
DADA: A Data Cube for Dominant Relationship Analysis

Cuiping Li1
∗

Beng Chin Ooi2 Anthony K.H. Tung2 Shan Wang1

1Dept. of Computer Science,Renmin University of China, Beijing 100872, China.
cuiping li@263.net,swang@mail.ruc.edu.cn

2 Dept. of Computer Science, Natl University of Singapore, S’pore 117543,
Singapore.{ooibc,atung}@comp.nus.edu.sg

ABSTRACT
The concept of dominance has recently attracted much in-
terest in the context of skyline computation. Given an N-
dimensional data set S, a point p is said to dominate q if p is
better than q in at least one dimension and equal to or better
than it in the remaining dimensions. In this paper, we pro-
pose to extend the concept of dominance for business analy-
sis from a microeconomic perspective. More specifically, we
propose a new form of analysis, called Dominant Rela-
tionship Analysis (DRA), which aims to provide insight
into the dominant relationships between products and po-
tential buyers. By analyzing such relationships, companies
can position their products more effectively while remaining
profitable.

To support DRA, we propose a novel data cube called
DADA (Data Cube for Dominant Relationship Analysis),
which captures the dominant relationships between prod-
ucts and customers. Three types of queries called Dom-
inant Relationship Queries (DRQs) are consequently
proposed for analysis purposes: 1)Linear Optimization Queries
(LOQ), 2)Subspace Analysis Queries (SAQ), and 3)Compar-
ative Dominant Queries (CDQ). Algorithms are designed for
efficient computation of DADA and answering the DRQs us-
ing DADA. Results of our comprehensive experiments show
the effectiveness and efficiency of DADA and its associated
query processing strategies.

1. INTRODUCTION
The concept of dominance has recently attracted much

interest in the skyline context in relation to answering pref-
erence queries. In this paper, we propose extending the
concept for business analysis on a data cube.

Given an N-dimensional dataset S, let D = {D1, ...,DN}
∗Part of work done while author visited National Univer-
sity of Singapore and partly supported by NSFC(60473069,
60496325, 60273017)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’06, June 26–29, 2006, Chicago,USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

1.5 2 2.5 3

Weight

P
ri

c
e

Manufacturer A

Manufacturer B

Customer
B6

A2

B4

B5

A1

A3

C2

C3

C1

C5

C9

C8

C6

C7

C4

C10

Figure 1: Notebooks and Customer Preferences

be the set of dimensions. Let p and q be two data points in
S. We then denote the values of p and q on dimension Di as
pi and qi.

Definition 1.1 (Dominate, p < q). For each of the di-
mension Di, we define an order ≺Di . We say that p is better
than q in dimension Di (denoted as pi < qi) if pi comes be-
fore qi based on ≺Di or conversely, qi is worse than pi (also
denoted as qi < pi). If pi and qi are equals, we denote them
as pi = qi.

Under this setting, a point p is said to dominate q if p is
better or equal to q in all dimensions, and is better than q
in at least one of the dimensions. �

Model CPU Memory Harddisk Weight Price
A1 2.0Mhz 1024Mb 40Gb 2kg $2500
A2 1.9Mhz 256Mb 60Gb 1.6kg $2700
A3 1.9Mhz 512Mb 60Gb 2.2kg $2200
B4 1.8Mhz 512Mb 40Gb 1.9kg $2400
B5 1.9Mhz 1024Mb 40Gb 2.8kg $2100
B6 1.8Mhz 768Mb 50Gb 1.7kg $2850

Table 1: Notebook Configuration

Given the concept of dominance, the skyline points in the
dataset S are defined as those points which are not domi-
nated by any other point in S. Skyline points are useful in
answering preference queries [5] since the best answer given

any weight assignment for a monotonic preference function
is always guaranteed to come from skyline points. As an ex-
ample, we consider a set of six notebook models as shown in
Table 1, where the first three are produced by manufacturer
A and the next three by manufacturer B. If we consider
only their weight and price attributes, which are better if
minimized (we call these min attributes for ease of refer-
ence), then the skyline as shown in Figure 1 will be A2,
A3, B4 and B5 with the two notebooks A1 and B6 being
dominated by the competitor’s B4 and A2 respectively. In
this case, regardless of the weight being assigned by the cus-
tomers, the highest scoring notebook will only come from
A2, A3, B4 and B5. The same concept can easily be ex-
tended to more attributes such as CPU speed, memory size,
etc., where a higher value is better (i.e., what we call maxi-
mum attributes).

While the concept of dominance is very useful from the
perspective of customers selecting the products they like,
what is interesting to manufacturers is whether their prod-
ucts are popular with customers compared to their competi-
tors’ products. Referring again to Figure 1, let C1,...,C10

indicate the preference of 10 customers in a survey in which
they are asked the weight of the notebook they are comfort-
able with, and the price they expect to pay for it. Relative
to each notebook, there are three types of customers:

• Dominated Customers: As the name implies, these
are customers who are dominated by the notebook,
i.e., the notebook definitely satisfies their requirements.
For example, the dominated customers of notebook A1

are C5, C6, C8 and C9.

• Dominating Customers: These are customers who
dominate the notebook, i.e., the notebook definitely
does not satisfy their requirements. For example, the
dominating customer of notebook A1 is C1.

• Incomparable Customers: These are customers who
neither dominate nor are dominated by the notebook.
For example, C3 and C4 are incomparable customers
of notebook A1.

Given any notebook, the numbers of dominated and domi-
nating customers can be used as measurements to gauge how
good the positioning of the product is in the market. Obvi-
ously, it is best to dominate as many customers as possible
while keeping the number of dominating customers minimal
(or equivalently, maximizing the number of incomparable
customers among those who are not dominated). The trade-
off between these two measures is not always straightfor-
ward. For example, if the price of notebook A2 is decreased
to $2400 with the use of cheaper components that increase
the weight to 1.75kg, its dominated customers will increase
from three to six, but the number of customers dominating
it will increase from zero to one.

One obvious way to avoid all these concerns is to position
the notebook in a market which is not dominated by any cus-
tomers or any other notebooks. However, this is not always
the best alternative because of the following two reasons:
1. The notebook might become non-profitable, needing a
large amount of resources to prevent it from being domi-
nated.
2. Even if a notebook is dominated by another notebook,
hidden factors such as brand loyalty and marketing strate-

gies could still mean that customers would buy the note-
book. Furthermore, the manufacturing capacity for the dom-
inating notebook might not be enough to cater to all the
customers it dominates. As such, it might make sense to
allow a notebook to be dominated in exchange for higher
profit.

From the above discussion, the usefulness of analyzing the
dominant relationships between products and customers is
clear. From here on, we will refer to such form of analysis
as Dominant Relationship Analysis (DRA). In this
paper, we focus on DRA, and contribute to its advancements
with the following:

• We present three types of queries as representative
queries for DRA: i) Linear Optimization Queries (LOQs),
ii) Subspace Analysis Queries (SAQs), and iii) Com-
parative Dominant Queries (CDQs). Each type of
queries introduces a different aspect of DRA that we
hope to illustrate. Collectively, we call these queries
Dominant Relationship Queries (DRQs).

