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ABSTRACT
The need to locate the k-nearest data points with respect to
a given query point in a multi- and high-dimensional space
is common in many applications. Therefore, it is essential to
provide efficient support for such a search. Locality Sensi-
tive Hashing (LSH) has been widely accepted as an effective
hash method for high-dimensional similarity search. Howev-
er, data sets are typically not distributed uniformly over the
space, and as a result, the buckets of LSH are unbalanced,
causing the performance of LSH to degrade.
In this paper, we propose a new and efficient method

called Data Sensitive Hashing (DSH) to address this draw-
back. DSH improves the hashing functions and hashing fam-
ily, and is orthogonal to most of the recent state-of-the-art
approaches which mainly focus on indexing and querying s-
trategies. DSH leverages data distributions and is capable
of directly preserving the nearest neighbor relations. We
show the theoretical guarantee of DSH, and demonstrate its
efficiency experimentally.
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1. INTRODUCTION
In a wide range of applications, data can be represented

as points in a multi-dimensional space. For example, feature
vectors are often used to represent multi-media data such as
images and music. Similarly, a company may use a number
of attributes for profiling each customer, or for each product.
Each attribute, or each element of a feature vector, can be
considered as a dimension in a multi-dimensional space in
which each object is a point. Similarity search consequent-
ly is transformed to finding points in this multi-dimensional
space that are close to a given query point. In many appli-
cations, we may be interested in data points that are within
some distance of a query point. However, we may not have a
meaningful way of setting a distance threshold, and instead
we seek the k-nearest points (e.g. the results displayed in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

(a) LSH (b) DSH

Figure 1: Motivation

the first page of search engine). Therefore, it is essential to
support efficient k-nearest neighbor (k-NN) search.

Access methods in the multi-dimensional space, including
the k-NN problem, have been studied extensively. However,
most of them suffer from the so-called curse of dimensional-
ity and demonstrate poor performance when the number of
dimensions is high [21]. One technique that shows promise in
high-dimensional spaces is locality sensitive hashing (LSH)
[10]. LSH relaxes the k-NN problem to a c-approximate
k-NN problem that aims to find k points within distance
c×R where R is the maximum distance between the query
point and its k-nearest neighbors. In essence, LSH solves
k-NN problem by first obtaining a set of similar points to q
and then extracting the k-nearest points from these similar
points. For this purpose, LSH designs a novel scheme to
hash the points so that the possibility of collision is much
higher for similar points than for dissimilar points. Similar
objects are then identified by examining a certain number
of points that collide with the query point. However, defin-
ing similar points is challenging, and as such LSH simply
adopts a constant value r to define two points as similar if
their distance is no greater than r. In essence, LSH search-
es for near neighbors within a radius r. For k-NN search,
LSH performs well in a uniform data distribution setting in
which a good-quality r can be derived. When the data are
skewed, the distance between k-NN pairs can vary greatly,
using a consistent r to define all similar points is inadequate.
It is for this reason that LSH performance suffers. Figure
1a shows an example of the hashing results of LSH. On the
indexing level, we see that the hashing is unbalanced, where
some buckets are empty while a few buckets contain too
many points. From the k-NN perspective, as the distance
between k-nearest neighbor pairs can vary greatly, LSH so-
lutions either have to maintain a huge set of indexes for
different values r, or use one (or a few fixed) r which may



lead to arbitrary bad results. More discussion will be given
in Section 2.
Recently, there has been increasing attention focused on

designing new indexes [20] or query strategies [13, 9] to al-
leviate the limitations of LSH. However, to the best of our
knowledge, all of them are still based on locality-sensitive
hashing families, i.e. random projections, which cannot
adapt based on data distributions. Real data distributions
are often non-uniform and frequently very skewed. Con-
sequently, these methods still suffer from poor hashing ef-
fectiveness. In this paper, instead of trying to enhance LSH
with the use of more efficient structures or processing strate-
gies, we seek to address a more fundamental question: are
there methods that can provide consistently effective hash-
ing results regardless of the data distribution. To this end,
we propose the concept of data-sensitive hashing (DSH) as
an efficient mechanism for addressing the k-NN problem.
DSH directly deals with the k-NN problem instead of find-

ing neighbors within a distance r. Hence, DSH avoids the
issue of selecting the distance r that is required in LSH.
DSH designs a novel scheme to facilitate the retrieval of a
set of k-nearest neighbors with respect to a query point. Fig-
ure 1b shows the intuition of DSH. Since each bucket has a
similar number of objects, its radius is adapted to the dis-
tance of k-NN. The basic idea of DSH is to hash the points
such that the possibility of collision is much higher for k-
NN pairs(unidirectional or bidirectional) than for non-k-NN
pairs. It follows the same procedure as LSH for similari-
ty search, the key difference being within the corresponding
hashing families. Compared with random projections which
have a large probability to hash the objects within a dis-
tance r together, our hashing family needs to have a large
probability to hash the k-NN pairs together.
To find such hashing families, we learn from the data.

Since we expect each k-NN pair to collide in most of the
hashing functions, the requirement for hashing family can be
represented as a strong classifier. Obviously, a single hashing
function cannot protect all the k-NN pairs while separating
all the non-k-NN pairs. Using spectral techniques, we can do
an optimization on preserving the k-NN pairs while cutting
the others. It is well known that adaptive boosting [8] is an
efficient algorithm to generate a strong classifier using a set
of weak classifiers. Therefore, we treat the hashing family
as the strong classifier, and each hashing function in the
family as a weak classifier. We adopt the adaptive boosting
technique to ensure that the k-NN relations are theoretically
protected by most of the hashing functions.
We summarize the contributions of the paper as follows.

• We propose a novel access method called Data Sensi-
tive Hashing (DSH) to answer the k-nearest neighbor
queries. Compared with LSH, DSH is able to capture
the data distribution more effectively. Equipped with
the distribution knowledge, DSH is able to deal with
the k-NN problem in a more direct and efficient man-
ner. DSH focuses on the hashing family, and thus most
LSH extensions designed to enhance LSH are orthogo-
nal to our proposal, and can be applied to DSH easily.
(Sec. 3).

• We design an efficient algorithm to generate the data-
sensitive hashing family – the key challenge for DSH.
The algorithm combines adaptive boosting and spec-
tral techniques, resulting in a good theoretical guaran-

tee. The indexing time is also comparable with LSH.
(Sec. 4).

• We experimentally verify the effectiveness and efficien-
cy of our proposed DSH using three real datasets. Com-
pared with LSH, our hashing results are much more
balanced. Consequently, DSH is three times more effi-
cient than LSH in query response time and index size
in order to achieve the same quality of search results.
(Sec. 5).

2. PRELIMINARIES
In this section, we provide the problem definition followed

by a brief introduction and analysis of LSH. In the end, we
review related work.

