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Abstract— Managing the behavior of a huge number of non-
player characters (NPCs) is a major challenge in massively
multiplayer online games (MMOGs) for a few reasons. First,
the moving characters are highly dynamic and their positioning
is highly skewed in swarm regions. Second, players are more
intelligent and they often collaborate as teams. Third, the
characters are complex by design as they can be armed with
different weapons and armors, possess different capabilities, and
switch from one role to another. Decision making on the behavior
of NPCs in swarm regions is therefore complex because of the
rich game semantics in these regions.

NPCs in MMOGs are also required to act in teams so that
they can fight against teamed player characters (PCs) effectively.
This leads to the problems of dynamically managing team
members and effectively analyzing information of the local game
environment, which are real challenges in MMOGs with a large
population due to the high computational cost of handling the
dynamics of characters. To address these two problems, we
propose a data centric character binding model which manages
NPCs in teams. Effective NPC teams are dynamically maintained
through self-tuning of binding memberships. Information of local
game environment is summarized by bindings. The updates of
binding information are efficiently handled by applying lazy
updates and model-driven updates. We conduct experiments and
the results show that our proposed character binding model
achieves the much needed effectiveness and scalability desired
by game AI in MMOGs.

I. I NTRODUCTION

Recent years have witnessed the emergence and rapid
growth of massively multiplayer online games (MMOGs),
especially massively multiplayer online role-playing games
(MMORPGs) such as World of Warcraft (WoW) [1], Sims
Online [2], and EVE Online [3]. A massively multiplayer
online game is a computer game that is supposedly capable of
supporting thousands or millions of players simultaneously1.
It is played on the Internet, and features at least one persistent
world [4]. MMOGs are now indeed very popular. For example,
the global memberships of WoW exceed 10 million in 2008
[5]. More than 800,000 users play WoW simultaneously during
peak hours in China [6], which requires the support of more
than 300 clusters of servers.

1http://en.wikipedia.org/wiki/MMOG

Currently, most MMOGs are deployed using a client-server
system architecture. A player logs into the game world via a
client software. He views a local region of the game world and
controls the behavior of a player character (PC) via the client,
which simply connects with one server (cluster) during a game
session. Each server supports a number of online players (e.g.,
2-4 thousands of players in WoW) simultaneously. For data
consistency, the map of the game world is partitioned into
different regions, with each server holding one independent
region [7]. Players perform assigned tasks by collaborating and
competing with each other in the game. There are also many
non-player characters (NPCs) in the game world which have
been purposely designed to fight against PCs to make the game
more challenging and exciting. Human players accumulate
their experience and enhance their power by performing some
tasks and fighting with NPCs that are controlled by the AI
engine (we will refer to this as the AI player in this paper).

One of the important features in such MMOGs is the
behavior of individual NPCs in response to the actions of
PCs. This is typically controlled by character scripts [8], [9]
dynamically loaded and processed by game engines. What is
missing from this, however, is the concept of a team. We take
the popular game WoW as an example. One of the major
fighting scenes in WoW is that a number of PCs form a
troop fighting with one powerful giant. An AI-controlled giant
usually retaliates at a PC that fires at it more than the others
do. The gaming challenge in such a scenario is that an NPC
giant is so powerful that it is impossible for one player to kill it
by himself. Consequently, multiple players have to collaborate
with each other to win the game. However, the use of a single
powerful giant simplifies the game AI which in return reduces
the interestingness and possible approaches to the game. As a
result, the experience of fighting against giants can be easily
diffused, and many players perform tasks by simply following
the existing “work around” or trick. The game could be more
interesting and less predictive if the PCs are fighting against
teams of multiple NPCs that are coordinated by an AI player.

Team AI has been widely studied in computer games [10],
[11], [12], [13]. However, there are some challenges to apply-
ing existing team AI to MMOGs. First, moving characters are



highly dynamic. They are often spatially correlated in swarm
regions, and such correlations may change frequently due
to the movements of characters. In such dynamic scenarios,
it is costly to continuously guarantee the effectiveness of
NPC team members and their fighting strategies. Second,
characters in MMOGs are more complex. One character can
be armed with various types of weapons and armors of
different impactive radius. Different combinations of arms
significantly affect the results of fighting, which increases the
difficulty of effectively representing and reasoning about the
game environment. Third, PCs in MMOGs are continuously
controlled by players (different from PCs in real-time strategy
(RTS) games). Therefore, each player in the game can feel the
effectiveness of game AI at the local region around his role,
which enhances the requirements of efficacy of game AI.

Characters (NPCs and PCs) in the game world live and
move on a map. Their coordinates on the map are updated
accordingly when they are moving. Information of characters
(in RTS or MMOG) can be modelled as massive spatio-
temporal data [9]. White et al. made a bold step forward in [9]
by using database technologies to improve the performance of
information aggregation in RTS games, so that the scalability
of game population can be improved without sacrificing the
expressiveness of game AI. Likewise, we strongly believe
that database technologies could be used to help address the
above challenges of team AI in MMOGs. In fact, computer
game setting is increasingly being fused with social network
applications and they present great opportunities for data
management. However, it is a challenge to apply existing
database technologies such as [14], [15], [16], [17] on spatio-
temporal data to MMOGs because game data is not only
dynamic, but also complex and coupled (spatially correlated).

In this paper, to effectively manage NPC teams in dy-
namical game environment, we propose a character binding
model in which correlations among characters are modelled as
couplings, colludings and bindings. Information of the local
game environment is summarized by bindings and shared
by characters. A binding layer is developed for high-level
team AI to dynamically manage memberships of bindings and
plan strategies for NPC teams. We observe that the dynamic
maintenance of NPC teams is a kind of data management
problem over complex spatial-temporal game data. Database
concepts such as self-tuning, lazy updates and model-driven
updates can be adapted and applied to effectively maintain
bindings and efficiently update information of bindings. The
major contributions of this paper include:
• We propose a character binding model to efficiently

manage correlations among characters. Situation of char-
acters in the local game environment is modelled and
summarized by bindings. NPCs within a binding save
the cost of collecting battle information individually as
binding information is shared.

