote site (recall Figure 1).
In short, selections on non-DHT attributes cannot be pushed
into the DHT. This is a potential avenue for future stream-
lining, but such improvements would come at the expense of
“dirtying” DHT APIs with PIER-specific features – a design
approach we have tried to avoid in our initial implementa-
tion. Once the � tuples arrive at the corresponding � tuple’s
site, predicates are applied, the concatenation is performed,
and results are passed along as above.

4.2 Join Rewriting

Symmetric hash join requires rehashing both tables, and
hence can consume a great deal of bandwidth. To alleviate
this when possible, we also implemented DHT-based ver-
sions of two traditional distributed query rewrite strategies,
to try and lower the bandwidth of the symmetric hash join.
Our first is a symmetric semi-join. In this scheme, we mini-
mize initial communication by locally projecting both � and
� to their resourceIDs and join keys, and performing a sym-
metric hash join on the two projections. The resulting tuples
are pipelined into Fetch Matches joins on each of the tables’
resourceIDs. (In our implementation, we actually issue the
two joins’ fetches in parallel since we know both fetches will
succeed, and we concatenate the results to generate the ap-
propriate number of duplicates.)

Our other rewrite strategy uses Bloom joins. First, Bloom
Filters are created by each node for each of its local � and
� fragments, and are published into a small temporary DHT
namespace for each table. At the sites in the Bloom names-
paces, the filters are OR-ed together and then multicast to all
nodes storing the opposite table. Following the receipt of a
Bloom Filter, a node begins � scanning its corresponding ta-

ble fragment, but rehashing only those tuples that match the
Bloom Filter.

5 Validation and Performance Evaluation
In this section we use analysis, simulations and experiments
over a real network to demonstrate PIER.

Traditionally, database scalability is measured in terms of
database sizes. In the Internet context, it is also important to
take into account the network characteristics and the number
of nodes in the system. Even when there are plenty of com-
putation and storage resources, the performance of a system
can degrade due to network latency overheads and limited
network capacity. Also, although adding more nodes to the
system increases the available resources, it can also increase
latencies. The increase in latency is an artifact of the DHT
scheme we use to route data in PIER (as described in Sec-
tion 3.1). In particular, with CAN – the DHT scheme we use
in our system – a data item that is sent between two arbitrary
nodes in the system will traverse $ +- intermediate nodes on
average (though recall that this increase could be reduced to
logarithmic through changing the DHT parameters).

To illustrate these impacts on our system’s performance
we use a variety of metrics, including the maximum inbound
traffic at a node, the aggregate traffic in the system, and the
time to receive the last or the � -th result tuple. Finally, since
the system answers queries during partial failures, we need
to quantify the effects of these failures on query results.

We next present the load and the network characteristics
we use to evaluate PIER.

5.1 Workload

In all our tests we use the following simple query as the work-
load:
SELECT R.pkey, S.pkey, R.pad

FROM R, S
WHERE R.num1 = S.pkey

AND R.num2 > constant1
AND S.num2 > constant2
AND f(R.num3, S.num3) > constant3

Tables R and S are synthetically generated. Unless oth-
erwise specified, R has 10 times more tuples than S, and the
attributes for R and S are uniformly distributed. The con-
stants in the predicates are chosen to produce a selectivity of
50%. In addition, the last predicate uses a function f(x,y);
since it references both R and S, any query plan must evalu-
ate it after the equi-join. We chose the distribution of the join
columns such that 90% of R tuples have one matching join
tuple in S (before any other predicates are evaluated) and the
remaining 10% have no matching tuple in S. The R.pad at-
tribute is used to ensure that all result tuples are � KB in size.
Unless otherwise specified, we use the symmetric hash-join
strategy to implement the join operation.

5.2 Simulation and Experimental Setup

The simulator and the implementation use the same code
base. The simulator allows us to scale up to 10,000 nodes,
after which the simulation no longer fits in RAM – a limita-
tion of simulation, not of the PIER architecture itself. The
simulator’s scalability comes at the expense of ignoring the
cross-traffic in the network and the CPU and memory utiliza-
tions. We use two topologies in our simulations. The first is a
fully connected network where the latency between any two

nodes is 100 ms and the inbound link capacity of each node
is 10 Mbps. This setup corresponds to a system consisting
of homogeneous nodes spread throughout the Internet where
the network congestion occurs at the last hop. In addition,
we use the GT-ITM package [6] to generate a more realis-
tic transit-stub network topology. However, since the fully-
connected topology allows us to simulate larger systems, and
since the simulation results on the two topologies are quali-
tatively similar (as we’ll see in Section 5.7), we use the first
topology in most of our simulations.