2.1 Problem Definition
In this paper, we consider data objects represented as

points in a d-dimensional vector space Rd. Let ∥p, q∥ be the
distance measure between two points p and q in Rd. The
k-nearest neighbor(k-NN) problem is defined as follows:

definition 1. (k-nearest neighbor problem) Given a
set O of n data points, a point q ∈ Rd and an integer k, we
aim to find the k data points that are nearest to q in O. We
denote this answer set by NN(q, k). Formally, |NN(q, k)| =
k, ∀o ∈ NN(q, k), o′ ∈ O\NN(q, k), ∥q, o∥ ≤ ∥q, o′∥.

Typically, finding exact k-NN potentially results in a se-
quential scan of the entire dataset O, and its cost grows
linearly with the cardinality of O. For this reason, approx-
imate k-nearest neighbor problem is accepted as a compro-
mise since the cost of the solution grows sub-linearly with
the cardinality of O while the quality is within an accept-
able level. We define the approximate k-nearest neighbor
problem as follows:

definition 2. (δ-recall k-NN problem) Given a set O
of n data points, a point q ∈ Rd and an integer k, the δ-recall
k-NN problem aims to find a set of k points δNN(q, k), such
that |δNN(q, k)| = k, |δNN(q, k) ∩NN(q, k)| ≥ δ × k.

The definition provides a lower bound of the recall that
at least k × δ points of exact k-NN are returned. δ-recall
k-NN problem is indeed compatible with c-approximate k-
NN problem discussed in Section 1. In c-approximate k-NN
problem, it provides the upper bound of the distance for the
points to be returned. To achieve a similar upper bound
in the δ-recall k-NN problem, we can relax k to a larger k′

(k′ = k/δ), and select k points from δNN(q, k′) with the
smallest distances. As a result, we can guarantee that the
farthest distance of these k points to q is within R′ where
R′ is the maximum distance between q and the k′th-NN.

2.2 Locality Sensitive Hashing
Locality Sensitive Hashing is an efficient approximate al-

gorithm for high dimensional similarity search. It is efficient
and provides a rigorous quality guarantee for finding similar
points within a distance r, i.e. the r-NN problem.

definition 3. (r-NN problem) Given a set O of n data
points, a point q ∈ Rd and a distance r, we aim to find
the data points that are within a distance r to q in O. We
denote the sphere centered at point q by B(q, r). Formally,
B(q, r) = {p|p ∈ Rd, ∥p, q∥ ≤ r}. The r-NN problem aims
to find {o|o ∈ O and o ∈ B(q, r)}.



LSH leverages a family of functions where each function
hashes the points in such a way that the possibility of col-
lision is higher for similar points than for dissimilar points.
Formally, an LSH family can be defined as follows [1]:

definition 4. (LSH Family, H) A family H = {h :
Rd → U} of functions is called (r, cr, p1, p2)-sensitive if for
any p, q ∈ Rd

• if p ∈ B(q, r), then PrH(h(p) = h(q)) ≥ p1;

• if p /∈ B(q, cr), then PrH(h(p) = h(q)) ≤ p2;

The family of hash functions are generated through the
use of random projections – the intuition is that points that
are nearby in the space will also be nearby in all projections.
While two distance points can also be close in all projections,
the possibility is extremely small if enough number of pro-
jections is taken. Usually, the difference between p1 and p2
is not enough to be used directly. To enlarge the difference,
a concatenation of LSH functions is applied to generate a
hash key for each point in Rd.

definition 5. (Concatenation LSH Functions, G) A
set of concatenation LSH functions G = {g : Rd → Um}.
Each gi ∈ G consists of a sequence of m hash functions
randomly extracted from H. Formally,

gi(p) = (hi1(p), ..., him(p)),

where m is the number of hash functions in each concate-
nation and hi1 , ..., him are randomly selected from the LSH
Family H.

LSH applies these concatenation LSH functions to con-
struct the hash tables. As a result,

• ∀p ∈ B(q, r), Pr(g(p) = g(q)) ≥ pm1

• ∀p ∈ Rd\B(q, cr), Pr(g(p) = g(q)) ≤ pm2

Further, the expected number of points in O that collide
with q but are outside the ball B(q, cr) is less than pm2 ∗ |O|.
However, the recall for one hash table, pm1 , is not large.
To raise the overall recall, LSH typically applies l concate-
nation LSH functions and constructs l hash tables. Each
concatenation LSH function randomly chooses m functions
in H. When the number of functions in H is large enough,
the hash results of different concatenation functions can be
regarded as independent. Thus, for any o ∈ B(q, r), the pos-
sibility that o collides with q in at least one hash table is at
least 1− (1− pm1 )l, which is very close to 1. To summarize,
LSH answers c-approximate r-NN problem as follows:

1. Pre-processing: LSH maintains l hash tables, and
each hash table is attached with a concatenation hash
function. Each hash table applies its concatenation
hash function to hash the points in O, where each con-
catenation hash function consists of m hash functions
randomly selected from the hashing family H;

2. Query processing: Given a query object q, LSH find-
s c-approximate r-NN by examining points that collide
with q in each of the l hash tables. In particular, the
expected number of objects outside the B(q, cr) is lim-
ited by l ∗pm2 ∗ |O|. This property guarantees its query
efficiency.

While LSH has been shown to be very effective in finding
nearby points in high-dimensional space, we should note that
this is accomplished with respect to a specified radius r, and
an approximation allowance factor c. For a k-NN problem,
the corresponding radius for different query points may vary
by orders of magnitude. In such a case, LSH has to either
(i) be run repeatedly with different values of r, cr,c2r ...
which leads to substantial increase in the query time and
index storage cost, or (ii) use an ad-hoc r which leads to low
quality guarantee.

Further, LSH implicitly splits the whole space into lattices
so that points in the same lattice cells are hashed into the
same bucket. As a result, for real data distributions that are
non-uniform, the hashing results are often unbalanced. We
find that an unbalanced hashing leads to performance degra-
dation of LSH. The reasons are two-fold. First, for the case
that the number of points in one bucket is too small, LSH
cannot find c-approximate r-NN and a further examination
on a larger r is required; second, for the case that too many
points collide in one bucket, LSH needs to examine each of
these and so its performance suffers.

2.3 Related Work
There is extensive work on high-dimensional indexes for

k-NN queries, and there are surveys [7, 11] that provide
good literature on the indexes. In this paper, since we are
concerned with a specific well known indexing mechanism,
namely LSH, we shall focus on work related to it (the com-
parison among LSH-based indexes and other indexes, such
as iDistance [23], can be found in [20]).

