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Multi-dimensional data points can be mapped to one-dimensional space to exploit single dimen-
sional indexing structures such as the B+-tree. In this paper we present a Generalized structure
for data Mapping and query Processing (GiMP), which supports extensible mapping methods
and query processing. GiMP can be easily customized to behave like many competent indexing
mechanisms for multi-dimensional indexing, such as the UB-Tree, the Pyramid technique, the
iMinMax, and the iDistance. Besides being an extendible indexing structure, GiMP also serves
as a framework to study the characteristics of the mapping and hence the efficiency of the in-
dexing scheme. Specifically, we introduce a metric called mapping redundancy to characterize
the efficiency of a mapping method in terms of disk page accesses and analyze its behavior for
point, range and kNN queries. We also address the fundamental problem of whether an efficient
mapping exists and how to define such a mapping for a given data set.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing methods
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1. INTRODUCTION

As more and more applications manipulate multi-dimensional data, it becomes
critical for DBMSs to provide appropriate index structures for efficient querying
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of these data sets. The R-tree [Guttman 1984] is a popular structure which has
been adopted in many commercial DBMSs. R-tree-like structures, such as the R*-
tree [Beckmann et al. 1990], R+-tree [Sellis et al. 1987], X-tree [Berchtold et al.
1996], SS-tree [White and Jain 1996], SR-tree [Katayama and Satoh 1997], use
bounding boxes, bounding spheres or a combination of the two as keys. They can
handle both point and region data. Range queries are processed by performing a
recursive traversal of all child-pages whose regions intersect the query. Algorithms
to process nearest neighbor queries have also been proposed [Roussopoulos et al.
1995; Hjaltason and Samet 1995]. The major problem with R-tree-like structures is
the overlap among bounding boxes, which can lead to rapid deterioration of their
performance as the number of dimensions increases.

An alternative approach to indexing multi-dimensional data has gained accep-
tance in recent years. It involves three steps:

(1) Data points are mapped to one-dimensional values and a one-dimensional in-
dexing structure is used to index the transformed values.

(2) A query in the original data space is mapped to a region determined by the
mapping method, which is the union of one-dimensional ranges. Data points
are retrieved based on these one-dimensional range queries.

(3) The points that are returned but do not belong to the answer set (that is, false
positives) are filtered out.
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Fig. 1. kNN search in the iDistance
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Take iDistance [Yu et al. 2001; Jagadish et al. 2005] as an example. Figure 1
shows how iDistance answers k nearest neighbor (kNN) queries. Data points are
linearized in the leaf nodes of a B+-tree by the mapped one-dimensional values.
The area inside the circle centered at q with radius r1 is the query region. It is
mapped to the shaded region in the circles centered at O1 and O2 (which are data
partitions). The mapped region corresponds to several one-dimensional ranges in
the B+-tree (i.e., the shaded region in the leaf nodes of the B+-tree). Note that
the mapped region is usually larger than the query region as there is no optimal
one-dimensional ordering which preserves the proximity for a set of points in the
original space or because different points are mapped to the same key. Besides
iDistance, recent structures which adopt the above mapping strategy include the
UB-Tree [Bayer 1997], the Pyramid technique [Berchtold et al. 1998], and iMinMax
[Ooi et al. 2000]. Each of these performs well in some particular workloads and
data distributions.

In this paper, we propose a Generalized structure for multi-dimensional data
Mapping and query Processing (GiMP). GiMP defines abstract methods which
encapsulate the basic database operations (i.e., insert and delete) and supports
point, range and kNN queries. In general, the range or kNN search region is first
mapped to multiple one-dimensional range queries, which can then be efficiently
processed by the underlying one-dimensional indexing structure (we adopt B+-
tree in our paper). By defining how a range or kNN search region is mapped to
one-dimensional range queries for a certain mapping method, GiMP can be easily
customized to behave like a variety of indexing schemes. We have employed GiMP
in practice to implement the B+-tree, the UB-Tree, the Pyramid technique, the
iMinMax and the iDistance. Other mapping-based indexing schemes can also be
supported by defining some basic functions. A drawback of many complex multi-
dimensional indexing schemes is the amount of effort needed to integrate them into
an existing DBMS. This is a minor issue for GiMP since its underlying indexing
structure is the B+-tree, which is supported by most commercial DBMSs.