• We present DADA 1, a data cube organization that is
designed for DRA. We construct DADA by converting
the dominant relationship between spatial objects into
a lattice, and then making use of the convexity of our
measure for effective compression. We present efficient
query processing strategies on top of DADA for the
three DRQs.

• We present comprehensive experiments to demonstrate
the efficiency of our algorithms for constructing DADA
and answering DRQs.

The paper is organized as follows: Section 2 defines the
three types of DRQs. Section 3 discusses related work. Sec-
tion 4 presents the computation of DADA, and Section 5
presents query proecssing strategies for the three DRQs us-
ing DADA. We present the experimental evaluation in Sec-
tion 6, and conclude in Section 7.

2. PRELIMINARIES
In this section, we first set the context and state the as-

sumptions that are adopted in this paper. We then intro-
duce the three representative DRQs that we will consider in
this paper.

2.1 Context and Assumptions
We assume we have two manufacturers A and B, each

producing a set of products PA = {A1, ..., As} and PB =
{B1, ..., Bt}, respectively. We also have the preference of a
set of customers C = {C1, ..., Cn}.

Each of the products or customer preferences can be repre-
sented as a point in an N-dimensional space, D, with dimen-
sions D1,...,DN being the attributes of the products and cus-
tomer preferences. For simplicity, we use the general term
“object” to refer to a product or a customer’s preference if
the need to distinguish them is not needed.

We assume that the domain values of each dimension Di,
DV (Di), are discretized, fully ordered, numerical val-
ues which can be mapped into positive integers {1,...,|DV (Di)|}.
Thus, the whole of the N-dimensional space can be divided

1DADA stands for Data Cube for Dominant Relationship
Analysis

conceptually into |DV (D1)|× |DV (D2)|× ...|DV (DN)| cells,
and each of the objects lies in one of the cells. Given any
object p, we use the notation p[Di] to refer to the value of
p in dimension Di. We highlight the following:

1. Our assumption is similar to most if not all data cube
techniques which discretize numeric dimensions to an ac-
ceptable resolution level.

2. Mapping domain values into positive integers does not af-
fect the dominant relationship between the objects of anal-
ysis. This is only done to ensure easier discussion later on
in the paper.

We also assume, without loss of generality, that the at-
tributes of a product or customer preference are minimum
attributes [5], i.e., smaller values are preferred 2. With this
final assumption, we can now adopt the definition of dom-
inate that we have provided in Section 1 for the following
definitions:

Definition 2.1. dominating(p, C, D′)
Given an object p, a set of objects C and a set of dimensions
D′ ⊆ D, we define dominating(p, C, D′) as the set of objects
from C which are dominated by p in the subspace D′ of D.

�

Definition 2.2. dominated(C, p, D′)
Given an object p, a set of objects C and a set of dimensions
D′ ⊆ D, we define dominated(C, p, D′) as the set of objects
from C which dominate p in the subspace D′ of D. �

2.2 Three Representative DRQs
In this section, we look at three types of DRQs that are

representatives of the DRA we seek to examine.

2.2.1 Linear Optimization Query
We first look at LOQs. These queries are motivated by

the observation that manufacturers do not have infinite re-
sources, and must consider various trade-offs and constraints
when they position their products. For example, making
the notebook lighter requires better components, which in
turn pushes up the notebook price. Here, we model such
constraints as a linear plane L that is anti-correlated with
regard to all the dimensions. Our assumption here is that
all attributes are minimum attributes, and making a prod-
uct better in one attribute requires sacrificing other aspects
in order to stay profitable.

Definition 2.3. Linear Optimization Query (LOQ(L,C, D))
Given a plane, L, and a set of objects, C, in an N-dimensional
space of D, we define LOQ(L,C, D) as the aggregate
max(|dominating(p, C, D)|), where p is any point in the
plane L. �

Note that for brevity, we take |dominating(p, C, D)| as the
measure for optimization. In fact, |dominated(C, p, D)| can
be used as the measure for optimization as well (to minimize
in this case).

Obviously, the actual location of the point p in the defini-
tion of LOQ is as important as LOQ(L,C, D) itself. How-
ever, since p might not be unique, finding LOQ(L,C, D) can

2Maximum attributes in which larger values are preferred
can be converted into minimum ones by taking negations.

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

1.5 2 2.5 3

Weight

P
ri

c
e

C2

C3

C1

C5

C9

C8

C6

C7C4

C10

p

plane L

Figure 2: Linear Optimization Query: Which por-
tion of plane L dominates the most number of
points?

be more efficient and would make our definition tidier. Later
in the paper, our algorithm for handling LOQ will identify
both LOQ(L,C, D) and p. We now illustrate the concept of
LOQ using the following example:

Example 1. Consider Figure 2, where customer preferences
for the price and weight of the notebook are depicted together
with a plane L. The shaded region at the bottom-left of the
plane represents configurations which are not profitable for
the manufacturer, and the region at the top-right of the plane
are configurations which are profitable.

In this example, LOQ(L,C,D)=4 at location p indicated
in the diagram. �

2.2.2 Subspace Analysis Queries
Next, we consider SAQs. These queries are motivated

by our observation that manufacturers could be interested
to analyze the dominant relationship in the subspace of D.
For example, they might find that a certain combination
of attribute settings in a product are important to many
customers. This could help identify a niche market for the
manufacturer, who could then design a product targeting
such a customer segment. More formally:

Definition 2.4. SAQ(p,C,D′)
Given a set of points C and a point p in the N-dimensional
space of D, find:

1. |dominating(p, C,D′)| and
2. |dominated(C, p, D′)|

where D′ ⊆ D. �

Definition 2.4 is the most basic SAQ on which more com-
plex SAQs can be built. For example, we can choose to
compute SAQ(p,C,D′)s for all subsets D′ of D that satisfy
a certain interest measure threshold such as:

|dominating(p,C, D′)| − |dominated(C, p, D′)|

Our purpose here is to illustrate the usefulness of SAQs
with a simple example rather than exhaustively define all
possible types of SAQs.

Example 2. Returning to Figure 2 where p is dominat-
ing four points and dominated by two points, we compute
SAQ(p,C,D′), where C represents all customer preferences
and D′ = {Weight}, and we find p dominating six points
and dominated by four points in the subspace. If we use the
measure that we gave earlier, we can conclude that the dom-
inating power of p is not much stronger if we only consider
the attribute “Weight” instead of “Weight” and “Price”. �

Note that in general, both |dominating(p, C, D′)| and
|dominated(C, p, D′)| increase when we move to a subset of
D. However, the difference between them does not follow
such a property.

2.2.3 Comparative Dominant Query
As the name implies, CDQs are queries that aim to com-

pare the set of dominated objects between competitive prod-
ucts. We first introduce the concept of group dominant:

Definition 2.5. Group Dominant, gdominating(A, C, D)
Given two sets of objects A and C in an N-dimensional
space of D, we define gdominating(A, C, D) as the set of
objects in C which are dominated by some object from A.

�

We can now define two sub-classes of CDQs using the
concept of group dominant.

