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Abstract—Interaction learning plays an essential role in learn-
ing patients’ comprehensive representations that contribute to
improved performance in many analytical tasks. In healthcare,
interactions among medical features (i.e., feature-level interac-
tions) can exhibit different abnormal patterns in detail, while
interactions among time steps (i.e., time-level interactions) can
indicate the dynamic changes in patients’ health conditions.
Therefore, it is necessary to capture and analyze both types of
interactions when conducting healthcare analytics.

In this paper, we propose a general framework ELDA that
is supported by the novel model ELDA-Net to learn dual-
interactions for healthcare analytics in an explicit manner. Specif-
ically, we devise a Feature-level Interaction Learning Module that
can enrich a separately processed medical feature by learned
interactions among medical features, and a Time-level Interaction
Learning Module that can enhance the representations of the
patients’ health conditions by learned interactions among time
steps. In both levels, ELDA can provide explicit and intuitive
interpretations via explaining through the designed attention
mechanism. Further, to facilitate the feature-level interaction
learning, we propose a novel Bi-directional Embedding Module
in ELDA-Net which can efficiently embed the medical features
recorded in numerical values. We evaluate the effectiveness and
interpretability of ELDA over two public real-world clinical
datasets. The experimental results confirm that ELDA con-
sistently outperforms existing state-of-the-art methods with a
significant margin, and supports fine-grained interpretability in
both the feature level and the time level with medical insights.

I. INTRODUCTION

Over the years, a tremendous amount of data has been col-
lected by companies and organizations for record and analysis
purposes. To analyze such valuable data, there is an increasing
demand for using advanced deep learning libraries [1], [2], [3]
to design powerful models as part of database management
systems (DBMS) [4], [5], [6], which can facilitate complex
analytics [7], [8]. Among complex analytic applications,
healthcare analytics [9], [10] is a highly critical one, as it
involves life-and-death clinical decision-making. Healthcare
analytics aims to analyze various sources of healthcare data via
data-driven approaches to facilitate critical clinician decisions
for improved patient management.

In healthcare analytics, one of the most essential data
sources is the electronic medical records (EMRs) that include
various types of patients’ time-series medical features (e.g.,
lab tests, medications, etc). However, it is non-trivial to utilize
the EMR data for analysis, and many existing studies propose
advanced models to address representative issues such as irreg-
ularity [11], [12], [13], [14], [15], bias [16], heterogeneity [17],
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Fig. 1. An example diabetic patient’s time-series EMR data. We aim to
explicitly explore the interactions in both the feature level and the time level
to provide meaningful medical insights for clinicians.

sparsity [14], [15], [18], interpretability [19], [20], [21], [22],
etc, and to facilitate human-in-the-loop data analysis [23], [24].

In the design of analytic models for time-series EMR data,
interactions are essential for reflecting patients’ conditions. To
illustrate these crucial interactions, we take diabetes mellitus
(DM) as an example, which has become one of the most
serious metabolic diseases around the world [25]. We show
the time-series EMR data of an example diabetic patient in
Figure 1. As illustrated, there exist two types of interactions
in time-series EMR data: (i) feature-level interactions that
denote the interactions among medical features, e.g., the inter-
action between Glucose and Lactate at t1; (ii) time-level inter-
actions that denote the interactions among time steps, e.g., the
interactions between t1 and tN . Both types of interactions are
of vital significance to healthcare analytics. Specifically, the
feature-level interactions can depict abnormal patterns among
medical features, and we take the example patient’s abnormal
glucose as an example to further elaborate on the feature-
level interactions. As shown in Figure 1, glucose suddenly in-
creases at t2, and clinicians immediately examine several other
medical features. Through analyzing the interactions between
glucose and other features, clinicians can evaluate the severity
of patients’ conditions and arrange necessary treatments to
avoid the occurrence of DM complications. Different types of
DM complications exhibit different symptoms:
• DM only: In general, DM patients only suffer from the

problem of high blood glucose [26];
• DM + Diabetic ketoacidosis (DKA) [26]: DM patients with

DKA always develop high keto acid, and a low Potential of
hydrogen (PH) along with high blood glucose;

• DM + Diabetic lactic acidosis (DLA) [27]: DM patients
with DLA tend to exhibit a high lactic acid and a low PH



value along with high blood glucose.
According to these two DM complications, the same abnormal
value of blood glucose may indicate different health condi-
tions that can be reflected by other closely related medical
features, such as PH, keto acid, and lactic acid. Therefore,
learning feature-level interactions can depict different abnor-
mal patterns among medical features and provide insightful
interpretation results for clinicians when analyzing these fea-
tures. In healthcare analytics, some existing studies attempt
to model the feature-level interactions in an implicit manner.
For example, some models [13], [14], [28] simply project the
raw medical features into a latent space via a deep neural
network, while some others [20], [29] employ attention-based
networks to summarize feature representations via learned
attention scores as interaction representations. However, none
of these models can learn separate representations to denote
the interactions between each pair of medical features, that is
to model the feature-level interactions in an explicit manner.
It is advantageous to explicitly learn inherent feature-level
interactions, as the explicit modeling provides more intuitive
interaction representations that can contribute to a better
assessment of interrelationships among features.

From another perspective, the time-level interactions can
describe the dynamic change of a patient’s health conditions
and unveil several crucial time steps. As illustrated in Figure 1,
the pathogenetic process of a patient’s health conditions is
dynamically changing over time. To model such changes
in conditions, most deep learning models employ recurrent
neural networks (RNN) [30] based models (e.g., LSTM [31],
GRU [32]) and use the representation at the last time step
to denote a patient’s final health condition [13], [14], [29] as
it summarizes the information of all time steps and reflects
the latest condition. Due to the RNN-based mechanism, these
models cannot take the time-level interactions into account. It
is of vital importance to model the time-level interactions, as
it helps both fully leverage the historical medical records and
reflect the changes in patients’ health conditions. However,
most existing studies only learn such time-level interactions
in an implicit manner. For instance, some studies (e.g., [19],
[33]) learn the importance in the visit level, which cannot
analyze the interactions between pairs of time steps. Other
studies (e.g., [20], [21], [34]) take the last time step as
a key to learn the attention weights of all the previous
time steps and summarize them with these weights as the
time-level interaction representations. Unfortunately, none of
them can explicitly learn the separate time-level interaction
representations between pairs of time steps. In practice, such
explicit time-level interactions are crucial as they contribute
to improving models’ interpretability and thus, facilitating the
trust of clinicians.