In addition to its practical impact, GiMP also facilitates the theoretical study on
the mapping-based indexing schemes by unifying them under the same framework.
As we will see later, under GiMP, the above mentioned indexing schemes only
differ in how they map the data and queries, while all the remaining parts are
the same. Different mapping methods can result in quite different search areas
and different search performance. Therefore, we introduce the concept of mapping
redundancy to characterize the efficiency of a mapping method. We analyze the
mapping redundancy of the above mentioned mapping-based indexing schemes for
point, range and kNN queries and use experimental results to justify the expectation
that mapping redundancy is the governing factor on the efficiency of the mapping-
based indexing schemes.

Based on the analysis on mapping redundancy and the experiments, we found
that an important aspect affecting the efficiency of a mapping method is whether
the mapping is one-to-one or many-to-one. Our study reveals that, in general, one-
to-one mapping functions achieve much better performance and this explains the
performance difference among existing indexing methods. However, the existence
of such a mapping depends on the domains of the dimensions. We call this the
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mappability problem. We discuss the circumstances under which a one-to-one map-
ping exists and how such a mapping can be defined. In order to demonstrate the
applicability of our theory, we developed an indexing scheme called the Z*-curve
and implemented it on GiMP. Experiments show that for the targeting workloads,
the Z*-curve is more efficient than the existing methods.

The rest of the paper is organized as follows: Section 2 discusses related work.
In Section 3, we present the structure, operations and query algorithms of GiMP.
Section 4 shows how GiMP can accommodate several recently proposed techniques
while Section 5 focuses on the efficiency issue, which is mainly determined by the
mapping redundancy for GiMP based indexing schemes. Results of a experimental
study are presented in Section 6. We address the mappability problem in Section
7 and Section 8 concludes the paper.

2. RELATED WORK

There is a rich bibliography on multi-dimensional indexing. We identify two broad
categories: the first one is the R-tree-based techniques, including the R-tree [Guttman
1984], R*-tree [Beckmann et al. 1990], R+-tree [Sellis et al. 1987], X-tree [Berchtold
et al. 1996], SS-tree [White and Jain 1996] and SR-tree [Katayama and Satoh 1997].
Such structures are outside the scope of this paper.

The second category includes indexing schemes that are based on the map-
ping strategy: the original multi-dimensional data points are transformed to one-
dimensional values and are stored in a one-dimensional structure. The B+-tree is a
standard one-dimensional indexing method supported in most commercial database
systems, and hence it is natural to exploit the index. To use the B+-tree, we must be
able to linearize the representation of multi-dimensional data points. One way of lin-
earization is to use a space-filling curve, which enumerates every point in a discrete,
multi-dimensional space. Attractive space-filling curves such as the Peano curve (or
Z-curve) [Orenstein and Merrett 1984] and the Hilbert curve [Faloustsos and Rose-
man 1989] preserve proximity, meaning that points close in the multi-dimensional
space tend to be close in the one-dimensional space obtained by the curve [Moon
et al. 2001]. The UB-Tree [Bayer 1997] maps spatial data into Z-values [Orenstein
and Merrett 1984] and supports efficient search strategies. However, it is known
that the space-filling curves are not effective in high-dimensional data spaces. By
using the B+-tree as the base index, the Pyramid technique [Berchtold et al. 1998]
attempts to break the “dimensionality curse” by transforming the high-dimensional
data to one-dimensional values based on the distance between data points and the
center of the data space. iMinMax [Ooi et al. 2000], on the other hand, maps
points by their maximum or minimum coordinate, while iDistance [Yu et al. 2001;
Jagadish et al. 2005] uses the distance between a point and its nearest reference
point as a mapping function, and indexes the data points in a metric space. We
will provide more details about these techniques in Section 4, since they can be
considered as instances of GiMP.