• We develop a binding layer providing interfaces for
high-level team AI to effectively maintain bindings and
plan strategies for NPC teams. Self-tuning techniques are
applied to maintain effective bindings. Behaviors of NPCs

in a team are highly instructed by the overall fighting
strategy of the binding.

• We propose an update scheme in which frequent updates
of characters, couplings and colludings are handled either
by filtering or lazy updates. All updates are scheduled into
different ticks so that the update cost within each tick can
be reduced and balanced.

• We have conducted extensive experiments, and the results
show that the character binding model achieves both good
effectiveness and high efficiency in managing MMOG
data.

The rest of the paper is organized as follows. Section II
introduces basic components of MMOGs. Section III presents
the character binding model. Section IV proposes self-tuning
membership management to effectively maintain NPC teams.
Section V introduces the update model of bindings. The
experimental studies are described in Section VI. Related work
and conclusions are given in Section VII and VIII respectively.

II. PRELIMINARIES

A. Characters

MMOGs are highly dynamic due to the frequent movements
of characters. In most cases, movements of characters are
triggered by those PCs controlled by players. While the
movements of NPCs are controlled by the AI player. NPCs
move to appointed destinations on the map via path finding
(note that many paths are precomputed in computer games).
Besides those moving characters, the map also records other
static objects such as terrain, trees, rivers and buildings, etc.

Characters in MMOGs can be described by some common
features such as key, type, position, health, speed, weapon,
armor, observable radius, etc. The most frequently changing
feature is the positions of characters because of the movements
of characters. The frequent positional updates of characters are
a big burden for spatial indexes such as theBx-tree [18]. Each
character in MMOGs has an observable region restricting the
map that it can see. Characters and units can be seen by a
characterp if they fall in its observable region, and there are
no obstacles between them andp. Figure 1 shows an example
where a PC observes three NPCs within its observable region.

Fig. 1. The observable region of a character

The damage caused by the attack of a characterp on a
characterq, notated asf(p, q), is determined by factors such
as the power ofp’s weapon, the armor of characterq, and the
distance betweenp andq. Each character may have a number



of weapons and armors which can be switched according to
how the enemies are armed and their positions. The observable
regions, the choice of weapons and armors increases the
complexity of a game. However, they provide more tricks and
capability for players to become more adept at the game.

B. Game Data Management

A character in an MMOG can be treated as a tuple with
some attributes, maintained by a character table. Because
of the highly dynamic nature of game data, one server is
not capable of supporting a huge number of online players.
Practically, the game map is partitioned into a number of
subregions, and each server (cluster) simply maintains one
subregion. Players in that subregion communicate with the
server via clients to synchronize the data between clients
and the server (illustrated in Figure 2). The major cost of
managing game data is incurred at the server side. Each client
dynamically subscribes to a region around the PC of that client.
Only the updates of characters and units within the subscribed
region are sent to the client. The communication cost is thus
reduced since the number of characters within the subscribed
region is very limited. The visualization is then performed at
the client side based on the dynamic game data transmitted
from the server and the static rendering data stored locally.
The operations of players on the PC are transferred back to
the server via the client.
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Fig. 2. The subscribed region of players

The evolution of a game’s story is entirely developed and
computed at the server side. The game’s data is actually a form
of spatio-temporal data, with the attribute values of characters
changing over time. The evolution of characters’ attributes is
triggered by the actions of characters that are controlled either
by human or AI players.

An MMOG server simulates the game one tick at a time.
Within each tick, the game engine conducts three tasks [19]:
querying the states of the game world, making decision on the
behaviors of NPCs, and updating the attributes of characters.
The updates within the subscribed region of a player should
be notified to the client. Although the states of characters
can be interpolated by using optimistic synchronization at
the client side, the frequency of game update is important
in MMOG simulation. On one hand, update frequency cannot
be too low because low update frequency causes the game to

lag and may generate data inconsistency between server and
client; On the other hand, high update frequency increases the
communication cost between server and client, which may
result in large latency between server and client. Based on
[20], existing game engines typically have an update rate of
3 to 10 ticks per second. As such, the small interval between
two consecutive ticks is a challenge for game AI to achieve
expressive behaviors on thousands of NPCs.

C. Game AI

Modern computer games with a large population prefer a
game architecture called the data-driven game architecture
[8], [9], [21], which separates the contents and codes of
games. Contents of characters and objects, as well as behaviors
of characters can be defined and stored in script files. The
game engine simulates the game by loading and processing
script files dynamically. Such design effectively isolates the
workload of game programmers and that of game designers.
It allows the contents of the games to be dynamically modified
during the running time of games.

In the data-driven game architecture, the game AI of char-
acters is presented as declarative rules and goals in character
scripts [8]. Specific behaviors of characters are triggered when
some conditions of rules are satisfied. The major computa-
tional cost of game AI is to check the rule conditions which
are derived from the distribution of characters and objects in
local game environment.

A simple case of game AI is the individual game AI in
which each character is autonomic. An NPC makes its decision
simply based on its own observation. However, the lack of
cooperation decreases the efficacy of individual game AI. For
example, an NPCp in Figure 3(a) may attack one of observed
PCs when it sees that more NPCs exist around it than PCs.
While, the other NPCs may choose to escape or stand by,
leaving it to fight alone. Note that PCs are represented as
squares, and NPCs are represented as triangles throughout the
figures of this paper.

p

(a) Individual AI

B

(b) Team AI

Fig. 3. Reasoning about the local game environment

Team game AI [10], [11], [12], [13] can obviously achieve
competitive and cooperative behaviors for NPCs. Hierarchical
planning [10], [11], [22] is preferred in team AI in which the
behaviors of low-level characters are guided by the commands
of high-level squads or groups. Compared to individual game
AI, centralized team AI has a larger view of the battle
situation. Therefore, it can plan the action of a group as a
whole. It simplifies decision making by allowing complex
team behaviors with less hassle [10].