In addition, we make two simplifying assumptions. First,
in our evaluation we focus on the bandwidth and latency bot-
tlenecks, and ignore the computation and memory overheads
of query processing. Second, we implicitly assume that data
changes at a rate higher than the rate of incoming queries.
As a result, the data needs to be shipped from source nodes
to computation nodes for every query operation.

We also run experiments of PIER deployed (not simu-
lated!) on the largest set of machines we had available to us
– a shared cluster of 64 PCs connected by a 1-Gbps network.

All measurements reported in this section are performed
after the CAN routing stabilizes, and tables R and S are
loaded into the DHT.

5.3 Centralized vs. Distributed Query Processing

In standard database practice, centralized data warehouses
are often preferred over traditional distributed databases. In
this section we make a performance case for distributed
query processing at the scales of interest to us. Consider the
join operation presented in Section 5.1 and assume that ta-
bles R and S are distributed among $ nodes, while the join is
executed at � “computation” nodes, where � � � � $.

If there are � bytes of data in toto that passed the selection
predicates on R and S, then each of the computation nodes
would need to receive ������������$	� data on average. The
second term accounts for the small portion of data that is
likely to remain local. In our case the selectivity of the pred-
icates on both R and S is 50%, which result in a value of � of
approximately � GB for a database of
 GB.

When there is only one computation node in a
	����� -node
network, one would need to provision for a very high link ca-
pacity in order to obtain good response times. For instance,
even if we are willing to wait one minute for the results, one
needs to reserve at least ��
�� Mbps for the downlink band-
width, which would be very expensive in practice. We val-
idated these calculation in our simulator, but do not present
the data due to space limitations.

5.4 Scalability

One of the most important properties of any distributed sys-
tem is the ability to scale its performance as the number of
nodes increases. In this section, we evaluate the scalability
of our system by proportionally increasing the load with the
number of nodes.

Consider the query above, where each node is responsible
for � MB of source data. Figure 3 plots the response time
for the
 � -th tuple. The value
 � was chosen to be a bit after
the first tuple received, and well before the last. We avoid
using the first response as a metric here, on the off chance
that it is produced locally and does not reflect network lim-
itations. In this scalability experiment we are not interested
in the time to receive the last result, because as we increase

0.1

1

10

100

1000

1 10 100 1000 10000

T
im

e
to

 3
0t

h
T

up
le

 (
se

cs
)

Number of Nodes

1 Computation Node
2 Computation Nodes
8 Computation Nodes

16 Computation Nodes
N Computation Nodes

Figure 3: Average time to receive the � � -th result tuple when both
the size of the network and the load are scaled up. Each data point
is averaged over three independent simulations.

the load and network size, we increase the number of results;
at some point in that exercise we end up simply measuring
the (constant) network capacity of the query site, where all
results must arrive.

As shown in Figure 3, when all nodes participate in the
computation the performance of the system degrades only by
a factor of � when the network size and the load increase from
two to ��� � � � � nodes. We are unable to obtain perfect scal-
ing because the number of overlay hops for each lookup in-
creases as the network size increases. This ultimately leads to
an increase in the lookup latency. In particular, with our im-
plementation of CAN the lookup length increases with $ %�' # ,
where $ is the number of nodes in the system. Thus, as the
number of nodes increases from two to ����� � � � , the lookup
length increases by a factor of about � � . The reason we ob-
serve only a factor of � degradation in our measurements is
that, besides the lookup operation, there is a fixed overhead
associated with the join operation5. We discuss these over-
heads in more detail in Section 5.5. Finally, note that the
increase in the lookup length could be reduced by choosing a
different value for � in CAN or using a different DHT design.

When the number of computation nodes is kept small by
constraining the join namespace � � , the bottleneck moves to
the inbound links of the computation nodes, and as a result
the performance of the system degrades significantly as the
total number of nodes and therefore the load per computation
node increases.

In summary, our system scales well as long as the num-
ber of computation nodes is large enough to avoid network
congestion at those nodes.

