
1

CrowdOp: Query Optimization for Declarative
Crowdsourcing Systems

Ju Fan, Meihui Zhang, Stanley Kok, Meiyu Lu, and Beng Chin Ooi

Abstract—We study the query optimization problem in declarative crowdsourcing systems. Declarative crowdsourcing is designed to
hide the complexities and relieve the user the burden of dealing with the crowd. The user is only required to submit an SQL-like query
and the system takes the responsibility of compiling the query, generating the execution plan and evaluating in the crowdsourcing
marketplace. A given query can have many alternative execution plans and the difference in crowdsourcing cost between the best and
the worst plans may be several orders of magnitude. Therefore, as in relational database systems, query optimization is important to
crowdsourcing systems that provide declarative query interfaces. In this paper, we propose CROWDOP, a cost-based query
optimization approach for declarative crowdsourcing systems. CROWDOP considers both cost and latency in query optimization
objectives and generates query plans that provide a good balance between the cost and latency. We develop efficient algorithms in the
CROWDOP for optimizing three types of queries: selection queries, join queries and complex selection-join queries. We validate our
approach via extensive experiments by simulation as well as with the real crowd on Amazon Mechanical Turk.

Index Terms—Crowdsourcing, Query Optimization

F

1 INTRODUCTION

Crowdsourcing has attracted growing interest in recent years as an
effective tool for harnessing human intelligence to solve problems
that computers cannot perform well, such as translation, handwrit-
ing recognition, audio transcription and photo tagging. Various
solutions have been proposed to perform common database oper-
ations over crowdsourced data, such as selection (filtering) [14],
[18], join [12], [21], sort/rank [12], [6], [19] and count [11].

Recent crowdsourcing systems, such as CrowdDB [3],
Qurk [13] and Deco [15], provide an SQL-like query language
as a declarative interface to the crowd. An SQL-like declarative
interface is designed to encapsulate the complexities of dealing
with the crowd and provide the crowdsourcing system an interface
that is familiar to most database users. Consequently, for a given
query, a declarative system must first compile the query, generate
an execution plan, post human intelligence tasks (HITs) to the
crowd according to the plan, collect the answers, handle errors
and resolve the inconsistencies in the answers.

Q1: SELECT R2.∗, R1.review, R3.image
FROM REVIEW R1, AUTOMOBILE R2, IMAGE R3

WHERE R1.sentiment =“pos”
AND R3.color =“black” AND R3.quality =“high”
AND R1.make =R2.make AND R1.model =R2.model
AND R2.make =R3.make AND R2.model =R3.model

To illustrate a declarative crowdsourcing interface, we consider
the three example relations shown in Figure 1: the REVIEW table
contains car reviews from customers; the AUTOMOBILE table
contains car specifications; the IMAGE table contains car pictures.

• Ju Fan, Meiyu Lu and Beng Chin Ooi are with School of Computing,
National University of Singapore, Singapore 117417.
E-mail:{fanj, lumeiyu, ooibc}@comp.nus.edu.sg

• Meihui Zhang and Stanley Kok are with Information Systems Technology
and Design Pillar, Singapore University of Technology and Design, Singa-
pore 487372.
E-mail:{meihui zhang, stanleykok}@sutd.edu.sg

An example query for finding cars with black color, high-quality
images and positive reviews can be formulated as in Q1.

While declarative querying improves the usability of the sys-
tem, it requires the system to have the capability to optimize
and provide a “near optimal” query execution plan for each
query. Since a declarative crowdsourcing query can be evaluated
in many ways, the choice of execution plan has a significant
impact on overall performance, which includes the number of
questions being asked, the types/difficulties of the questions and
the monetary cost incurred. It is therefore important to design an
efficient crowdsourcing query optimizer that is able to consider all
potentially good query plans and select the “best” plan based on a
cost model and optimization objectives. To address this challenge,
we propose a novel optimization approach CROWDOP to finding
the most efficient query plan for answering a query. Compared
to the query optimization techniques proposed in recent crowd-
sourcing systems and algorithms, CROWDOP has the following
fundamental differences in its design principles:
Supporting cost-based query optimization. Like in traditional
databases, optimization mechanisms in crowdsourcing systems
can be broadly classified into rule-based and cost-based. A rule-
based optimizer simply applies a set of rules instead of estimating
the cost to determine the best query plan. CrowdDB [3] is an
example system that employs a rule-based query optimizer based
on several rewriting rules such as predicate push-down, join
ordering, etc. While rule-based optimization is easy to implement,
it has limited optimization capability and often leads to ineffec-
tive execution plans. CROWDOP, in contrast, adopts cost-based
optimization that estimates costs of alternative query plans for
evaluating a query and uses the one with the lowest estimated cost
(with respect to pre-defined cost functions).
Optimizing multiple crowdsourcing operators. CROWDOP con-
siders three commonly used operators in crowdsouring systems:
FILL solicits the crowd to fill in missing values in databases; SE-
LECT asks the crowd to filter items satisfying certain constraints;
and JOIN leverages the crowd to match items according to some

2

qualitycolormodelid make style

a1

a2 Toyota

Volvo Sedan

Sedan

a3

Toyota Sedan

R2: Automobile

a4

a5

S80

modelreview make sentiment

R1: Review

modelimage make style

R3: Image

a6

Avalon

Camry

Toyota Corolla Sedan

Volvo XC60 SUV

BMW X5 SUV

m1 m2 m3

m4 m5 m6

r1
...The 2014 Volvo S80 is the

flagship model for the brand...

r2
...S80 is a Volvo model having

problems in oil pump..

r3
...The BMW X5 is surprisingly

agile for a big SUV..

Fig. 1. A running example with three relations: AUTOMOBILE, REVIEW and IMAGE.

criteria. Considering the existing crowdsourcing database systems,
Deco [16] focuses on crowdsourcing missing values/records in the
database, Qurk [12] on studying the JOIN and SORT operators, and
the two recent crowdsourcing algorithms, CrowdScreen [14] and
CrowdFind [18], are designed for optimizing SELECT operator.
CROWDOP supports cost-based optimization for all the three
operators, optimizes the overall cost of all operators involved in a
query, and derives the “best” query evaluation plan.
Tradeoff between monetary cost and latency. Two key perfor-
mance concerns in crowdsourcing systems are monetary cost (how
much people pay for crowdsourcing) and latency (how long people
wait for results). A good query optimizer should consider the
tradeoff between these factors and perform a multi-objective op-
timization. Neither single-objective solution, i.e., minimizing the
cost but incurring heavy latency or reducing latency but incurring
high cost, is desirable. We examine recent crowdsourcing works
and find most query optimizers only search for query plans with
the minimal monetary cost [16], [12], [3], [14]. The only approach
taking latency into account is CrowdFind [18] that studies the
tradeoff between cost and latency for finding a limited number
of items. CROWDOP incorporates the cost-latency tradeoff into its
optimization objectives. It is capable of finding the query plan with
low latency given a user-defined budget constraint, which nicely
balances the cost and time requirement of users.

We study the research challenges that naturally arise in the
system design of CROWDOP. The first challenge is the formal-
ization of our optimization objectives that consider both monetary
cost and latency. To address this challenge, we introduce two opti-
mization objectives. The first minimizes cost without considering
latency, and the second uses budget-bounded latency minimization
to judiciously tradeoff cost and latency.

The second challenge is to efficiently select the best query plan
with respect to the defined optimization objectives. To this end, we
develop a class of optimization algorithms. For selection queries,
we study how to balance between the cost and latency when select-
ing items by using multiple SELECT operators (e.g., R3.color
=“black”, R3.make =“Volvo”, etc). We devise an algorithm to
determine which SELECT operators should be crowdsourced in
parallel for reducing the latency, and which ones should be applied
over the results filtered by other operators in order to save cost.
For join queries, we introduce a hybrid framework that combines
FILL and JOIN operators: we leverage the crowd to first fill some
missing attributes of items and then join the items having the
same attributes. For example, to match cars’ images with their
reviews, we can first ask the crowd to fill makes of cars and then
only match the cars with the same make. A key challenge in this
framework is how to balance the costs from FILL and JOIN. To
this end, we propose a partition-tree based strategy to select the

most appropriate attributes to fill, and devise efficient algorithms
for building the partition tree under latency constraints. Finally,
we study the optimization of complex queries that involve all the
three aforementioned operators with latency constraints.
Summary. We summarize our contributions. 1) We study cost-
based query optimization that considers cost-latency tradeoffs and
supports multiple crowdsourcing operators. 2) We formalize query
optimization objectives to minimize the latency under user-defined
cost budget. 3) We develop efficient algorithms for optimizing
selection, join and complex queries. 4) We conduct extensive
experiments and show that CROWDOP effectively balances the
tradeoff between cost and latency and outperforms the state of the
art.

The remainder of the paper is organized as follows. Section 2
introduces the data model, query language, and architecture of
CROWDOP, and Section 3 overviews the query optimization.
Detailed optimization strategies for selection query, join query and
complex query are described in Section 4, Section 5 and Section 6
respectively. Section 7 presents the experiments. Section 8 reviews
existing work. Section 9 concludes the paper.

2 OVERVIEW OF CROWDOP

2.1 Data Model and Query Language
Data model. CROWDOP employs relational data model, like
previous work on crowdsourcing systems [3], [12], [15]. In CROW-
DOP, the data is specified as a schema that consists of a set of re-
lations R = {R1, R2, . . . , R|R|}. These relations are designated
by schema designers and can be queried by crowdsourcing users.
Figure 1 provides an example schema with three relations. Each
relation Ri has a set of attributes {Ai

1, A
i
2, . . . , A

i
m} describing

properties of its tuples. Different from traditional databases, some
attributes of tuples are unknown before executing crowdsourcing,
such as REVIEW.sentiment and IMAGE.make1.
Query language. A CROWDOP query Q is an SQL query over
the designated relations, and its semantics represents the results of
evaluating Q over the relations using crowdsourcing. We consider
the following three query types.

1) Selection Query. A selection query applies one or more
human-recognized selection conditions over the tuples in a single
relation. Selection query has many applications in real crowd-
sourcing scenarios, such as filtering data [14] and finding certain
items [18]. A simple example of finding high-quality images of
black Volvo sedans is shown below, where selection conditions
(e.g., make =“Volvo”) are evaluated using crowdsourcing and the

1. Current version of CROWDOP does not support crowdsourcing new
rows/tuples. Only unknown attribute values of existing tuples can be crowd-
sourced.