D. The Challenge: AI for Dynamic Team Membership

Team AI creates and executes plans based on the states
of team members, assuming that team membership seldom
changes. However, the situation of battlefield in MMOGs is
highly dynamic. The neighborhood of characters may change
frequently due to the movements of characters. As a result,
the membership of a team should be dynamically adjusted to
keep the effectiveness of team AI strategies. Figure 3(b) shows
an example where an optimized team can be ineffective after
some movements of characters.

One simple way of team membership management is to
organize teams through clustering, in which characters within
one local cluster form a team. However, local fights cannot be
well balanced in the clustering approach because the number
of NPCs and PCs in a team cannot be freely controlled. To our
knowledge, the existing studies on team AI [10], [11], [12],
[13] ignore team membership management, which is actually
very complex because the clear scope of teams is hard to be
identified in dynamic game environment.

Complex characters of MMOGs also pose challenges for
reasoning about information of the game environment ob-
served by teams. The basic aggregate functions in SGL [9]
cannot be applied to aggregate mutual impact between com-
plex characters. All these challenges motivate us to propose
the character binding model for enhancing AI in MMOGs.

III. A C HARACTER BINDING MODEL

We propose a character binding model to address the two
challenges of team AI in MMOGs: 1) maintaining effec-
tive granularity and coverage of teams in the battlefield; 2)
collecting and analyzing team information within the local
environment.

A. Couplings and Bindings

In MMOGs, individual game AI basically plans the behavior
of an NPCp based on its own observation. The observable
relationship affects the response of characters because many
fighting strategies are triggered when characters can “see” their
opponents. We use the definitions of couplings, colludings and
bindings to formalize the observable relationship of characters
among MMOGs.

Definition 1 (Coupling):When an NPCp sees a PCq, we
say there is a coupling,p couplesq, notated asp . q.

A coupling p . q means thatp and q are close. The NPC
p should continuously monitor the status of PCq becauseq
has threatenedp. Special behaviors (e.g., fighting) ofp may
be triggered when it observes some events happening onq
through a couplingp . q. The couplingp . q is released when
one of the coupled character is dead orp cannot seeq any
more.

Since an NPCp can see multiple PCs within its observable
region, it can then be coupled with multiple PCs simultane-
ously. Among all the coupled PCs, an NPCp can choose at
most one PCq as its target, which is notated asp → q and

q = p.target. An NPCp treats its target as its direct opponent
to fight with. Therefore, compared to the other coupled PCs,
p pays more attention on its target, to which more complex
analysis is conducted. Note thatp → q also means thatp . q.
However,p → q does not requires thatp has to seeq. An NPC
p can also target on a PCq outside its observable region by
obtaining information of that PC from other team members as
a kind of cooperation. We say that the NPCp is active (notated
as p̂) if it has a target; Otherwise,p is inactive (notated ašp).

An NPC p observes not only PCs but also NPCs within
its observable region. The collaboration among NPCs is also
based on the observable relationships of NPCs. Therefore,
we give the following definition to formalize the possible
cooperative relationships among NPCs.

Definition 2 (Colluding): Two NPCsp1 andp2 are colluding,
notated asp1 ¦ p2, if p1 seesp2 or p2 seesp1, or there is a
third-party NPCp3 such thatp3 ¦ p1 andp3 ¦ p2.

A colluding p1 ¦ p2 means that the two NPCsp1 and
p2 are contactable either directly or indirectly through some
intermittent NPCs. NPCsp1 andp2 should not be too far away
from each other (within a cooperative distance) if they are
colluding. Therefore, they probably become allies and form a
team to fight against their enemies together.

Definition 3 (Binding): A bindingB = P .Q consists of a set
of NPCsP and PCsQ such that: 1)∀p ∈ P , p̂; 2) ∀p1, p2 ∈ P ,
p1 ¦ p2; 3) Q = ∪p∈P,p.qq; 4) P 6= ∅ andQ 6= ∅.

Therefore, a binding is constructed by a team of active NPCs
who are colluding with each other. All those PCs coupled with
any NPC in the binding are also included by the binding, as
the enemies of the NPCs in the binding. The binding clearly
models the scope of an NPC team. Based on this, the NPCs
in a binding can collaboratively fight against those PCs in the
same binding.

Figure 4 gives an example of couplings, colludings and
bindngs. Note that although the NPCp3 is colluding with
p1 (directly) andp2 (indirectly), it is not inB1 because it is
inactive. An inactive NPC will not fight with the coupled PCs
until it transfers to active status by choosing a surrounding
PC as its target. Those NPCs not colluding with each other
cannot form a binding. Therefore, they cannot cooperate with
each other as the NPCs within a binding.
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Fig. 4. Illustration of couplings, colludings and bindngs



B. Architecture of The Binding Model

The binding model brings some benefits for game AI of
MMOGs. First, correlations (couplings and colludings) of
neighboring characters are managed by bindings from which
battle information of local regions can be efficiently summa-
rized, analyzed and shared to individual AI of NPCs. Second,
effective NPC teams can be maintained through dynamical
binding membership management. Third, a binding manages
the updates of characters, couplings and colludings within it.
Those unimportant updates are either postponed or suppressed
by bindings, without disturbing the high-level team AI.

To seamlessly apply the binding model to high-level team
AI, we develop a binding layer to provide interfaces for high-
level team AI so that NPC teams can be effectively controlled
through binding management. The architecture of binding
management is shown in Figure 5 Unlike the traditional game
engines where the team AI directly cooperate with individual
AI, the binding layer is abstracted as an intermediate layer
between the high-level game AI and the low-level characters
in our proposed architecture. Bindings can be viewed as the
summarization or index of some local characters. They are
abstracted and maintained within the binding layer.
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Fig. 5. The binding management architecture

The team AI collects information of the local game envi-
ronment through bindings. The high-level decisions of team
AI are conducted over bindings as the overall strategies of
bindings. The behavior of NPCs within a binding is instructed
by the overall strategy of the binding. There is a feedback-
loop between the binding layer and the character layer. Each
binding collects local battle information through managing
the updates of characters, couplings and colludings while
coordinating the behaviors of NPCs within it. The binding
model can provide an effective way for enhancing the AI of
NPCs in MMOGs.