Some dimensionality reduction and mapping methods have also been proposed as
a means to reduce the effect of high dimensionality and to reuse efficient indexing
structures that have been designed for low-dimensional databases. For example,
FastMap [Faloutsos and Lin 1995] projects the multi-dimensional points to lower
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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dimensional ones while preserving some of the distance information. It is a par-
ticular mapping algorithm, instead of a generalized structure. FastMap is mainly
used for visualization of multi-dimensional data sets; query processing based on the
mapping was never proposed. Other transformations such as the Discrete Fourier
Transformation (DFT) and wavelets, transform multi-dimensional data to different
domains (e.g., from time domain to frequency domain or inversely). They can be
used to extract features from sequences by viewing them as time domain signals
[Faloutsos et al. 1994; Rafiei and Mendelzon 1997]. The features can then be in-
dexed by an existing structure. Nonetheless the above transformations themselves
are not part of the indexing method. GiMP generalizes indexing schemes where
the mappings are decisive parts of the indexing schemes and hence GiMP does not
accommodate transforms such as FastMap or DFT.

Closely related to our work is GiST [Hellerstein et al. 1995]. GiST generalizes the
entries of a search tree to predicate and pointer pairs so that new data types and
queries can be supported. In [Hellerstein et al. 1995], GiST has been implemented
as B+-tree, R-tree and RD-tree, an index for data with set-valued attributes. GiST
simplifies the development of tree-based indexing schemes. GiMP is similar to
GiST in the sense that it is also a generalized structure and can be customized
easily for particular applications and simplifies the implementation of the mapping-
based indexing schemes. However, GiST is a generalized search tree structure while
GiMP is a mapping and query processing framework. In GiST, only one general
search type is supported, that is, identify the entries that satisfy a query predicate.
This general search can be customized to behave as point and range search on
multi-dimensional data. In GiMP on the other hand, once the basic functions that
determine the keys are defined, the general point search can satisfy any mapping
method. A function that specifies how a range query is mapped to one-dimensional
ranges is customized to make the general range search method work for a particular
indexing scheme. In addition, GiMP also supports a general kNN search method.
Again, a function that specifies how the query region is mapped to one-dimensional
ranges needs to be defined. A different but conceptually similar approach was taken
in the work of XXL (eXtensible and fleXible Library) [Bercken et al. 2001]. XXL
was designed as a toolkit for rapid prototyping of query processing algorithms,
offering both low and high level components for development and integration of
spatial indexes. In particular, it provides a platform independent Java library
and a collection of spatial index structures, query operators and algorithms for
facilitating the performance evaluation of new query processing developments.

On efficiency analysis, the approach of indexability theory [Hellerstein et al. 1997]
studies two characteristics (i.e., storage redundancy and access overhead) of an in-
dexing scheme and examines the upper/lower bounds and trade-offs between them.
Their study considers the access overhead of the data blocks while ignoring the
aspect of the algorithms for determining the blocks in the index that cover a given
query (that is, the search cost). In our study of the efficiency of GiMP, we focus
on the average performance instead of the upper/lower bounds. Specifically, we
introduce the concept of mapping redundancy, which is the decisive parameter for
the efficiency of GiMP based indexing schemes according to our analysis and vali-
dation by our experiments. Our efficiency analysis captures the overall cost, which
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includes both the search cost and the overhead due to the arrangement of the data.

There have also been quite a few analyses on the page access cost based on R-
tree structures for both range [Faloutsos and Kamel 1994; Jin et al. 2000] and kNN
queries [Berchtold et al. 1997; Bohm 2000]. Our work is different since we target
mapping-based indexing schemes.

3. THE GIMP

In this section, we shall present GiMP, a generalized structure for multi-dimensional
data mapping and query processing. Essentially, GiMP defines abstract methods
for (i) transforming multi-dimensional data into single-dimensional points to exploit
one-dimensional index structures; (ii) encapsulating the basic database operations
(i.e., insert and delete) and (iii) supporting point, range and k nearest neighbor
(kNN) queries. In this way, GiMP can be used to customize existing mapping-
based indexing structures or facilitate fast design of novel indexes.

Figure 2 shows the structure of GiMP. It comprises three key parts: (i) a B+-
tree index is used as the underlying single dimensional indexing structure as it
is supported in all commercial database systems, (ii) a data mapping component,
and (iii) a query processing component implementing basic operations and query
processing methods. We shall present the latter two components in this section.
Table I summarizes the notation we use throughout the paper.