3

image m1 satisfying all the conditions is returned as a result. More
Details will be discussed in Section 4.

Q2: SELECT R3.image
FROM IMAGE R3

WHERE make =“Volvo” AND style =“Sedan”
AND color =“black” AND quality =“high”

2) Join Query. A join query leverages human intelligence to
combine tuples from two or more relations according to certain
join conditions. One typical application of join query is crowd-
sourcing entity resolution [20], [22], which identifies pairs of
records representing the same real-world entity. Other applications
include subjective classification (e.g., sentimental analysis) [8] and
schema matching [2]. An example join query Q3 over the relations
in Figure 1 is to link the automobile records in R2 with the images
in R3, which is presented as follows.

Q3: SELECT R2.∗, R3.image
FROM AUTOMOBILE R2, IMAGE R3

WHERE R2.make =R3.make
AND R2.model =R3.model
JoinFilter R2.style = R3.style

Notice that CROWDOP can allow users to specify ad-
ditional criteria that may help filter the possible join can-
didates by using the keyword JoinFilter. For example,
R2.style = R3.style is a join-filter designated in Q3, which
means we do not need to consider the image-automobile pairs with
different values on style. A simple strategy to execute Q3 is to
crowdsource the tuples in R2 and R3 and obtain the set of tuple
pairs satisfying Q3, such as ⟨a1,m1⟩, ⟨a1,m3⟩, etc. We describe
more effective optimization strategies for join queries in Section 5.

3) Complex (Selection-Join) Query. CROWDOP supports more
general queries containing both selections and joins. These queries
can help users express more complex crowdsourcing requirements.
Q1 in Section 1 is an example of the complex query, which
finds black cars with high-quality images and “positive” reviews.
Optimization strategies for complex queries will be discussed in
Section 6.

Discussion. Current version of CROWDOP is designed to support a
basic set of SQL queries, i.e., Selection-Join (SJ) queries. While SJ
queries are powerful and can express many crowdsourcing intents,
they do not encompass other crowdsourcing requirements, such as
subjective sorting/top-k [12], human-powered clustering [1], etc.,
which will be supported in next version.

By default, CROWDOP evaluates the predicate in WHERE
clause using crowdsourcing if the predicate involves attributes
with unknown values. CROWDOP also allows users to specify the
predicates that they want to evaluate using only the values stored
in the database by a bypass keyword. For instance, if make
=“Volvo” is marked as bypass predicate in Q2, the system will
only search for the images that have “Volvo” as the existing value
in the make attribute rather than also searching for images with
unknown make using crowdsourcing. In this paper, we focus our
discussion on processing the predicates that need crowdsourcing.
The bypass predicates can be processed in the traditional way.

2.2 System Architecture
The architecture of query processing in CROWDOP is illustrated
in Figure 2. An SQL query is issued by a crowdsourcing user
and is firstly processed by QUERY OPTIMIZER, which parses the
query and produces an optimized query plan. The query plan
is then executed by CROWDSOURCING EXECUTOR to gener-
ate human intelligence tasks (or HITs) and publish these HITs

Crowdsourcing User

Crowdsourcing Platform

Statistics

Estimation

Crowdsourcing Executor

Relations

Query Optimizer

Query

Optimization

Strategies

CSelect CJoin CFill

Yes

No

Yes

No

Crowdsourcing Task (HIT) Manager Quality Control

Assigner

Combiner

CJoin

1 2

CSelect2

CSelect1

Initial Plan Optimized Plan

CJoin

1 2

CSelect1
CSelect2

Results

Fig. 2. Architecture of the CROWDOP system.

on crowdsourcing platforms, such as Amazon Mechanical Turk
(AMT). Based on the HIT answers collected from the crowd,
CROWDSOURCING EXECUTOR evaluates the query and returns
the obtained results to the user.
Query optimizer. Like traditional databases, QUERY OPTIMIZER

also parses an SQL query into a tree-structure query plan and
applies optimization strategies to the initial plan. The difference
is that tree nodes in a query plan in CROWDOP represent crowd-
powered instead of machine-based, operators. Typically, a crowd-
powered operator (or operator if there is no ambiguity) abstracts
a specific type of operation that can be processed by humans.
Figure 3(a) illustrates an example query plan for Q1. In this query
plan, three types of crowd-powered operators, i.e., CSELECT,
CJOIN and CFILL, are applied for evaluating Q1. Next, we shall
formally define these operators as follows.

1) CSELECT (Crowd-Powered Selection). A CSELECT oper-
ator abstracts the human operation of selecting objects satisfying
certain conditions. Formally, the input of a CSELECT operator
oS consists of a set T of tuples and a collection C of selection
conditions, and the output is a subset T ′ ⊆ T such that any tuple
t ∈ T ′ satisfies all conditions in C. For example, the operator oS1
in Figure 3(a) leverages the crowd to select the images of “black”
cars from relation IMAGE R3, and outputs tuples {m1,m4,m5}.

2) CJOIN (Crowd-Powered Join). A CJOIN operator leverages
the crowd to combine objects from two sources according to
certain constraints. Formally, the input of a CJOIN operator oJ

consists of two tuple sets T1 and T2 as well as a collection C of join
conditions, and the output is a set {⟨t1, t2⟩} ⊆ T1 ×T2 satisfying
all conditions in C. For instance, the operator oJ1 combines car
records in R2 and reviews in R1 using two equi-join conditions
R1.make =R2.make and R1.model =R2.model.

3) CFILL (Crowd-Powered Fill). A CFILL operator crowd-
sources the tuple attributes that are unknown to machines but
can be identified by humans. Formally, the input of a CFILL

operator oF is a collection of pairs of tuple sets and attributes
{⟨T1, A1⟩, ⟨T2, A2⟩, . . .}, and the output is a collection of tuple
sets {T1, T2, . . .} such that any tuple t ∈ Ti has its attribute t.Ai

filled by the crowd. To fill a tuple attribute, the crowd can either
choose a value from attribute’s value domain, or fill a new value
if no value in the domain fits the tuple. The value domain can
be either specified by the schema designer upfront or constructed
using the crowdsourcing results on the fly. Take the operator oF1 in
Figure 3(a) as an example. The operator fills make (e.g., “Volvo”,

4

CJoin oJ

1

R3

R2

R1

CSelect oS

2

CSelect oS

1
CSelect oS

3

CJoin oJ

2

CFill oF

1

color = ”black”

quality = ”high”

sentiment = ”pos”

make

R1.make=R2.make

R1.model=R2.model

R3.make=R2.make

R3.model=R2.model

(a) Query plan generation.

Select Images

C1: make=...

C2: model=...

C3: style=...

Your Choice:

Yes, it does

No, it doesn’t

Join Image and Review

C1: make

C2: model

Your Choice:

Yes

No

Fill Car Attributes

color of car in the image:

...The 2014

Volvo S80 is

the flagship

model for the

brand...

Conditions:

1: black
2: red
3: blue

Your Choice:

o
S

(R3, {C1,C2,C3}) o
J
(R3, R1, {C1,C2}) o

F
({R3, R3.color})

CSelect operator CJoin operator CFill operator

(b) Crowdsourcing execution.

Fig. 3. Overview of evaluating query Q1.

“BMW”) of the tuples from R1 that have passed oS3 and the tuples
from R2. Obviously, CFILL can be exploited to facilitate CJOIN

operators. In this example, given that oF1 has filled make in R1 and
R2, we only need to consider the tuples from two tables having
the same make. More details can be found Section 5.

Crowdsourcing executor. CROWDSOURCING EXECUTOR iter-
atively executes the operators by a bottom-up traversal of the
plan tree. In each iteration, the algorithm selects the operators O
whose inputs are already prepared, and executes the operators by
generating Human Intelligence Tasks (HITs) and publishing the
HITs on crowdsourcing platforms. After collecting and evaluating
the crowd’s answers A(o) for each operator o, the algorithm prop-
agates the answers to the parent operators, and further executes
crowdsourcing in the next iteration. When all operators in the plan
have been executed, the algorithm terminates and returns the tuples
produced by the root operator.

The crowdsourcing executor employs a Crowdsourcing Task
(HIT) Manager to generate the HITs to be published on crowd-
sourcing platforms. The HIT manager carefully design interfaces
for each operator type, as shown in Figure 3(b): 1) For the
CSELECT operator oS, a Yes/No question is asked to determine
whether a tuple satisfies selection conditions; 2) For the CJOIN

operator oJ, a Yes/No question is asked to identify a tuple
pair satisfying join conditions; 3) For the CFILL operator oF,
a drop-down list containing domain values (e.g., values for car
color) is designed to fill the missing value for an attribute. The
HIT Manager is also responsible for HIT-level optimization. For
instance, it can apply effective batch strategies [12] to reduce the
number of HITs, and thus further reduce the overall cost. We will
not elaborate more details of the HIT manager, as it is out of the
scope of this paper.

Selectivity estimation. Optimization strategies may rely on
database statistics, e.g., selectivity. However, obtaining these s-
tatistics is not trivial. One may require schema designers and/or
data providers to provide statistical information for unknown
attributes (e.g., the number of car makers) based on domain
knowledge [16]. As the data is crowdsourced and becomes more

complete, the system can adaptively update the statistics. One may
also look to crowdsourcing solutions. One way is to ask the crowd
to fill in statistical information based on their general background
knowledge. However, this method is data independent and could
be highly inaccurate. Another option is to sample the data, perform
crowdsourcing count tasks [11] and estimate the statistics based
on the sample data. This approach is more reliable but may incur
high crowdsourcing cost. Estimating selectivity is not the main
focus of this paper and we assume selectivity is known in later
sections. We use the sampling-based approach in our experiments.

3 OVERVIEW OF QUERY OPTIMIZATION

This section provides an overview of query optimization. We dis-
cuss performance metrics in optimization, optimization objectives,
and an optimization framework.

3.1 Performance Metrics
Monetary cost. The monetary cost of query plan Q, denot-
ed by cost(Q), is the overall rewards paid for executing all
crowdsourcing operators in the query plan PQ, i.e.,cost(PQ) =∑

o∈O cost(o), where cost(o) denotes the cost for executing
each individual operator o ∈ O. Intuitively, the cost of an
operator depends on the price given to the crowd for each question
generated for the operator, called unit cost u. We shall discuss how
to define the unit cost for different types of operators as follows.