Approximate k-NN provides approximate answers with
acceptable error while constraining the growth of the cost
sub-linearly with respect to the cardinality of the dataset.
Locality sensitive hashing (LSH) methods [10, 1] are the
best known approaches for approximate nearest neighbor
search. The LSB-tree [20], entropy-LSH [15], multi-probe
LSH [13] and Bayesian LSH [17] improve the performance
of LSH by using some novel indexes or query strategies. Da-
ta Sensitive Hashing is orthogonal to these state-of-the-art
methods, and can be regarded as a replacement of the LSH
family. In the design of hashing families, query-sensitive em-
beddings(QSE)[4] and distance-based hashing(DBH)[5] have
been proposed as the hash family for embedding and non-
metric space, and [19, 12] were proposed for distance mea-
sure in the manifold. These works illustrate the potential
for hashing family improvement. However, unlike existing
work, DSH is the first hashing family leveraging the data
distribution to directly improve the k-NN search.

There are also some spectral hashing [22] and data repre-
sentation [16, 6, 14, 4, 3] methods that focus on optimizing
the hashing function based on the data distribution. They
significantly outperform LSH-based methods on precision.
However, for the similarity search problem, we place much
more emphasis on recall. This is because the recall affects
the quality of the final result, while precision only affects
performance by determining how many points have to be
checked. DSH is designed to optimize both the recall and
query efficiency.

3. DATA SENSITIVE HASHING
In this section, we introduce the basic concepts and princi-

ples of Data Sensitive Hashing (DSH), and propose two vari-
ants of DSH hashing families, DSH-basic and DSH-relaxed.



The associated algorithms are presented in Section 4.
Intuitively, the problem we wish to solve is to directly

search for the k-NN, whereas LSH is designed to find the
r-NN. Therefore, we seek to define a new hashing fami-
ly DSH. We begin with a DSH hashing family definition
that migrates all the properties from LSH hashing family,
called the DSH-utopia family. Here, the basic binary hash-
ing Rd → {0, 1} is employed for DSH.

definition 6. (DSH-utopia Family) A family H =
{h : Rd → {0, 1}} is called (k, ck, p1, p2)-sensitive if for any
q ∈ Rd and o ∈ O

• if o ∈ NN(q, k), then PrH(h(o) = h(q)) ≥ p1;

• if o /∈ NN(q, ck), then PrH(h(o) = h(q)) ≤ p2;

Unfortunately, while the above definition allows us to ex-
press what we desire, it has no known efficient implementa-
tion. Therefore, we fall back on the intrinsic properties that
affect the effectiveness of a hashing-based approach. We de-
fine the following properties that should be satisfied in our
DSH concatenation functions.

definition 7. (Effectiveness for k-NN) For two prob-
ability values Pa and Pb, s.t. Pa ≫ Pb,

• (Recall) for any query point q ∈ Rd, and o ∈ NN(q, k),
∀gi ∈ G, Pr(gi(q) = gi(o)) ≥ Pa;

• (Efficiency) for any query point q ∈ Rd, ∀gi ∈ G,
|{o|o ∈ O\NN(q, ck), gi(q) = gi(o)}| ≤ Pb × |O|.

This definition provides two conditions to qualify a DSH
concatenation function. The first condition provides a low-
er bound of recall and the second condition gives an upper
bound (i.e., ck + Pb × |O|) of the number of points in each
bucket. By applying multiple hash tables to raise the recall,
high quality results can be achieved, and the algorithm is
still efficient. In addition, the results of different hash tables
should be independent. If each concatenation function ran-
domly chooses some functions from a large enough hashing
family H, this condition is always satisfied. The following
theorem shows the relation between the quality and efficien-
cy under such concatenation functions.

theorem 1. If the concatenation functions satisfy the prop-
erties in Definition 7, to achieve an expected recall δ, the
number of points to be checked is at most :⌈

log(1− δ)

log(1− Pa)

⌉
× (ck + Pb × |O|)

Proof. Considering that l hash tables are used, we have:

(1− δ) = (1− Pa)
l

To achieve an expected recall δ, the number of hash tables
required is:

l =

⌈
log(1− δ)

log(1− Pa)

⌉
On the other hand, the number of points in each bucket is
at most ck + Pb × |O|. Thus, the number of points to be
checked is at most:⌈

log(1−δ)
log(1−Pa)

⌉
× (ck + Pb × |O|)

The quality of results is decided by δ, while c is only an
efficiency factor. c and Pb decide the total number of points
to be checked, and there is a trade-off between them. Obvi-
ously, the pairs with a longer distance are easier to be hashed
to different values, and choosing a higher c often results in
a smaller Pb.

To devise an effective hashing-based approach, according
to the above guiding principles in Definition 7, there is no
need that each individual hash function h ∈ H has a
large probability to hash a pair correctly. Instead, we only
need to design a hash family H such that most of the
hash functions hash data correctly. As a concatenation LSH
function is obtained by randomly picking m hash functions
from H, such a family can produce a good set of effective
gi ∈ G that satisfies the properties of recall and efficiency.
Intuitively, based on following definition, we may design a
set of hash functions each of which complements the others.

definition 8. (DSH-basic Family) A family H = {h :
Rd → {0, 1}} is called (k, ck, p1, p2)-sensitive if for any query
point q ∈ Rd and o ∈ O

• if o ∈ NN(q, k), then |{h|h(o)=h(q),h∈H}|
|H| ≥ p1;

• if o /∈ NN(q, ck), then |{h|h(o)=h(q),h∈H}|
|H| ≤ p2;

theorem 2. The concatenation functions generated us-
ing DSH-basic family are effective, i.e. they have the prop-
erties given in Definition 7.

Proof. Using m randomly chosen hash functions in the
DSH-basic family, setting Pa = p1

m and Pb = p2
m, we have:

Recall: ∀q ∈ Rd, o ∈ NN(q, k), gi ∈ G,

Pr(gi(q) = gi(o))

=
m∏

j=1

Pr(hij (q) = hij (o))

= { |{h|h(o) = h(q), h ∈ H}|
|H| }

m

≥ p1
m

Efficiency: Likewise, ∀q ∈ Rd, o ∈ O\NN(q, ck), gi ∈ G,

Pr(gi(q) = gi(o)) ≤ p2
m. Thus,∑

o∈O\NN(q,ck) Pr(gi(q) = gi(o)) ≤ |O| × p2
m

We further note that the purpose of the second condition
in the Effectiveness is to prevent too many false hits. In
the DSH-basic family, this is accomplished by keeping the
probability of inclusion low for each non-ck-NN. However,
we do not really care what the probability of inclusion is for
any individual non-answer point: all we wish to do is to
limit the total number of false positives. Accordingly,
we can relax the second condition:

definition 9. (DSH-relaxed Family) A family H =
{h : Rd → {0, 1}} is called (k, ck, p1, p2)-sensitive if for any
query point q ∈ Rd

• for all o ∈ NN(q, k), |{h|h(o)=h(q),h∈H}|
|H| ≥ p1;

•
∑

o/∈NN(q,ck)(
|{h|h(o)=h(q),h∈H}|

|H| )m ≤ p2
m ∗ |O|;

Similar to Theorem 2, the concatenation functions gener-
ated using the DSH-relaxed family still have the Effective-
ness properties given in Definition 7.