Another line of research is Factorization Machine (FM) [35]
based models that provide a feasible solution for explicit
interaction representation. FM-based models can explicitly
model pair-wise feature interactions, but it is non-trivial to
apply the FM-based models in the time-series EMR data,
due to the following three reasons. First, FM-based models

simply separate the information into two parts, i.e., the original
feature part and the feature interaction part. Such a coarse-
grained information separation cannot build a tight relation-
ship between a feature and its corresponding interactions.
Second, some FM-based models attempt to take time-series
data into consideration when modeling feature interactions,
e.g., TransFM [36] and SeqFM [37]. However, they cannot
effectively learn the interactions among multiple time-series
medical features across time in the EMR data. Third, while
the FM-based embedding mechanism can work well for cate-
gorical medical concepts (e.g., diagnoses), it is ineffective for
embedding numerical medical features (e.g., lab tests).

To tackle the aforementioned challenges, we propose a
general framework ELDA to learn ExpLicit Dual-interaction
for heAlthcare analytics with time-series EMR data as input.
Specifically, we devise the model ELDA-Net as the core
component of ELDA, which consists of four modules, namely
Bi-directional Embedding Module, Feature-level Interaction
Learning Module, Time-level Interaction Learning Module,
and Prediction Module. The Feature-level Interaction Learning
Module processes medical features separately to preserve
the feature individuality and enriches them with their cor-
responding interactions with other medical features. There-
fore, it is capable of depicting different abnormal patterns
among medical features. The Time-level Interaction Learning
Module models the interactions among time steps, thereby
learning the dynamic changes of patients’ conditions and
unveiling crucial time steps that vary among patients. In
both modules, we propose a designed attention network to
differentiate the importance of the interactions, and hence,
can provide fine-grained interpretation results in both levels.
Further, to facilitate feature interaction learning, we devise
the novel Bi-directional Embedding Module to produce more
informative embedding vectors for numerical medical features.
With ELDA-Net, ELDA is capable of facilitating accurate
predictive analytics for time-series EMR data, and depict-
ing diverse abnormal patterns based on both feature-level
and time-level interactions. We have released our code in:
https://github.com/KimballCai/ELDA.

The main contributions are summarized as follows:
• We develop a general framework ELDA to learn explicit

dual-interactions for healthcare analytics. At the core of
ELDA, we propose a novel end-to-end model ELDA-Net
that is the first proposal to explicitly learn the feature-level
interactions at each time step and the time-level interactions
simultaneously, to the best of our knowledge.

• We devise a novel Bi-directional Embedding Module for
numerical medical features, which can generate more in-
formative embedding vectors with superior performance
compared with the FM-based embedding mechanism.

• We evaluate the effectiveness of ELDA for healthcare an-
alytics in two public real-world clinical datasets. The ex-
tensive experimental results confirm that ELDA-Net consis-
tently achieves more accurate analytics than existing state-
of-the-art methods.

• By visualizing the interpretation results in detail, we demon-



strate that ELDA can identify meaningful abnormal patterns
in both the feature level and the time level, which provides
informative medical insights on patient management and
reveals the potential for advancing medical research.
The remainder of this paper is organized as follows: Sec-

tion II reviews the related work. Section III demonstrates the
ELDA framework for healthcare analytics. We elaborate on the
detailed design of ELDA-Net and its modules in Section IV.
We then evaluate the performance and the interpretability
of ELDA through extensive experiments in Section V, and
conclude in Section VI.

II. RELATED WORK

Factorization Machine based Models. Factorization machine
(FM) [35] is a classic method, which can explicitly represent
the feature interaction, which first embeds each feature into an
embedding vector and then measures the pair-wise interaction
via the inner-product of their embedding vectors. Various FM-
based models [38], [39], [40], [41], [42], [43] have been
successfully applied in different information retrieval tasks
such as the recommendation system, the click-through rate
(CTR) prediction, etc. With interpretability as a focus, we
concentrate on one extension of FM, i.e., Attention Factor-
ization Machine (AFM) [38] that adopts an attention neural
network to discriminate the importance of different feature
interactions. Although such FM-based models can effectively
capture the interactions in static features (e.g., ID, gender, etc),
most of them cannot take time-series data into consideration.
To bridge this gap, TransFM [36] attempts to incorporate
FM into translation operation for sequential recommendations,
but it mainly focuses on the impact of a sequence’s last
item, which is insufficient to model the dependencies of the
whole sequence [37]. Further, SeqFM [37] is the first study
to employ FM-based models to systematically learn sequential
dependencies, and it can learn the interactions between static
features and a sequence of dynamic features (i.e., the purchase
sequence) by employing multi-view learning mechanisms.
However, it is non-trivial to employ SeqFM to the scenarios
with multiple sequences of dynamic features as in time-series
EMR data. In a nutshell, it is still challenging to apply FM-
based methods for time-series EMR data analytics.
Medical Concept Embedding. Inspired by word embedding
in natural language processing, medical embedding has been
proposed and attracting a great deal of attention recently. Most
of them [19], [44], [45], [46] focus on handling categorical
medical concepts and directly assign each feature with an em-
bedding vector. However, we cannot directly assign embedding
to numerical medical features with infinite possible values.
Healthcare Analytics. There exist numerous studies investi-
gating how to improve the performance of healthcare analytics.
For example, RETAIN [19] devises a two-level attention model
to capture visit-level and variable-level feature importances.
SAnD [28] borrows the idea of the transformer and employs
self-attention mechanism [47] to learn patients’ representa-
tions. Besides, Dipole [21] proposes three attention mecha-

nisms to capture the essential relationships among patients’
visits in the time-series EMR data. Concare [20] processes
each feature separately via different GRUs and finally applies
the self-attention mechanism to integrate the information of all
features to explore cross-feature interdependencies. However,
all of these attention-based models cannot model the interac-
tions in an explicit manner that is to learn separate representa-
tions to denote the interactions between each pair of medical
features or time steps. Besides the studies above, several
solutions are proposed to tackle other challenges. For example,
GRU-D [14] devises an exponential decay mechanism to
model time difference and impute missing data with either the
empirical mean value or the last observation. StageNet [48]
proposes a stage-aware LSTM module to capture the stage of
the disease progression and applies convolution operation to
learn progression patterns.

Different from these studies, our proposed ELDA-Net fo-
cuses on modeling two types of interactions in an explicit
and fine-grained manner which can depict abnormal patterns
for medical features and time steps, and hence, contribute to
improved performance and significant interpretability.