Definition 2.6. CDQ−(A, B, C, D)
Given three sets of objects in the N-dimensional space of D,
we define CDQ−(A, B, C, D) as:

|gdominating(A, C, D) − gdominating(B, C, D)| �

Definition 2.7. CDQ∩(A, B, C, D)
Given three sets of objects in the N-dimensional space of D,
we define CDQ∩(A, B, C, D) as:

|gdominating(A, C, D) ∩ gdominating(B, C, D)| �

Intuitively, CDQ−(A, B, C, D) computes the number of
objects in C that are dominated by some objects in A and
not by any object in B. This is useful for a manufacturer
who wants to identify the number of customers who are
solely dominated by his/her products. Likewise, the query
CDQ∩(A, B, C, D) is useful for manufacturers who want to
know the number of customers who are dominated by both
their products and those of their competitors. Note that
while our definition of CDQ is general enough for finding,
say, the total number of customers dominated by a set of
products (set B to ∅ with CDQ−), or comparing a single
product against a set of them (set A to a single item), there
could be other interesting CDQs. For example, we have
not tried to account for customers who dominate some set
of products. Again, we emphasize that we want to illus-
trate the spirit of CDQ rather than enumerate CDQs ex-
haustively.

3. RELATED WORK

3.1 Microeconomic View of Data Mining
Our work is mainly inspired by the work in [19] which pro-

poses to view data mining from a microeconomic perspective
i.e., the authors argue that the interestingness of knowledge

being discovered should be measured by their utility to the
organization. Various examples are given in [19] to illustrate
utility oriented mining, including profit oriented association
discovery, market segmentation, data mining as sensitivity
analysis, and segmentation in a model of competition. In-
dividual efforts towards this direction include [27, 28, 6]
for profit oriented association rules discovery, [18, 11] for
customer oriented catalog segmentation, and [29] for data
mining as sensitivity analysis. Our work approaches this di-
rection from a new perspective by providing a platform on
which microeconomic based data mining can be performed.
Indeed, construction of a data cube has been noted as a
good means to facilitate more advanced data mining [15, 9],
and several major database products have such a feature.

By computing DADA, we are using the relationships of
dominated/dominating customers and products as a basis
for decision making. For examples, LOQs allow us to find
an interesting market position in the product attribute space
which can dominate more customers while remaining prof-
itable. SAQs illustrate a different aspect in that they seek
to find attribute combinations that ensure more customers
would be dominated. This is similar in spirit to profit ori-
ented association rule mining. Finally, CDQs allow orga-
nizations to compare targeted customers both within their
products and against their competitors’ products. In the
first case, the comparison would provide organizations with
additional information for segmenting their own products.
In the second case, the additional information could be use-
ful for segmentation in a model of competition – an area
which has so far been left largely untouched by the data
mining community. We envision that dominant relation-
ship analysis is set to become an important tool in data
mining just like OLAP, association rule mining, classifica-
tion/regression modelling and cluster analysis [2].

3.2 Data Cube
The data cube operator was proposed in [13, 14]. Much

research has gone into efficiently computing data cubes [1,
16, 23, 3] and organizing them for query answering [16, 24,
17, 25]. The relationship between cells in a data cube is
often seen as a lattice structure [4], where a parent/child
nodes pair represents the subset/superset relationship of
the dimensions being summarized. Interestingly, as we will
show later, the dominant relationship between cells in our
attribute space can be organized as a lattice structure as
well. This means that the two concepts can be elegantly
represented in a composite lattice structure just as hierar-
chies are introduced into data cubes [16]. Furthermore, we
are able to reuse some of the concepts in cube computation
[3] and compression using concepts from Galois lattice [10,
12, 21] in order to compute and organize DADA for query
answering efficiently. To our knowledge, DRQs are differ-
ent from conventional data cube queries and designed for
different purposes.

3.3 Skyline Queries
Our work can be viewed as a generalization of skyline

queries [5, 26, 20, 22, 30] in the sense that skyline cells are
a subset of the cells that we are interested in. Having com-
puted DADA, it is easy to identify cells that contain skyline
points since these are the cells where dominated(C, p, D)
equals 0. On the other hand, we have developed DADA
bearing in mind that not every product can afford to com-

pete with other products in the skyline. Interestingly, we
observe that a product that is in the skyline does not neces-
sarily dominate more customers than products that are not
in the skyline. DRQs are thus more important than skyline
queries for positioning products in the market.

The are also emerging work on finding interesting skyline
points in high dimensional space [8, 7, 31]. These work
proposed new notion of dominance in high dimensional space
to overcome the problem of the current definition which can
result in too many skyline points for high dimensional data.
Adopting these new notion of dominance in DADA will be
an interesting subject for future studies.

4. DEFINING AND COMPUTING DADA
In this section, we first define DADA, and then present

efficient algorithms for computing and compressing DADA.

4.1 Defining DADA
A lattice as defined in [4] refers to a partially ordered set

(L,�) such that every pair p,q in L has a least upper bound,
lup(p, q) and a greatest lower bound glb(p, q). If L is finite,
then we refer to the lattice as a finite lattice. A finite lattice
can be represented as a directed graph in which the lattice
elements in L are the nodes, and there exists a directed
edge from a node e to e′ if and only if: 1) e � e′, and 2)
�e′′, e � e′′ � e′. In this case, we say that e is the parent
of e′ (correspondingly, e′ is the child of e). If there exists a
path from a node e to e′, then e is called the ancestor of e
(correspondingly, e′ is the descendant of e).

Theorem 4.1. Let L be the set of cells in the N-dimensional
space formed by D. Let � be either the dominating or dom-
inated relation between the cells. Then (L,�) is a finite
lattice.

Proof. Let p = 〈p1, ..., pN 〉 and q = 〈q1, ..., qN 〉 be any
two cells where � is the dominating relation. Then lup(p, q) =
〈min(p1, q1), ...,min(pN , qN)〉 and glb(p, q)=〈max(p1, q1), ...,
max(pN , qN) 〉. That is, if a cell is dominated by lup(p, q),
then it must be larger than lup(p, q) in all dimensions and
thus could not dominate either p or q. The same reasoning
applies for glb and for the case where � is the dominated
relation.

Given the above theorem, we can now define the domi-
nating and dominated lattices.

Definition 4.1. Dominating/Dominated Lattice
Let L be the set of cells in the N-dimensional space formed
by D. If � is the dominating relationship, (L,�) is called
the dominating lattice. If � is the dominated relationship,
then (L,�) is called the dominated lattice. �

Definition 4.2. DADA
Given the set of cells in the N-dimensional space formed by
D and a set of points C that are located in the same space,
a Data Cube for Dominant Relationship Analysis (DADA)
refers to a data cube formed from EITHER of the following:

1) The dominating lattice of the cells with the aggregate at
each cell/node p being dominating(p, C, D).