4. DSH FAMILY GENERATION
After having specified the properties of data sensitive hash

functions, we now show how we can find such functions. For
LSH, there is a straightforward geometric interpretation, so
random projection turns out to work well. For DSH, there
is no such easy geometric interpretation. Instead, the hash
function must adapt based on the data distribution. We bor-
row and adapt machine learning techniques for this purpose.
In particular, we first learn good atomic hash functions, and
then use boosting to get even better results with an ensemble
of hash functions, as we describe in this section.

4.1 Overview
Given an query-object pair ⟨qi, oj⟩, let

φh(⟨qi, oj⟩) = (h(qi)− h(oj))
2. (1)

In particular, if qi collides with oj according to hash function
h, then φh(⟨qi, oj⟩) equals to 0; otherwise, it becomes 1. For
DSH-basic family, based on Definition 8, the requirements
for each hash function can be rewritten as:
For every pair qi and oj ,{∑

h∈H φh(⟨qi, oj⟩) ≤ (1− p1)|H|, if oj is a k-NN of qi;∑
h∈H φh(⟨qi, oj⟩) ≥ (1− p2)|H|, if oj is a non-ck-NN of qi;

(2)
Through this expression, we observe that the hashing fam-

ily is actually required to be a strong classifier for the pairs,
i.e. if we combine all the hash function in H together and
use Equation 2 to classify the pairs, every k-NN pair and
non-ck-NN pair can be well classified. [We can also obtain
similar requirements for DSH-relaxed family. The difference
here is that DSH-relaxed only requires all the k-NN pairs to
be well classified. For those non-ck-NN pairs, DSH-relaxed
limits the total number of false-positives for each query q.]
Adaptive boosting [8] is an efficient meta-algorithm to

generate a strong classifier. Given an algorithm that can
generate a weak classifier, adaptive boosting can generate
a set of weak classifiers by tweaking the weight of training
instances, such that their combination constitutes a strong
classifier. In our problem, we do not really combine them to
generate a strong classifier. Instead, each weak classifier is
used as a hash function h in the family H, while the family
H has the above desirable properties. Therefore, we have to
adapt standard adaptive boosting.
We divide the problem into two parts: (1) computing the

optimal weak classifier, and (2) applying appropriate adap-
tive boosting algorithm to tune the input weights of the
weak classifier. In both parts, we use a weight matrix W
to represent the k-NN and non-ck-NN relations. For the
reason that non-ck-NN relations are much more than k-NN
relations, we only sample parts of them to reduce the com-
putation cost, and make the number of samples comparable
with the number of k-NN relations. Thus, W is a sparse
matrix, as it only contains some sampled query-object pairs
(O(k) non-zero elements per query, and O(qk) non-zero el-
ements in total). Using i ∈ [1,m] to denote those queries,
and j ∈ [1, n] to denote those data points, we have:

Wij =


1, if oj is a k-NN of qi ;

−1, if oj is a sampled non-ck-NN of qi ;

0, else.

(3)

Each hash function h hashes the points. On the other
hand, we regard it as a weak classifier φh for the pairs.
Therefore, we expect it to optimize the resultant pairs based
on the weight matrix. The weight of the matrix will be tuned
by the adaptive boosting procedure. And the optimization
for each function is defined as follows.

Figure 2 outlines how we generate DSH family. Given
some sampled queries based on the query distribution, we
get a series of query-object pairs. The k-NN pairs are ex-
pected to collide more in DSH family and vice versa. We rep-
resent this optimization target in a weight matrix form. And
based on the weight matrix, we compute the optimal hash
function and put it into hashing family. We then hash the
points based on the hash function and check if it performs
well on each pair. After that, we run the adaptive boosting
procedure: for the pairs that are hashed correctly (k-NN
pairs collide and vice versa), we reduce their weight in the
matrix; for the pairs that are hashed mistakenly, we increase
their weight in the matrix. Then we get a new weight ma-
trix and compute a new optimal hash function. As shown in
[8], after repeating this procedure multiple times, the weight
of every pair becomes smaller than the original one, and a
smaller weight means the pair has a larger probability to be
hashed correctly.

Dataset

Weight Matrix Hashing Function

Sampling

Boosting

Learning

Hashing Family

Appending

Figure 2: Overview of DSH Family Generation

The formal optimization problem set up requires specifica-
tion of the data points, the query points, and the parameter
k for k-NN. However, the principle of DSH is to leverage
the distribution knowledge, but not tune the hash function
based on specific points. We only seek to obtain the proper-
ties of DSH family for sampled queries based on the query
distributions. Every sampled query should achieve high re-
call and be efficient. When the query distribution is hard to
estimate, we can still use the uniform query distribution to
cover all the potential queries. In the experimental section
we show that the results obtained are not very sensitive to
the query distribution or to the value of k. However, they
do depend strongly on the data distribution.

definition 10. (Hash Function Optimization)
Given the datasetO, the sampled queriesQ and the weight

matrix W , we aim to find the best hash function such that

argmin
h

∑
ij

φh(⟨qi, oj⟩)Wij (4)

s.t. qi ∈ Q, oj ∈ O, ∀p ∈ Rd, h(p) ∈ {0, 1}.

4.2 Single Hash Function Optimization
We would like to solve the optimization problem defined

in Definition 10. However, finding the exact optimal hash
function is an NP-hard problem.

theorem 3. Hash Function Optimization (HFO) is an
NP-hard problem.



Algorithm 1: Hash Function Optimization

Input: Weight matrix Wq×n, data point matrix Xd×n,
query point matrix Qd×q.

Output: Hash Function h.
1 Compute the eigenvector a with the minimal eigenvalue

in Theorem 4 ;

2 h← aTX;
3 Generate h′ based on Equation 10;
4 return h′

Proof. We can reduce a well-known NP-hard problem,
Minimum Graph Bisection (MGB) [2] to the hash function
optimization (HFO) problem. To make this reduction, we
construct a mapping in the following way: let the n × n
weight matrix in MGB be W and the largest weight in W
be wmax. For each vertex vi in MGB, we create oi and
qi in HFO. We begin with the initial weight matrix W in
MGB. Then, we ensure that oi and qi must be assigned to
the same value by setting W ′

ii = n4 × wmax. Finally, we
set W ′

ij = Wij − n2 × wmax. The intuition here is that if a
large penalty is added for every pair that is not separated,
then HFO will absolutely choose a balanced partition(the
minimal penalty) while doing the optimization in MGB.