C. Information Maintained by Bindings

The basic information maintained by a binding is the
memberships of NPCs and PCs belonging to the binding.
The coupling-ships and colluding-ships of characters can be
updated frequently due to the movements of characters. This
may further result in the creation or release of bindings, the
join or leave of characters to a binding, the union or split of
bindings, etc. The superiority or inferiority of NPCs to PCs
within a binding are highly affected by the memberships of the
binding. Therefore, dynamically maintaining effective binding
memberships is the most important task of the binding model.
We will introduce self-tuning techniques for maintaining ef-
fective bindings in Section IV.

The situation of NPC teams has to be modelled and analyzed
based on the observation of the local game environment, to
describe the superiority or inferiority between NPCs and PCs.
The battle information is widely distributed throughout the
map where characters exist, particularly more prominently
in the local regions where large number of characters con-
gregated. To effectively capture battle information of local
game environment, a binding has to aggregate information
such as fighting power, overall damage, number of enemies,
the emergent NPCs, over those characters of the binding. All
these information forms the basis of decision making of the AI
player. The overall fighting strategy of a binding is just made
by team AI based on those aggregated information. A lot of
aggregating values generate challenges for efficient updates of
bindings. We will introduce updating strategies of the binding
model in Section V.

There may be hundreds to thousands of bindings handled by
a server maintaining a partition of the map in MMOGs. An
important task of the binding layer is to efficiently manage
those bindings so that the additional cost incurred by the
binding layer is not prohibitive.

D. How Does Individual AI Benefit from Bindings?

The AI player plans the overall fighting strategies of bind-
ings based on the overall game logic (centralized AI scripts, as
a means of high-level game design) and the aggregated infor-
mation of bindings. The behavior of an NPC are partially con-
trolled by the individual game AI through its own observation.
However, it is strongly instructed by binding information when
the NPC is within the binding or it observes some NPCs of
some bindings. The individual AI of many NPCs can quickly
evaluate the situation of local environment (much larger than
their own observable regions) by accessing the shared binding
information which summarizes battle information of regions
covered by NPCs of the binding.

The complexity of collaboration among individual game AI
is reduced by the guidance of high-level binding strategies.
There are a number of overall fighting strategies applied by
bindings such as, approach, attack, besiege, defense, retreat,
allure and follow. Behaviors of NPCs in a binding are strongly
guided by the overall fighting strategy of the binding, so
that the individual strategies of NPCs in a binding can be
consistent. For example, in an “attack” strategy, an NPCp



chooses a PC to whichp has the largest coupling score as
its target to fight against. In the meanwhile,p will try to
avoid those PCs to which it has the negative couplings. The
position of the target PC can be quickly obtained byp from
its coupling, without accessing spatial index. The NPCp
continuously monitors the states of its coupled PCs and the
binding information to dynamically adjust its behavior, taking
the advantages of the binding model.

IV. SELF-TUNABLE BINDING MANAGEMENT

The relative number of NPCs to PCs within a binding
is quite important because it affects the results of fighting
between NPCs and PCs significantly. The relative healths
and fighting powers of characters can also affect the results
of fighting in a binding. Effective team AI of NPCs should
guarantee that there is enough fighting strength of NPCs in
a team so that the team has enough chance to win in the
local fighting with some PCs. However, the fighting strength
of NPCs cannot be too large because too much NPC fighting
strength means that PCs have little chance to win. Players
may feel hopeless and lose interests with the game if they
often fight with NPC teams much stronger than their own.
However, maintaining a proper number of NPCs in bindings
is not easy because of the highly dynamic aspects of MMOGs.

We propose to apply the self-tuning mechanism to maintain
effective bindings in MMOGs. Self-tuning techniques have
been widely applied in database systems [23] to always
automatically keep the performance of databases in optimal
states. To achieve self-tuning on binding management, the
effectiveness of bindings must be well capture. We propose
a statistic called binding score to evaluate the relative fighting
strength of NPCs to PCs within bindings. Based on the binding
score, the membership of a binding can be dynamically
adjusted through the joining and leaving of characters, as well
as the union and split of bindings.

A. The Criterion of Binding Tuning

In computer games, the effectiveness of NPCs is typically
collected through influence map [13] and spatial aggregates
[9], in which the distribution of common attributes such as
damage, defence and health of characters are aggregated. How-
ever, characters in MMOGs are more complex. Each character
may be weaker than some characters, but stronger than some
other characters. The mutual impact between characters has to
be considered as well.

In the following, we present a case study of formalization
of battle information from mutual impact of characters, to
effectively evaluate the effectiveness of couplings and bind-
ings. Although different formalizations can be applied in
different games, they follow the same philosophy of semantics
summarization.

1) Coupling score: Given a couplingp . q, the fighting
strengths of the NPCp and the PCq are computed ass(p, q) =
f(p, q) ·p.h, s(q, p) = f(q, p) ·q.h respectively, wherep.h and
q.h are the health of two characters. We define the coupling

scoreg(p . q) to evaluate the relative fighting strength of the
two characters:

Definition 4 (Coupling score):The score of a couplingp . q
is g(p . q) = s(p, q)− s(q, p).

The coupling scoreg(p.q) measures the superiority ofp to
q if they are fighting with each other. The larger the attribute
values (health, damage and defence) ofp to those ofq, the
higher theg(p.q). A couplingp.q is a weak coupling, notated
asp ∼ q, if |g(p . q)| ≤ θ. Parameterθ is a positive threshold
used to filter weak couplings over coupling score. A weak
coupling p ∼ q means that the NPCp is comparative to the
PC q, i.e., neitherp nor q are overwhelming to the other.