Basic operations:
Insert
Delete

B+-tree

Queries:
Point query
Range query

Data Mapping
GiMP

Nearest Neighbor

Fig. 2. Structure of GiMP

3.1 Data Mapping

By analyzing existing techniques, we observe that the transformed one-dimensional
value is a “distance” function with respect to some anchor or reference point. For
space-filling curves (e.g., UB-Tree), it is the distance between the data point P and
the origin along the curve. For the Pyramid technique, it is the distance between
P and the center point in the i-th dimension, where i is the pyramid number. The
iMinMax indexes the distance between the maximum or minimum coordinate of P
and the edge of the data space, while the iDistance calculates the distance between
data points and some specially chosen reference points. These methods also share
the common feature of having reference points for the data point to calculate the
distance (notice that different data points may have different reference points such
as those in the iMinMax and the iDistance). The difference among them is how the
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Table I. Notation

Notation Meaning

A The number of page accesses
amr Average mapping redundancy
Ceff Average number of data points in a page
d Dimensionality of the data set
dist(P1, P2) A function that returns the distance between points P1 and P2 in the vector space
intvl A one-dimensional interval
intvl.low The lower end of the interval intvl
intvl.high The upper end of the interval intvl
k Number of answers requested in kNN queries
M A mapping
mr Mapping redundancy
n The number of points in the data set
P A point
pi The coordinate of P in the i-th dimension
pyr A pyramid-like object in the Pyramid technique
Q A query
qi The coordinate of Q (when Q is a point) in the i-th dimension
Rk The k-th nearest neighbor distance
r Radius
rg A range
rg.rl Lower corner of the range rg
rg.rh Upper corner of the range rg
S A set
s Side length of a hypercube shaped range query
v Volume

distance is calculated. Therefore, in order to calculate the key for GiMP, we define
the following two functions:

Reference(P ): Given a data point P , it returns the reference point Pr for P .

Distance(P1,P2): Given two points in the space, it returns the “distance” be-
tween P1 and P2. This can be the L1 distance, the Euclidean distance, the distance
along some curve or any user-defined function.

Note that more than one data point may be mapped to the same value. A com-
monly used technique to scatter the values, is to add an offset to the transformed
value, which is determined according to the position of the data point or some other
attributes. The following function calculates this offset:

Base(P ): Given a point P , it returns a value to be added to the transformed
value.

After defining the above three functions, we can now calculate the key that will
be indexed by the B+-tree:

Key(P ) = Base(P ) + Distance( P , Reference(P ) )
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



8 ·

In Section 4, we will see how these functions are defined for several indexing
schemes.

3.2 Query Processing

GiMP supports the basic database operations (i.e., insert, delete) in addition to
point, range and kNN queries; these are the most commonly used queries in multi-
dimensional databases.

3.2.1 Basic Operations.
Insert: When a data point P is to be inserted, we calculate its key, Key(P )

(using the function Key() provided in Section 3.1), and invoke a standard B+-tree
insertion function to insert P with the key Key(P ).

Delete: Deletion is similar to insertion. A standard B+-tree deletion function is
invoked to delete the data point P with the key Key(P ).

3.2.2 Point Queries.
A point query on P retrieves all data points which are identical to P . This is

done as follows: we call a standard B+-tree search function to obtain all the data
values with the key value Key(P ). Then, we eliminate the false positives and return
the points identical to P .

3.2.3 Range Queries. 1

A range query finds all the data points in the range rg, which is a d-dimensional
interval

[rl0, rh0], [rl1, rh1], ..., [rld−1, rhd−1]

Clearly, for different data mappings, a range query will be mapped to the one-
dimensional space differently. The algorithm for processing range queries is shown
below. The function MapRange(rg) needs to be defined according to the data
mapping method. Given the query range rg, it returns a set of one-dimensional
intervals Si. Next, a standard B+-tree range search function is called to answer all
the one-dimensional range queries. It returns a set of candidate points Sp that may
be in the range rg. Lastly, the function CheckRange(Sp,rg) eliminates the false
positives and returns those points in Sp that are within rg.

PointSet RangeSearch(Range rg)
IntervalSet Si
PointSet Sp
Si=MapRange(rg)
Sp=∅
for each interval intvl in Si

Sp=Sp ∪ BPlusTreeRangeSearch(intvl)

1In the literature, the term “range query” has been used to refer to window queries (hyperrectangle
shaped) and similarity range queries (hypersphere shaped). Throughout this paper, the term
“range query” is used to denote window queries.
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· 9

return CheckRange(Sp,rg)
end RangeSearch

3.2.4 kNN Queries.