To tackle this problem efficiently, we consider the hash
function in a linear form, i.e. separating the space by a
hyperplane. This has been widely adopted, and shown to
be effective [14]. Moreover, it has been shown in [18] that
linear classifiers fit well with boosting algorithms.
That is, h(oj),h(qi) can be represented as aTXj ,a

TQi,
where a is the projection vector andXj ,Qi is the d dimension
vector presentation of oj , qi(suppose it has been regularized
to Xj = 0).
However, the range of aTXj is R instead of {0, 1}. The

mean of h(oj) is always 0, as h(oj) = aTXj = aTXj = 0. To
protect the result from being affected by the scaling of a, we
give a constraint aTXXTa = 1 to fix the variance of h(oj).
We transform the problem of hash function generation as
follows:

argmin
a

∑
ij

(aTQi − aTXj)
2Wij (5)

subject to aTXXTa = 1.

theorem 4. The vector in Equation 5 is equal to the
minimal general eigenvector of

((XD −QW )XT + (QD′ −XWT )QT )a = λXXTa (6)

where Dn×n and D′
q×q are two diagonal matrices defined as

follows:

Djj =
∑
i

Wij D′
ii =

∑
j

Wij (7)

Proof.∑
ij

(aTQi − aTXj)
2Wij

=
∑
j

aTXjDjjX
T
j a− 2

∑
ij

aTQiWijX
T
j a+

∑
i

aTQiD
′
iiQ

T
i a

= aT ((XD −QW )XT + (QD′ −XWT )QT )a

Therefore, the vector in Equation 5 is equal to

argmin
a

aT ((XD −QW )XT + (QD′ −XWT )QT )a (8)

subject to aTXXTa = 1. All the two matrices are sym-
metric. Therefore, a is equal to the eigenvector with the
minimal eigenvalue in the following generalized eigenvector
problem:

((XD −QW )XT + (QD′ −XWT )QT )a = λXXTa (9)

The computational complexity of solving the eigenvector
problem is O(nd2 + qkd + d3), where n is the number of
objects plus sampled queries, d is the number of dimensions
and q is the number of sampled queries. The main cost here
is to compute ((XD−QW )XT +(QD′−XWT )QT ). Here D
only has n non-zero values, D′ has q non-zero values, and W
has O(qk) non-zero values. And for the general eigenvector
problem, the computation cost is O(d3). Noted that the size
of dataset is nd, our algorithm runs in time that is at most
linear with the size of dataset.

After computing the hashing function h : Rd → R, we
convert it to the desired binary hash function h′ : Rd →
{0, 1} as:

h′(o) =

{
0, if h(o) ≤ 0

1, else
(10)

4.3 Adaptive Boosting for DSH-basic
Adaptive boosting [8] is a meta-algorithm for building a

strong classifier using a set of weak classifiers, and can be
used in conjunction with many other learning algorithms.
Theoretical results that adaptive boosting always obtains a
strong classifier can be found in [8]. Here we only show the
intuitions. The weight for each instance depends on its re-
sults (well classified or not) on the weak classifiers, and thus
represents if it is well classified using their combination. If
its weight is smaller than the original, then it is well clas-
sified using the linear combination. On the other hand, in
each step, the weak classifier performs better than random so
that the weight of well classified instances is larger than the
weight of misclassified instances. Therefore, the total weight
of all instances is always reduced by the weak classifier. As
the weight is tuned exponentially, the total weight also re-
duces exponentially. After logarithmic number of steps, the
total weight is reduced to be less than the original weight for
a single instance, and by then, every instance has a weight
less than its initial weight and is therefore well classified.

For our specific problem, not only a strong classifier is
needed, but also the difference between p1 and p2 is expect-
ed to be large. Obviously we cannot expect the boosting
algorithm to achieve p1 = 1 and p2 = 0. However, the
boosting algorithm optimizes to enlarge the difference [18].
Therefore, we choose some appropriate p1 and p2 and iterate
based on the following weight updating function in which α
is a weight tuning parameter of boosting:
For k-NN pairs, we have:

W
(t+1)
ij = W

(t)
ij ∗ α

(p1−1+φht
(⟨qi,oj⟩)) (11)

For non-ck-NN pairs, we have:



W
(t+1)
ij = W

(t)
ij ∗ α

−(p2−1+φht
(⟨qi,oj⟩)) (12)

Algorithm 2 describes our boosting procedure in which
itrCounter is the number of hash functions that we aim to
obtain. We next prove that if every instance has a weight
smaller than its initial, then H conforms to DSH-basic fam-
ily defined in Definition 8 for the sampled data when the
updating function is based on Equation 11 and 12.

theorem 5. ∀⟨qi, oj⟩, if |w(t)
ij | ≤ |w

(0)
ij |, H conforms to

Definition 8 for all sampled pairs.

Proof. Let Tij be |{h|h(qi) = h(oj), h ∈ H}|, and Sij

be |{h|h(qi) ̸= h(oj), h ∈ H}|. Obviously, Sij = |H| − Tij .
Hence, for every k-NN pair ⟨qi, oj⟩,

w
(0)
ij ≥ w

(t)
ij

=⇒w
(0)
ij ≥ w

(0)
ij × α(p1−1)|H|+Sij

=⇒α(p1−1)|H|+Sij ≤ 1

=⇒(p1 − 1)|H|+ Sij ≤ 0

=⇒p1|H| − Tij ≤ 0

=⇒|{h|h(oi) = h(oj), h ∈ H}|
|H| ≥ p1

For every non-ck-NN pair ⟨qi, oj⟩, it is analogous to prove

that
|{h|h(qi)=h(oj),h∈H}|

|H| ≤ p2.

4.4 Adaptive Boosting for DSH-relaxed
Now we give the adaptive boosting solution for DSH-

relaxed. The procedure is similar to that for DSH-basic ex-
cept one major difference, i.e., we only limit the total number
of points in each bucket. Therefore, for every query, the non-
ck-NN relations now construct one big instance. For ease of
presentation, we assume that all the pairs are sampled and
the size of the current H is large enough. However, as on-
ly a small number of pairs are sampled and the algorithm
begins with empty H, some trivial regularization should be
applied in the implementation. We use the expected num-
ber of points that collide with qi to measure the efficiency
of query qi, which is defined as:

Collisioni =
∑
j

(1−
∑

h∈H(φh(⟨qi, oj⟩)
|H| )m (13)

Note that if the collision rate bound is p2, then the upper

bound of the false-positives is n ∗ p2m. Thus, (Collisioni
|O| )

1
m

is the equivalent collision rate to get the same upper bound
of the false positives. After being regularized, the weight for
each query is:

weight
(t)
i = α

t∗(p2−(
Collisioni

|O| )
1
m )

(14)

For k-NN pairs, we tune their weight as usual. On the
other hand, we tune the weight for each query qi based on
Collisioni. However, our hash function optimization algo-
rithm is based on the weight for every query-object pair. For
this reason, we have to assign the weight of each query qi
to its related pairs. Here, we still expect the hash function
to minimize the total weight of training instances. Thus,