In contrast, a couplingp . q is a strong coupling if|g(p .
q)| > θ. Strong couplings can be further classified into positive
couplings and negative couplings. A couplingp.q is a negative
coupling, notated asp Â q, if g(p . q) < −θ. The NPCp is
inferior to the PCq whenp Â q. A couplingp.q is a positive
coupling, notated asp ≺ q, if g(p . q) > θ. The NPCp is
superior to the PCq whenp ≺ q. The coupling scoreg(p.q) =
−∞ means thatp has no threat toq while g(p . q) = +∞
means thatq has no threat top. Strong couplings are more
important than weak couplings because they give very good
indication on the results of the fighting betweenp andq.

Coupling scores are very useful in guiding the behaviors of
NPC characters. An NPCp should evade a PCq if p Â q as
it is weaker thanq. On the other hand, the NPCp can attack
q if p ≺ q because it has enough confidence to win the fight.

2) Binding score:Given an NPCp in a bindingB = P .Q,
the fighting strength ofp is defined ass(p) = f(p, p.target) ·
p.h. Given a PCq in B, the fighting strength ofq is defined as
s(q) = f(q, p′) · q.h, wherep′ is the NPC whichq is firing at
or the nearest enemy ofq. We then define the binding score to
evaluate the relative fighting strength of NPCs and PCs within
a binding:

Definition 5 (Binding score):The score of a bindingP . Q

is g(P . Q) =
P

p∈P s(p)−Pq∈Q s(q)

|Q| .

Similar to the couplings, a bindingP .Q is a weak binding,
notated asP ∼ Q if |g(P . Q)| ≤ θ; It is a positive binding,
notated asP ≺ Q, if g(P .Q) > θ; Otherwise,g(P .Q) < −θ,
P .Q is a negative binding (P Â Q). The binding score can be
computed as an aggregation of fighting strength of characters
in the binding. As an effective measure of battle situation
between NPCs and PCs, the binding score helps the AI player
to determine the overall fighting strategies of bindings and
adjust the membership of NPCs in bindings. Therefore, we
choose the binding score as the criterion of binding tuning.

B. Creation and Release of Bindings

An inactive NPC does not belongs to any bindings even
though it is coupled with some PCs or colluded with some
NPCs. A new binding is created when an inactive NPCp
targets on an PCq, i.e., p → q. Charactersp and q, together
with those PCs coupled withp form a new binding. Figure 6



uses the example of Figure 4 to show the creation of a binding
B2, which is triggered by the NPCp3 when it decides to target
on a coupled PCq5. Note that those PCs that belong to some
other bindings (e.g.,q2 and q3) can also be included in the
new binding as long as they are coupled withp3. This means
that a PC can span over multiple bindings. However, an NPC
can only belong to one binding. In this example, the NPCp3

is colluding with those NPCs inB1. However, it does not join
the bindingB1 at the timeB2 is created. The two bindings
may be combined later when one of them needs to be enlarged
due to the lack of NPC fighting strength.
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Fig. 6. An example of binding creation

A binding is released when there are no NPCs or PCs in
the binding. It happens when all NPCs (or PCs) are killed or
all NPCs release their targets in the binding. There will be no
active NPCs when the binding is released. Behaviors of the
NPCs (if exist) in the released binding will only response to
their own observation before they join some other bindings.

C. Join and Leave of Characters in Bindings

The effectiveness of a binding is tuned according to the
binding score, which is periodically updated by the binding.
The goal of binding tuning is to tune the binding score by
adjusting the membership of NPCs in the binding. A common
way of binding membership adjustment is the join or leave of
characters. When the binding score is too low, especially for
a negative binding, the binding enlargement process will be
triggered. Those inactive NPCs who are colluding with NPCs
of the binding have a large probability to be recruited as new
members of the binding.

A binding B to be enlarged will explicitly show its request
as a kind of binding information. When some inactive NPC
p directly colludes with an NPC of the bindingB holding an
enlargement request, the individual AI ofp will process this
request immediately, determining whether to apply to join the
bindingB based on its own status. The bindingB maintains a
list of all applicants who are willing to join it. It selects some
(or all) applicants when it comes to the processing tick of the
binding, using the binding enlargement algorithm shown in
Algorithm 1.

The binding enlargement is processed as follows. All the
NPCs in the applicant list are ranked based on their potential
benefits to the bindingB. Those NPCs with higher benefits are
first recruited as new members of the bindingB. The enlarge-
ment process terminates wheng(B) reachesα or the number

Algorithm 1 Binding enlargement
Input: B, a binding holding an enlargement request.
Input: applist, the list of NPCs applying to joinB within

the past processing period ofB.
Input: α, the binding score ofB to be achieved.
Input: γ, the maximal number of NPCs contianed byB.

1. for all p ∈ applist do
2. benefit(p) = maxp.q s(p, q)−∑

p.q&q/∈B.Q s(q, p)
3. if benefit(p) > 0 then
4. heap.insert(benefit(p), p)
5. while g(B) < α and|B.P | < γ andheap.size() > 0 do
6. p = heap.extractMax()
7. insertp and those PCs (p . q & q /∈ B.Q) into B
8. q′ = findTarget(p,B.Q) //find an optimal target.
9. setp → q′

10. if g(B) ≥ α then
11. remove the enlargement request fromB
12. break

of NPCs in B is large enough. Otherwise, the enlargement
request still remains by the bindingB. An example of binding
enlargement is shown in Figure 7. The bindingB is enlarged
to the bindingB′ by recruitingp3 andp4 in. Note thatp5 is
not recruited because it does not benefit enough. If the binding
score ofB′ is still less thanα, the other NPCs (e.g.,p6 and
p7) aroundB′ still have the chance to joinB′ in the next
processing round of the enlargement. In this way, a binding is
enlarged ring by ring.
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Fig. 7. An example of binding enlargement

On the other hand, when the binding score of a bindingB is
too large, there will be too many NPCs inB. They are attracted
by a small number of PCs in the binding. This may not be
good because too many redundant NPCs in one binding means
some neighboring bindings are running short of NPCs with a
high probability. To avoid this, the NPC-overloaded binding
can initiate a binding reduction process to reduce the number
of NPCs in the binding by releasing the targets of some NPCs.
The NPCs to be removed from the binding are chosen mainly
based on their positions and fighting strength. Those weak
NPCs are usually first chosen to leave from the binding. The
process of binding reduction is shown in Algorithm 2.