For a CSELECT with condition set CS, the unit cost uS needs
to be given based on the crowds workload of evaluating conditions
CS. As such, the larger the |CS|, the higher the unit cost uS.
Similarly, a CJOIN operator should be given larger unit cost uJ
if there are more join conditions CJ in the operator. For a CFILL

operator with attribute A, we consider the unit cost uF depends
on the crowd’s workload of scanning the value domain of A: the
crowd should be given more rewards for filling an attribute with a
larger value domain Dom(A).

Based on the above intuition, we can define unit cost as a price
function u(x), where x the number of selection conditions/join
conditions or the attribute domain size discussed above. Intuitively,
one can use any monotonically increasing function (w.r.t. x) to
compute the u(x). In our work, we consider the linear price
function u(x) = b+wx, where b is the base charge for answering
one question, and w is the incremental charge of evaluating a
condition or scanning an attribute value. For example, consider the
operators in Figure 3(b), the CSELECT unit cost uS = b + 3 · w,
the CJOIN unit cost uJ = b + 2 · w, and the CFILL unit cost
uF = b+ 3 · w.

A crowdsourcing user can set the parameter b based on the
difficulty of crowdsourced questions. For example, comparing
two images is usually much harder than checking the equality
of two simple strings. In this sense, the user can set a larger b
to the former task than the latter. In addition, the user can set w
based on worker’s incremental effort of evaluating on additional
conditions/attribute values.
Latency. As crowdsourcing takes time, latency is naturally in-
troduced to quantify the speed of query evaluation. However, it
is non-trivial to predict and optimize latency. On one hand, the
crowdsourcing tasks are completed by a pool of workers in parallel
and the size of the pool is always changing. In other words,
workers may enter or leave the pool at any time. On the other
hand, the latency can also be affected by other crowdsourcing
tasks. There are a limited number of crowdsourcing workers on

5

public crowdsourcing platforms such as AMT. The workers are
free to choose the HITs that interest them, such as those with
high reward. In that sense, published crowdsourcing tasks compete
against each other for the workers. As such, the latency in real
crowdsourcing scenario has many uncertainties.

In this paper, we borrow the idea of [18] to make the following
simplification: we measure the latency L(PQ) of a query plan
PQ as the number of iterations (also called phases) used in PQ’s
crowdsourcing execution. Notice that this latency model implicitly
assumes that each iteration takes around the same amount of time.
One iteration refers to one level of the query plan tree and results
in one batch of HIT tasks, and the latency L(PQ) is equivalent to
the height of the query tree (assuming the height of leaves is 0).

We have conducted a set of crowdsourcing jobs to examine
this assumption in the real crowdsourcing platform, Amazon
Mechanical Turk (see Section 7.2.1). We have the observations
that: although the jobs have various numbers of tasks and operator
types, the crowd workers take a similar amount of time to complete
most of the questions, while a small number of answers may arrive
much later. This observation is consistent with [18]. Thus, we can
employ the “outstanding cancellation” approach introduced in [18]
to make latency of different crowdsourcing tasks being similar.
As a first attempt towards studying the cost-latency tradeoffs
of multiple crowdsourcing operators, we adopt this simplified
model in this paper. Nevertheless, this simplification may result
in inaccurate latency estimation. We plan to study the latency
refinement in future work. As discussed, the uncertain nature of
crowdsourcing makes it rather challenging to estimate the latency
without some simplification. The most recent study [5] models the
latency as a function of crowd arrival rate and the probability of
the crowd to accept the tasks, under the assumption that the arrival
rate/accept probability follows certain distribution.
Accuracy. Crowdsourcing may yield relatively low-quality results
or even noise, if there are spammers or malicious workers. Thus,
accuracy is taken as another important performance metric to
measure the quality of crowdsourcing results. In our CROWDOP

system, we address the accuracy issue by employing our previous
work on quality control [10] as a building block. Specifically,
the quality control model consists of a predicator and a verifier.
Given a required accuracy, the predictor estimates the number of
workers that are needed to achieve the requirement based on the
worker’s average accuracy. If no average accuracy is available in
the system, a default value 3 is used. The verifier is to resolve
the inconsistencies in the results returned by different workers and
select the best answer. A probability-based verification model [10]
is adopted if each worker’s historical performance is monitored,
otherwise a simple voting-based strategy is used. In this paper, we
focus on studying the cost-latency optimization problems while
assuming the accuracy issue has been adequately addressed.

3.2 Optimization Objectives

We define two optimization objectives considered in this paper.
The first one only takes into account the monetary cost and aims
to find the most economical query plan.

Objective 1 (Cost Minimization). Given a query Q, it aims to find
a query plan P∗Q that minimizes the monetary cost, i.e., P∗Q =
argPQ min cost(PQ).

As an optimal plan under Objective 1 may take a long time to
complete, we introduce the second objective that also takes latency

Algorithm 1: OPTFRAMEWORK
(
Q, C̄

)
Input: Q: A query; C̄: A cost budget;
Output: P ∗: An optimized query plan
if C̄ = Nil then1

P ∗ ← COSTOPT (Q)2

else3
L̄min ← COMPUTEMINLATENCY (Q)4
L̄max ← COMPUTEMAXLATENCY (Q)5
while L̄min ≤ L̄max do6

L̄← (L̄min + L̄max)/27
P ← LATENCYBOUNDOPT (Q, L̄)8
if P.cost ≤ C̄ then9

P ∗ ← P10
L̄max ← L̄− 111

else L̄min ← L̄+ 112

return P ∗13

into consideration. It aims to find an economical query plan with
a low latency under a user-provided cost budget.
Objective 2 (Cost Bounded Latency Minimization). Given a

query Q and a cost budget C̄ , it finds a query plan P∗Q
with bounded cost C(P∗Q) ≤ C̄ and the minimum latency
P∗Q = argPQ min latency(PQ). If there are multiple plans
with the minimum latency, it finds the one with lowest cost.

For example, given cost constraint C̄ = 200, the Cost Bound-
ed Latency Minimization problem aims to find a query plan such
that the overall cost is no more than 200 and the query plan tree
is of the minimum height. If there are multiple cost-bounded trees
having the minimum height, the problem finds the tree with the
minimum latency and the lowest cost.

3.3 An Optimization Framework
To achieve the objectives introduced in Section 3.2, we introduce
an optimization framework in Algorithm 1. This algorithm takes
a crowdsourcing query Q and a cost budget C̄ as input, and
produces the optimized query plan P ∗. It considers the following
two cases. If the cost budget is not specified (C̄ = Nil), it calls
Function COSTOPT to find a query plan of Q that achieves the
minimum cost (i.e., Cost Minimization). Otherwise, the algorithm
applies a binary search strategy to find the query plan with
the lowest latency under budget C̄ (i.e., Cost Bounded Latency
Minimization), which will be elaborated as follows.

The basic idea of the algorithm is to first solve the latency
bounded cost minimization problem, which, given the query Q
and a latency constraint L̄, finds the query plan with latency
bounded by L̄ and minimum cost. For example, given latency
constraint L̄ = 2, it finds a query plan such that the height of
the plan tree is at most 2 and the overall cost is minimized. Next,
taking the solution of latency bounded cost minimization as a
building block, denoted by LATENCYBOUNDOPT, the algorithm
aims to find and return the lowest latency bound that can produce a
query plan satisfying the cost budget C̄. To this end, the algorithm
exploits a binary search strategy: it first computes the highest and
lowest possible latency bounds of Q (L̄max and L̄min), which
can be easily achieved by considering the number of CSELEC-
T/CFILL/CJOIN operators in Q. Then, it computes the half L̄ of
the interval [L̄min, L̄max]. If it can find a query plan P under
latency bound L̄ satisfying cost budget C̄, the algorithm examines
the latency bounds smaller than L̄ by setting L̄max = L̄ − 1.

6

Otherwise, it considers the latency bounds larger than L̄. Applying
this half-interval strategy iteratively, it finally finds an optimized
plan P ∗.

It is not difficult to prove that the above binary search al-
gorithm can find the optimal solution of Objective 2, as cost
of the solution of LATENCYBOUNDOPT is monotonically non-
increasing with the increase of latency bound L̄. We shall present
the techniques devised to implement the two functions COSTOPT

and LATENCYBOUNDOPT in the following sections.

4 SELECTION QUERY OPTIMIZATION

Cost model. Consider a CSELECT operator oS with condition set
CS over a set T S of tuples. Its cost can be computed as the input
tuple size |T S| multiplying the unit cost uS, i.e.,

cost(oS) = |T S| · uS(|CS|), (1)

where uS(|CS|) is unit cost function (see Section 3.1). For simplic-
ity, in the examples throughout this section, we shall use a simple
function uS as the number of conditions, i.e., uS(|CS|) = |CS|.
For example, using this function, we pay 3 cost units for the
CSELECT question in Figure 3(b) as there are three selection
conditions.
Cost-latency tradeoff. Consider the selection query Q2 in Sec-
tion 2.1. Figure 4 shows two possible query plans for evaluat-
ing Q2. The first one makes use of four CSELECT operators,
oS1 − oS4, each of which considers only one selection condition.
When executing crowdsourcing, this plan sequentially crowd-
sources these operators. Specifically, in each iteration, it only
examines one selection condition and propagates the selected
tuples to the next iteration. The second query plan packs all the
selection conditions in a single CSELECT operator oS5. Thus, it
can crowdsource the conditions in parallel and evaluate Q2 in
one iteration. The sequential plan, which needs four iterations for
crowdsourcing, obviously incurs larger latency than the parallel
plan that needs only one iteration. However, while reducing the
latency, the parallel plan may introduce more monetary cost.
Based on the cost model defined above, the cost of the parallel
plan is |R3| ·uS(|CS|) = 6 ·uS(4), while the cost of the sequential
plan is (6+3+2+1) ·uS(1) as tuples are selected progressively2.
Cost estimation. The cost of a query plan PQ for a selection query
is computed by summing the cost of each CSELECT operator in
PQ. Given the pre-defined unit cost, the key issue is to estimate the
size of input tuple set T S for each CSELECT operator oS (refer to
Equation (1)). As illustrated in Figure 4, the input of the bottom
operator comes from the base table, while the upper ones take the
tuples that pass the selection conditions in the previous operators.
We can therefore estimate the input size using the selectivity of
the selection conditions. We denote the selectivity of a condition
C as s(C), which represents the probability that condition C
is satisfied, i.e., Pr(C = true). Moreover, like optimization
in traditional databases [7], we assume the independence of
conditions and thus can calculate the selectivity of the conjunction
of conditions as s(

∧n
i=1 Ci) =

∏n
i=1 s(Ci). The selectivity of an

operator can then be defined as s(oS) =
∏

C∈CS s(C).
We are now ready to estimate the cost of a selection query

plan PQ. Let R be the base table; the unit cost uS(|Ci|) is pre-
defined; O is an ordered set of CSELECT operators in PQ where

2. Referring to R3 in Figure 1 and 4(a), 6 tuples are fed to oS1, 3 of them
satisfy C1 and are passed to oS2, and 2 out of 3 satisfy C2, and finally only 1
satisfies C3.