Algorithm 2: Adaptive Boosting Procedure

1 initializet← 0; H ← ∅ ;
2 initialize W (0) = W given in Equation 3;

3 while t < itrCounter || ∃w(t)
ij , w

(0)
ij , |w(t)

ij | > |w
(0)
ij | do

4 compute h(t) based on Algorithm 1 using W (t) as
input;

5 H ← H∪ {h(t)};
6 updating W (t+1);

7 return H;

we study the “gradient” vector of Collisioni, i.e. how much
it will be changed when a new hash function hashes each
point o1...on together with qi or not. We then adjust the
weight for each related pair based on its ”partial derivative”.
Formally, the “partial derivative” is defined as:

∆Collisionij =
m

|H| × (1−
∑

h∈H(φh(⟨qi, oj⟩)
|H| )m−1 (15)

Intuitively, if an object has a larger probability to collide
with the query, it will have a larger weight. For those objects
that are almost impossible to collide, there is little benefit
to separate them with the query in the new hash function,
and the weight for them is close to zero.

Now we define the weight updating function for those non-
ck-NN pairs:

W
(t)
ij = weight

(t)
i ∆Collisionij (16)

The weight updating function for k-NN pairs remains the
same.

4.5 Difference with other learning based meth-
ods

So far, all the discussion is based on the similarity search
prospective. There are many other learning based hashing
or embedding methods such as [22, 4, 3, 16, 6, 14]. Now
we will discuss our difference with them. Compared with
these methods, DSH is distinctive in the optimization tar-
get. Traditional learning based methods mostly focus on
the high precision end, and evaluate their performance us-
ing PR-value, F1-measure or MAP. However, this may not
be appropriate for our similarity search problem. As we
have a validation step, the precision itself is not a crucial
measure. We aim to achieve a high recall with acceptable
candidate size. For example, to solve a 20-NN search prob-
lem in 1M points, we expect the algorithm to return 2000
points that contain all the positives, but not to return 20
points that contain 12 of them. We can validate those 2000
points one by one and obtain the exact answer. However,
for the 20 points set, we cannot expand it to obtain a higher
recall. Although the algorithm that outputs 2000 points has
a 1% precision, the check rate is only 0.2%. For this reason,
we focus on the relatively lower precision area, and optimize
our algorithm to yield a higher recall. Distinguished with
traditional methods, DSH does not pay much to filter every
false positive, but to ensure every true answer is in the re-
sult, while most other methods pay equal emphasis to these
two targets.



Table 1: Overall comparative study: DSH-relaxed is the most efficient in terms of query time and space usage

(a) Forest

method recall query error # hash
time ratio tables

LSH
0.94

18.6 1.012 100
DSH-basic 12.8 1.012 80
DSH-relaxed 6.2 1.013 30
LSH

0.9
12.1 1.024 50

DSH-basic 6.8 1.027 32
DSH-relaxed 3.8 1.025 14
LSH

0.86
8.2 1.036 25

DSH-basic 4.4 1.036 16
DSH-relaxed 2.4 1.038 8

(b) Flickr

recall query error # hash
time ratio tables

0.96
40.8 1.004 90
28.6 1.004 72
16.0 1.004 36

0.92
26.0 1.008 40
17.2 1.009 36
9.8 1.010 16

0.88
19.2 1.013 25
12.0 1.014 20
8.0 1.014 10

(c) DBPedia

recall query error # hash
time ratio tables

0.95
/ / /

25.6 1.002 64
15.6 1.002 32

0.91
38.8 1.006 75
14.4 1.006 28
9.4 1.006 16

0.87
24.8 1.018 35
11.6 1.017 20
7.6 1.021 10

Following this guideline, in the design of DSH-relaxed, we
provide zero tolerance to the false negatives, and a much
higher tolerance to the false positives. For the false nega-
tives, we use boosting techniques to ensure all the positives
are well classified. And for the false positives, we only give a
very weak limitation on the total numbers, and do our best
for each individual. By using this heterogeneous solution,
our optimization target is realized.

4.6 Incremental Maintenance
DSH is sensitive to data distribution, unlike LSH. Indeed,

that is the whole point. This raises the question of what to
do if the data distribution changes over time in a dynamic
setting. Fortunately, incremental update of DSH hashing
family is straightforward: simply replace any hash function
that has a negative effect on the weight of boosting by a
newly computed one since the boosting procedure aims at
reducing the total weight of the weight matrix. The cost of
such updates can be limited by changing at most one hash
function each time. In practice, it turns out to be enough
to make one such incremental update after 1-5% of the data
has changed.

5. EXPERIMENTS

5.1 Experimental Setup
We evaluate the performance using three real datasets:

scientific data, images and text. Properties of these three
datasets are summarized in Table 2 and described in detail
below:

• Forest1 dataset is provided by the US Forest Service.
We observe that some attributes are strongly correlat-
ed since they describe related information. For exam-
ple, there are some attributes describing Hillshade In-
dex at different times of a day. For this reason, Forest
dataset is ideal to study the performance of indexing
methods with respect to data skew;

• Flickr2 is an image hosting website in which members
can upload their images. Over this dataset, we do
similarity search based on the feature space of images
instead of pixel space. Following common practice, we

1http://archive.ics.uci.edu/ml/datasets/Covertype
2http://www.flickr.com/

Table 2: Dataset properties

Dataset # Objects # Dimension Property

Forest 580K 54 skewness
Flickr 1M 80 orthogonal
DBPedia 1M 150 non-Euclidean

use the PCA technique to pre-process the images and
keep 80 feature dimensions. In contrast to the Forest
dataset, the PCA feature space is orthogonal;

• DBPedia3 is a project aiming to extract structured
content from the Wikipedia database. We utilize L-
DA to pre-process the dataset, and keep 150 topic di-
mensions. The data points after employing LDA topic
model transformation lie in the probability distribu-
tion space, and hence we use KL-divergence as the dis-
tance measure since it is widely used in this space. We
use DBPedia dataset to study the effectiveness of DSH
when a non-Euclidean distance measure is used.

We evaluate the following methods in the experiments:

• LSH. E2LSH[1] is a recent state-of-the-art implemen-
tation for LSH.

• DSH-basic. Our method proposed in Section 4.3.

• DSH-relaxed. Our method proposed in Section 4.4.

• Query-Sensitive Embedding[4] is one efficient em-
bedding hashing method that also applies boosting to
guarantee the performance of similarity search.

• Spectral Hashing[22] is a state-of-the-art learning
based hashing methods.