A kNN query looks for k points that are nearest to the given query point Q. [Seidl
and Kriegel 1998] proposed a multi-step kNN search algorithm which achieves the
optimal search radius. Their algorithm first calls a incremental ranking algorithm
which is based on the R-tree. However, in high-dimensional space, the R-tree itself
has problems due to the large page regions and the overlap among pages. Even
though the search radius is optimal, most of the pages intersect the query sphere and
are accessed. Our algorithm kNNSearch(Q) as shown below works on the mapping-
based indexing schemes. It starts searching from a query sphere with radius r0,
which can be optimized by estimating the final search radius. Then the radius of the
query sphere increases iteratively by adding a small value dr. In each iteration, the
query region is in fact an annulus with the inner radius rmin and outer radius rmax.
Similar to the range search algorithm, the function MapAnnulus(Q, rmin, rmax)
needs to be defined according to the particular mapping method to map the annulus
shaped search region to some one-dimensional intervals. Next, a standard B+-tree
range search function is called to answer all the one-dimensional range queries and
returns a set of points Sp that is in the mapped region. A candidate answer set
Sa is maintained, which always contains the nearest k points to Q among all the
returned points so far. The algorithm terminates after certain number of iterations
when the distance of the furthest point in the candidate answer set Sa from the
query point Q is less than or equal to the current search radius rmax. Also note
that the MapAnnulus(Q, rmin, rmax) function guarantees that the mapped region
encloses the query region. When the algorithm terminates, all the points outside
the query sphere have distances larger than rmax, while all candidate points in the
answer set have distances smaller than rmax. Further enlargement of the query
sphere would not change Sa. Therefore, the answers in Sa are the true k nearest
neighbors.

PointSet kNNSearch(Point Q)
IntervalSet Si
PointSet Sp, Sa
rmin = 0, rmax = r0, Sa = ∅
do

Si=MapAnnulus(Q, rmin, rmax)
Sp=∅
for each interval intvl in Si

Sp=Sp ∪ BPlusTreeRangeSearch(intvl)
for each P in Sp

Sa=Sa ∪ P
if |Sa| > k

Sa=Sa−farthest(Sa, Q)
rmin = rmax

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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rmax = rmax + dr

while |Sa| < k or dist(farthest(Sa,Q), Q) > rmin

end kNNSearch

Function farthest(Sp, Q) identifies the point in Sp which is farthest to Q. Function
dist(P, Q) calculates the distance between P and Q in the vector space. Usually, it
is the Euclidean distance. Note that this distance is different from the function Dis-
tance() we defined in Section 3.1, which returns the distance in the one-dimensional
key space.

3.2.5 Other Queries.
Besides point, range and kNN queries, users can also define other query pro-

cessing methods for specialized applications. These methods are supported by the
GiMP’s functions: Key(), Insert(), Delete() plus the standard B+-tree search func-
tion.

In summary, users can develop new indexing schemes based on GiMP. They
are only required to define three basic functions for data mapping: Reference(),
Distance() and Base(). If a range query is needed, users must define the function
MapRange(), and if kNN queries needed, MapAnnulus() should be defined. For
other applications users can write their specialized methods, which will be fully
supported by GiMP.

4. GIMP FOR FOUR APPLICATIONS

In this section, we demonstrate how easy it is to use GiMP to implement four
existing indexing structures: the B+-tree, the UB-Tree, the Pyramid technique and
the iDistance. At the end of this section, we discuss issues on generalization and
customizations.

4.1 GiMP for the B+-tree

For the B+-tree, the reference point is the origin. Distance() in the one-dimensional
space is the absolute difference between two points. This is a one-to-one mapping,
so we do not need to scatter the key (i.e., Base() is zero). A range query is required
in the B+-tree, so we need to define MapRange() which is the identity function.
We can also support kNN queries by defining MapAnnulus(). In a one-dimensional
space, MapAnnulus() is a range query in effect; therefore we can employ the existing
RangeSearch().