2) The dominated lattice of the cells with the aggregate at
each cell/node p being dominated(C, p, D). �

1 2 3 4 5 6 7

7

6

5

4

3

2

1

1

2

3

4

5

6

1

2

3

4

5

6price

weightprice

7

7

weight

Figure 3: Domination Relationship to Lattice Struc-
ture

(4,1,4)

4

(1, 1, 4)

(1, 3, 4)

(1, 3, 1)

Points X Y Z

P1 2 1 2

P2 3 2 1

P3 3 2 2

(a) (b)

(3,1,2)

Figure 4: (a) Set of Points; (b) Multiarray

Figure 3 illustrates how the dominant relationship of our
notebook example is converted into a lattice structure on
the right hand side of the figure. As can be seen, ignoring
the boundary condition, each node p = 〈p1, ..., pN 〉 in the
lattice has N children nodes which are of the form p′ =
〈p1, ...pi + 1, .., pN 〉 for some i , 1 ≤ i ≤ N .

4.2 Computing DADA
Next, we describe our techniques for computing DADA.

We mainly illustrate how to compute the cube for a domi-
nating lattice since computation of a dominated lattice can
be done in a similar fashion.

4.2.1 Basic Algorithm
To illustrate our algorithm, we will use the following run-

ning example in this section.

Example 3. Assume that we have a three-dimensional space
D, and the cardinality of each dimension is 4, 3 and 4 re-
spectively. Figure 4(a) shows a set C which includes three
points. �

Definition 4.3. Lexicographical Order
We impose an arbitrary order for the dimensions as D1,...DN .
We also impose a lexicographical order on the cells such that
p is ordered before q if and only if there exists an i such that
pi < qi and for all j < i, pj = qj. �

Definition 4.4. Cell Enumeration Tree
Given a dominating lattice, we derive a cell enumeration tree
by removing all edges from a parent to a child if the parent is
not immediately before the child in the lexicographical order.

�

Figure 5 shows the cell enumerating tree of our running
example. Assuming the dimension order is D1 ≺ D2 ≺
D3, the order of node in Figure 5 will be 〈1,1,1〉, 〈2,1,1〉,
〈3,1,1〉,... 〈4,3,4〉. Hereafter, unless otherwise mentioned,
we will use the same assumption for dimension order.

111 112 113 114

121 122 123 124

131 132 133 134

211 212 213 214

221 222 223 224

231 232 233 234

311 312 313 314

321 322 323 324

331 332 333 334

411 412 413 414

421 422 423 424

431 432 433 444

Figure 5: Cell Enumeration Tree

We next look at an example to show the relationship be-
tween the number of points dominated at a cell p and the
number of points dominated by its children. Consider the
cell 〈1, 1, 1 〉 in Figure 5. It is obvious that the number of
points p dominates is the sum of all the points that are in
the cells below it in the tree. This corresponds to the to-
tal number of points being dominated by its children in the
lattice in different subspaces.

dominating(〈1, 1, 1〉, C, {X, Y, Z}) =
numcell〈1, 1, 1〉+
dominating(〈1, 1, 2〉, C ′′, {Z})+
dominating(〈1, 2, 1〉, C ′, {Y,Z})+
dominating(〈2, 1, 1〉, C, {X, Y, Z})

where C ′′,C ′ are the points that are in the plane (X =
1, Y = 1) and (X = 1) respectively while numcell〈1, 1, 1〉
contain the number of points in cell 〈1, 1, 1〉

Such a property can then be applied to its three children
in order to determine how many points they dominate. To
understand how this can be interpreted on the cube itself,
we refer to cell 〈3, 1, 2〉 in Figure 4(b) (the blue cell) which
can be obtained by summing up the value in the yellow, red
and green regions of the same figure.

Generalizing this idea, for any cell p in an N-dimensional
space D, |dominating(p, C, D)| can be obtained by summing
up all its children’s aggregation. For each cell, p, we need
to compute DN1, DN2, ..., DNN where DNi represents the
number of points p dominates in subspaces {Di, ...,DN}.
For example, the cell 〈1, 3, 2〉 must compute the number of
points it dominates in subspaces {Y, Z} and {Z} because it
is the second child of cell 〈1, 2, 2〉 and the last child of 〈1, 3, 1〉
in the lattice, and thus requires these different values for
different parents.

The pseudo code of the DADA computation algorithm is
shown in Algorithm 1, inspired by the BUC algorithm pro-
posed by Bayer and Ramakrishnan [3]. It recursively par-
titions points in a depth-first manner so that points domi-
nated by the same cell are grouped together when comput-
ing the value of the cell. One main difference between our
algorithm and the BUC algorithm is that in ours, having
partitioned the data on a certain dimension, the partition
which is associated with the highest domain value in that
dimension will be visited first. This is to ensure that all ag-
gregate for the children of a cell is available when computing
the value for the cell.

After initialization, the main algorithm calls Enumerate()
with the smallest cell 〈1,1,...,1〉. The function Enumerate()
implements a depth first search and performs recursive com-
putation of the dominating number for each cell on the enu-
merating tree. Line 9 in Algorithm 1 performs pruning when
a partition is empty. This is important for the efficiency
of DADA computation and will be explained in Subsection
4.2.4. For each dimension D between dim and N , the in-
put dataset is partitioned on dimension D (Line 6). Line 7
iterates through the partitions for each distinct value in de-
scending order. The partition becomes the input dataset in
the next recursive call to Enumerate(), which computes the
dominating number on the partition for dimensions D + 1
to N .

As we have mentioned, the descending order in Line 7 is
very important in computing DADA on a dominating lat-
tice. This order guarantees that when a cell is being pro-
cessed, all the required values for its children are already
available. To illustrate based on Figure 5, the first enumer-
ation call will move us from 〈1, 1, 1〉 to 〈4, 1, 1〉, the second
call from 〈4, 1, 1〉 to 〈4, 3, 1〉, and the third call from 〈4, 3, 1〉
to 〈4, 3, 4〉. This brings us to the bottom of the lattice where
the value is to be computed and propagated upwards.

Now, we look at the procedure ComputeDN in the second
line of function Enumerate(). Given the input cell, Comput-
eDN ’s task is to compute the number of points being dom-
inated by the cell in all subspaces. The algorithm proceeds
from the last dimension to the first dimension. For value of
i from dim to 1, the number of points dominated by the cell
in subspace {Di,...,DN} is computed by adding the number
of points the cell dominates in subspace {Di+1,...,DN} to
the number of points its ith child dominate in {Di,...,DN}.
This value is stored in DnCount[i] for the cell. At the end
of the loop, the number of points dominated by the cell is
available in the variable tempDominatingNum.

To see this more clearly, consider how we can compute
dominating(〈1, 1, 1〉, C, {Y,Z}) by adding the following two
values:

1. dominating(〈1, 1, 1〉, C, {Z})
2. dominating(〈1, 2, 1〉, C, {Y, Z})

Note that we initialize the temp variable tempDominat-
ingNum to the number of points in the cell. This is because
although each cell is in fact a range of values along each
dimension, we take the smaller value for each range to rep-
resent the cell.

The procedure Compress() in Line 3 of the function Enu-
merate() is used for compressing DADA. We discuss this
next.

4.2.2 Compressing DADA
In this subsection, we propose a method to partition and

compress DADA to support efficient searching.

Definition 4.5. Equivalence Class Given a dominating
lattice L, a set of cells in L is said to belong to the same
equivalence class, CL, if:

1. Given any two cells c, c′ in L which satisfy c � c′, any
intermediate cell c′′ satisfying c � c′′ � c′ is also in
CL.

2. CL is the maximal set of cells that: (1) dominate the

Algorithm 1: DADA(C, n)
Input:

C: A set of points.
N: The total number of dimensions.