5.5 Join Algorithms and Rewrite Strategies

In this section we evaluate the four join strategies described
in Section 6: symmetric hash join, Fetch Matches, symmetric
semi-join rewriting, and Bloom Filter rewriting. We consider
two simulation scenarios where the bottleneck is the latency
or the network capacity. Note that the former case is equiva-
lent to a system in which the network capacity is infinite.

5For example, the time it takes to send the result tuple back to the join
initiator doesn’t change as the network size increases.

symmetric Fetch symmetric Bloom
hash Matches semi-join Filter

3.73 sec 3.78 sec 4.47 sec 6.85 sec

Table 4: Average time to receive the last result tuple.

5.5.1 Infinite Bandwidth

To quantify the impact of the propagation delay on these four
strategies, we first ignore the bandwidth limitations, and con-
sider only the propagation delay.

Each strategy requires distributing the query instructions
to all nodes (a multicast message) and the delivery of the
results (direct IP communication between nodes). Table 4
shows the average time measured by the simulator to receive
the last result tuple by the query node in a network with
$
(� (����
�� nodes. We proceed to explain these values
analytically.

Recall that the lookup in CAN takes $ +- hops on average.
Since the latency of each hop is 100 ms, the average lookup
latency is $ +-
 ��� � (� � ��� sec. In contrast, the latency
of a direct communication between any two nodes is � � � ms.
Reference [18] describes the multicast operation, used to dis-
tribute the query processing, in detail. Here we only note that
in this particular case it takes the multicast roughly 3 sec to
reach all nodes in the system. Next, we detail our analysis
for each join strategy:
Symmetric hash join To rehash the tuples, the DHT must
(1) lookup the node responsible for a key, and (2) send the
put message directly6 to that node. Adding the multicast
and the latency for delivering the results to the join initiator,
we obtain
 � � � ��� �
�� � � �.(
 � � � sec, which is close to
the simulator’s value in Table 4.
Fetch Matches. To find a possible matching tuple, the nodes
must (1) lookup the address of the node responsible for that
tuple, (2) send a request to that node, (3) wait for the reply,
and (4) deliver the results. In this scenario there is one CAN
lookup and three direct communications. Adding up the costs
of all these operations yields
 � � � ��� �
�� � � � (
 � ��� sec.
Symmetric semi-join rewrite. In this case, the projected tu-
ples are (1) inserted into the network (one CAN lookup plus
one direct communication), and (2) a Fetch Matches join is
performed over the indexes (one CAN lookup and one di-
rect communication). Thus, we have a total of two CAN
lookup operations and four direct communications (includ-
ing the delivery of results). All these operations account for

 �
�� � � ��� � ��� � � � (� � ��� sec.
Bloom Filter rewrite. Each node creates the local Bloom
Filters and sends them to the collectors (one lookup and
one direct communication). In turn, the collectors distribute
the filters back to the source nodes (one multicast), and the
source nodes then perform the rehash for a symmetric hash
join (one CAN lookup and one direct communication). To-
gether, in addition to the multicast operation required to dis-
tribute the query processing, we have another multicast op-

6Most DHT operations consist of a lookup followed by direct communi-
cation. Since these two operations are not atomic, there can be a case where
a node continuously fails to contact a node responsible for a certain key,
because the node mapping to that key always changes after the lookup is
performed. However, this is unlikely to be a problem in practice. The band-
width savings of not having a large message hop along the overlay network
outweighs the small chance of this problem.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100

A
gg

re
ga

te
 N

et
w

or
k

T
ra

ffi
c

(M
B

)

Selectivity of Predicate on Relation S

Sym. Hash Join
Fetch Matches

Sym. Semi-Join
Bloom Filter

Figure 4: Aggregate network traffic generated by each join strat-
egy.

eration, two lookup operations, and three direct communica-
tions. Adding them up gives us
��
 �
	� � � ��� �
�� � � � (� � ���
sec. The reason that this value is larger than the one reported
in Table 4 is because in our derivations we have assumed that
there is one node that experiences worst case delays when
waiting for both multicasts. However, this is very unlikely to
happen in practice.

5.5.2 Limited Bandwidth

In this section, we evaluate the performance of the four join
strategies in the baseline simulation setup in which the in-
bound capacity of each node is 10 Mbps. We first measure
the network overhead incurred by each join strategy, and then
measure the time to receive the last result tuple.

Figure 4 plots the bandwidth requirements for each strat-
egy as a function of the selectivity of the predicate on S. The
total size of relations R and S is approximately
�� GB, and
the system has � ��
�� nodes.