R3

CSelect oS

2

CSelect oS

1

CSelect oS

4

CSelect oS

3

C4: style = ”Sedan”

C3: make = ”Volvo”

C2: quality = ”high”

C1: color = ”black”

(a) Sequential Plan.

R3

CSelect oS

5

C1: color = ”black”

C2: quality = ”high”

C3: make = ”Volvo”

C4: style = ”Sedan”

AND

AND

AND

(b) Parallel Plan.

Fig. 4. Cost-latency tradeoff of selection queries.

the operators are ordered in the sequence that they are evaluated;
each operator oSi ∈ O has a set of conditions Ci. The overall cost
of PQ can be calculated as

cost(PQ) =
∑
oS
i
∈O

uS(|Ci|) · |R| ·
i−1∏
j=1

s(oSj) (2)

Example 1. We compute the cost for the two query plans in
Figure 4. Suppose that selectivity of selection conditions is
known, i.e., s(C1) = 0.5, s(C2) = 0.83, s(C3) = 0.33 and
s(C4) = 0.66. Then, the cost estimated for the sequential plan
is |R3| · (1 + 0.5+ 0.5 · 0.83+ 0.5 · 083 · 0.33) = 12.3. For
the parallel plan, as all conditions reside in a single operator,
the cost can be estimated as |R3| · 4 = 24.

Algorithm for cost minimization. We first consider the optimiza-
tion objective that finds the query plan with minimum cost without
latency constraint. It is easy to see that the optimal plan must be
a sequential plan as illustrated in Example 1, because the cost
of simultaneously evaluating multiple conditions in an operator is
always larger than or equal to (w.r.t. the example price function
uS(|CS|) = |CS|) the cost of evaluating the conditions one by
one. Based on Equation (2), since the price function uS is pre-
defined and the base table R is fixed, we can prove that the optimal
sequential plan can be obtained by evaluating the conditions in the
selection query Q in increasing order of their selectivity [7].
Algorithm for latency-bounded cost minimization. We develop
an algorithm to achieve latency-bounded cost minimization. We
first define the optimization problem and then introduce two
lemmas. Intuitively, the optimization needs to not only “pack”
selection conditions into at most L̄ groups, but also determine the
ordering of the obtained groups.

Formally, given conditions C = {C1, C2, . . . , Cm}, it consid-
ers each ordered set of groups G = ⟨G1, G2, . . .⟩ satisfying all
the properties below: 1) A group Gi is a subset of C, i.e., Gi ⊂ C;
2) The groups cover all the conditions and are mutually disjointed,
i.e.,

∪
i Gi = C and ∀i ̸= j,Gi ∩ Gj = ∅; 3) The size of the

group set |G| ≤ L̄. Obviously, a group set G uniquely corresponds
to a query plan where each G ∈ G corresponds to a CSELECT

operator. Thus, query optimization naturally becomes finding the
optimal group set G∗ with minimum estimated cost.
Lemma 1 (Increasing Selectivity). ∀i, j (i ̸= j), if selectivity

s(Ci) < s(Cj), then, in the optimal group set G∗, the group
Gi′ containing Ci and the group Gj′ containing Cj must
satisfy i′ ≤ j′3.

3. See the appendices for all lemma proofs.

7

Algorithm 2: OPTSELECT (C, L̄)
Input: C: Selection conditions ; L̄: Latency constraint
Output: P : A query plan
Sort C in increasing order of selectivity ;1

/* Initializing G(i, j) */
for i = 1 . . . |C| do2

G(i, 1)← cost(i, |C|)3
for j = 2 . . . L̄ do G(i, j)← +∞4

/* Iteratively computing G(i, j) */
for j = 2 . . . L̄ do5

G(|C|, j)← cost(|C|, |C|)6
for i = 1 . . . |C| − 1 do7

G(i, j)← min
|C|−1
k=i

{
cost(i, k) +G(k + 1, j − 1)

}
8

p[i][j]← k∗ with the minimum cost9

Generate query plan P w.r.t G(1, L̄) from p[·][·]10
return P11

Lemma 1 provides us the following insight. To compute an
optimal group set, we can first sort conditions in increasing
order of their selectivity, and then determine how to group the
conditions. Next, we formalize this grouping problem as follows.
Given a sorted set of conditions ⟨C1, C2, . . . , Cm⟩, it finds a
group set G∗ with |G∗| ≤ L̄ and the minimum cost. This problem
has the optimal subproblem property, which enables us to develop
a dynamic programming algorithm. For simplicity, we slightly
abuse notation G(i, L) to denote both the L-size group set over
subset ⟨Ci, . . . , Cm⟩ and its cost. We use cost(i, k) to denote
the cost of the group containing the conditions Ci, Ci+1, . . . , Ck,
which can be computed as uS(k − i + 1) · |R| ·

∏i−1
l=1 s(Cl),

according to our cost estimation method mentioned previously.

Lemma 2 (Optimal Subproblem Property). For any subset of
conditions C′ = ⟨Ci, . . . , Cm⟩ with 1 ≤ i ≤ m and any
1 ≤ L ≤ L̄, the optimal group set G∗(i, L) dividing C′ into
L groups satisfies:

G∗(i, L) =
m−1
min
k=i

{
cost(i, k) +G∗(k + 1, L− 1)

}
, (3)

where G∗(i, 1) = cost(i,m).

Based on Lemma 2, we develop a dynamic programming
algorithm, as shown in Algorithm 2. The basic idea is to com-
pute the final solution G∗(1, L̄) in a bottom-up manner: it first
computes the solutions for its subproblems and then iteratively
derives G∗(1, L̄) by applying Lemma 2. Specifically, the algo-
rithm takes as input the set C of conditions in query Q and
latency constraint L̄, and outputs a query plan. It first sorts C
in increasing order of selectivity, and then computes G(i, j)
for ∀i ∈ {1, . . . , |C|}, j ∈ {1, . . . , L̄} and employs p[·][·] to
materialize grouping indexes. Finally, the algorithm generates a
query plan P w.r.t. G(1, L̄) from p[·][·] and returns it. The time
complexity of the algorithm is O(L̄ · |C|2).
Example 2. Consider the conditions {C1, C2, C3, C4} in Figure 4

and a latency constraint L̄ = 2. Algorithm 2 first sorts the
conditions based on selectivity (given in Example 1) into
⟨C3, C1, C4, C2⟩. Next, to compute G(1, 2), the algorithm
first computes G(i, 1) as cost(i, 4). For instance, cost(3, 4)
is the cost of group {C4, C2}, which can be computed as
uS(2) · |R| · s(C3) · s(C1). Then, it computes G(1, 2) as
min3k=1 {cost(1, k) +G(k + 1, 1)}, and outputs group set
⟨{C3}, {C1, C4, C2}⟩.

Make

Style

Volvo BMW Toyota

Sedan SUV

m1
m3
m4

m2

a1

m6

a3

m5
a5 a2

a4
a6

N0

N1

N2 N3

N5N4

(a) A partition tree S.

CJoin o
J

1

R3

R2.make=R3.make

R2.model=R3.model

R2

CFill o
F

4

makeCFill o
F

3

style

(b) Plan based on S.

Fig. 5. CFILL-CJOIN Framework for example query Q3.

Discussion. We discuss general cases where uS can be any mono-
tonically increasing function. In such cases, grouping conditions
may not only reduce the latency, but also lower the cost. Consider
an extreme example that uS(|C|) = 1 which means we pay 1 unit
cost regardless the number of conditions. Then, a parallel plan
as shown in Figure 4(b) can always achieve the lowest cost and
minimum latency. Algorithm 2 applies to general cases as well.

5 JOIN QUERY OPTIMIZATION

5.1 A CFill-CJoin Framework
A naı̈ve query plan that only uses CJOIN for comparing all tuple
pairs is obviously not effective. To address the limitation of this
CJOIN-only approach, we introduce a CFILL-CJOIN framework
which produces join results in the following two steps.
Fill step: We employ CFILL operators to crowdsource the missing
values on some attributes involved in either join conditions or join-
filters, which are called candidate CFILL attributes. For instance,
in query Q3, there are three candidate CFILL attributes, make,
model and style. The attributes that are actually filled by the
crowd are called CFILL attributes. After the fill step, we have the
knowledge of the values of some attributes and can “cluster” the
tuples into a partition tree, as shown in Figure 5(a). A partition tree
has two types of nodes, partition nodes and leaf nodes. A partition
node specifies some condition on a single attribute (e.g., make =
“Volvo”), while a leaf node represents the tuples satisfying all the
conditions along the path from the root to this leaf. For example,
the leftmost leaf N2 contains four tuples {m1,m3,m4, a1} that
satisfy the two conditions make = “Volvo” and style = “Sedan”.
Join step: This step performs join similarly to hash join. It applies
CJOIN operators to the tuples in the same leaf node, as any join
output tuple must have the same join key or join-filter value.
For instance, given the partition tree in Figure 5(a), this step
only compares the IMAGE and AUTOMOBILE tuples in the same
partition, such as ⟨m1, a1⟩, ⟨m6, a2⟩, etc.