D. Inter-Binding Cooperation

The distribution of NPCs in the map of MMOGs are often
very skewed. It is common that NPCs in some bindings are



Algorithm 2 Binding reduction
Input: B, a binding to be reduced.
Input: α, the binding score ofB to be achieved.
Input: γ, the minimal number of NPCs contianed byB.

1. while g(B) > α and |B.P | > γ do
2. p = chooseNPCToRemove(B.P )
3. B.remove(p)
4. for all q, such thatp . q do
5. if 6 ∃p′ ∈ B.P , such thatp′ . q then
6. B.remove(q)

redundant, while those neighboring bindings are running short
of NPCs. A negative binding can pursue help from NPCs in
the neighboring positive bindings. Cooperation among NPCs
across multiple bindings can be achieved through the union
and split of bindings. The centralized game AI controls the
collaboration of bindings as it has an overview of all bindings.

1) Binding Union: A binding can request a union operation
when it cannot get enough NPC fighting strength through
binding enlargement. When an active NPC of one binding is
colluding with an active NPC of another binding, the binding
union process may be triggered if there is one binding holding
a union request. The distribution of NPC fighting power can
be tuned by combining a positive binding with the binding
requests union operation. As a result of the binding union, all
binding information, as well as the binding score need to be
updated. A new fighting strategy will be generated to guide
all the NPCs in the new binding.

2) Binding Split: With the evolution of game’s story, some
bindings may grow to be too large and the colludings between
some NPCs within the bindings may be broken. The covering
region of a binding can be enlarged significantly due to the
growth of binding and the diffused movements of characters.
As a result, characters in the binding may be separated into
several clusters. The NPCs in different clusters may be not
colluded with each other. The bindings will not be good
enough to summarize information of local game environment.

When the number of NPCs are large enough, the binding
validation process needs to be triggered to periodically check
whether all NPCs in the binding are colluding with each other,
and whether each PC is coupled with an NPC in the binding.
Effective bindings can be tuned by splitting an invalid binding
into multiple valid bindings. The binding validation can be
done by traversing the spanning tree over the colluding graph
of NPCs within the binding. We propose the Algorithm 3 for
checking the binding validity and splitting invalid bindings
simply using the colludings and couplings of NPCs. All
colluded NPCs (expanded through the same spanning tree),
together with those PCs coupled with them, form a binding.
There will be multiple split bindings if multiple spanning trees
exist in the colluding graph of the original bindingB.

Note that a binding can also be forced to split by binding
reduction, i.e., forcing some NPCs to release their target PCs
in the binding. These NPCs together with some coupled PCs
are then removed from the original binding. As a result, the

Algorithm 3 Binding validation and split
Input: B, a binding to be validated, whereB.P =

{p1, . . . pm}, B.Q = {q1, . . . , qn}
Output: {Bk}, a number of bindings generated fromB.

1. for i = 1 : m do
2. pi.cluster = 0
3. k = 0 //identify the split binding
4. while B.P 6= ∅ do
5. k = ++
6. toExpandNPCs.clear()
7. pt = pop(B.P )
8. pt.cluster = k
9. toExpandNPCs.push(pt)

10. while toExpandNPCs.hasElements() do
11. ps = toExpandNPCs.pop()
12. for all pr, such thatps ¦ pr do
13. if pr.cluster < ps.cluster then
14. toExpandNPCs.push(pr)
15. B.P.remove(pr)
16. pr.cluster = k
17. Bk.P.push(ps)
18. for all qj , such thatps . qj do
19. Bk.Q.push(qj)

colluding graph of the original binding may be split into a
number of sub-graphs, from which new bindings are created.
Choosing appropriate characters to leave from bindings is quite
complex and application dependent. It is beyond the scope of
this paper. However, it is also a kind of tuning operations of
bindings.

V. B INDING UPDATES

The effective decision of team AI is based on collecting and
reasoning about information of game environment in the game
space. Characters are often moving and fighting in the game
space, which generate a huge number of updates of characters,
couplings and colludings when the population of the game is
large. Collecting binding information in the whole battle field
will be very expensive if every update needs to be processed
immediately. However, the overall fighting strategy cannot
be frequently updated in practice. Not all the updates are
important for decision making of the game AI. Many of them
can be delayed or ignored, without affecting the accuracy of
binding information too much. We have three update schemas
to be applied by various kinds of information updates.

A. Eager Updates

Most of attributes of characters are maintained in a character
table with each character as a tuple. The updates of these
attributes are directly conducted on the plain table, which do
not consume too much computational cost. In the meanwhile,
the high-level bindings processing those binding aggregate
information incrementally, as a byproduct of attribute updates.
The overall fighting strategy of a binding can be adjusted



by team AI when some events on the aggregated values are
triggered.

Unlike the character attributes, couplings and colludings
of NPCs have to be maintained by dynamic data structure
because the numbers of coupled PCs and colluded NPCs of
an NPC are not fixed. An NPC continuously maintains and
monitors information of all its couplings because the couplings
provide important local information. The updates of PCs are
directly propagated to the coupled NPC without delay so
that individual AI of NPCs can immediately response to the
behaviors of PCs.

B. Lazy Positional Updates

The frequent positional updates of moving characters result
in the expensive update cost of the spatial index and the
observable relationship of characters. The spatial index of
moving characters has to be maintained because the observable
and neighboring relationships of characters have to be done
through range queries over the index. The update cost of
thousands of moving characters is quite expensive, which may
take the major computational cost of the game systems if it is
done naı̈vely.