As expected, the symmetric hash join uses the most net-
work resources since both tables are rehashed. The increase
in the total inbound traffic is due to the fact that both the
number of tuples of S that are rehashed and the number of
results increase with the selectivity of the selection on S. In
contrast, the Fetch Matches strategy basically uses a constant
amount of network resources because the selection on S can-
not be pushed down in the query plan. This means that re-
gardless of how selective the predicate is, the S tuple must
still be retrieved and then evaluated against the predicate at
the computation node. In the symmetric semi-join rewrite,
the second join transfers only those tuples of S and R that
match. As a result, the total inbound traffic increases lin-
early with the selectivity of the predicate on S. Finally, in
the Bloom Filter case, as long as the selection on S has low
selectivity, the Bloom Filters are able to significantly reduce
the rehashing on R, as many R tuples will not have an S tuple
to join with. However, as the selectivity of the selection on S
increases, the Bloom Filters are no longer effective in elim-
inating the rehashing of R tuples, and the algorithm starts to
perform similar to the symmetric join algorithm.

To evaluate the performance of the four algorithms, in Fig-
ure 5 we plot the average time to receive the last result tuple.

20

40

60

80

100

120

140

160

180

200

220

10 20 30 40 50 60 70 80 90 100

T
im

e
to

 L
as

t T
up

le
 (

se
cs

)

Selectivity of Predicate on Relation S

Sym. Hash Join
Fetch Matches

Sym. Semi-Join
Bloom Filter

Figure 5: Time to receive the last result tuple for each strategy.

The reason we use the last tuple here rather than the
 � -th
is to illustrate the different bottlenecks in the system. When
the selectivity of the predicate on S is lower than 40%, the
bottleneck is the inbound capacity of the computation nodes.
As a result, the plots in Figure 5 follow a trend similar to
that of the total inbound traffic shown in Figure 4. As the
predicate selectivity on S exceeds 40% the number of results
increases enough such that the bottleneck switches to being
the inbound capacity of the query site.

5.6 Effects of Soft State

In this section we evaluate the robustness of our system in the
face of node failures. The typical algorithm used by DHTs to
detect node failures is for each node to send periodic keep-
alive messages to its neighbors. If a certain number of keep-
alive messages remain unanswered, a node will conclude that
its neighbor has failed. Thus, when a node fails, it will take
its neighbors some time until they learn that the node has
failed. During this time all the packets sent to the failed node
are simply dropped. In this section we assume somewhat
arbitrarily that it takes 15 seconds to detect a node failure.
Once a node detects a neighbor failure, we assume that the
node will route immediately around the failure.

When a node fails, all the tuples stored at that node are lost
– even if the nodes that published them are still reachable. A
simple scheme to counteract this problem is to periodically
renew (refresh) all tuples. To evaluate this scheme we plot
the average recall as a function of the node failure rate for
different refresh periods when there are 4096 nodes in the
system (see Figure 6). A refresh period of 60 sec means that
each tuple is refreshed every 60 sec. Thus, when a node fails,
the tuples stored at that node are unavailable for 30 sec on av-
erage. As expected the average recall decreases as the failure
rate increases, and increases as the refresh period decreases.
For illustration, consider the case when the refresh period is
60 sec and the failure rate is 240 nodes per minute. This
means that about 6% (i.e.,
�� ����� ��� �) of the nodes fail every
minute. Since it takes up to 30 sec on average until a lost tu-
ple is reinserted in the system, we expect that � �
 � sec � � � sec
= 3% of the live tuples in the system to be unavailable. This
would result in a recall of 97% which is close to the value
of 96% ploted in Figure 6. Note that this recall figure is with

91

92

93

94

95

96

97

98

99

100

0 50 100 150 200 250

Ave
rag

e R
eca

ll (%
)

Failure Rate (failures/min)

30sec Refresh
60sec Refresh

150sec Refresh
225sec Refresh

Figure 6: Average recall for different refresh periods.

1

10

100

1000

1 10 100 1000 10000

T
im

e
to

 3
0t

h
T

up
le

 (
se

cs
)

Number of Nodes

1 Computation Node
N Computation Nodes

Figure 7: Average time to receive the � � -th result tuple when both
the size of the network and the load are scaled up for a transit stub
topology (compare this with the plot in Figure 3). Each data point
is averaged over three simulations.

respect to the reachable snapshot semantics presented in Sec-
tion 3.3.