4.2 GiMP for the UB-Tree

The UB-Tree [Ramsak et al. 2000] linearizes the data points according to their Z-
value [Orenstein and Merrett 1984; Orenstein 1986] as shown in Figure 3. Usually
the UB-Tree is applied on integer workloads, therefore a point is represented by a
cell in the data space. Distance() for the UB-Tree is the distance along the Z-curve,
that is, the difference between the Z-values of two points; the reference point is the
origin. The Z-curve is a one-to-one mapping, so Base() is zero. The algorithm to
calculate the Z-value of a point can be found in [Ramsak et al. 2000].

Figure 3 shows how a range query is processed in the UB-tree. The shaded region
in the center is the query range, which consists of four intervals I1 ∼ I4 along the
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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I2I1

I3 I4
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Fig. 3. Range search in the UB-Tree

Z-curve. Searching the points in the query range is equivalent to searching the
points in I1 ∼ I4. To identify these intervals according to the query range, we can
apply the getNextZvalue algorithm [Ramsak et al. 2000]. Given any Z-value of a
cell outside of the query range, getNextZvalue calculates the next Z-value where
the Z-curve enters the query range without accessing the data pages. For example,
assuming the left upper corner is the origin of the data space (having Z-value = 0),
the Z-value of cell A is 12. Given any Z-value less than 12, getNextZvalue returns
12. A similar algorithm (let us call it getNextZvalueExit) calculates, for a given
cell inside the query range, where the Z-curve exits the query range. For example,
given any Z-value of the cells on interval I1, getNextZvalueExit returns the Z-value
of the cell B. In this way, we can obtain the beginning and ending of each interval
in the query range.

The MapRange() function for the UB-Tree is defined below. First, the Z-values of
the lower corner (rg.rl) and upper corner (rg.rh) of the query range are calculated,
which are the smallest Z-value and largest Z-value among those within the query
range. Then we calculate the beginning and ending of the intervals in the query
region one by one until we exceed the largest Z-value in the query range.

IntervalSet MapRange(Range rg)
IntervalSet Si = ∅
Interval intvl
Z value start, end, cur
cur=start=Key(rg.rl), end=Key(rg.rh)
While (cur ≤ end)

cur=intvl.low=getNextZvalue(cur)
cur=getNextZvalueExit(cur)
intvl.high=cur − 1
Si = Si ∪ intvl

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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return Si

end MapRange

4.3 GiMP for the Pyramid Technique

The Pyramid technique [Berchtold et al. 1998] is proposed for processing high-
dimensional range query. It divides the d-dimensional data space into 2d pyramids
that share the center point of the space as their top, and the (d-1 )-dimensional
surfaces of the space are their bases (Figure 4). According to some rule, each
pyramid is assigned a pyramid number i, which is an integer ranging from 0 to
2d− 1. The height hP of a point P is defined as the distance between P and center
of the data space in dimension j, where j = i if i < d; or j = i− d if i ≥ d (simply,
j = i mod d). Then, the pyramid value pvP of P is defined as the sum of its
pyramid number i and its height hP .

pvP = (i + hP )

This pyramid value is the key of P to be indexed by a B+-tree. For the 2-
dimensional example in Figure 4, P is in pyr1 and the pyramid number 1 is less
than dimensionality 2, therefore hP is the distance of P to the center in dimension
1. If P is in pyr3 and hence 3 ≥ 2, then hP is the distance of P to the center in
dimension 1 (i.e., 3− 2).

pyr
2

pyr
3

pyr
0

pyr
1

0

d1

d0

Ph

P

Fig. 4. The Pyramid technique

Distance() between two points here is the distance in the j-th dimension, or the
difference of the j-th coordinates of the two points.

float Distance(Point P1, Point P2)
determine the pyramid number i
j = i mod d
return |p1j − p2j |

end Distance
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The first step of the above algorithm follows the pyramid number assigning rule,
which is based on the relationship between the values of the coordinates of the
point in that pyramid. Interested readers are referred to [Berchtold et al. 1998] for
details.

Reference() is the center of the data space. Note that the Pyramid technique is a
many-to-one mapping. It uses the pyramid number to scatter the mapped values.
Therefore, Base(P ) equals to the pyramid number of P .