Output:
A class index tree.

Method:

1: let cell=〈1,...,1〉 and Call Enumerate(cell, C, 1);

2: construct the D*-tree and output it

Function Enumerate(cell, input, dim)
Input:

cell: the cell to be processed.
input: the point partition.
dim: the starting dimension for this iteration.

1. if dim==N+1 do
2. ComputeDN(cell, DnCount, dim-1)
3. Compress(cell)
4. end if
5. for D=dim to N do
6. partition input on dimension D
7. for i=cardinality[D] to 1 do
8. part=point partition for value xi of dimension D
9. if |part| ==0 do

ProcessDescendants(cell, part, D+1);
10. else
11. let cell[D]=i
12. Enumerate(cell, part, D+1)
13. end if
14. end for
15. end for

Algorithm 2 ComputeDN(cell, DnCount, dim)

1. Initialize tempDominatingNum to be numcell〈cell〉;
2. for i=dim to 1 do
3. if cell[i]<cardinality[i] do
4. tempcell=child(cell,i)
5. //compute tempindex of tempcell in subspace {Di,...,DN}
6. tempDominatingNum += DnCount[i][tempindex];
7. //compute index of cell in subspace {Di,...,DN}
8. DnCount[i][index] = tempDominatingNum;
9. end if
10. end for

Algorithm 3 Compress(cell)

1. for d=N to 1 do
2. if cell[d]<cardinality[d] do
3. tempcell=child(cell,d)
4. if tempcell is upper of existing class CL in temp class list
5. if cell.Dn==tempcell.Dn
6. merge cell into CL, CL.upp=cell,CL.num += cell.num
7. else remove CL from temp class list and output it
8. end if
9. end for
10. if cell does not merge into any existing class do
11. //create a new class CLm, insert it into the temp class list
12. CLm.upp=CLm.low=cell, CLm.Dn=cell.Dn

CLm.num=cell.num
13. end if

same set of points, and (2) are bounded in a regular
minimum bounding box (MBR).

�

The first condition of Definition 4.5 ensures that the cell
partition is convex. The second condition ensures that the

1 0 0

1 0 0

0 0 0

1 0 0

1 0 0

0 0 0

1 0 0

1 0 0

0 0 0

(a) (b) (c)

Figure 6: Example of cell partition

cell partition is maximal while having a regular rectangular
shape. For example, assuming the dataset C has only one
single point 〈1, 2〉(〈1, 2〉 means column 1 and row 2) in
a space 3×3, Figure 6(a) shows the maximal cell partition
according to the number of points dominated (shown as the
value of each cell in Figure 6).

Although in this case we obtain the maximal classes, we
lose the important property that each class has a unique
upper bound and lower bound.

Definition 4.6. Upper Bound/Lower Bound
Given an equivalence class of cells, CL, the upper bound
of CL is a cell p at the corner of the MBR that bounds CL
such that p dominates all cells in CL. The lower bound
of CL, is a cell p at the corner of the MBR that bounds CL
such that p is dominated by all cells in CL. �

Since the existence of unique upper and lower bounds is
very useful for answering the three types of representative
DRQs, we want to keep the unique property of the upper
bound for each class while doing cell partition. This is the
motivation for the second condition of Definition 4.5.

We use CL.upp, CL.low, CL.num and CL.Dn to represent
the upper bound, the lower bound, the number of points con-
tained and the number of points dominated by cells in an
equivalence class CL, respectively. For example, the equiv-
alence class in the green color region in Figure 6(b) can be
represented as CL={〈2,1〉, 〈3,2〉, 0}. That is, CL.upp is the
cell 〈2,1〉, CL.low is the cell 〈3,2〉, and CL.Dn is 0.

After having computed the value for each cell, the pro-
cedure Compress() in Algorithm 3 is immediately called by
the function Enumerate(). It iterates through all dimen-
sions, and checks if the current cell can be merged with one
of its children (Lines 1-8). If it cannot merge into any ex-
isting class, it forms a new class CLm itself (Lines 9-12).
Note that CLm is a temp class and cannot be output yet.
It may merge with one of its parent cells later. A temp
class list is maintained to keep all temp classes in reverse
lexicographical order of upper bounds.

After a new temp class is created, it is inserted at the end
of the list. Once we find that a cell cannot merge with one
of its child temp classes CLt, we delete CLt from the temp
class list and output it.

Note that the output order from head to tail is very im-
portant when the classes in the temp class list are output.
It guarantees all classes are output in reverse lexicographi-
cal order. This order helps improve the efficiency of index
construction, which we will discuss below.

The gray cells in Figure 5 show the class upper bounds
produced by Algorithm 1 when the dataset in Figure 4 (a)
is used.

Figure 7: D*-tree

4.2.3 Construction of D*-tree
Since all cells in an equivalence class dominate the same

set of points, and there exists a unique upper bound for
each class, we can use the upper bound as a representative
for answering queries. To enable efficient query processing,
an index structure (called D*-tree in this paper, short for
DADA index tree) can be constructed using the set of class
upper bounds in a dominating lattice.

Definition 4.7. D*-tree
Given a set of upper bounds from the equivalence classes, a
D*-tree is a tree such that:

1) There is a node representing each upper bound of the
equivalence classes.

2) There is an edge from one node (Node 1) to another (Node
2) if and only if:

• The upper bound of Node 1 dominates the upper bound
of Node 2.

• The upper bound of Node 1 is the nearest to Node 2
based on the lexicographical order among all nodes that
dominate Node 2.

�

For any cell in a dominating lattice, we can quickly obtain
its values by simply accessing a node in the D*-tree corre-
sponding to its class upper bound. Details will be discussed
in Section 5.

To construct a D*-tree, we only need to read in all classes
which we have output in lexicographical order. This is facil-
itated by the way we output the classes at the compression
stage. As each class is read, we create its representing node,
find its nearest parent node p on the D*-tree, and insert the
node as the child of p. Figure 7 shows the D*-tree corre-
sponding to the cells in Figure 5 .

4.2.4 Pruning
We now describe the pruning strategy used in DADA to

improve its computation efficiency. Our emphasis here is to
show that our pruning step does not prune off any equiva-
lence classes while preventing fruitless computation. Com-
bining this with our earlier explanation on how DADA is
computed and compressed without the pruning step, the
correctness of our algorithm is obvious.

The pruning explores the BUC-like property that when-
ever a partition on some dimension d contains an empty set
of points, the number of points dominated by all cells ex-
panded from this partition in subspace {Di,...,DN} (i=d+1,...,N)
will be 0.

For example, the fourth partition on the first dimension
in Figure 5 contains an empty set of points. Cells expanded
from this partition are: 〈4, 1, 1〉 , 〈4, 1, 2〉, ..., 〈4, 3, 4〉).

Their dominating number in subspaces {D2, D3} or {D3} is
0.

The procedure ProcessDescendants() in Line 9 of Algo-
rithm 1 is implemented for pruning. It calls procedures
ComputeDN() and Compress() for cells expanded from par-
tition part just as with function Enumerate(). The major
difference is that since all cells from the part onward domi-
nate no point, ComputeDN() now need only iterate for the
first D subspaces i.e., only from D to first dimension and
not from the last dimension to the first dimension as shown
in Line 2 of Algorithm 1.