5.7 Transit Stub Topology

So far, in our simulations we have used a fully-connected net-
work topology. A natural question is whether using a more
complex and realistic network topology would change the
results. In this section, we try to answer this question by
using the GT-ITM package [6] to generate a transit stub net-
work topology. The network consists of four transit domains.
There are 10 nodes per transit domain, and there are three
stub domains per transit node. The number of nodes in the
system are distributed uniformly among the stub domains.
The transit-to-transit latency is 50 ms, the transit-to-stub la-
tency is 10 ms, and the latency between two nodes within the
same stub is 2 ms. The inbound link to each node is 10 Mbps.

Figure 7 shows the results of reruning the scalability ex-
periments from Section 5.4 using the transit-stub topology.
The results exhibit the same trends as the results obtained by
using the fully-connected topology (see Figure 3). The only

1

10

100

1 10 100

T
im

e
to

 3
0t

h
T

up
le

 (
se

cs
)

Number of Nodes

N Real Nodes

Figure 8: Average time to receive the � � -th result tuple in our pro-
totype implementation. All nodes in the system are also compu-
tation nodes. Each data point is averaged over seven independent
runs.

significant difference is that the absolute values to receive the

 � -th result tuple are larger. This is because the average end-
to-end delay between two nodes in the transit stub topology
is about 170 ms, instead of 100 ms as in the case of the fully
connected graph. Also note that in Figure 7 we plot the re-
sults only for up � ��� � nodes instead of 10,000 nodes. This
was the maximum network size allowed by our current simu-
lator using the transit-stub topology. This limitation, together
with the fact that we did not observe any qualitative different
results for the two topologies, were the main reasons for us-
ing the fully-connected topology in this paper.

5.8 Experimental Results

In this section we present the experimental results of running
our prototype implementation on a cluster of 64 PCs con-
nected by an 1 Gbps network. Figure 8 plots the time to re-
ceive the
 � -th result tuple as the number of nodes increases
from 2 to 64 and the load scales accordingly. As expected the
time to receive the
 � -th result tuple practically remains un-
changed as both the system size and load are scaled up. The
reason that the plot is not smooth is because the cluster we
used to run our experiments was typically shared with other
competing applications, and was particularly heavily loaded
during the period we ran these tests. We believe the peak in
response time at 32 nodes is due to an artifact in our CAN
implementation.

6 Related Work
Our work on PIER was inspired and informed by a number of
research traditions. We attempt to provide a rough overview
of related work here.

6.1 Widely-Deployed Distributed Systems

The leading example of a massively distributed system is the
Internet itself. The soft-state consistency of the Internet’s in-
ternal data [8] is one of the chief models for our work. On the
schema standardization front, we note that significant effort
is expended in standardizing protocols (e.g. IP, TCP, SMTP,
HTTP) to ensure that the “schema” of messages is globally
agreed-upon, but that these standards are often driven by pop-

ularly deployed software. While rarely stored persistently,
the number of bytes generated from each of these “schemas”
annually is enormous.

The most prevalent distributed query systems are P2P file-
sharing and DNS [21]. Both are examples of globally stan-
dardized schemas, and both make significant sacrifices in
data consistency in order to scale: neither provides anything
like transactional guarantees. Filesharing systems today do
not necessarily provide full recall of all relevant results, and
often provide poor precision by returning docIDs that are cur-
rently inaccessible. DNS does a better job on recall, but also
keeps stale data for a period of time and hence can sacrifice
precision. The scalability and adoption model of these sys-
tems is another model for our work here.

6.2 Database Systems

Query processing in traditional distributed databases fo-
cused on developing bandwidth-reduction schemes, includ-
ing semi-joins and Bloom joins, and incorporated these
techniques into traditional frameworks for query optimiza-
tion [23]. Mariposa was perhaps the most ambitious attempt
at geographic scaling in query processing, attempting to scale
to thousands of sites [32]. Mariposa focused on overcoming
cross-administrative barriers by employing economic feed-
back mechanisms in the cost estimation of a query optimizer.
To our knowledge, Mariposa was never deployed or simu-
lated on more than a dozen machines, and offered no new
techniques for query execution, only for query optimization
and storage replication. By contrast, we postpone work on
query optimization in our geographic scalability agenda, pre-
ferring to first design and validate the scalability of our query
execution infrastructure.