III. ELDA FRAMEWORK

In this section, we elaborate on how our proposed ELDA
works for healthcare analytics. Benefiting from the novel
design of ELDA, as illustrated in Figure 2, ELDA manages
to facilitate accurate predictive analytics and depict abnormal
patterns in both feature-level and time-level simultaneously.

Data. ELDA first extracts the time-series EMR data from
the database system of hospitals for analysis. Based on these
history EMR data, ELDA is able to train ELDA-Net with
satisfactory performance superior to other existing state-of-the-
art models. Further, when new EMR data is generated (e.g.,
new patients are admitted to ICU in the hospital), ELDA can
employ the trained ELDA-Net to process such newly generated
EMR data with detailed predictive analysis and interpretations.

ELDA-Net. As the core component of the framework
ELDA, ELDA-Net consists of four modules (in order): (a) Bi-
directional Embedding Module to augment numerical medical
features into informative representations, which is fundamental
to the following module; (b) Feature-level Interaction Learning
Module to explicitly capture the interactions between pairs
of medical features in each time step and demonstrate the
change of the importance (i.e., attention weights) of the
interactions over time; (c) Time-level Interaction Learning
Module to explicitly capture the interactions between the last
time step and all previous time steps; (d) Prediction Module
to summarize the information and derive the final prediction.
Detailed descriptions of each module are in Section IV.

Functionality. Interpretations of the prediction results are
one of the most essential concerns for clinicians to understand
how a model works and therefore, trust the model. Benefiting
from the novel design of the ELDA-Net, ELDA can facilitate
healthcare analytics with three advanced functionalities. We
take in-hospital mortality prediction for ICU patients as an
example scenario to elaborate on each functionality as follows:
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Fig. 2. Overview of the ELDA framework for healthcare analytics.

• Predictive Analytics. For effective patient management and
efficient medical resource utilization, it is essential to an-
alyze patients’ EMR data to monitor their dynamic health
conditions. During the hospitalization in ICU, ELDA is able
to predict the risk of passing away for patients regularly
via Prediction Module, and if the prediction exceeds a
predefined threshold, ELDA can trigger timely alerts to
inform clinicians to pay close attention.

• Time-level Interaction Interpretation. As patients tend to
exhibit personalized disease development over time, it is
crucial for clinicians to be aware of their health conditions
in a time-aware manner. For example, the conditions of
the patients with severe complications always fluctuate and
may cause disease recurrence, whereas the conditions of
the patients with mild severity are generally more stable
during hospitalization. With Time-level Interaction Learning
Module, ELDA is able to depict the abnormal pattern on
the dynamic change of patients’ conditions by identifying
crucial time steps that vary among patients. With such

time-level interaction interpretations, ELDA is able to assist
clinicians in investigating the dynamic development of each
patient’s conditions and therefore benefit patient monitoring.

• Feature-level Interaction Interpretation. For a DM patient,
if the value of Glucose exhibits a sudden increase at a
certain time point, clinicians will generally investigate other
DM-related features to verify whether this patient develops
any DM complications. In practice, ELDA supports this
via illustrating the importance of feature-level interactions,
i.e., the feature interaction coefficients learned explicitly in
Feature-level Interaction Learning Module. As illustrated,
the related medical features (e.g., f2 with an abnormal
value and a close relationship with f1) tend to attach
a high coefficient value. Such interpretation results from
ELDA can not only unveil informative relationships among
medical features and help identify the underlying disease
development, but also provide medically meaningful insights
for potential medical research advancement.
Further, during the ICU hospitalization, patients’ conditions
are continuously changing, which also implies the change in
feature interactions. In general, abnormal medical features
usually return to a normal level after careful treatment and
the attention paid to these medical features should also
change accordingly. To support this, ELDA can demonstrate
the change of the coefficient for each medical feature over
time. An example is illustrated via the line chart in Figure 2,
in which medical features with tight relationships to the
abnormal f1 (e.g., f2,f3) will always have high coefficients
during the time when they become abnormal, while others
do not (e.g., f4). In addition, the variation trends of these
coefficients are different among medical features.

Application. Our proposed ELDA is able to support di-
verse applications in healthcare analytics. In this paper, we
investigate how ELDA supports the analytics of two crucial
healthcare applications, i.e., in-hospital mortality prediction
task and length-of-stay prediction task. More details can be
found in Section V.

IV. METHODOLOGY

In this section, we first introduce the notations used in this
paper and then elaborate on the detailed design of ELDA-Net.

A. Basic Notations

In this paper, we denote the multivariate time-series EMR
data with |C| medical features of length T as X =
(x1,x2, ...,xT ) ∈ RT∗|C|, where t ∈ {1, 2, ..., T} is the index
of the time step (e.g., an hour) and xt ∈ R|C| denotes |C|
medical features (e.g., lab tests) observed in the time step
t. Without loss of generality, we formulate the classification
problem with the binary classification case, in which each
sample X has a corresponding binary label y ∈ {0, 1}. The
goal is to learn a mapping function f from the input data X
to the label y. For simplicity, in the rest of this paper, we drop
the subscript t when discussing a specific time step.



Standardization

Forward Embedding
Calculation

Backward Embedding
Calculation

𝑥! 𝑥! ′
𝒆!

Fig. 3. Bi-directional Embedding Module of ELDA-Net.

B. ELDA-Net

We illustrate the overview of our proposed ELDA-Net in
Figure 2 and explain ELDA-Net’s each module in order.

Bi-directional Embedding Module. Medical feature embed-
ding has been widely investigated in healthcare analytics, such
as [19], [44], [46], [49], [50]. Typically, these existing studies
simply look up an embedding vector to embed a categorical
medical feature. However, such an embedding mechanism is
not suitable to learn an informative representation for medical
features that are recorded in numerical values. One reason is
that such numerical medical features can have infinite possible
values and thus, it is impossible to directly assign each possible
value with a certain embedding vector.

To tackle this challenge, FM-based models adopt a linear
embedding mechanism that merely multiplies an embedding
vector by its corresponding numerical feature, i.e., the embed-
ding vector for the i-th feature xi is represented as vixi, and
the formula of FM is as follows:

ŷFM (x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj (1)

where w0 is the global bias, wi is the weight of the i-th feature,
and 〈·, ·〉 denotes the inner product of two vectors.

This FM-based embedding approach can handle numerical
medical features to some extent, but it still has non-negligible
limitations. To start with, the embedding vector is strongly
related to the scale of the feature value, and this problem
cannot be solved by standardizing all medical features. In
practice, a feature with a smaller value will be mapped into
an embedding vector with a relatively smaller scale (i.e., L2-
norm). More specifically, zero value will be mapped to a
zero embedding vector that has no influence on the latter
computation. In healthcare analytics, a standardized zero value
in lab test always denotes that this lab test is close to normal,
which is essential to analyze a patient’s conditions. Further, a
feature with opposite values will be embedded into opposite
vectors (i.e., vectors with the same magnitude but opposite
directions), which only shows a minor difference and tends to
be not effective enough in capturing various abnormal patterns.