To avoid the frequent positional updates of moving char-
acters, we apply the lazy update strategy. The position of a
character is approximated by a covering bound surrounding
its last updating position. The spatial index is built over the
covering bounds of all characters (Figure 8 gives an example).
To reduce the updates, the covering bound of a character is
updated only when the character moves out of its covering
bound. However, such a lazy update strategy generates errors
in measuring the observable relationship of characters because
the positions of moving characters in the index is uncertain
within the bounds. This is handled by the traditional filter-
and-refine process in spatial databases. On monitoring the
observable relationships of characters, another spatial index is
built recording the view bounds of NPCs. In the filtering phase,
each NPC maintains a monitoring list of all characters whose
covering bounds overlaps with its view bounding box. In the
refine phase, the observable relationships of all the characters
in the monitoring list of an NPC are checked based on their
actual positions.

p

q

p.or

covering bound

view bound

Fig. 8. The covering bounds and view bounds of moving characters

The monitoring list of a characterp is incremented only
when the lazy update of some characters (includingp) results
in the occurrence of overlap between the covering bounds of
the other characters and the view bound ofp. Note that the

lazy update scheme is applicable to any spatial indices such
asBx-tree [18].

C. Sampled Updates

Bindings handle the updates of low-level characters, cou-
plings and colludings in two ways. One is eager updates (push-
based updates) in which low-level characters, couplings and
colludings actively push important updates to the high-level
binding without delay. The other is sampled updates (pull-
based updates), in which bindings request updates from low-
level characters, couplings and colludings periodically. Those
unimportant low-level updates can be delayed or ignored.

Normally, the overall fighting strategy cannot be updated
frequently as the cost of strategy jump (e.g., NPCs come and
go) is very expensive. Consequently, information maintained
by bindings usually does not need to be updated frequently.
Similar to the model driven [24] approach applied in sensor
network monitoring, a binding requests updates from the low-
level when the high-level information is not accurate enough.
A binding can adjust the update cost by controlling the
number and the granularity (frequency) of binding aggregate
information based on its status. Fine granularity aggregates are
required only when a binding is in an emergent status.

In our update model, each sampled update has an update
period which can be adjusted based on the changing rate of
the monitored value. All updates are randomly scheduled into
different ticks so that the overall update cost of ticks can be
evenly distributed. A sampled update is processed only within
its updating ticks.

VI. EXPERIMENTS

There are quite a few open source MMORPG engines such
as WorldForge [25]. However, they emphasize many aspects
of MMOG engine such as client-server architecture, network
protocols, cache of media, graphic simulation, etc. While our
problem is restricted to enhancing game AI in the server side.
To avoid the impacts of the other factors, we simply test
our idea by developing a binding based preliminary MMOG
engine of the server side. We test all the experiments on a
PC of Pentium4 3.0G CPU with 1G RAM. Since there is
no public dataset of user operations in MMOGs, we simulate
some game scenarios by randomly generating characters and
distributing characters following some patterns in the game
space. There are hundreds of different kinds of weapons and
armors. Each character holds 5 weapons and 5 armors chosen
randomly. The average health and fighting strength of NPCs
and PCs are relatively equal. The total number of NPCs and
that of PCs are the same at the beginning.

The density of characters affects the couplings among char-
acters, and therefore affects the efficiency of game simulation.
In our experiments, we fix the average density of characters
in each group of tests when testing the scalability. In the
experiments, the average view radius of characters is set as
80m. While the average speed of characters is 10m/s. The
simulation frequency is set asn = 5. Therefore, the time
interval between two consecutive ticks is 0.2 seconds.



A. Effectiveness of the Binding Model

To show the effectiveness of the proposed game engine, we
build a graphic interface so that the status of characters in
any local region can be interactively monitored. A snapshot
of a local map of our game engine is shown in Figure 9,
where a binding is created from a number of PCs and NPCs.
The membership and health of characters in bindings can be
continuously monitored.

a binding

Fig. 9. The interface of a binding based MMOG

It is difficult to simulate thousands of PCs as those PCs
controlled by human players will be more intelligent than the
simulated PCs. However, the group behaviors of PCs can be
simulated as people like to collaborate with some other players
in real MMOGs. In our implementation, PCs are simulated by
grouping them into clusters, with each cluster holding dozens
of PCs at the beginning. PCs within one cluster follows the
similar moving patterns so that they always keep close to each
other. A PC chooses its target based on the coupling scores of
the NPCs within its observable region. All the PCs within one
cluster will stop to fight against NPCs when enough number
of NPCs are detected.

We also randomly generate NPCs in clusters (which are
relatively smaller than clusters of PCs in average), with 1 to
20 NPCs in each clusters. Those NPCs keep static if no PCs
are observed by them. We implement the AI strategy of NPCs
using two models: one is the proposed binding model; the
other is a basic model as a straw man of the binding model.
In the basic model, like those PCs, an NPC simply monitor
its coupled PCs and made decision based on individual AI.
It simply fights with the weakest opponent (in a non negative
coupling) within its observable region, without collecting any
other local battle information beyond its observable region.
Obviously, there is no collaboration among NPCs in the basic
model.

We compare the effectiveness and efficiency of the two
models in Figure 10. In this experiment, the total number of
NPCs and PCs are both 10,000 at the beginning. The efficacy
of models is measured based on the relative number of killed
PCs and NPCs (r = killed PCs

killed NPCs ) with the evolution of game.
The basic model achieves aroundr = 0.47 (Figure 10(b)),

which means that one PC is relatively equal to two NPCs in
fighting strength. This is because PCs have the advantage of
larger population in local regions. While, the binding model
achieves aroundr = 3.20, which means that one NPC is
relatively equal to more than three PCs. Therefore, the results
show that NPCs in the binding model are far more competitive
than those in the basic model. This is achieved by local battle
information analysis and NPC cooperation under the binding
model.

There are two important parameters in the binding model,
θ andα, which affect the efficacy of AI players significantly.
We show the impaction of these two parameters in Figure 11.
The parameterθ is important in identifying weak couplings
and weak bindings so that NPCs can avoid from the attack of
strong PCs. However,θ cannot be too large because largeθ
causes too many NPCs to be coward, and there will be not
enough fighting NPCs involving in the war. On the other hand,
θ cannot be too small as NPCs will not be aware of strong
enemies whenθ is small. We chooseθ as -800 which achieves
good efficacy in Figure 11.