Figure 5(b) illustrates the corresponding query plan for an-
swering Q3 obtained through the above two steps. In this plan,
we first employ CFILL operators to fill tuples from R2 and R3 on
attributes make and style. After that, a CJOIN operator is used
to join the tuples in the same leaf nodes. In fact, the query plan is
generated based on the partition tree. The tree height implies the
number of CFILL operators to be generated in the plan. One level
of partition nodes in the tree corresponds to one CFILL operator
in the query plan, but in the opposite direction. For instance, the
root node make converts to the bottom CFILL operator in the
query plan and the lower-level node style corresponds to the
upper CFILL operator. We notice that not all of the candidate
CFILL attributes are filled in the optimized plan. Further, it may

8

choose only a subset of tuples to fill in their missing values.
This is because filling itself incurs cost and more filling does not
necessarily lead to cost reduction in the join step. We next discuss
the cost computation and partition tree optimization.

5.2 Cost Computation for the CFill-CJoin Framework

Intuitively, the cost can be computed from the partition tree, and
it consists of the following two components: 1) the CFILL cost
for building the partition tree, and 2) the CJOIN cost of joining
the tuples in the same leaf in the partition tree. More formally,
let S denote the partition tree where partition (intermediate) node
and leaf node are respectively denoted by Np and Nl. We slightly
abuse the notation to use Np to denote both a partition node and
the attribute on this node. Similarly, we use Nl to represent both
a leaf node and the set of tuples contained in this leaf.
CFILL cost. Cost of the fill step depends on the CFILL tasks to
be crowdsourced. Consider the partition tree in Figure 5(a). Each
partition node takes in its input tuples (e.g, the root node make
takes tuples from R2 and R3 and the node style takes the tuples
having “Volvo” as their make) and leverages the crowd to fill in
a specific attribute value4. Formally, let us denote the set of input
tuples of Np as In(Np). The overall CFILL cost can be computed
by summing the cost incurred at all partition nodes in the partition
tree, i.e.,

costF =
∑
Np∈S

|In(Np)| · uF(|Dom(Np)|), (4)

where uF(|Dom(Np)|) is the unit cost of filling Np.

Example 3. Take the root node make in Figure 5(a) as an example.
As it takes as input 12 tuples (6 from AUTOMOBILE and 6
from IMAGE) and the value domain size is 4, the cost of this
node is 12 × uF(4). Similarly, the cost of node style is
6 × uF(2). Overall, the CFILL cost of the partition tree is
12× uF(4) + 6× uF(2).

CJOIN cost. The CJOIN cost depends on how many tuple pairs
residing in the same leaf nodes in the partition tree. Recall that,
for each of such pairs, we model the crowd’s workload as the
unit function uJ(|CJ|) . Based on this unit cost, we compute the
CJOIN cost as

costJ =
∑
Nl∈S

|Nl.T1| · |Nl.T2| · uJ(|CJ|). (5)

where Nl.T1 and Nl.T2 are tuple sets from input tables.

Example 4. Considering all the leaves in Figure 5(a), we can
compute the overall CJOIN cost: (3 × 1 + 1 × 1 + 1 × 1 +
1× 3)× uJ(2) = 8× uJ(2).

Overall, the cost of the query plan generated from the partition
tree S is computed by summing CFILL and CJOIN costs, i.e.,
cost(S) = costF + costJ.

5.3 Partition Tree Optimization

This section studies the problem of finding the optimal partition
tree that minimizes the overall cost.

Definition 1 (Partition Tree Optimization). Given a join query Q
with input tuple sets T1 and T2 and candidate CFILL attributes

4. Note that the input tuples are only those having missing attribute value.
Thus, the crowdsourcing will not be applied to do redundant work.

Algorithm 3: OPTJOIN(T1, T2, QJ, L̄)
Input: T1, T2: tuple sets to join ; QJ: join query;

L̄: latency constraint;
Output: P : A query plan
S ←GENPARTREE (T1, T2, QJ.AF, QJ.CJ, L̄)1
P ← GENPLAN (S)2
return P3

Algorithm 4: GENPARTREE(T1, T2,AF, CJ, L̄)
Input: T1, T2: tuple sets to join ; AF: CFILL attributes;

CJ: join conditions; L̄: latency constraint;
Output: N : A partition tree rooted at node N
N ← INITIALIZE (T1, T2)1
N.cost← ESTCJOINCOST (N, CJ)2
if L̄ = 1 then return N3
for each attribute A ∈ AF do4

cost(A)← ESTCFILLCOST (N,A)5
for each value v ∈ Dom(A) do6
T ′
1 ← ESTCARD(T1, A, v)7
T ′
2 ← ESTCARD(T2, A, v)8

Nc ←GENPARTREE(T ′
1 , T ′

2 ,AF − {A}, CJ, L̄− 1)9
cost(A)← cost(A) +Nc.cost10
SETNODE(A, v, Nc)11

A∗ ← the attribute with minimum cost(A)12
if cost(A∗) < N.cost then13

N.cost← cost(A∗)14
for each value v ∈ Dom(A∗) do15

Nc ← GETNODE(A∗, v)16
ADDCHILD(N , Nc)17

return N18

AF, it finds the best partition tree S∗ with the minimum overall
cost, i.e., S∗ = argS min cost(S).

Lemma 3. The problem of finding a partition tree with minimum
overall cost is NP-hard.

Algorithm for cost minimization. To solve the partition tree
optimization problem, we use a greedy heuristic. The algorithm
builds the partition tree in a top-down manner and iteratively
constructs the tree nodes. It first initializes the root node N as
a single partition containing all tuples from T1 and T2. Given the
root node, it determines whether to partition tuples in N by an
attribute in AF, or directly join these tuples without partitioning.
To make the decision, it considers each attribute A ∈ AF and
estimates the cost of first partitioning tuples by A and then joining
the tuples in the same partitions. We denote the cost as cost(A). It
then selects the attribute A∗ with the minimum estimated cost, i.e.,
A∗ = argA∈AF min cost(A), and compares the cost with that of
direct join. If the former has lower cost, the algorithm executes the
partitioning, generates the partitions (child nodes) and proceeds to
the processing at child nodes. Finally, it returns the partition tree
rooted at node N .
Algorithm for latency-bounded cost minimization. We next
study the partition tree optimization with latency constraint L̄,
which essentially finds the one with minimum cost from possible
partition trees with heights not greater than L̄. The problem can
be solved by a dynamic-programming algorithm, based on the
optimal subproblem property: any subtree of an optimal partition
tree must be optimal. This property can be easily proved by con-
tradiction: if a subtree of an optimal plan is not optimal, a better
partition scheme can be applied to the subtree to further reduce

9

the cost of the entire tree, which results in a contradiction. Based
on the optimal subproblem property, we devise an algorithm, as
shown in Algorithm 4. The algorithm recursively constructs the
partition tree. At each node N , it initializes the node with its
input tuples and estimates the cost of performing a direct join. It
then checks for the latency constraint: 1) If further partitioning is
allowed, it examines each remaining candidate CFILL attribute
and generates new partitions. And for each new partition it
recursively looks for the optimal subtree; 2) Otherwise, it returns
node N . When the optimal subtree is returned, it compares the
cost of having the subtree with the cost of doing direct join,
and performs the ADDCHILD function to assemble the nodes if
the former is cheaper. This way, the partition tree is constructed
bottom up. After that, Algorithm 3 generates a query plan based
on the constructed partition tree and returns it.

6 COMPLEX QUERY OPTIMIZATION

We focus our discussion on latency-bounded cost minimization
for complex query optimization. For the case where the latency
constraint is not imposed, we can optimize the query plan similarly
to traditional databases: apply some heuristic rules, such as push-
ing down selections and determining the join ordering, and then
invoke the above-mentioned techniques for optimizing selections
and joins.

6.1 Latency Constraint Allocation
As shown previously, latency constraints would largely affect the
cost of the query plan. Therefore, to achieve latency-bounded cost
minimization, we need to carefully allocate latency constraints
across operators in the entire plan. We illustrate this via an
example shown in Figure 6(a). Given an overall latency constraint
L̄ = 5, this query plan allocates the latency as follows: it assigns
2 to the selections over R3 (the selection over R1 can be executed
simultaneously with latency 1), 1 to the join between R2 and
R3 and 2 to the join between R1 and R2. Another possible plan
(not shown in the figure) may allocate 1 (instead of 2) to the
selections over R3 and preserve 1 for its subsequent join with R2.
The join can then be implemented using CFILL-CJOIN approach
and potentially save cost.

Moreover, latency constraint allocation may be intertwined
with the traditional join ordering problem, which makes the
optimization more complicated. Consider an alternative query plan
shown in Figure 6(b). The plan utilizes a better join order that first
joins R1 and R2 and then joins the result with R3. This new join
order, combined with elaborately determined latency allocation,
can further reduce the cost under latency constraint L̄ = 5.

6.2 Complex Query Optimization Algorithm
A straightforward method that enumerates all possible query plans
with height smaller than latency constraint L̄ is very expensive,
since it has to explore a large search space. We devise a dynamic-
programming algorithm based on the optimal subproblem prop-
erty, as illustrated in Figure 6(c). Given a latency constraint L̄,
the optimal query plan rooted at operator oJ2 with latency l must
satisfy the following suboptimal property: the subtrees of the
root must achieve the minimum cost under the latency constraint
L̄ − l, which implies that the subtrees must also incorporate the
optimal operator ordering. Similar to the latency-bound partition
tree optimization (Section 5.3), this property can also be proved

Algorithm 5: LATENCYBOUNDOPT
(
QS,QJ,R, L̄

)
Input: QS: Select segments; QJ: Join segments;

R: Relations; L̄: Latency constraint
Output: P : An optimized query plan
for each QS ∈ QS do1

for L = 1 . . .min{L̄− |QJ|, |QS.C|} do2

P S ← OPTSELECT
(
QS.C, L

)
3

SAVEPLAN
(
{QS.R}, P S

)
4

for k = 1 . . . |QJ| do5

{⟨Ri,Rj⟩} ← FINDCANDIDATES
(
R,QJ, k

)
6

for each ⟨Ri,Rj⟩ joined via QJ do7
for L = k, . . . , (L̄− |QJ|+ k) do8

for l = 1 . . . L− k do9

Pi ← FINDPLAN
(
Ri, L− l

)
10

Pj ← FINDPLAN
(
Rj , L− l

)
11

P J ← OPTJOIN
(
Pi.T , Pj .T , QJ, l

)
12

costP J ← P J.cost+ Pi.cost+ Pj .cost13

P
J ← argP J min costP J14

P ′ ←GENPLAN (P
J
, Pi, Pj)15

SAVEPLAN
(
Ri ∪Rj , P

′)16

P ← FINDPLAN (R, L̄)17
return P18

by contradiction: if the subtree is not optimal, we can always find
another entire plan to further reduce the cost. The property holds
for nested subtrees as well.