To tackle these issues, we design the Bi-directional Em-
bedding Module for the numerical features as illustrated in
Figure 3. We first standardize medical features from xi to
x′i and then apply our embedding module to map x′i into an
embedding vector with a predefined lower bound a and upper
bound b:

ei =
1

b− a
(Va

i (x
′
i − a) +Vb

i (b− x′i)) (2)

where Va,Vb ∈ R|C|∗e are two embedding matrices that
convert x′i into a lower-dimensional feature representation,
and e denotes the dimension of the embedding vector. The
design of our Bi-directional Embedding Module has following
advantages. First, this module can preserve the advantages of
the linear embedding mechanism: (i) the embedding vectors
of the same feature with different values vary from each other;
(ii) for continuous values, it can learn consecutive embedding
vectors, and two close values for the same medical feature will
be mapped into similar embedding vectors. Second, compared
with the FM-based embedding mechanism, this module can
control the scale of embedding vectors.

ELDA-Net also embeds missing values that are quite com-
mon in EMR data. The reasons for such missing data can be
generally classified into three categories: (i) medical features
are unconcerned before the first observation; (ii) medical
features are stable and will not change frequently; (iii) medical
features are not essential to be observed as they are not so
much about the patient’s disease. We treat the first type of
missing data as the normal case and use the global average
value for imputation, whereas for the second type of missing
data, we impute them with the last observation. As for the
last type of missing data, we argue that such unobserved
medical features are also informative as they indicate that
these medical features are not necessary for these patients.
Hence, we transform medical features that are unobserved in
the patient’s EMR data into a separate embedding vector Vm

i ,
where Vm ∈ R|C|∗e and m denotes that the feature is missing.

Feature-level Interaction Learning Module. With Bi-
directional Embedding Module, we manage to enrich each
medical feature with an informative embedding vector. Based
on the enriched representations, we then aim to explicitly
model the feature-level interactions between pairs of medical
features at each time step, and FM-based models provide a
feasible solution that has achieved great success in the existing
work [38], [39], [40], [41], [42]. Therefore, we adopt the
element-wise product approach to devise the Feature-level
Interaction Learning Module in ELDA-Net, which measures
the interaction between feature i and feature j as ri,j ∈ Re:

ri,j = ei � ej (3)

where � denotes the element-wise product of two embed-
ding vectors. Different from original FM-based models that
simply partition the information into two parts: the original
feature part and the feature interaction part, ELDA-Net models
the feature interactions as complementary information of the
feature itself. For each medical feature, ELDA-Net processes
it separately to preserve its individuality and incorporates its
interactions with all the other features to increase its ability to
distinguish various abnormal patterns. Hence, compared with
FM-based models that incorporate the interactions in a coarse-
grained manner, in ELDA-Net, each feature and its interactions
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Fig. 4. Feature-level Interaction Learning Module of ELDA-Net.

can be more tightly connected in our proposed Feature-level
Interaction Learning Module.

We note that different feature interactions should have dis-
criminative importance and hence, should be assigned different
attention weights. To achieve this goal, we devise an attention
neural network in this module to learn the importance weights
of interactions between each pair of medical features, which
contributes to more fine-grained analytics. Specifically, our
proposed attention neural network calculates the attention
weights α as follows:

α′i,j = (Wα
i )
T ri,j + bαi (4)

αi,j =
exp(α′i,j)∑|C|

j=1,j!=i exp(α
′
i,j)

(5)

where Wα ∈ R|C|∗e, bα ∈ R|C| are parameters, and αi,j
denotes the attention scores of the interaction between i-th
feature and j-th feature when processing the i-th feature.

With the attention weights αi,j , ELDA-Net aggregates i-
th feature’s interactions with all other features as the com-
plementary information and derives an overall representation
of the feature-level interaction ci =

∑|C|
j=1,j!=i αi,jri,j . We

then combine the original feature embedding vector ei and
this learned feature interaction ci as the new comprehensive
representation of the i-th feature. Next, we transform this new
feature representation into a lower-dimensional space fi via
linear regression, which aims to speed up the processing and
reduce parameters in the temporal modeling stage:

fi = pTRelu([ei; ci]) (6)

where p ∈ R2e∗d is a trainable vector and d is a predefined
hyper-parameter that denotes the size of the final feature
representation, defined as compression factor. With a larger d,
more information can be maintained, but the parameter size
of the model will be increased in the meanwhile.

Through integrating fi for all features, we can derive a
patient’s new representation at time step t, which is x̃t =
[f1; f2; ...; f|C|]. With this devised Feature-level Interaction
Learning Module, ELDA can provide informative feature-level
interaction interpretation results as depicted in Figure 2.
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Fig. 5. Time-level Interaction Learning Module of ELDA-Net.

Time-level Interaction Learning Module. In Time-level
Interaction Learning Module of ELDA-Net, we first model the
dynamics of the processed time-series EMR data (i.e., x̃1, x̃2,
· · · , x̃T learned in the Feature-level Interaction Learning Mod-
ule) via a standard Gated Recurrent Unit (GRU) model [32]:

h1,h2, ...,hT = GRU(x̃1, x̃2, ..., x̃T ) (7)

where hi ∈ Rl and l is a hyper-parameter that denotes the
size of the hidden state of GRU.

In GRU, the last time step’s output that summarizes all
previous time steps’ information is usually used as the overall
representation of the time-series data for downstream applica-
tions, such as [30], [31], [32]. However, [21] demonstrates
that the last time step’s output cannot always adequately
represent a patient’s health condition because the influence
of earlier time steps tends to be decayed along with time and
relationships among time steps are ignored by simple RNN-
based approaches. Therefore, in ELDA-Net, we also model the
interactions in the time level to represent the dynamic change
of the patient’s health condition in a more comprehensive
manner. Specifically, we focus on integrating the conditions
at the last time step with its interactions with conditions at
all earlier time steps because the conditions at the last time
step are more essential compared with earlier ones due to the
chronological order. Similar to the Feature-level Interaction
Learning Module, we also adopt the element-wise product in
this module to explicitly model the interactions si,T :

si,T = hi � hT , i = 1, 2, ..., T − 1 (8)

where si,T ∈ Rl denotes the interactions between the i-th time
step and the last time step.