By avoiding the aggregation for subspaces and partitions
that do not dominate any point, considerable cost saving can
be made on sparse datasets. In addition, our method has the
potential to adopt iceberg-cube [3] like pruning i.e., given a
user-specified threshold, we prune away all computation for
cells that dominate too few points.

5. QUERY ANSWERING USING DADA
In this section, we propose efficient algorithms to answer

DRQs using D*-trees on DADA. The key idea is to make
efficient use of D*-trees in filtering unnecessary checks.

5.1 Linear Optimization Query
Given a plane L, a set of objects C in space D, we wish

to find some cells which intersect L and dominate the most
points in C.

An obvious method for processing such queries is as fol-
lows: First, start a depth-first search from the smallest cell
〈1,...,1〉. At any stage, if the cell is at the bottom-left of
the plane L (referring to Figure 2), iterate continually on
its children. Otherwise, stop the iteration, and if the cell is
exactly on the plane L, add it to the result cell set. Sec-
ond, return those cells which have the maximal dominating
number from the result cell set. This method is clearly not
efficient.

To improve efficiency, we perform the iterative procedure
on the D*-tree from the root. At each node along the path,
we can determine if L cuts through some cells in an equiv-
alence class CL by checking whether CL.upp and all the
upper bounds of its children in the D*-tree fall on the right-
upper side of L. If this is the case, CL and all the nodes
below it in the D*-tree can be ignored.

Figure 8 shows an example in which a dominating lattice
is partitioned into seven classes. Circles represent the upper
bounds of equivalence classes. Class 〈1,1〉 has two children,
〈2,1〉 and 〈1,4〉. Since child 〈2,1〉 falls on the same side rela-
tive to the plane L as 〈1,1〉 does, and 〈1,4〉 is exactly on the
plane L, we can infer that the class 〈1,1〉 does not intersect
with plane L. All cells in 〈1,1〉 will not satisfy the query con-
dition. Thus, 〈1,1〉 is excluded from the result class set. We
next look at class 〈2,1〉. Since it has a child 〈4,1〉 which falls
on the different side of plane L, 〈2,1〉 must be cut through
by the plane L and is put into the result set. Note that at
this time, we do not have to further iterate on the children
of 〈4, 1〉 (such as 〈6,1〉 and 〈4,3〉).

We outline the LOQ query processing algorithm in Algo-
rithm 4. The last three lines are used to process the special
case where some classes have no immediate child class on
some dimension. For the example shown in Figure 8, class
〈2,1〉 has no immediate child class on dimension Y, and class
〈1,4〉 has no child class on dimension X. In this case, even
though all their children fall on the same side, we cannot

L

 Figure 8: Example of LOQ Processing

Algorithm 4: LOQ Processing(T , L)
Input:

T: A D*-tree. L: A plane. Output:
LOQ(L, C, D) and a point set.

Method:
1: Initialize Node to the root node of the T
2: Find CSet using LOQ SearchTree(newRoot, L)
3: Pick class CLmax which dominate most points
from CSet
4: Return the cells and their value in CLmax

Function LOQ SearchTree(Node, L)

1. if Node.upp is at the bottom−left of L
2. for each child ci of Node
3. if ci.upp is at the bottom-left of L
4. LOQ SearchTree(ci, L)
5. else //ci.upp is on L or at the up-right of L
6. if ci.upp is on the plane of L
7. put ci to the result class set CSet
8. else //ci.upp is at the up-right of L
9. if Node is not in CSet, put it in
10. if Node¬ ∈Cset

V
Node.ChildNum<N

11. if Node.low is on L or at the up-right of L
12. put Node in CSet

exclude them from the result set.

5.2 Subspace Analysis Query
Given a set of points C and a point p in the N-dimension

of D, the most basic SAQ is to compute for each subspace
D′, the number of points dominating or dominated by p. To
answer subspace query on D′ using DADA, we only have to
compare p to all points in C in the dimensions of D′ and
ignore the effect of other dimensions. This implies that as
long as p dominates a point q based on D′, their relation in
D − D′ is of no consequence.

To simulate this, we create a point p′ such that p′
i = pi if

Di ∈ D′ and p′
i = 1 if Di ∈ (D − D′). By setting the value

of dimensions not in D′ to 1, we remove the effect of these
dimensions, and p′ will dominate another point so long as
that is true in D′.

As an example, Figure 9(a) shows a set S which includes

Figure 9: Example of SAQ Processing

five two-dimensional points. Figure 9(b) plots the projec-
tions of the five points in Figure 9(a) in subspace {Y }. Fig-
ure 9(c) shows the corresponding dominating cube of point
set S in Figure 9(a). We can easily see that for any point p in
subspace {Y }, we can get its dominating number by query-
ing the left most column of the dominating cube in the full
space. For example, the dominating number of point a in
subspace {Y } is 3, and that of c is 5. Likewise, for any
point p in subspace {X}, we can get its dominating number
by querying the bottom row of the dominating cube in the
full space.

After having computed p′ from p and D′, it is relatively
easy to search for p′ by going down the D*-tree. All that
needs to be done is to start from the root of the tree and
move down the node with the upper bound that can domi-
nate p′. By comparing p′ against the upper bound and lower
bound of a class, it is possible to identify whether p′ is con-
tained in the class. Once this is found, the answer can be
output.

5.3 Comparative Dominant Query
Comparative dominant queries are those queries which

aim to compare the set of dominated objects between com-
petitive products. So far, we have defined two kinds of
CAQs: CDQ−(A,B,C,D), which retrieves |gdominating(A,C,D)

- gdominating (B, C, D)|; and CDQ
T

(A,B,C,D), which re-
trieves |gdominating(A,C,D)

T

gdominating(B,C,D)|.
To handle such queries, we can search the D*-tree from

the root level by level. To accumulate the number of points
that is dominated by A (or B), we associate a class list with
A (or B). Once we find the lower bound of a class CL is
dominated by at least one point in A, then all children of
CL must be dominated by A. In this case, we need not search
the subtrees of CL for A any more. What we need to do is to
put CL and all its children to the class list of A and search
the subtrees of CL further for B. If we find that the lower
bound of a class CL′ is dominated by at least one point in
B, then all children of CL′ must be dominated by B. In this
case, the search on subtrees of CL′ will be pruned off. We
only need to put CL′ and all its children into the class list of
B. The switch between searching for A and B is controlled
by the variable Flag.

If the lower bound of CL (or CL′) is not dominated by
any point in A (or B) , the children of CL (or CL′)need
to be recursively processed. After we finish the search of
the D*-tree, we get two class list, one is for A and one is
for B. What we need to do now is to accumulate the num
of all classes on the same list. The algorithm of the CDQ
answering algorithm is given in Algorithm 5. For brevity,
we suppress further details.