The pseudo code is shown in Algorithm 5. Let R be the set of
relations involved in the query. We parse the input complex query
into selection segments QS and join segments QJ: a selection seg-
ment QS ∈ QS consists of a relation QS.R, and all the selection
conditions QS.C over QS.R; a join segment QJ ∈ QJ contains the
join conditions QJ.C and the candidate CFILL attributes QJ.AF

over relations QJ.R1 and QJ.R2. The algorithm takes as input
QS, QJ and a latency constraint L̄, and produces an optimized
plan using a bottom-up strategy.

As the selections are always pushed down, the algorithm first
invokes OPTSELECT (refer to Algorithm 2) and generates the
optimal query plan of each selection segment QS ∈ QS, for each
possible latency constraint from 1 to min{L̄−|QJ|, |QS.C|}. The
maximum possible latency allocated to the selections is L̄− |QJ|
as each join needs as least one latency. On the other hand, each QS

costs at most |QS.C| latency when each condition in QS.C takes
up one latency. The algorithm materializes each generated optimal
plan P S and maintains the mapping between the plan and its base
relation {QS.R}. The latency of each plan is stored as P S.L for
later use.

It then iteratively joins the subtrees (sub-plans) generated
previously. Each iteration performs one join, and thus it takes
K = |QJ| iterations (K is the number of join segments). In
iteration k, the algorithm generates subtrees that contain exact
k joins by combining the sub-plans generated previously. It first
invokes FINDCANDIDATES to look for candidate subtrees that are
joinable in this iteration. Specifically, each pair of candidates are
in the form of ⟨Ri,Rj⟩, where Ri and Rj represent sets of base
relations, and they satisfy the following constrains: 1) Ri and Rj

are disjoint sets; 2) there exists QJ ∈ QJ that joins the relations in
Ri and Rj ; 3) the total number of relations contained in Ri and

10

R3

CSelect oS

2

CSelect oS

1

color =
”black”

quality =
”high”

CJoin oJ

1

R2

CJoin oJ

2

CFill oF

1 make

R1

CSelect oS

3

sentiment

= ”pos”

(a) A possible plan of Q1.

CJoin oJ

1

R3

R2

R1

CSelect oS

2

CSelect oS

1
CSelect oS

3

CJoin oJ

2

color =
”black”

quality =
”high”

sentiment
= ”pos”

CFill oF

1
make

CFill oF

2
make

(b) An optimized plan of Q1.

CJoin o
J

1

CJoin o
J

2

R3

CSelect o
S

2

CSelect o
S

1

Latency

constraint l

Latency

constraint L-l

Latency

constraint L - l

Latency

constraint L

(c) Optimal subproblem of query optimization.

Fig. 6. Optimization for complex query Q1 under latency constraint.

Rj is k + 1. The algorithm then searches for the optimal plan of
joining the two subtrees via QJ (i.e., generates the optimal subtree
having Ri ∪ Rj as base relations) as follows. For each possible
latency allocation for QJ and its subtrees (l for QJ and L−l for its
subtrees), FINDPLAN retrieves the materialized optimal subtrees
corresponding to Ri and Rj under latency constraint L − l, and
OPTJOIN (refer to Algorithm 3) generates the join plan under
latency constraint l. Then, the optimal plan associated with base
relation set Ri ∪ Rj is generated and materialized. Finally, the
algorithm returns the optimal plan with latency constraint L̄ for
the input complex query (with base relation set R).

7 EXPERIMENTAL STUDY

In this section, we first evaluate the effectiveness of our proposed
optimization schemes for the crowd-powered selection, join and
complex queries in a simulated crowdsourcing environment, and
then examine the latency model and query optimization via exper-
iments on the real crowd on Amazon Mechanical Turk (AMT).

TABLE 1
Dataset description.

Dataset Relation # of Attributes # of Tuples

Auto1
VEHICLE 8 205

IMAGE 10 4100
REVIEW 9 2050

Auto2
VEHICLE 2 111

IMAGE 4 111
REVIEW 3 111

Datasets. We use two datasets in our experiments. First, in the
simulation evaluation, as we need to evaluate our optimization
approaches under many queries with varying numbers of condi-
tions, domain sizes, etc., we generate a synthetic dataset Auto1
with a bulk of attributes. We first use the specification of 205 cars
from UCI Automobile Dataset5 to generate a relation VEHICLE.
Then, we generate a relation IMAGE by duplicating each tuple in
VEHICLE 20 times and add two attributes color and quality
whose values are randomly generated. Similarly, we duplicate
each tuple in VEHICLE 10 times to generate relation REVIEW and
add an attribute sentiment with randomly generated values.
Second, to evaluate our approaches in the real crowdsourcing
platform AMT, we use a real dataset Auto2 containing car models
in 2014 (downloaded from Yahoo Auto6). This dataset contains car

5. https://archive.ics.uci.edu/ml/datasets/Automobile
6. https://autos.yahoo.com/

specification, images and reviews, which can be evaluated by real
crowd. More details of the datasets can be found in Table 1.
Price function. In the experiments, we use the linear price
function b + wx. For CSELECT and CJOIN, we set both base
charge b and incremental charge w to $0.005, while for CFILL,
b and w are set to $0.01 (because filling a missing value is
generally more expensive) and $0.002 (as some attributes have
large domains).

7.1 Simulation Evaluation
We implemented a simulated crowdsourcing environment on top
of the dataset Auto1. This environment has the knowledge of the
complete database of Auto1. When a HIT arrives, it searches
the complete database and returns the correct answer to the
CROWDSOURCING EXECUTOR.

7.1.1 Evaluating Selectivity Estimation
We estimate the selectivity using a sampling-based method. Given
a sampling rate k%, we randomly select k%∗|R| tuples from each
relation R in Auto1, where | · | is the cardinality. Let A be the
attribute set in the database, and Di = {v1, . . . , vm} be the value
domain of attribute Ai (Ai ∈ A). For each attribute and value pair
⟨Ai, vj⟩ where vj ∈ Di, we compute its selectivity based on the
sampled tuples and denote it as skij .

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14 16 18 20

E
rr

o
r

ra
te

Sampling rate (%)

Error rate

Fig. 9. Effect of sampling on selectivity estimation.

We vary the sampling rate from 0.5% to 20% and plot the
relative error rate errk in Figure 9, where errk is defined as

errk =
1∑|A|

i=1 |Di|

|A|∑
i=1

|Di|∑
j=1

|skij − s100ij |
s100ij

. (6)

As shown in the result, the more samples we use, the lower
the error rates we achieve. The error rates drop dramatically with
a small sampling rate and tend to be stable when the sampling rate
is larger than 5%.

11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 3 4 5 6

C
o
s
t

of selection conditions

Parallel
Sequential
CrowdOp

(a) Cost comparison w/o budget.

 0

 1

 2

 3

 4

 5

 6

80 100 120 140 160 180

L
a
te

n
c
y

User required budget

RandomPack
CrowdOp

(b) Latency on budget (6 select cond.).

 40

 60

 80

 100

 120

 140

 160

 180

 200

80 100 120 140 160 180

C
o
s
t

User required budget

RandomPack
CrowdOp

(c) Cost on budget (6 select cond.).

Fig. 7. Evaluation on simulated selection queries.

 0

 200

 400

 600

 800

 1000

1 2 3 4 1 2 3 4 1 2 3 4

C
o
s
t

CFill
CJoin

CrowdOpGreedyQurk

(a) Cost with # candidate CFill.

 0

 1

 2

 3

 4

 5

 6

430 480 530 580 630 680 730

L
a
te

n
c
y

User required budget

Qurk
Greey

CrowdOp

(b) Latency on budget (# CFill = 4).

 0

 100

 200

 300

 400

 500

 600

 700

 800

430 480 530 580 630 680 730

C
o
s
t

User required budget

Qurk
Greey

CrowdOp

(c) Cost with budget (# CFill = 4).

Fig. 8. Evaluation on simulated join queries.

7.1.2 Evaluating Selection Query Optimization
This section evaluates our optimization approach for selection
queries. We first consider the objective of cost minimization where
no budget constraint is imposed. We vary the number of selection
conditions in a selection query from 2 to 6, and randomly generate
10 queries for each selection condition setting and report the
average cost. We compare our optimization scheme against two
alternatives: 1) Parallel packs all the selection conditions in
one single CSELECT operator; 2) Sequential examines one
selection condition in each phase according to its order in the
query syntax (refer to Figure 4 for examples on parallel and
sequential plan). Figure 7(a) shows the experimental results. Since
Parallel does not make use of the selectivity information, it
incurs the highest cost in all cases, especially when there are more
selection conditions. In contrast, our approach CROWDOP incurs
much lower cost. This is because we prioritize the conditions
based on selectivity, and thus more irrelevant tuples are filtered
out in the first few operators. The performance of Sequential
lies somewhere in the middle, as it depends on the condition order
in the query, which might not be optimal.

We evaluate our optimization with budget varying from 80
to 180. We consider the queries with 6 selection conditions and
compare our approach (refer to Algorithm 2) with RandomPack,
which first sorts the selection conditions in increasing order of
selectivity and then randomly packs them into groups. Figures 7(b)
and 7(c) provide the result on both latency and cost. The result
shows that CROWDOP incurs much lower latency and cost than
RandomPack. In addition, when a smaller budget (e.g., $80)
is allowed, the latency of CROWDOP can be further reduced
(e.g., nearly half of that of RandomPack). The superiority of
CROWDOP is attributed to our optimal grouping method, which
can judiciously determine which conditions can be grouped to
reduce latency and apply the conditions in an optimal order.

7.1.3 Evaluating Join Query Optimization
This section evaluates our proposed CFILL-CJOIN approach over
VEHICLE-IMAGE join. We first investigate optimization approach-
es for cost minimization and compare our approach with two alter-

natives: 1) Qurk [12] eliminates ineffective attributes with large
join selectivity7, and fills ALL missing values on the remaining
attributes; 2) Greedy generates the partition tree in a top-down
manner: at each tree node, it selects the “local optimal” attribute
to fill, which can reduce the most cost. In addition, it will stop
applying CFill at the node if it is cheaper to directly join tuples.