Further, to concentrate more on several critical time steps
for the patient, an attention neural network is devised to
differentiate the importance of the interactions between each
earlier time step and the last time step:

β′i,T = (wβ)T si,T + bβ (9)

βi,T =
exp(β′i,T )∑T−1
i=1 exp(β′i,T )

(10)



where wβ ∈ Rl and bβ ∈ R are parameters of the attention
network. βi,T denotes the attention scores of the interactions
between the i-th time step and the last time step. With
these learned attention weights β, we can aggregate time-level
interactions and then generate an overall representation gT to
depict the patient’s dynamic health condition:

gT =

T−1∑
i=1

βi,T si,T (11)

Finally, we obtain a comprehensive representation of the
patient’s health condition h̃T = [hT ;gT ] that enriches the
information of the last time step’s condition hT with the
interaction information modeled in the Time-level Interaction
Learning Module (i.e., gT ): With this module, ELDA is
capable of providing meaningful time-level interaction inter-
pretation results as illustrated in Figure 2 to assist clinicians
in patients’ condition assessment.
Prediction Module. Based on h̃T derived in Time-level Inter-
action Learning Module, we can conduct different downstream
prediction tasks. Take binary classification prediction as an
example, we derive the prediction as ỹ with the sigmoid
activation function σ:

ỹ = σ(wT
predh̃T + bpred) (12)

where wpred and bpred are parameters to learn. After deriving
the prediction via this module, ELDA is able to support
accurate predictive analytics as shown in Figure 2.

C. Optimization

We use the binary cross-entropy as the objective function to
calculate the loss between the true label y and the predicted
label ỹ in the Prediction Module for all the patients:

Loss(ỹ, y) = −
N∑
i=1

(yi log ỹi + (1− yi) log(1− ỹi)) (13)

V. EXPERIMENTS

A. Experimental Set-up

Datasets. We evaluate the effectiveness of our proposed frame-
work ELDA in two real-world public clinical datasets below.

PhysioNet2012 [51] is a public dataset from PhysioNet
Challange 2012 with 12,000 intensive care unit (ICU) ad-
missions. In each admission, time-series EMR data such as
chart events, lab tests, and output events within 48 hours are
recorded. For each admission, 37 common medical features
are selected [51], including Albumin, pH, Serum sodium, etc.

MIMIC-III [52] consists of more than 58,000 hospital
admissions collected at Beth Israel Deaconess Medical Center
spanning from 2001 to 2012. In the MIMIC-III dataset, we
follow the cohort selection in [53] to sample patients. As in
the PhysioNet2012 dataset, we extract the same 37 features of
21,139 admissions over 48 hours from the MIMIC-III dataset
as samples in our analysis.

Each sample in the dataset denotes the medical records of
a patient’s admission. In both datasets, we evaluate ELDA

TABLE I
STATISTICS OF THE PHYSIONET2012 AND THE MIMIC-III DATASETS.

PhysioNet2012 MIMIC-III

# of admissions 12000 21139
survivor : non-survivor 10293 : 1707 18342 : 2797
LOS≤7 : LOS>7 4095 : 7738 9134 : 12005
avg. # of records per patient 359.19 346.05
# of medical features 37 37
missing rate (without imputation) 79.78% 80.52%

and baseline methods on two healthcare applications, i.e.,
in-hospital mortality prediction and Length-of-Stay (LOS)
prediction. The first task is to predict whether a patient will
pass away in the hospital with the EMR data collected within
48 hours after admission. Based on the same input, the second
task is to predict whether a patient will be discharged from the
hospital in 7 days after admission to the ICU, i.e., have a LOS
over 7 days. Detailed statistics of both datasets are summarized
in Table I. The survivor denotes the patients who pass away in
the hospital and vice versa. Before conducting these two tasks,
we apply a mean-std standardization on all medical features
for both datasets. Besides, we also clean some noisy values
that are erroneous in the real-world medical records, such as
negative values, as suggested in [51].

Evaluation. We divide all samples into 80%:10%:10% as
the train set, the validation set, and the test set respectively.
After learning the best-performing model in the validation set,
we report its performance in the test set, in terms of the binary
cross-entropy loss (BCE loss), the area under the receiver
operator characteristic curve (AUC-ROC), and the area under
the precision recall curve (AUC-PR). The AUC-ROC score
and the AUC-PR score are commonly used to measure the
performance of a classifier for binary classification which
is usually conducted on a highly imbalanced dataset [54].
Further, we run the experiments five times for each model
per application to report the experimental results.

Model Configurations. As for the ELDA-Net and its
variants, we set the hidden dimension of GRU as 64, the
embedding dimension as 24, and the compression factor as
4. The lower bound and the upper bound in Bi-directional
Embedding Module are set to -3 and 3 in the experiments.
We train all models using an initial learning rate of 0.001 and
a batch size of 64. As the numbers of features are the same in
both datasets, we adopt this setting consistently for all tasks.

Implementation Details. We implement the ELDA-Net in
Keras 2.3.1 with Tensorflow 1.14.0 as the backend. All the
experiments are conducted with one Intel(R) Xeon(R) W-2133
CPU @ 3.60GHz and one GeForce RTX 2080 Ti GPU.
Baseline Methods. We compare ELDA-Net with the following
baseline methods.
• Logistic Regression (LR) [55] takes the mean of the time-

series values for each feature as input, and such input is also
used for FM and AFM as well.

• FM [35] captures the pair-wise feature interactions based
on a linear embedding mechanism.

• AFM [38] adds attention weights to differentiate the impor-
tance of each feature interaction.
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Fig. 6. Experimental results of ELDA-Net and baselines.

• SAnD [28] borrows the idea of transformer and employs a
masked self-attention mechanism to model time-series data.

• GRU [32] is a widely adopted RNN-based model to process
time-series data.

• RETAIN [19] applies two levels of GRU to learn attention
weights in the visit level and the variable level.

• Dipole [21] takes the bidirectional GRU as the backbone
model and devises three attention mechanisms, i.e., Dipolel,
Dipoleg , Dipolec.

• StageNet [48] devises a stage-aware LSTM module to
capture the stage of the disease progression and applies
convolution operation to learn progression patterns.

• GRU-D [14] utilizes an exponential time decay mechanism
to model time intervals and impute missing data, and hence,
can handle irregular time-series data.

• ConCare [20] employs separate GRUs to process each
medical feature across time and combines static data and
time-series data via a self-attention mechanism.