Many of our techniques here are adaptations of query ex-
ecution strategies used in parallel database systems [10]. Un-
like distributed databases, parallel databases have had signif-
icant technical and commercial impact. While parallelism
per se is not an explicit motivation of our work, algorithms
for parallel query processing form one natural starting point
for systems processing queries on multiple machines.

6.3 P2P Database and IR Proposals

P2P databases are a growing area of investigation. An early
workshop paper focused on storage issues [14], which we in-
tentionally sidestep here – our design principles for scalabil-
ity lead us to only consider soft-state storage in PIER. A re-
lated body of work is investigating the semantic data integra-
tion challenges in autonomous P2P databases (e.g. [15, 3].)
Solutions to those problems are not a prerequisite for the im-
pact of our work, but would nicely complement it.

This paper builds on our initial workshop proposal for
PIER [16]. To our knowledge, this paper presents the first se-
rious treatment of scalability issues in a P2P-style relational
query engine. There is an emerging set of P2P text search
proposals [27, 33] that are intended to provide traditional IR
functionality. These are analogous to a workload-specific re-
lational query engine, focusing on Bloom-Filter-based inter-
sections of inverted index posting lists.

6.4 Network Monitoring

A number of systems have been proposed for distributed net-
work monitoring. The closest proposal to our discussion
here is Astrolabe, an SQL-like query system focused specif-

ically on aggregation queries for network monitoring [34].
Astrolabe provides the ability to define materialized aggre-
gation views over sub-nets, and to run queries that hierarchi-
cally compose these views into coarser aggregates. Astrolabe
provides a constrained subset of SQL that sacrifices general
query facilities in favor of a family of queries that exploit
this hierarchy efficiently. This contrasts with the flat topol-
ogy and general platform provided by PIER.

Another workshop proposal for peer-to-peer network
monitoring software is presented in [30], including a simple
query architecture, and some ideas on trust and verification
of measurement reports.

6.5 Continuous Queries and Streams

A final related body of work is the recent flurry of activity
on processing continuous queries over data streams; these
proposals often use network monitoring as a driving applica-
tion [2]. Certainly continuous queries are natural for network
monitoring, and this body of work may be especially relevant
here in its focus on data compression (“synopses”) and adap-
tive query optimization. To date, work on querying streams
has targeted centralized systems.

Somewhat more tangential are proposals for query pro-
cessing in wireless sensor networks [5, 20]. These systems
share our focus on peer-to-peer architectures and minimiz-
ing network costs, but typically focus on different issues
of power management, extremely low bandwidths, and very
lossy communication channels.

7 Conclusions and Future Work
In this paper we present the initial design and implementation
of PIER, a structured query system intended to run at Inter-
net scale. PIER is targeted at in situ querying of data that pre-
exists in the wide area. To our knowledge, our demonstration
of the scalability of PIER to over 10,000 nodes is unique in
the database literature, even on simulated networks. Our ex-
periments on actual hardware have so far been limited by the
machines available to us, but give us no reason to doubt the
scalability shown in our simulation results. We are currently
deploying PIER on the PlanetLab testbed [25], which will af-
ford us experience with a large collection of nodes distributed
across the Internet.

The scalability of PIER derives from a small set of relaxed
design principles, which led to some of our key decisions,
including: the adoption of soft state and dilated-reachable
snapshot semantics; our use of DHTs as a core scalability
mechanism for indexing, routing and query state manage-
ment; our use of recall as a quality metric; and our appli-
cations in network monitoring.

In this initial work we focused on the query execution as-
pects of PIER, and we believe this initial design thrust was
sound. Our scalability results for “hand-wired” queries en-
courage us to pursue a number of additional research thrusts.
These include the following:
Network Monitoring Applications: The existing PIER im-
plementation is nearly sufficient to support some simple but
very useful network monitoring applications, a topic of par-
ticular interest to the networking researchers among us. Im-
plementing a handful of such applications should help us to
prioritize our work on the many system design topics we dis-
cuss next.