Qurk fills 1, 2, 2, 3 attributes with candidate CFILL attributes
varying from 1 to 4 (as shown in Figure 8(a)). With only 1
CFILL attribute, it incurs more CJOIN cost. When using more
CFILL attributes, the CJOIN cost decreases, while the CFILL

cost increases. As shown in the figure, with a large number of
CFILL attributes (e.g., 4), the increased CFILL cost may offset its
benefit, and thus increase the overall cost. This is because Qurk
uses a fixed threshold and is not able to make the adjustment
dynamically. In contrast, Greedy can avoid filling the useless
attributes that cannot reduce the overall cost, and thus it achieves
lower cost than Qurk. However, Greedy only looks for local
optimal solution at each node, and that may not achieve the
lowest overall cost. Our proposed approach CROWDOP can further
improve the performance and incurs the lowest cost across all
settings. For example, given 4 candidate CFILL attributes, CROW-
DOP respectively saves 45 and 35 percent of cost compared with
Qurk and Greedy. Moreover, we also observe that: given more
candidate CFILL attributes (e.g., from 1 to 2), CROWDOP can
simultaneously reduce CFILL and CJOIN costs. This is because
CROWDOP is able to perform CFILL at a finer degree, i.e. fill
only a subset of tuples benefiting CJOIN and CFILL the most.

We next evaluate our approach with budget constraints in
Figures 8(b) and 8(c), where the budget is varied from 430 to
730. From the result, we observe that the higher the budget is
allowed, the lower the latency we can achieve. We can also see
that CROWDOP outperforms the two baselines. Specifically, for
budgets lower than $580, Qurk and Greedy cannot generate any
plan satisfying the budgets, while CROWDOP can find plans with
short latency and low cost. On the other hand, for larger budgets,
CROWDOP can optimize latency while achieving lower cost.

7. In the experiment, we eliminate attributes with join selectivity larger than
0.25, which achieves the best performance

12

7.1.4 Evaluating Complex Query Optimization
In this experiment, we study the performance of our approach
over complex Select-Join query CQ1 and CQ2. CQ1 performs
VEHICLE-IMAGE join with three selection conditions. CQ2 joins
three relations VEHICLE-IMAGE-REVIEW with three selection
conditions. We first report the optimization results without budget
constraint in Table 2.

TABLE 2
Cost comparison over complex queries.

Optimizer CSelect CJoin CFill Total

CQ1

CrowdDB 84.15 307.8 0 391.95
Qurk 84.15 3.7 43.0 130.85

CrowdOp 76.37 7.56 31.02 114.95

CQ2

CrowdDB 111.83 1252.44 0 1364.27
Qurk 111.83 29.34 120.37 261.54

CrowdOp 104.04 29.61 104.88 238.53

Here we compare with two alternatives: 1) CrowdDB [3] uses
rule-based optimization to push down selection operations and
determine the best join order; 2) Qurk [12] further reduces the
cost by optimizing join operations via filling CFILL attributes.
As the result shows, the optimizer of CROWDOP significantly
reduces the cost. Compared to CrowdDB, we incur only 30 and
17 percent of the cost over CQ1 and CQ2 respectively, which is
largely attributed to our CFILL-CJOIN optimization. With a small
amount of CFILL cost, we can significantly reduce the CJOIN

cost. Moreover, CROWDOP incurs lower cost than Qurk, which
also employs a CFILL-CJOIN strategy. This is because CROWDOP

not only applies the optimized filling scheme to reduce the overall
CFILL-CJOIN cost, but also incurs lower cost on the selection
queries in CQ1 and CQ2.

We next examine the performance under certain budget con-
straints. We vary the budget requirement and provide the latency
as well as cost over CQ1 and CQ2 in Table 3.

TABLE 3
Evaluating CROWDOP on complex queries with budgets.

Budget CSelect CFill CJoin Total Cost Latency

CQ1

120 76.4 31.0 7.6 115 5
130 85.1 31.0 7.6 123.7 4
140 85.1 37.6 10.9 133.6 3

CQ2

240 104.0 104.9 29.6 238.5 8
250 112.8 104.9 29.6 247.3 7
260 112.8 88.8 56.4 258.0 6
270 112.8 88.8 56.4 258.0 6
280 112.8 90.0 68.9 271.7 5

In general, the overall latency can be reduced with increasing
budget constraint. More specifically, CROWDOP can effectively
allocate the latencies among the operators in the query plan to fit
the budget requirements. For example, in CQ2, with increasing
the budget requirement, CROWDOP first reduces the latency of
CSELECT, which will not incur large cost increase, and then it de-
termines which CFILL attributes can be eliminated by considering
the overall CFILL-CJOIN cost. When the budget is large enough,
the optimal plan with the minimal latency can be obtained.

7.2 Real Crowd Evaluation
To further evaluate our proposed approach, we conduct a set of
experiments on the real crowdsourcing platform AMT.

7.2.1 Observation on Crowdsourcing Latency
We investigate crowdsourcing latency and examine our simplifi-
cation of using the number of phases to approximate the latency.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f
c
o
m

p
le

te
d
 t
a
s
k
s

Crowdsourcing Time (min)

CSELECT-B1
CSELECT-B2

CFILL-B1
CFILL-B2
CFILL-B3
CFILL-B4
CJOIN-B1
CJOIN-B2
CJOIN-B3
CJOIN-B4

(a) Task completion over time.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f
w

o
rk

e
r

p
a
rt

ic
ip

a
ti
o
n

Crowdsourcing Time (min)

CSELECT-B1
CSELECT-B2

CFILL-B1
CFILL-B2
CFILL-B3
CFILL-B4
CJOIN-B1
CJOIN-B2
CJOIN-B3
CJOIN-B4

(b) Worker participation over time.

Fig. 10. Observation on real crowdsourcing latency.

We generate 10 crowdsourcing jobs with different numbers of
crowdsourcing tasks and operator types from the query plans of
CQ2, the details of which are listed in Table 4. We publish these
jobs on AMT and measure latency (time) of completing the tasks.

TABLE 4
Crowdsourcing tasks published on AMT for latency evaluation (# of

assignment per task = 3).

Name Task Num Name Task Num
CSELECT-B1 222 CFILL-B4 200
CSELECT-B2 24 CJOIN-B1 138

CFILL-B1 156 CJOIN-B2 280
CFILL-B2 112 CJOIN-B3 76
CFILL-B3 63 CJOIN-B4 141

Figures 10(a) shows the percentage of completed tasks over
the crowdsourcing time. We have the following observations from
the figure. First, a bulk of the answers arrive within a short
period of time. For example, all the crowdsourcing jobs have
completed more than 75% tasks within 60 minutes, although
they have different numbers of tasks and correspond to different
operators. Second, a small number of answers arrive much later,
e.g., some “outstanding” answers do not arrive until 200 minutes
after publishing the HITs. This phenomenon may be explained
by the fact that the number of workers on the tasks will change
over the crowdsourcing time. In the beginning, many workers are
attracted by a newly created crowdsourcing job and they can work
in parallel to complete a large portion of tasks. For example, as
observed from Figure 10(b), for almost all crowdsourcing jobs,
over 60% of the distinct workers arrive within 60 minutes. How-
ever, with the increase of the crowdsourcing time, fewer and fewer
new workers come to answer the tasks. This may be attributed
to ranking mechanism of crowdsourcing jobs on AMT: with the
increase of crowdsourcing time, our jobs may be “overwhelmed”
by the newly published jobs and become less likely to be presented
to the workers.

7.2.2 Real Crowdsourcing Query Evaluation

To better evaluate our approach, we execute the complex query
CQ2 on the AMT platform. We first employ the sampling-based
approach to estimate the selectivity. We randomly sample 20
tuples in each relation, and publish CFILL tasks on the unknown
attributes of the sampled tuples. We use the same CFILL price
function as mentioned above, and that results in $4.1 for the
sampling. Next, we discuss two query plans produced by our
optimization techniques under different budgets. Under budget
$50, a plan with height 5 (as shown in Figure 11(a)) is generated,
which uses one phase for CSELECT, two phases for CFILL and
two phases for CJOIN. The overall cost of this plan is $49.9 ($4.1
for selectivity estimation and $45.8 for plan execution), and the
overall latency is 545 minutes. In addition, when given more

13

Image Vehicle Review

CSelect

CJoin

CFill CFill CFill

CSelect

CJoin

CFill CFill CFill

$8.3

$20.4

$7.5

$6.2

$3.4

Overall Cost: $45.8 + $4.1 (Selectivity Estimation) = $49.9

(a) Under budget $50.

Image Vehicle Review

CSelect

CJoin

CFill CFill CFill

CSelect

CJoin

$8.3

$20.4

$12.6

$6.3

Overall Cost: $47.6 + $4.1 (Selectivity Estimation) = $51.7

(b) Under budget $60.

Fig. 11. Example query plans for real crowdsourcing.

budget, i.e., $60, another plan with lower latency (as shown in
Figure 11(b)) is generated, which has one phase for CSELECT,
one phase for CFILL and two phases for CJOIN. The second plan
has a lower latency 379 minutes but a larger monetary cost $51.7.

8 RELATED WORK

Recently a large body of work has been proposed to perform im-
portant database operations powered by the intelligence of crowd,
including selection [14], [18], join [12], [21], sort/rank [12], [6],
[19] and count [11]. Meanwhile, a series of crowdsourcing systems
have been designed to provide a declarative query interface to the
crowd, such as CrowdDB [3], Qurk [13] and Deco [15]. Most
of these works only focus on optimizing the monetary cost of
some specific operations. In contrast, CROWDOP handles three
fundamental operations (i.e., CSELECT, CJOIN and CFILL) and
incorporates the cost-latency tradeoff into its optimization objec-
tive. Our latency model is similar to the one in CrowdFind [18].
Nevertheless, CrowdFind aims to find skylines of cost and latency
for select operators only, while our work focuses more on opti-
mizing general queries (with more fundamental operators) with
minimal latency under a budget constraint. Another important
metric in crowdsourcing applications is accuracy, which has been
intensively studied in [17], [14], [10], [4].