6. PERFORMANCE ANALYSIS
To evaluate the efficiency and effectiveness of DADA, we

conducted extensive experiments. We implemented all algo-
rithms using Microsoft Visual C++ V6.0, and conducted the
experiments on a PC with Intel Pentium 4 2.4GHz CPU, 3G
main memory and 80G hard disk, running Microsoft Win-
dows XP Professional Edition. We conducted experiments
on both synthetic and real life datasets. However, due to
space limitation, we will only report results on synthetic
datasets here. Results from real life datasets mirror the re-
sult of the synthetic datasets closely.

To examine the effects of various factors on the perfor-

Algorithm 5: CDQ Processing(T , A, B)
Input:

T: A D*-tree.
A, B: two object sets.

Output:
CDQ−(A,B,C,D) and CDQ

T

(A,B,C,D).
Method:
1: Initialize Node to the root node of the T
2: Initialize ListA and ListB to null;
3: CDQ SearchTree(Node, A, ListA, 1)
4: Accumulate the num of all nodes on listA to numA
5: Accumulate the num of all nodes on listB to numB
6: CDQ

T

(A,B,C,D)=numB
7: CDQ−(A,B,C,D) = numA - numB

Function CDQ SearchTree(Node, S, L, Flag)

1. if Node.low is dominated by any point in S
2. put all nodes on the subtree rooted with Node to list L
3. if Flag==1 //need search further for object set B
4. CDQ SearchTree(Node, B, ListB, 0)
5. else
6. return
7. else
8. for each child ci of Node
9. CDQ SearchTree(ci, A, ListA, 1)

mance of DADA, we generated three popular synthetic sky-
line data sets: correlated, independent and anti-correlated,
using the data generator provided by the authors in [5]. For
each type of data distribution, we generated data sets of
different sizes (from 100,000 to 1000,000 tuples) and of di-
mensionality varying from two to six. The default values
of dimensionality and data size were 5 and 100,000 respec-
tively. The default value of cardinality for each dimension
was 50.
Effectiveness of Compression: In this experiment, we
explored the compression benefits of DADA using a metric
called compression ratio, defined as the size of compressed
DADA as a proportion of uncompressed DADA. As such,
a smaller ratio implied better compression. We stored a
compressed DADA by explicitly storing a lower bound and
an upper bound for each class.

Figure 10(a) shows the compression ratio for each type of
data distribution with increasing dimensionality. Clearly, we
can obtain comparable compression ratio on all three data
sets. Among the three distributions, correlated data gives
the most compression as many cells in DADA dominate the
same set of points. Anti-correlated data sets are second in
terms of compression ratio. Similar to correlated data, the
skewness of anti-correlated data results in many points being
grouped together, resulting in a reasonable number of cells
dominating the same set of points. However, their direction
of correlation is orthogonal to the direction of dominance.
As such, the number of cells dominating the same points is
still smaller for anti-correlated data compared to correlated
data resulting in more equivalence classes being generated.
Independent data has the least compression as it is more
difficult for cells to dominate the same set of points. From
Figure 10(a), we can see that the higher the dimensionality
is, the better the compression ratio will be. This happens
because the cube gets more sparse when dimensionality in-
creases while the number of points remains the same.

Figure 10(b) shows how effectiveness of DADA scales up

0%

20%

40%

60%

80%

100%

3 4 5 6

Dimensionality

C
o
m
p
r
e
s
s
i
o
n

r
a
t
i
o

(
%
) Independent

Anti-Correlated

Correlated

(a) Varying Dimensional-
ity

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

200 400 600 800 1000

number of points (K)

C
o
m
p
r
e
s
s
i
o
n

r
a
t
i
o

(
%
) Independent

Anti-Correlated

Correlated

 (b) Varying Data Size

Figure 10: Compression Ratio

as the number of points goes up. We can see that com-
pression performance gets worse as the number of points
increases. This is because DADA becomes more dense when
more points are added.

Efficiency of Computation: To evaluate the efficiency of
our algorithm for computing DADA, we fixed the number
of points at 100k and varied the number of dimension from
three to six. Figure 11(a), Figure 11(b) and Figure 11(c)
show the run time of the basic algorithm (without-pruning)
against that of the improved algorithm (with-pruning) for
computing DADA on three types of data sets.

From the results, we can see that pruning outperforms
without-pruning on all data sets. As we have discussed,
pruning can reduce computation for those partitions which
dominate an empty point set in some subspaces. In cor-
related data sets, pruning helps halve running time. The
difference between the results with and without pruning in-
creases with dimensionality. The reason is that as dimen-
sionality increases, the cube becomes more sparse and prun-
ing the large number of empty cells yields significant saving.

Since an exhaustive search has to be carried out if no
pruning is done, the performance of the without-pruning ap-
proach is very sensitive to number of dimensions but less
sensitive to data distribution. When pruning is done, di-
mensionality has less effect while data distribution becomes
an important factor. From Figure 11(c), we can see that the
performance difference between the two approaches on the
independent data sets is not as large compared to the other
two datasets.

Scalability: Next, we look at the run time of the two algo-
rithms as the number of points increases. Since the trends
are the same for all three data sets, we only show the results
on the data sets with independent distribution as it is the
most difficult to compress. We increase the number of points
from 200k to 1 million. Figure 12(a) shows that although
both algorithms are of linear scalability, the run time of
the without-pruning algorithm scales better than that of the
with-pruning algorithm. As the number of points increases,
DADA becomes denser. The without-pruning approach is
not greatly affected since it is insensitive to how dense the
cube is. The with-pruning approach slightly worsens since
dense data provides fewer chances for pruning to be done.

Effect of Cardinality: To evaluate the effect of cardinal-
ity on our techniques, we varied the cardinality of the data
sets from 30 to 70. Figure 12(b) shows the run time of both
algorithms against varying cardinality. We can see that as
cardinality increases, the run time of the without-pruning
approach increases rapidly while that of the with-pruning
approach increases only modestly. This is because as car-

0

100

200

300

400

500

600

700

800

3 4 5 6
Dimensionality

R
u
n
t
i
m
e

(
s
e
c
o
n
d
s
)

without-pruning

with-pruning

(a) Correlated

0

100

200

300

400

500

600

700

800

3 4 5 6

Dimensionality

R
u
n
t
i
m
e

(
s
e
c
o
n
d
s
)

without-pruning

with-pruning

(b) Anti-Correlated

0

100

200

300

400

500

600

700

800

3 4 5 6

Dimensionality

R
u
n
t
i
m
e

(
s
e
c
o
n
d
s
)

without-pruning

with-pruning

(c) Independent

Figure 11: Run Time vs. Dimensionality

0

50

100

150

200

250

300

350

400

200 400 600 800 1000

Number of points (K)

R
u
n
t
i
m
e

(
s
e
c
o
n
d
s
)

without-pruning

with-pruning

(a) Varying Data Size

0

100

200

300

400

500

600

700

800

30 40 50 60 70

Cardinality

R
u
n
t
i
m
e

(
s
e
c
o
n
d
s
)

without-pruning

with-pruning

(b) Varying Cardinality

Figure 12: Running Time (Independent)

dinality increases, the cube becomes sparse and the with-
pruning approach is able to make use of the sparseness to
reduce running time.