Further, we conduct an ablation study to investigate the
effectiveness of each module in ELDA-Net (in Section V-C),
and the involved variants of ELDA-Net are as follows:

• ELDA-Net-T removes Feature-level Interaction Learning
Module to validate the effectiveness of the Time-level In-
teraction Learning Module.

• ELDA-Net-Fbi keeps Feature-level Interaction Learning
Module with our proposed Bi-directional Embedding Mod-

ule, but it drops Time-level Interaction Learning Module.
• ELDA-Net-Ffm applies the FM-based embedding mecha-

nism (i.e., a linear embedding without bias), which is its
difference from ELDA-Net-Fbi.
Models with ∗ assign embedding vectors with all ones to

the features when the standardized values are zero, which is
its difference from the model without ∗.

B. Main Results

We first evaluate our proposed ELDA on in-hospital mortal-
ity prediction task in both datasets, and the comparison results
between the ELDA-Net and the baseline methods are shown
in Figure 6. In the PhysioNet2012 and the MIMIC-III dataset,
ELDA-Net always performs best in the in-hospital mortality
prediction task, achieving an improvement of 2.6% and 3.4%
in terms of AUC-PR over the most competitive baseline meth-
ods. Then, we evaluate ELDA-Net on the LOS prediction task
in both datasets. The comparison results illustrated in Figure 6
confirm the effectiveness of ELDA-Net, which achieves an
improvement of about 2.5% and 0.5% in terms of AUC-PR
score compared with the best-performing baseline models in
the PhysioNet2012 and the MIMIC-III dataset, respectively. In
a nutshell, in all tasks and all datasets, ELDA-Net outperforms
all the baseline methods consistently in terms of all metrics,
which confirms the effectiveness of our proposal in facilitating
accurate analytics.
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Fig. 7. Experimental results of the ablation study. The dash line in each
subfigure denotes the best-performing baseline in Figure 6.

Among the baseline methods that generally handle non-
time series data, LR is the most widely adopted interpretable
model, but its performance is not satisfactory. In comparison,
FM can consistently outperform LR, as FM manages to
capture the pair-wise feature interactions that are used as
augmented information. Besides, the superior performance of
AFM mainly comes from the modeling of attention weights,
which can discriminate the importance of interactions, but this
improvement is not stable enough in the LOS prediction task.

Different from previous methods, time-series models can
always achieve better performance due to the modeling of the
dynamics in the EMR data, such as GRU and others. The
performance of the StageNet also shows an improvement due
to learning the stage of the disease progression via LSTM.
Some models apply attention mechanisms to enhance both
performance and interpretability. For example, Dipole can re-
capture the crucial information in previous time steps via
the attention network, which leads to boosted performance,
and ConCare achieves competitive performance by modeling
the cross-feature interdependence after separately processing
different medical features. Their performance is always the
best among the baseline models in the in-hospital mortality
prediction task, but they achieve suboptimal performance in
the LOS prediction task compared with GRU-D.

However, attention-based models cannot always achieve
such superior performance. The model design of RETAIN
considers the balance between the performance and the inter-
pretability, which may be the reason for its degraded perfor-
mance. Besides, SAnD applies positional encoding and dense
interpolation strategies to model the temporal order, which
is not as powerful as RNN-based architecture and results in
worse performance. Moreover, GRU-D devises an exponential
decay mechanism to model the time interval and impute the
missing data. Due to such a design, it can always provide
satisfactory performance among all the baselines, especially
in the LOS prediction task.

Our proposed ELDA consistently outperforms all baseline
methods in all metrics, as ELDA-Net targets at explicitly
modeling the interactions in both the feature level and the
time level for time-series EMR data. In addition, ELDA-Net
further devises a novel Bi-directional Embedding Module that
can generate informative embedding vectors for numerical
medical features. Based on these modules, ELDA-Net is
able to generate a more comprehensive representation of a
patient’s health condition and hence, achieves superior analytic
performance.

C. Ablation Study

We then investigate the effectiveness of each proposed
interaction learning module in ELDA-Net, with experimental
results shown in Figure 7.

With the Time-level Interaction Learning Module, ELDA-
Net-T is able to outperform many baselines. For example, as
for the in-hospital mortality prediction task in PhysioNet2012,
the AUC-PR score of ELDA-Net-T is 0.559, which is larger
than 0.536 and 0.547 achieved by the original GRU and
the best-performing baseline model (i.e., Dipolel). Its supe-
rior performance validates that explicitly modeling the time-
level interactions is essential to derive a more comprehensive
representation of a patient’s dynamic health conditions and
contribute to more accurate predictions.

Next, when evaluating the effectiveness of different feature-
level interaction modeling mechanisms, Figure 7 also reveals
several insightful findings. First, compared with ELDA-Net-
Ffm, ELDA-Net-Ffm∗ achieves a small improvement due
to the modification of the embedding mechanism. It verifies
that assigning separate embedding vectors to zero values
is able to make better use of these values compared with
assigning zero vectors in ELDA-Net-Ffm. Second, ELDA-
Net-Fbi can consistently outperform both ELDA-Net-Ffm and
ELDA-Net-Ffm∗ in terms of all evaluation metrics in all tasks,
which confirms that our proposed bi-directional embedding
mechanism is more suitable to numerical medical features in
the EMR data. Third, we also evaluate our devised module in
the same scenario as ELDA-Net-Ffm∗ and develop ELDA-
Net-Fbi∗ . As shown in Figure 7, there is a degradation in
ELDA-Net-Fbi∗ ’s prediction performance of all analytics tasks
compared with ELDA-Net-Fbi, as such a modification breaks
the consecutiveness of the embedding vectors for continuous
values. Overall, ELDA-Net achieves better performance than
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Fig. 8. Attention weights (percentage) of the time-level interactions for survival patients (left) and non-survival patients (right) in each subfigure. Each blue
line denotes the attention weights of a certain patient over time. The red line denotes the average attention weights for either the whole group of survival
patients or that of non-survival patients.

its variants as illustrated in Figure 7, which confirms that
both levels of interactions are complementary to facilitate
the learning of patients’ comprehensive representations. In
addition, the integration of these two interaction learning
modules can also equip ELDA-Net with the interpretability
in both the feature level and the time level. We shall elaborate
on the detailed interpretation results in Section V-D.

D. Interpretability Study

In this section, we use the PhysioNet2012 dataset to
demonstrate how ELDA can provide interpretable results with
medical insights for the in-hospital mortality prediction task.
Specifically, we analyze the attention weights of the interac-
tions learned in both the time level and the feature level.