We randomly remove 1000 points from each dataset and
use them as query points in our performance study. The
ground-truth for each query point is obtained by a linear
scan of the entire dataset. The sampled queries used in
DSH are generated via random selection that is independent
of the query set. Unless otherwise specified, the sample rate
is 0.5%, k is set to 20 and c is set to 5 throughout the
experiments. For all algorithms, each hash table contains
2000 buckets(i.e. m is set to 11). To avoid duplicating the

3http://wiki.dbpedia.org
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Figure 3: Average running time executed using different access methods to achieve a certain query quality: DSH-relaxed
achieves the highest recall in the same running time, followed by DSH-basic and LSH.

points, entries in the table are in form of point IDs instead of
the points. For this reason, the storage cost can be reduced
by about 100 times. Besides, all these methods keep the
entire indexes as well as the original dataset in main memory.
We evaluate the performance in terms of the following

three aspects:

• Query Quality is measured by recall and error ra-

tio. Let ̂NN(q, k)[i] (resp. NN(q, k)[i]) be the point

in ̂NN(q, k) (resp. NN(q, k)) with the ith smallest
distance to q. The error ratio [13] is to measure how

close are the distances between points in ̂NN(q, k) and
points in NN(q, k):

error ratio =
1

|Q| × k

∑
q∈Q

k∑
i=1

| ̂NN(q, k)[i], q|
|NN(q, k)[i], q| (17)

• Query Efficiency is measured by the running time to
answer k-NN queries. The precision in those learning
based methods can also be viewed as a measurement
of efficiency, since recall×k

precision
is the number of points to

be checked.

• Space Requirement is measured by the number of
hash tables being used. The space cost for one hash
table is about the same for each method, and is a good
surrogate for index size.

5.2 Comparison with LSH
In this study, we compare our proposed methods, namely

DSH-basic and DSH-relaxed, with LSH. We choose the best
width parameter W for LSH, and the parameters for DSH
tuned as discussed in Section 5.5.
Table 1 summarizes the average results over all the dataset-

s. In each table, we report the query time, the error ratio
and the number of hash tables required per query to achieve
three different query quality levels (in terms of recall). First,
we observe that DSH-relaxed is significantly more space and
time efficient than DSH-basic and LSH. It is worth men-
tioning that for the DBPedia dataset, LSH cannot find ap-
proximate k-nearest neighbors to achieve recall 0.94 within
acceptable time. Further, we note that all three methods
provide almost the same error ratio across all the datasets
and each error ratio is close to 1, in which the exact k-NN
are identified.
Typically, a larger δ will result in a higher query cost.

We therefore study the relationship between recall δ and

query performance in detail for all three access methods.
Figure 3 summarizes the results. First, we observe that the
query time increases super-linearly to achieve a higher recall.
Second, both DSH-relaxed and DSH-basic perform better
than LSH by a wide margin and there is an obvious trend
of increasing time to achieve a higher recall. Finally, we
observe that DSH-relaxed and DSH-basic outperform LSH
by a wider margin over the DBPedia dataset than the other
two datasets. The reason will be provided when we discuss
the relationship between the recall and the space usage.

Regarding the comparative methods, the query perfor-
mance basically depends on the number of candidates to
be probed in the same buckets that collide with the query
points. Hence, we report the distribution of bucket size of
hash tables and discuss how this affects the query perfor-
mance. Figure 4 shows the distribution of bucket size of hash
tables. The points are distributed more unevenly in hash ta-
bles of LSH than those of DSH-basic and DSH-relaxed. In
particular, for hash tables in LSH, the top 1% buckets take
21%, 13%, 13% points of the Forest, Flickr and DBPedi-
a datasets, respectively. Obviously, the query performance
suffers when the query points are hashed to these buckets.
Typically, the query distribution follows the data distribu-
tion, and in this case, the query points are often hashed to
the buckets with a large number of points. Consequently,
the number of candidates in LSH is larger on average than
that in DSH methods, and incurs a higher query cost.

We proceed to study the relationship between the recall
and the space usage, and report the results in Figure 5. To
achieve a higher recall, a larger number of hash tables is
typically required. In particular, DSH-relaxed outperforms
DSH-basic and LSH by a wide margin. The trends are fairly
similar to Figure 3. However, there exists a slight difference
between them. We note that using similar number of hash
tables, LSH incurs about 25% longer query time than DSH
methods. The reasons are two-fold. First, due to the unbal-
anced hashing in LSH, the number of points to be checked
in each table is about 3 times larger than that in DSH. Sec-
ond, there exist many more duplicates from different tables
in LSH than those in DSH where each point will be checked
at most once. As a result, DSH methods still benefit from
its balanced hash tables.

In addition, DSH-relaxed and DSH-basic outperform LSH
by a wider margin on the DBPedia dataset than the other
two datasets. Due to the difference between Euclidean dis-
tance and KL-divergence, the recall of LSH is limited at
94%. Although DSH methods are not specially designed for
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Figure 4: Distribution of Bucket Size
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Figure 5: Number of hash tables that are required by different access methods to achieve a certain query quality: DSH-relaxed
achieves the highest recall by using the same number of hash tables, followed by DSH-basic and LSH.

Table 3: Query time and recall for various distributions

Query Dense Sparse Original

LSH
query time 581 42 130
recall 0.99 0.803 0.916

DSH-basic
query time 161 58 98
recall 0.978 0.893 0.932

DSH-relaxed
query time 150 59 90
recall 0.984 0.922 0.962

KL-divergence measurement, they achieve a recall of 96%,
which can be improved further by using a larger number of
hash tables.
We also investigate the performance of each method un-

der different query distributions. Besides the original queries
that are randomly extracted from each dataset, we generate
two additional query sets for each dataset and each set con-
sists of 100 queries. Queries in the first set (labeled as dense)
are randomly selected and the distances between each query
and its k-NNs are small. Queries in the second set (labeled
as sparse) are randomly selected as well and the distances
between each query and its k-NNs are large. The result-
s (dense, sparse and the original) of using l = 40 on Flickr
dataset are shown in Table 3. Due to the space constraint, in
what follows, we only report the results on the Flickr dataset
whenever the results on the other two datasets exhibit sim-
ilar trend. From the result we can see that the performance
for DSH is generally consistent in all cases. However, the re-
call of LSH drops greatly in the sparse area, and the query
time increases significantly in the dense area.

5.3 Scalability
Table 4 summarizes the indexing time for the comparative

methods. To test the scalability of our indexing method, we

Table 4: Indexing time (s)

Dataset Forest Flickr DBPedia
Size 1× 10× 1× 10× 1× 10×
LSH 57 502 92 875 105 1001
DSH-basic 37 331 148 1350 84 798
DSH-relaxed 32 286 109 980 77 719

also conduct an experiment where all the data points are
duplicated for 10 times. Notice that both DSH and LSH
treat those duplicated points as new points, thus indicating
the expected performance with a larger data set. First we
can see that both LSH and DSH take 9-10 times longer in
the 10 times larger dataset, suggesting that the indexing
time grows linearly with size of data set for all methods.