Query optimization in relational databases is a well-studied
problem [7]. Some of their techniques can be applied to the
crowdsourcing scenario, such as pushing down the select predi-
cates and utilizing selectivity to determine the select/join order.
However, some inherent properties of crowdsourcing makes its
query optimization a new and challenging problem. For instance,
monetary cost is quite different from computation cost in RDBs,
and latency, which is an important criteria in crowdsourcing, is not
a serious problem in RDBs. In addition, many indexing schemes
are exploited by RDBs to facilitate its query processing, while few
of them can be used in crowdsourcing.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose a cost-based query optimization that
considers the cost-latency tradeoff and supports multiple crowd-
sourcing operators. We develop efficient and effective optimization
algorithms for select, join and complex queries. Our experiments
on both simulated and real crowd demonstrate the effectiveness
of our query optimizer and validate our cost model and latency
model. In the future we would like to study how to incorporate
correlations between select/join conditions into the optimizer for
complex queries, and we also plan to extend CROWDOP to support
more advanced SQL operators, such as sorting and aggregation.

ACKNOWLEDGEMENT

The work in this paper was in part supported by a Singapore
Ministry of Education AcRF Tier 1 Grant No. R-252-000-513-
112. Meihui Zhang was supported by SUTD Start-up Research
Grant under Project No. SRG ISTD 2014 084. Stanley Kok is
supported by a Ministry of Education AcRF Tier 1 grant, and by
the National Research Foundation, Prime Ministers Office, Singa-
pore under its IDM Futures Funding Initiative and administered
by the Interactive and Digital Media Programme Office.

REFERENCES

[1] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for
top-k and group-by queries. In ICDT, pages 225–236, 2013.

[2] J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M. Zhang. A hybrid machine-
crowdsourcing system for matching web tables. In ICDE Conference,
2014.

[3] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowd-
db: answering queries with crowdsourcing. In SIGMOD Conference,
pages 61–72, 2011.

[4] J. Gao, X. Liu, B. C. Ooi, H. Wang, and G. Chen. An online cost sen-
sitive decision-making method in crowdsourcing systems. In SIGMOD
Conference, pages 217–228, 2013.

[5] Y. Gao and A. G. Parameswaran. Finish them!: Pricing algorithms for
human computation. PVLDB, 7(14):1965–1976, 2014.

[6] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who won?:
dynamic max discovery with the crowd. In SIGMOD Conference, pages
385–396, 2012.

[7] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing
queries with expensive predicates. In SIGMOD Conference, pages 267–
276, 1993.

[8] C.-J. Ho, S. Jabbari, and J. W. Vaughan. Adaptive task assignment for
crowdsourced classification. In ICML (1), pages 534–542, 2013.

[9] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is
np-complete. Inf. Process. Lett., 5(1):15–17, 1976.

[10] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS: A
crowdsourcing data analytics system. PVLDB, 5(10):1040–1051, 2012.

[11] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting
with the crowd. PVLDB, 6(2):109–120, 2012.

[12] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Human-
powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[13] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, pages 211–214, 2011.

[14] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: algorithms for filtering data
with humans. In SIGMOD Conference, pages 361–372, 2012.

[15] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Deco: declarative crowdsourcing. In CIKM, pages 1203–
1212, 2012.

[16] H. Park and J. Widom. Query optimization over crowdsourced data.
PVLDB, 6(10):781–792, 2013.

[17] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and
L. Moy. Learning from crowds. Journal of Machine Learning Research,
11:1297–1322, 2010.

[18] A. D. Sharma, A. Parameswaran, H. Garcia-Molina, and A. Halevy.
Crowd-powered find algorithms. In ICDE Conference, 2014.

[19] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max algo-
rithms in crowdsourcing environments. In WWW, pages 989–998, 2012.

[20] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing
entity resolution. PVLDB, 5(11):1483–1494, 2012.

[21] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging
transitive relations for crowdsourced joins. In SIGMOD Conference,
pages 229–240, 2013.

[22] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for
crowd entity resolution. PVLDB, 6(6):349–360, 2013.

APPENDIX

Proof of Lemma 1: We can prove the lemma by showing that any
swap of conditions across groups in G∗ would increase the overall
cost. Suppose that we have a group set G∗ satisfying the lemma.
We will then show that any swap of conditions across groups in
G∗ would increase the cost. Consider arbitrary two conditions Ci

14

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 3 4 5 6

C
o

s
t

of selection conditions

Parallel
Sequential
CrowdOp

(a) Price function b.

 0

 20

 40

 60

 80

 100

 120

 140

2 3 4 5 6

C
o

s
t

of selection conditions

Parallel
Sequential
CrowdOp

(b) Price function wx.

Fig. 12. Evaluation on additional price functions.

and Cj (s(Ci) < s(Cj)) respectively in groups Gp and Gq . Now,
if we swap Ci and Cj , we examine how the groups are affected in
the following two cases: 1) The estimated cost of group Gl with
l ≤ p or l > q remains unchanged, since Gl’s input is not affected;
2) The estimated cost of group Gl with p < l ≤ q increases, as the
estimated size of input |R| ·

∏l−1
k=1

∏
C∈Gk

s(C) becomes larger
due to the swap of Ci and Cj . Overall, the cost of group set G∗

increases after the swap. Moreover, it is not hard to prove that any
other group set must be reached from G∗ by a sequence of such
swapping operations. Hence we prove the lemma.

Proof of Lemma 2: To prove the optimal subproblem property, we
need to show that: given G∗(i, L) is optimal, any of its subprob-
lem, say G∗(k+1, L−1) must be optimal. We can prove the prop-
erty by contradiction. Suppose that G∗(k+1, L−1) is not optimal,
i.e., there is another plan G′(k+1, L−1) having lower cost. Then,
there must be G′(i, L) = cost(i, k) +G′(k + 1, L− 1) having
lower cost than G∗(i, L), which is contradict to that G∗(i, L) is
optimal. Hence, we prove the lemma.

Proof of Lemma 3: We prove the lemma by a reduction from a
variant of the exact covering problem EC3 (X,F) which consists
of a set X and a family F of subsets of X where ∀F ∈ F
contains exactly 3 elements, and finds an exact cover F∗ ⊆ F of
X such that ∀Fi, Fj ∈ F∗, Fi ∩ Fj = ∅ and

∪
Fi∈F∗ Fi = X .

The EC3 problem has been proved as NP-complete [9]. For any
instance of EC3 (X,F), we construct an instance of our partition
tree optimization problem. Let pricing functions satisfy uJ = uF.
We first construct input tuple sets T1 = T2 = X ∪ {a, b, c}
where {a, b, c} are three elements not in X . Then, for each subset
Fi ∈ F , we construct a binary CFILL attribute Ai such that
the elements in T1 satisfying Ai = 1 are exactly the ones in
Fi. The same is true for T2. Under this construction, the optimal
tree must have a path satisfying the following properties: 1) The
path consists of a series of tree nodes respectively containing the
attributes Ai1 , Ai2 , . . . Aik , and 2) The node corresponding to Aij

partitions exactly 6 tuples (3 from T1 and 3 from T2) to the subtree
corresponding to Aij = 1, and puts the other tuples (Aij = 0) to
the next attribute Aij+1 . And the tuples in the leaf corresponding
to Ai1 = Ai2 = . . . = Aik = 0 are {a, a, b, b, c, c}. Thus, the
optimal tree essentially embodies a solution of the EC3 problem.
Therefore, we prove the lemma.

Additional Experiments: We also examined performance of our
optimization approach under other price functions. We consider
the following two special price functions: 1) function b with fixed
charge for tasks, and 2) function wx without base charge b.

Figure 12 shows the result of cost minimization on selection
queries with varying numbers of selection conditions. Given fixed
charge b, the optimal strategy is packing all the selection condi-
tions in one single CSELECT (i.e., the Parallel), as more conditions

would not incur extra cost. On the other hand, given varying
charge wx, the better strategy is to examine one selection con-
dition in each phase to reduce as many tuples fed into CSELECT

operators as possible. Our optimization approach CROWDOP can
adapt to both price functions and achieve the lowest cost.

Ju Fan received the BEng degree in computer
science from Beijing University of Technology,
China in 2007 and the PhD degree in computer
science from Tsinghua University, China in 2012.
He is currently a research fellow in the School
of Computing, National University of Singapore.
His research interest includes crowdsourcing-
powered data analytics, spatial-textual data pro-
cessing, and database usability.

Meihui Zhang received the BEng degree in
computer science from Harbin Institute of Tech-
nology, China in 2008 and the PhD degree in
computer science from National University of
Singapore in 2013. She is currently an assistant
professor at the Singapore University of Technol-
ogy and Design. Her research interest includes
crowdsourcing-powered data analytics, massive
data integration and spatio-temporal databases.

Stanley Kok received the BSc degree in com-
puter science from Brown University in 1999, the
MSc degree in computer science from University
of Washington in 2005, and the PhD degree in
computer science from University of Washington
in 2010. He is currently an assistant professor
at the Singapore University of Technology and
Design. His research interests lie in the fields
of machine learning and artificial intelligence.
Other topics of interest are: statistical relational
learning, probabilistic graphical models, natural

language processing, reasoning under uncertainty, social network anal-
ysis, computational biology, data mining, text mining, and Web mining.

Meiyu Lu received the BEng degree in com-
puter science from Harbin Institute of Technol-
ogy, China in 2008 and the PhD degree in
computer science from National University of
Singapore in 2013. Her research interest in-
cludes crowdsourcing-powered data analytics,
database exploration and schema extraction.

Beng Chin Ooi received the BSc (First Class
Honors) and PhD degrees from Monash Univer-
sity, Australia, in 1985 and 1989, respectively. He
is a professor of computer science at the School
of Computing, National University of Singapore.
His research interests include database sys-
tem architectures, performance issues, indexing
techniques and query processing, in the context
of multimedia, spatio-temporal, distributed, par-
allel, in-memory, P2P, and Cloud database sys-
tems and applications. He has served as a PC

member for a number of international conferences (including SIGMOD,
VLDB, ICDE, WWW, EDBT, DASFAA, GIS, KDD, CIKM, and SSD). He
was an editor of VLDB Journal and IEEE Transactions on Knowledge
and Data Engineering, Editor-in-Chief of IEEE Transactions on Knowl-
edge and Data Engineering (TKDE)(2009-2012), and a co-chair of the
ACM SIGMOD Jim Gray Best Thesis Award committee. He is serving as
a trustee board member and president of VLDB Endowment.