Parameterα (used in Algorithm 1 and 2) determines the
overall fighting strengths of NPCs triggered to fight with
detected PCs. The larger theα, the higher fighting strength of
NPCs within a binding, and the better efficacy can be achieved.
In most of our experiments, we chooseα = 200, in which we
got r = 3.20 in average.
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Fig. 11. The impaction of some parameters

B. Efficiency and Scalability

We compare the CPU cost of every ticks under two models
in Figure 10(c) and 10(d) respectively. Each point in these two
figures is a statistics (average, min, max) of CPU time cost
over 10 consecutive ticks. Note that the proposed updating
strategies have been applied in these two models. The results
show that the CPU time cost of all ticks is bounded by200ms
under both of the two models. The CPU cost generally de-
creases when the time advances. This is because the population
drops with the advance of fighting. The CPU cost increases at
the beginning of the game simulation because more number
of PCs are detected by NPCs, and start to fight with NPCs.

The time cost of the binding model is only slightly higher
than the basic model. We measure the average CPU time cost
from the start of the game to the tick when 10 percentages of
characters have been killed. The average computational cost of
the binding model is only 12.7% more than the basic model.
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Fig. 10. Comparison of the binding model and the basic model

This means that the binding model does not incur too much
additional overload over the basic model.

We test the scalability of the binding model by varying the
population in the game. The statistics of the first 100 ticks
of each test are shown in Figure 12. We can observe that, the
binding model can be scaled to around 20,000 characters in our
experiment if time cost within one tick is strictly constricted
as200ms (as the game is simulated 5 ticks per seconds).
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Fig. 12. The scalability of the binding model

C. Updates

We study the performance of lazy update scheme on index-
ing moving characters and checking observable relationship
of characters. In this test, we set the map size based on
the population such that each character observes 2 enemies
in average within its observable region. All characters are
randomly distributed in the map. They are moving around,
but not fight with each other.

We first compare the computational cost of two update
schemes: the straightforward update and the lazy update under
different populations. In the straightforward update scheme,
a character updates its position at each tick if it moves, the
observable relationship is updated accordingly. In the lazy
update scheme, a covering bound with a radius of 40m is
applied in all characters. The results are shown in Figure 13.
The lazy update scheme achieves 7-8 times faster than the
straightforward update scheme. From this figure, we can see
that the computational cost is linear to the population. There-
fore, lazy update scheme achieves 7-8 times of scalability than
the the straightforward update scheme. It supports a population
of 20,000 simultaneously moving.

The efficiency of lazy update scheme can be further im-
proved if some errors of distances between characters are

tolerated. We achieve this by reducing the frequency of mon-
itoring list refinement. Instead of refining the monitoring list
every tick, we can do it periodically. As shown in Figure 14,
around1

3 computational cost is reduced when the refinement is
reduced to 5 ticks one time. While the maximal distance error
between two characters is bounded by the sum of the speed
of two characters because the frequency of game simulation
is also 5 ticks one second.

We show the impact of the updating frequency of binding
aggregates on the efficiency and effectiveness of game simu-
lation in Figure 15. The average updating rates are adjusted
from 1 to 10 ticks. The average time cost of the first 100 ticks
is used as a measure of efficiency, and the relative killing
rater is also used as a measure of efficacy. According to the
results, the time cost drops significantly when the sampling
rate is enlarged from 1 to a larger value (e.g., 6), while the
relative killing rater drops slightly. Therefore, the updating
model can help to improve the efficiency of game simulation,
without losing the efficacy too much.

VII. R ELATED WORK

Spatial reasoning of game data is important for decision
making because game AI needs to sense the dynamic aspects
of a game state to achieve appropriate behaviors for NPCs.
Tozour [26] introduced a spatial reasoning approach through
a layered and grid-based spatial database to manage game
data. However, one disadvantage of the grid-based model in
spatial reasoning is the huge update cost due to the updates
of influential regions within multiple layers.

Game data can be modeled as a complex type spatio-
temporal data. In the database community, existing studies on
continuous monitoring or queries over spatio-temporal data
focus on nearest neighbor queries [14], [17], range queries
[14], [15], and reverse nearest neighbor queries [16]. However,
these queries are simple in semantics, and therefore cannot
be applied to spatial reasoning of game data. There are
some studies related to spatial aggregates in a spatio-temporal
database. They focus on density queries [27], [28], which have
been designed to identify dense regions in spatio-temporal
data. However, density queries do not conduct aggregates over
attributes of moving objects. There are usually no moving
query regions in density queries.

White et al. [9] proposed scaling the population in RTS
game by using a data-driven game engine. Formal query
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languages on spatial aggregates, and some corresponding
query optimization techniques are proposed. The proposed
techniques cannot be applied to MMOGs as the characters are
more complex (with various weapons and armors) in MMOGs,
where simple spatial aggregate is not sufficient for spatial
reasoning. The spatial reasoning of the large population of
characters in MMOGs is indeed a big challenge for game AI.

Reducing the update cost of database system has been
well studied in sensor networks [24], [29], [30]. The ideas
of model-driven data acquisition [24] and data-driven data
acquisition [30], where only those important updates of sensors
are delivered to the base station, may be adapted to updates
of characters and couplings in the game data update model.

VIII. C ONCLUSION

In this paper, we propose the character binding model for
team AI to effectively maintain NPC teams in dynamical
environment and efficiently collect information from local
game environment.

We adopt self-tuning techniques to manage memberships
of bindings so that NPC teams can always be effective.
Information of the local game environment is extracted and
summarized by bindings. The team AI plan the overall fighting
strategy of bindings. Individual NPCs in a binding adapt their
own behaviors based on overall fighting strategy. Information
and updates of coupled PCs of an NPC can be quickly obtained
without accessing a spatial index.

The proposed lazy positional update and sampled update
strategies manage game data efficiently. With the support of
these techniques, the binding model achieves good scalability.
Our experiments show that a commodity PC could efficiently
support a population of 20,000 characters (NPCs+PCs) in
our binding-based MMOG engine. In conclusion, using the
character binding model, we achieve both the effectiveness
and efficiency in managing NPC teams.
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