ELDA’s Time-level Interaction Interpretation. To intu-
itively demonstrate the attention weights in the Time-level
Interaction Learning Module, we analyze the interpretation re-
sults from ELDA for two complementary groups, i.e., survival
patients and non-survival patients.

We illustrate the attention weights of the interactions be-
tween the last hour and all earlier hours (i.e., 47 hours) in
Figure 8. From the red lines in Figure 8a, we can observe that
in both groups, the Time-level Interaction Learning Module
generally pays more attention to the patients’ latter conditions,
because the conditions at these time steps are generally closer
to a patient’s final health condition due to the chronological
order. Besides, compared with survival patients, the conditions
of the non-survival patients are more varied and unstable, and
ELDA can focus more on several time steps that are more
critical to these patients. In these time steps, the medical
records are typically richer, and thereby, indicate the abnor-
mality or sudden deterioration in patients’ health conditions.
Besides, according to blue lines in Figure 8a, we also find that
our Time-level Interaction Learning Module can effectively
identify and assess the crucial time steps for patients where
the positions and the lengths of these crucial time steps vary
among patients due to patients’ individuality.

To further validate the effectiveness of our proposed module
in the time-level interpretability, we introduce Dipolec for
comparison, which can implicitly explore the interactions
among patients’ subsequent visits in the time level. The time-
level interpretation results of both models are illustrated in
Figure 8. Compared with Dipolec’s results in Figure 8b, we
can observe that with the Time-level Interaction Learning
Module, ELDA can effectively differentiate the general trends

in two cohorts of patients. Moreover, ELDA can also depict
that the latter time steps’ representations exhibit more attention
weights compared with earlier time steps. In a nutshell, ELDA
with the Time-level Interaction Learning Module is effective
in the time-level interpretability, as ELDA not only highlights
crucial time steps but also shows the general trends in different
groups of patients. Such auxiliary information is essential for
clinicians to facilitate patient management.

ELDA’s Feature-level Interaction Interpretation. To illus-
trate the functionality of the Feature-level Interaction Learning
Module in detail, we investigate a representative DM Patient
A with DLA (as introduced in Section I). As a DM patient,
Patient A suffers from extremely high values of Glucose as
shown in the red line of Figure 10a. We then dive into more
details of Patient A and show several essential medical records
of Patient A in Table II, including the fraction of inspired oxy-
gen (FiO2), Glucose, bicarbonate (HCO3), hematocrit (HCT),
heart rate (HR), Lactate, mean arterial blood pressure (MAP),
temperature (Temp), PH, and White blood cell (WBC). Due
to the limited space, we only illustrate the attention weights
of these features in two time steps (i.e., the 13th hour and the
35th hour) in Figure 9a, which are the start of the increase of
Glucose and the time when Glucose becomes stable.

According to medical references (e.g., [27]), we know that
DLA is a clinical syndrome caused by abnormal biochemical
changes of the increase in blood lactic acid and the decrease in
PH (<7.35) due to different reasons. In clinical practice, clini-
cians will do some auxiliary checking for better assessment of
the condition because DLA patients typically have low HCO3,
low Temp, deep and big breath, and low blood pressure [27].
As shown in Table II, all the aforementioned symptoms are
observed in Patient A, which confirms the development of
DLA and reveals the patient’s worsening health condition.
From Figure 9a, we can observe that the learned attention
weights in the Feature-level Interaction Learning Module
demonstrate that Glucose pays more attention to some closely
related and abnormal medical features (e.g., FiO2, HCO3, HR,
Lactate, MAP, Temp). However, some medical features that
are irrelevant to DLA (e.g., HCT, WBC, etc.) tend to exhibit
relatively low attention scores. All of these observations can
be treated as abnormal patterns and are highly consistent with
the medical knowledge for diagnosing DLA [27].

To evaluate our proposed ELDA’s interpretability in depict-
ing abnormal patterns among medical features, we conduct
a controlled experiment where we modify all the observed



TABLE II
ESSENTIAL MEDICAL FEATURES OF PATIENT A. THE VALUES IN THE

TABLE ARE AFTER STANDARDIZATION.

Hours FiO2 Glucose HCO3 HCT HR Lactate MAP Temp pH WBC

13 0.85 6.09 -2.37 -0.96 3.32 10.41 -0.50 -2.16 -1.79 0.01
35 0.31 -0.46 -0.88 -0.10 1.25 9.03 0.16 -0.97 0.84 0.51
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Fig. 9. Attention weights (percentage) of the feature-level interactions for
Patient A on 13th hour (left) and 35th hour (right). Take the row pH as
an example, values in the row denote the attention weights of interactions
between pH and other features when processing the feature pH.

Lactate values in Patient A’s EMR data to normal (i.e., the
global mean of the Lactate in all patients in the training
dataset), and the corresponding results are shown in Figure 9b.
In Figure 9a, we observe that the abnormal values of Lactate
also pay more attention to several related medical features
(e.g., MAP, Temp), which agree with [56], [57]. Specifically,
it is stated in [56] that the increase in Lactate has an inverse
correlation with Temp, and the results in [57] show that
Glucose and Lactate correlate positively with blood pressure
(i.e., MAP) in diabetic patients. Both these two Lactate-related
medical features exhibit high attention weights when learning
the interactions for the abnormal Lactate, and we can easily
find in Figure 9b that these high attention weights are reduced
to an average level on the modified EMR data. This controlled
experiment confirms that our Feature-level Interaction Learn-
ing Module is able to unveil abnormal patterns among medical
features. With this module, ELDA-Net can enrich medical
feature representations with interactions between a feature
itself and other medical features, which can depict different
types of abnormality. Further, medical features with higher
attention scores in the interactions imply tighter relationships,
which has the potential to unveil the underlying interactions
among medical features and advance medical research.

Another finding is that the same feature-feature interaction

0 10 20 30 40
2.2%
2.5%
2.8%
3.0%
3.2%
3.5%
3.8%
4.0%

At
te

nt
io

n 
we

ig
ht

s FiO2
HCT
HR
Lactate
WBC

0
2
4
6
8

Gl
uc

os
e 

va
lu

e

Glucose value

(a) ELDA-Net

0 10 20 30 40
0.0%

20.0%

40.0%

60.0%

80.0%

At
te

nt
io

n 
we

ig
ht

s FiO2
HCT
HR
Lactate
WBC

0
2
4
6
8

Gl
uc

os
e 

va
lu

e

Glucose value

(b) ELDA-Net-Ffm

Fig. 10. The red line denotes the glucose value (after standardization)
for Patient A. The lines in other colors show the attention weights of the
interactions between glucose and other medical features (partial).

will have different attention weights in both features. For
example, in the 13th hour, the high value of lactate is the main
cause of the low pH value for Patient A, which is reflected as
a higher attention weight in the interactions of pH. However,
when it comes to lactate, ELDA-Net pays more attention to
other abnormal features that are more important than pH,
such as MAP, Temp, etc. After careful treatment in ICU for
around a day (i.e., 35th hour), glucose reaches a normal level,
which leads to a more uniform distribution of attention weights
among other medical features (including pH).