Recursive Queries on Network Graphs: Computer net-
works form complex graphs, and it is quite natural to recur-
sively query them for graph properties. As a simple example,
in the Gnutella filesharing network it is useful to compute
the set of nodes reachable within � hops of each node. A
twist here is that the data is the network: the graph being
queried is in fact the communication network used in exe-
cution. This very practical recursive query setting presents
interesting new challenges in efficiency and robustness.
Hierarchical aggregation and DHTs. In this paper we fo-
cused on implementation and analysis of distributed joins.
We have also implemented DHT-based hash grouping and
aggregation in PIER in a straightforward fashion, analogous
to what is done in parallel databases. However, parallel
databases are designed for bus-like network topologies, and
the techniques for aggregation are not necessarily appropri-
ate in a multi-hop overlay network. Other in-network aggre-
gation schemes, like those of Astrolabe [34] and TAG [20],
perform hierarchical aggregation in the network, providing
reduced bandwidth utilization and better load-balancing as a
result. It is not clear how to leverage these ideas in a DHT-
based system like PIER. One possible direction is to leverage
the application callbacks supported during intermediate rout-
ing hops in many DHTs – data could be aggregated as it is
routed, somewhat like the scheme in TAG. However it is not
clear how to do this effectively. An alternative is to superim-
pose an explicit hierarchy on the DHT, but this undercuts the
basic DHT approach to robustness and scalability.
Efficient range predicates: Because DHTs are a hashing
mechanism, we have focused up to now on equality predi-
cates, and in particular on equi-joins. In future, it is important
for PIER to efficiently support other predicates. Foremost
among these are the standard unidimensional range pred-
icates typically supported in database systems by B-trees.
Other important predicates include regular expressions and
other string-matching predicates, multidimensional ranges,
and near-neighbor queries.
Catalogs and Query Optimization: We have seen that our
existing boxes-and-arrows-based query engine scales, but for
usability and robustness purposes we would prefer to support
declarative queries. This necessitates the design of a catalog
manager and a query optimizer. A catalog is typically small,
but has more stringent availability and consistency require-
ments than most of the data we have discussed up to now,
which will stress some of our design principles. On the query
optimization front, one approach is to start from classic paral-
lel [17] and distributed database approaches [19], and simply
enhance their cost models to reflect the properties of DHTs.
This may not work well given the heterogeneity and shift-
ing workloads on the wide-area Internet. We are considering
mid-query adaptive optimization approaches like eddies [1]
to capture changes in performance; adaptivity is especially
attractive if we focus on continuous queries as we discuss
below.
Continuous queries over streams: As noted in Section 6,
we concur with prior assertions that continuous queries are
natural over network traces, which may be wrapped as un-
bounded data streams. PIER already provides a pipelin-
ing query engine with an asynchronous threading model,
so we can already process queries over wrapped distributed
“streams” by introducing “windowing” schemes into our join

and aggregation code. Beyond this first step, it would be
interesting to see how proposed stream techniques for syn-
opses, adaptivity, and sharing [2] could be adapted to our
massively distributed environment.
Routing, Storage, and Layering: A number of poten-
tial optimizations center on PIER’s DHT layer. These in-
clude: more efficient routing schemes to provide better phys-
ical locality in the network; “pushdown” of selections into
the DHT, batch-routing of many tuples per call via the
DHT; caching and replication of DHT-based data; and load-
balancing of the DHT, especially in the face of heteroge-
neous nodes and links. Many of these are topics of active
research in the growing DHT design community. An inter-
esting question to watch is whether the DHT community ef-
forts will be useful to the needs of our query processing sys-
tem, or whether we will do better by designing query-specific
techniques. In the latter case, a subsidiary question will be
whether our unique needs can be addressed above the DHT
layer, or whether we need specialized DHT support for in-
creased performance.

8 Acknowledgments
This research was funded by NSF grants ANI-0133811,
ANI-0196514, ANI-0207399, ANI-0225660, EIA-0122599,
IIS-0205647, IIS-0209108, ITR-0081698, ITR-0121555,
and ITR-0205519.

References
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query

processing. In Proc. 2000 ACM SIGMOD International Conference
on Management of Data, pages 261–272, Dallas, May 2000.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proc. Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
Madison, June 2002. ACM.

[3] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu. Data management for peer-to-peer com-
puting : A vision. In Fifth International Workshop on the Web and
Databases (WebDB 2002), June 2002.

[4] P. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin,
H. Garcia-Molina, J. Gray, G. Held, J. M. Hellerstein, H. V. Jagadish,
M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stonebraker, and
J. D. Ullman. The asilomar report on database research. SIGMOD
Record, 27(4):74–80, 1998.