We also note that neither DSH methods nor LSH takes the
minimum indexing time across all three datasets, and the
indexing time over different datasets for all methods varies
slightly. Specifically, DSH-relaxed and DSH-basic are more
efficient than LSH on Forest and DBPedia datasets while
we get a reverse result on Flickr dataset. Note that in all
comparative methods, the indexing time consists two com-
ponents: (1) the time to obtain the hash functions; (2) the
cost of hashing points to the hash tables. LSH uses the
random projection to generate hash functions and hence it
performs much better than DSH-relaxed and DSH-basic in
obtaining the hash functions. However, DSH-relaxed and
DSH-basic require fewer hash tables, and incur less cost to
hash points. By considering both factors, the overall index-
ing time for DSH is comparable with LSH.

5.4 Comparison with Learning Based Meth-
ods

We now compare DSH with other learning based methods.
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Figure 6: Effect of parameters in DSH

Table 5: Precision-recall comparison with learning methods

Precision 0.1 0.03 0.01 0.003 0.001
C/N(%) 0.01 0.03 0.1 0.3 1

LSH 0.551 0.704 0.8 0.852 0.916
DSH-basic 0.684 0.816 0.869 0.904 0.932
DSH-relaxed 0.652 0.812 0.894 0.936 0.962
[22] 0.738 0.808 0.864 0.888 0.919
[4] 0.677 0.794 0.864 0.897 0.925

As discussed in Section 4.5, the optimization target of DSH
is different from that of other learning based methods. Table
5 gives the comparison with query-sensitive embedding and
spectral hashing. In this table, we use the precision-recall
trade-off to show the basic difference illustrated in Section
4.5. We give each method equal space limitation l = 40, and
evaluate their precision and recall when m is varied.
DSH-relaxed performs worse than the others in the high

precision end, as it allows too many false positives into the
results. But as a payback, it wins the highest recall in the
relative lower precision area. On the other hand, spectral
hashing performs the best in the high precision area. How-
ever, in the low precision area, its performance is the worst
(similar with the performance of LSH) since it does not make
any guarantee for each individual and some positive object-
s are totally lost. DSH-basic and Query Sensitive Hashing
lie in the middle, as they both enforce a strict constraint
on both false positives and false negatives. And DSH-basic
outperforms query-sensitive hashing about 1% for the rea-
son that it preserves the collision probability for each k-NN
point, while query-sensitive hashing only guarantees that
the probability is larger than those non-k-NNs. When the
precision is 1%, the check rate(candidate size/datasize) is
only 0.1%. Thus, we focus more on the performance in the
relatively lower precision area and DSH-relaxed outperforms
other algorithms.

For embedding or data representation applications, there
is a need to compute the similarity in the transformation
space. Thus, the precision itself is very important. However,
to answer the similarity search, the validation is conducted
in the original space. For this reason, all those false-positives
can be pruned. From this experiment we see that the most
suitable algorithms for these two scenarios are different.

5.5 Parameter Studies
In this study, we investigate the parameters that poten-

tially affect the performance of DSH, and suggest guidelines
for parameter setting.

We first study the effect of sample rate by varying from
0.1%(1K queries) to 5%(50K). We evaluate the recall prop-
erty Pa DSH can achieve when the efficiency property is
guaranteed by is Pb = 0.005. Figure 6a shows the results.
By enlarging the sample size, a more accurate model can
be trained to capture the distribution of the whole dataset.
The value in the training set shows that the upper bond of
Pa is less than 0.282. On the other hand, the real perfor-
mance becomes very close to that value when sample rate
is larger than 0.5%(5K). Therefore, we set the sample rate
to 0.5%. Also, for each query, we only acquire 10 k-NN re-
lations and 10 non-ck-NN relations. The recall needed here
is only 50%. Thus, we can process the sampling process ef-
ficiently by some approximate search algorithm. Figure 6b
shows the indexing time when different sample size are used.

We next study the effect of k by varying k from 5 to 80.
Figure 6c shows the results. In general, the recall drops
slightly when k increases. It turns out to be increasingly
insensitive to k by using a larger number of hash tables.

We also study the relationship between c and query effi-
ciency, and report the query time in Figure 6d using differ-
ent k. In general, the optimal c that achieves the minimal
query time differs when k varies. However, we can see that
for every k, the value ck that achieves the minimal query
time always falls in the range from 100 to 200. As shown in



Table 6: Augmentation with multi-probe proposed for LSH

Method
# table Query time

original multi-probe original multi-probe

LSH 90 9 40.8 44.2
DSH-basic 72 7 28.6 29.4
DSH-relaxed 36 4 16 17.2

Theorem 1, the efficiency is decided by both Pb×N and ck.
Thus, the best ck value depends on the bucket size. In our
experiments, the bucket size is about 500 points, and the ck
that achieves the best query performance lies in the range
from 100 to 200.
Besides, there is a need to generate a DSH family for var-

ious k. Thus, we study the performance using different k in
both the learning and query phase. Using l = 40, the result
in Figure 6e shows a larger k in the learning phase performs
well over various query k in the query phase. For DSH, using
k = 80 only introduces a cost of checking 80 points for each
bucket at most. Meanwhile, when a larger k is applied in
the learning phase, the query quality performance for those
smaller k will also be guaranteed. Thus, we can use a larger
k to learn DSH in the various query k scenario.
Finally, we study the space-efficiency trade-off of DSH.

Typically, to achieve the same level of recall, using larger m
and l will reduce the query time, while leading to additional
storage cost. Thus, we study the relationship between query
time and storage cost when the recall requirement is fixed to
0.96, and the results are shown in Figure 6f. We can observe
that by increasing the number of hash tables, the query time
drops and the performance gain becomes smaller.

5.6 Extensibility
DSH is orthogonal to most of the research works that use

LSH family as a foundation and improve on LSH. There-
fore, the results from most of these works can be applied
to DSH as an alternative to LSH. As an example, we adapt
Multi-probe LSH [13] into DSH. The results to obtain 0.96
recall are given in Table 6. We can see that the combination
further reduces the number of tables needed while requiring
almost the same query time.

6. CONCLUSION
In this paper, we propose an efficient indexing method

called Data Sensitive Hashing (DSH) for high-dimensional
approximate k-NN search problem. The hashing family is
directly designed for k-NN search. By leveraging knowledge
from the sampled data, DSH balances its buckets even in
non-uniform data distributions, and aims to preserve most
k-NN relations in its hashing. We conducted extensive ex-
periments using three real datasets, and the results confirm
the efficiency and robustness of the DSH. The DSH-relaxed
variant is the most efficient, which requires only 1/3 of the
hash tables and query time of the LSH. Furthermore, exist-
ing LSH extensions can easily be applied to the DSH.
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