Apart from demonstrating the feature-level interactions
learned in these two time steps, we also find some interesting
insights in the changing of the attention weights over time.
While a patient is being hospitalized, the patients’ health
conditions are continuously changing which can be reflected
via the variation of the attention weights. According to Fig-
ure 10, we can observe that with the change of glucose
value, different medical features exhibit varied influences on
its attention weights. Some closely related medical features
(e.g., FiO2, HR, Lactate) always attract more attention weights
when they are abnormal, while others that are weakly related
to glucose (e.g., HCT, WBC) do not exhibit an apparent
influence with the same change in glucose values. Based on
such interpretability analysis from the Feature-level Interaction
Learning Module of ELDA, clinicians can timely detect the
abnormal patterns and make responsive clinical decisions.

To further validate our ELDA-Net’s feature-level inter-
pretability, we compare the interpretation results between
ELDA-Net and ELDA-Net-Ffm in the feature level. The
interpretation results of ELDA-Net-Ffm are shown in Fig-
ure 10b. As illustrated, we can find that Lactate always exhibits
extremely high attention scores (i.e., >50%) when learning
interactions between the abnormal Glucose and all other med-
ical features. This is because that the FM-based embedding
mechanism employed in ELDA-Net-Ffm has a limitation that
the scale of embedding vectors is highly related to feature
values, which results in high attention scores for features
with extreme abnormal values. In comparison to Lactate,



TABLE III
THE NUMBER OF PARAMETERS AND THE RUNTIME

Model # of param Training (s) Prediction (ms)

LR 38 0.8 <0.01
FM 630 138 0.70
AFM 718 148 0.72
SAnD 106k 17 0.08
GRU 20k 9 0.05
RETAIN 13k 14 0.07
Dipolel 40k 9 0.05
Dipoleg 56k 10 0.05
Dipolec 44k 10 0.05
StageNet 85k 126 0.92
GRU-D 38k 466 3.23
ConCare 183k 118 0.69

ELDA-Net-T 21k 10 0.05
ELDA-Net-Fbi 49k 43 0.21
ELDA-Net-Ffm 43k 41 0.22
ELDA-Net 53k 44 0.22

attention scores of other Glucose-related medical features with
abnormal values are compressed to a large extent, which leads
to the limited capacity in learning patients’ comprehensive
representations. Compared with ELDA-Net-Ffm, our ELDA-
Net is able to capture and depict more abnormal patterns as
illustrated in Figure 10a. For example, when the value of
Glucose increases to an abnormal range, our Feature-level
Interaction Learning Module can still attach more attention
scores to other related medical features with abnormal values
(e.g., FiO2, HR, etc.) besides the Lactate.

In a nutshell, supported by the medically meaningful inter-
pretations in both the time level and the feature level, ELDA
can provide valuable auxiliary information for clinicians to
analyze patients’ conditions in a time-aware manner, and
hence, facilitate personalized and timely treatments.

E. Efficiency Test
Model Complexity. We first illustrate the total number of

trainable parameters in each model in Table III to measure the
model complexity. As shown, LR, FM, AFM that are widely
adopted to model non-time series data, have a small number
of parameters ( i.e., <1k). Hence, their performance is not
competitive compared with time-series models. In time-series
models, some state-of-the-art models (e.g., StageNet, Concare,
and SAnD) need complex structures to distill information from
the EMR data. Hence, they introduce tens of thousands of
parameters that leads to their boosted analytic performance.

Compared with these models, our proposed ELDA-Net
is able to significantly improve the performance with only
a moderate number of parameters, where most additional
parameters introduced are to derive the feature embedding in
the Bidirectional Embedding Module.

Runtime. We next study the runtime for the offline training
and online prediction with experimental results in Table III.
Specifically, we report the average runtime (seconds) per batch
for training where the batch size is set to 64, and we also report
the average runtime (milliseconds) for making a prediction.

For the simplest approach LR, it only needs negligible time
to train or predict, whereas the other two non-time series
models FM [35] and AFM [38] need much longer time due to

modeling the feature interactions which can only be calculated
in an element-wise manner and hence, hard to be optimized
by matrix computation. As for time-series models, most of
them only take a short time to do the training or prediction,
whereas Concare and StageNet take a relatively longer time
brought by their complex structure to explore cross-feature
interdependencies and disease stages, respectively. In addition,
GRU-D needs the longest time in both training and prediction,
because it deals with irregular time series which is always
longer than regular time series. Compared with most time
series models, ELDA-Net-T and ELDA-Net-Fbi, as the vari-
ants of the ELDA-Net, slightly increase the runtime for both
training and prediction due to the modeling of the interactions
in the time level and the feature level. The latter needs to
compute the interaction among all medical features which is
more complex than the former, and hence, it introduces a bit
more time. In total, the ELDA-Net can not only run faster
than most SOTA models (e.g., ConCare, GRU-D, StageNet)
but also achieve a remarkable performance improvement.

VI. CONCLUSIONS

In healthcare analytics, the feature-level and time-level inter-
actions have not been explicitly investigated simultaneously. In
this paper, we propose a novel end-to-end model ELDA-Net to
explicitly capture and analyze these two types of interactions
in time-series EMR data. Specifically, in the Feature-level
Interaction Learning Module, ELDA-Net manages to preserve
the individuality of each feature and depict different abnormal
patterns to enrich the feature representation. In the Time-
level Interaction Learning Module, ELDA-Net can describe
the dynamic change of a patient’s health conditions and
automatically identify the crucial time steps that vary among
patients. ELDA-Net also includes a novel Bi-directional Em-
bedding Module to generate more informative embeddings
for numerical medical features. Based on the holistic design
of ELDA-Net to learn a more comprehensive representation
of patients’ dynamic health conditions, we further develop a
general framework ELDA for more accurate predictions and
fine-grained interpretability in time-series EMR data analytics.
Extensive experiments show that our proposed ELDA-Net
is consistently more accurate than state-of-the-art methods
in terms of all evaluation metrics, and ELDA can provide
interpretation results with medical insights in both the feature
level and the time level.
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