[5] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database sys-
tems. In Proc. Mobile Data Management, volume 1987 of Lecture
Notes in Computer Science, Hong Kong, Jan. 2001. Springer.

[6] K. Calvert and E. Zegura. GT internetwork topology models
(GT-ITM). http://www.cc.gatech.edu/projects/
gtitm/gt-itm/README.

[7] J. Claessens, B. Preneel, and J. Vandewalle. Solutions for anonymous
communication on the Internet. In IEEE ICCST, 1999.

[8] D. D. Clark. The design philosophy of the DARPA internet protocols.
In Proceedings SIGCOMM ’88, Aug. 1988.

[9] I. S. Consortium. Network wizards internet domain survey. http:
//www.isc.org/ds/host-count-history.html.

[10] D. J. DeWitt and J. Gray. Parallel database systems: The future of high
performance database systems. CACM, 35(6):85–98, 1992.

[11] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
Consistent, Available, Partition-tolerant web services. ACM SIGACT
News, 33(2), June 2002.

[12] G. Graefe. Encapsulation of parallelism in the volcano query process-
ing system. In Proc. 1990 ACM SIGMOD International Conference on
Management of Data, pages 102–111, Atlantic City, May 1990. ACM
Press.

[13] G. Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–170, June 1993.

[14] S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu.
What can database do for peer-to-peer? In Proc. Fourth International
Workshop on the Web and Databases (WebDB 2001), Santa Barbara,
May 2001.

[15] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation
in peer data management systems. In 19th International Conference
on Data Engineering, Bangalore, India, 2003.

[16] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and
I. Stoica. Complex queries in dht-based peer-to-peer networks. In 1st
International Workshop on Peer-to-Peer Systems (IPTPS’02), March
2002.

[17] W. Hasan. Optimization of SQL Queries for Parallel Machines. PhD
thesis, Stanford University, 1995.

[18] R. Huebsch. Content-based multicast: Comparison of implementa-
tion options. Technical Report UCB/CSD-03-1229, UC Berkeley, Feb.
2003.

[19] L. F. Mackert and G. M. Lohman. R* optimizer validation and per-
formance evaluation for distributed queries. In Proc. Twelfth Inter-
national Conference on Very Large Data Bases (VLDB ’86), pages
149–159, Kyoto, Aug. 1986.

[20] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A
Tiny AGgregation service for ad-hoc sensor networks. In Fifth Sym-
posium on Operating Systems Design and Implementation (OSDI ’02),
Boston, Dec. 2002.

[21] P. Mockapetris. Domain names – implementation and specification,
Nov. 1987.

[22] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proc. 1999
Summer Usenix Technical Conference, Monterey, June 1999.

[23] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Sys-
tems (2nd Edition). Prentice Hall, 1999.

[24] J. Padhye and S. Floyd. Identifying the TCP behavior of web servers.
In Proceedings SIGCOMM ’01, June 2001.

[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the Internet. In Proc. ACM
HotNets-I Workshop, Princeton, Oct. 2002.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content addressable network. In Proc. 2001 ACM SIGCOM
Conference, Berkeley, CA, August 2001.

[27] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching.
http://issg.cs.duke.edu/search/, June 2002.

[28] M. Roesch. Snort – lightweight intrusion detection for networks. In
13th USENIX Systems Administration Conference (LISA ’99), Seattle,
WA, Nov. 1999.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218, 2001.

[30] S. Srinivasan and E. Zegura. Network measurement as a cooperative
enterprise. In Proc. First International Workshop on Peer-to-Peer Sys-
tems (IPTPS ’01), Cambridge, MA, Mar. 2002.

[31] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: Scalable Peer-To-Peer lookup service for internet applications.
In Proc. 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[32] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu. Mariposa: A wide-area distributed database
system. VLDB Journal, 5(1):48–63, 1996.

[33] C. Tang, Z. Xu, and M. Mahalingam. psearch: Information retrieval in
structured overlays. In HotNets-I, October 2002.

[34] R. van Renesse, K. P. Birman, D. Dumitriu, and W. Vogel. Scalable
management and data mining using astrolabe. In Proc. First Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’01), Cambridge,
MA, Mar. 2002.

[35] A. N. Wilschut and P. M. G. Apers. Dataflow Query Execution in
a Parallel Main-Memory Environment. In Proc. First International
Conference on Parallel and Distributed Info. Sys. (PDIS), pages 68–
77, 1991.

[36] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