Query answering performance: In this experiment, we
evaluated the query answering performance of DADA. We
implemented our query processing algorithm in two ways:
In the first, we performed (with-pruning) compression on
DADA and indexed the equivalence partitions using the D*-
tree. In the second, we performed (without-pruning) scan-
ning of individual cells.

We also compare our algorithms with a (Naive) method
which simply stores all of the data points in an array. To
answer a query, the Naive method will simply scan through
the array and count dominating or dominated points. A
brief outline of such method is given as follows:

• For LOQ, the Naive method scans the data and keeps
one counter for every point p′ on the test plane. For
each point p in the data set, we increment the p′

counter if p′ dominates p.

• For SAQ, we perform a linear scan on the data and
for each data point p′, we check if the query point p is
dominating or dominated by p′ in the given subspace.
A counter (initially set to 0) will only be incremented
if the result is positive. At the end of the scanning,
the counter will be returned as the query result

• For CDQ, a linear scan is performed on the dataset and
for each data point p, we check whether it is dominated
by any object in A. If p is dominated by at least one
object in A, we check whether it is also dominated by
an object in B. If this is also true, we increment the
counter for CDQ

T

(A,B,C,D), otherwise, the counter
for CDQ−(A,B,C,D) will be increased.

We first randomly generated 10,000 different LOQs based
on the synthetic data set. As the correlated and anti-correlated

data sets contain too few equivalence classes to be inter-
esting after compression, we present only the result on the
independent data set.

Figure 13(a) shows query time against dimensionality. We
can see that the two algorithms, with-pruning and without-
pruning, outperforms the Naive method. This is because
Naive method needs to do a lot of pairwise comparison be-
tween points. It can also be seen that with-pruning ap-
proach outperforms the without-pruning approach. The per-
formance difference increases with dimensionality. This is
because as the dimensionality increases, the number of cells
increases drastically while the size of the D*-tree does not
significant increases due to the compression. Because of this,
the without-pruning approach entails much more checking
than the with-pruning approach.

To test the effect of SAQ queries, we randomly generated
10,000 different points. For each point p, we queried its
dominating number in all subspaces. Figure 13(b) shows
query time against dimensionality. We can see that the with-
pruning approach is clearly the best.

To test the effect of CDQ queries, we randomly generated
10,000 different CDQs based on the synthetic data set with
in A and B containing 100 points each. Figure 13(c) shows
query time against dimensionality. As expected, the with-
pruning approach performs the best. From these results, we
can see that the D*-tree together with a compressed DADA
is very useful for answering of DRQs.

7. CONCLUSION
In this paper, we have introduced Dominant Relationship

Analysis and proposed three types of queries to illustrate the
various aspects of this new form of analysis. To support the
queries, we have further proposed a novel data cube called
DADA. The results of our extensive experiments show that
DADA can be computed efficiently and is useful for handling
the three types of queries. In our future work, we will look at
how these three types of queries can be integrated efficiently
and elegantly.

8. REFERENCES
[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,

J. Naughton, R. Ramakrishnan, and S. Sarawagi. On
the Computation of Multidimensional Aggregates. In
VLDB, pages 506–521, 1996.

[2] D. A. K. Alexander Hinneburg. Optimal
grid-clustering: Towards breaking the curse of
dimensionality in high-dimensional clustering. In
VLDB, 1999.

1

100

10000

3 4 5 6

Dimensionality

L
O
Q

Q
u
e
r
y

t
i
m
e

(
s
e
c
s
)

without-pruning with-pruning naive

(a) LOQ Query Processing

1

10

100

1000

3 4 5 6
Dimensionality

S
A
Q

Q
u
e
r
y

t
i
m
e

(
s
e
c
s
)

without-pruning with-pruning naive

(b) SAQ Query Processing

1

100

10000

3 4 5 6

Dimensionality

C
D
Q

Q
u
e
r
y

t
i
m
e

(
s
e
c
s
)

without-pruning with-pruning naive

(c) CDQ Query Processing

Figure 13: Query Answering (Independent): Time vs. Dimensionality

[3] K. S. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In SIGMOD
1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-3, 1999,
Philadelphia, Pennsylvania, USA, pages 359–370,
1999.

[4] G. Birkhoff. Lattice Theory. American Mathematical
Society Colloquium Publications, Rhode Island, 1973.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, 2001.

[6] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using
association rules for product assortment decisions: A
case study. In KDD, pages 254–260, 1999.

[7] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. Finding k-dominant skyline in
high dimensional space. In ACM SIGMOD, 2006.

[8] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. On high dimensional skylines. In
EDBT, pages 478–495, 2006.

[9] Q. Chen, M. Hsu, and U. Dayal. A
data-warehouse/OLAP framework for scalable
telecommunication tandem traffic analysis. In ICDE,
pages 201–210, 2000.

[10] B. Davey and H. Priestley. Introduction to Lattices
and Order. Cambridge University Press, 1990.

[11] M. Ester, R. Ge, W. Jin, and Z. Hu. A microeconomic
data mining problem: customer-oriented catalog
segmentation. In KDD, pages 557–562, 2004.

[12] R. Godin, R. Missaoui, and H. Alaoui. Incremental
concept formation algorithms based on galois
(concept) lattices. Computational Intelligence,
11:246–267, 1995.

[13] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In
ICDE, pages 152–159, 1996.

[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub
totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[15] J. Han. Olap mining: Integration of olap with data
mining. In Database Semantics-7, pages 3–20, 1997.

[16] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. In ACM
SIGMOD, pages 205–216, 1996.

[17] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in olap data cubes. In SIGMOD
Conference, pages 73–88, 1997.

[18] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Segmentation problems. In STOC, 1998.

[19] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A
microeconomic view of data mining. In Data Min.
Knowl. Discov., 2(4): 311-322, 1998.

[20] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: An online algorithm for skyline queries. In
VLDB, 2002.

[21] C. Li, G. Cong, A. K. H. Tung, and S. Wang.
Incremental maintenance of quotient cube for median.
In KDD, pages 226–235, New York, NY, USA, 2004.
ACM Press.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In SIGMOD, 2003.

[23] K. Ross and D. Srivastava. Fast Computation of
Sparse Datacubes. In VLDB, pages 116–125, 1997.

[24] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos.
Cubetree: organization of and bulk incremental
updates on the data cube. In ACM SIGMOD, pages
89–99, 1997.

[25] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: shrinking the petacube. In
SIGMOD Conference, pages 464–475, 2002.

[26] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB, 2001.

[27] K. Wang, S. Zhou, and J. Han. Profit mining: From
patterns to actions. In EDBT, pages 70–87, 2002.

[28] R. C.-W. Wong, A. W.-C. Fu, and K. Wang. Mpis:
Maximal-profit item selection with cross-selling
considerations. In ICDM, pages 371–378, 2003.

[29] J. T. Yao. Sensitivity analysis for data mining. In
Proceedings of The 22nd International Conference of
NAFIPS (the North American Fuzzy Information
Processing Society), pages 272–277, 2003.

[30] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of skyline cube. In
VLDB, pages 241–252, 2005.

[31] Z. Zhang, X. Guo, H. Lu, A. K. H. Tung, and
N. Wang. Discovering strong skyline points in high
dimensional spaces. In CIKM, pages 247–248, 2005.