A range query corresponds to a height range in an intersected pyramid. Those
data points of height within the height range are accessed. The dark shaded square
in Figure 4 represents a range query region. It intersects pyr0 and pyr3. All the
points in pyr0 with height within the height range of the query are retrieved for
further checking. Those points in pyr3 are similar. The light and dark shaded
region is the mapped region of the query region. Therefore, we just need to identify
the height ranges of the query range in each intersected pyramid. By adding the
pyramid number, we get the one-dimensional key ranges the range query is mapped
to. Function MapRange() for the Pyramid technique is defined as follows:

IntervalSet MapRange(Range rg)
IntervalSet Si = ∅
Interval intvl
for (i = 0; i < 2d; i++)

if intersect(pyri, rg)
determine range(pyri, rg, hlow, hhigh)
intvl.low = i + hlow

intvl.high = i + hhigh

Si = Si ∪ intvl
return Si

end MapRange

Function intersect(pyri, rg) decides if pyri intersects the range query rg. If they in-
tersect, the function determine range(pyri, rg, hlow, hhigh) returns the height range
[hlow, hhigh] the query corresponds to. For details of these functions, please refer
to [Berchtold et al. 1998].

The Pyramid technique was originally proposed for range queries, however, the
algorithm can also be extended to handle kNN queries. Since an exact hypersphere
shaped range search in the Pyramid technique is hard to define, we can employ a
hypercube shaped range query to enclose the query sphere, which still guarantees
the correctness of the query results. Figure 5 shows an example. The first iteration
of the search algorithm is shown in Figure 5 (a), when the search radius is r0. We
invoke a range query centered at Q having side length 2r0 in each dimension. In
pyr2, the height range to be searched is [hQ − r0, hQ + r0]. Height ranges in other
intersected pyramids can also be determined. The shaded region is the region to be
searched in the first iteration. In the second iteration of the search algorithm, the
query radius is increased by dr as shown in Figure 5 (b). Now, the query region is
the annulus centered at Q with inner radius rmin and outer radius rmax. We use a
hypercube to enclose it, therefore the enlarged query region is the portion between
the two hypercubes centered at Q with side length 2rmin and 2rmax, respectively.
The dark shaded region is already searched during the last iteration, and the light

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



14 ·

pyr2pyr0

pyr3 pyr3

pyr1
pyr1

pyr0 pyr2
r0 Q

rmax

dr
rmin

(a) (b)

Q

hQ

Fig. 5. kNN search in the Pyramid technique

shaded region is to be searched in the current iteration. Still looking at pyr2, we
need to expand the height ranges to be searched in two directions, towards the top
and towards the base of the pyramid. This expansion continues as r increases, and
terminates when kNNs are found or when the search range reaches the top or base
of the pyramid. We can see that the height ranges to be searched in pyr2 in this
iteration are [0, hQ− r0] and [hQ + r0, hQ + rmax]. They are adjacent to the height
range searched in the first iteration. Consequently, the key ranges to be searched in
one pyramid are also adjacent between two iterations of the kNN search algorithm.

Motivated by the above observation, we use the following method to obtain the
key ranges to search in each iteration. We record the two keys (corresponding to
the two edges of the height range) where we have stopped searching in the last
iteration. We still use the whole hypercube shaped range query to determine the
key range to be searched as in MapRange(), but instead of searching the whole key
range, we start from the keys we stopped at in the last iteration. In the example
of pyr2 in Figure 5, when the first iteration ends, we record hQ − r0 + 2 and
hQ + r0 + 2 (2 is the pyramid number of pyr2). In the second iteration, we use the
same method in MapRange() to map the enlarged query hypercube and get the
height range to be searched in pyr2, [0, hQ + rmax], which corresponds to the key
range [2, hQ + rmax +2]. Then the key ranges to be searched for pyr2 in the second
iteration are [2, hQ − r0 + 2] and [hQ + r0 + 2, hQ + rmax + 2].

Function MapAnnulus() for kNN search for the Pyramid technique is sketched
below. Two arrays low[2d] and high[2d] are used to record the keys the search
stopped at in the previous iteration of the algorithm.

IntervalSet MapAnnulus(Q, rmin, rmax)
IntervalSet Si = ∅
Interval intvl
Range rg
static KeyType low[2d], high[2d] with all their elements initialized to NULL
for (i = 0; i < d; i++)

rg.rli = qi − rmax

rg.rhi = qi + rmax
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for (i = 0; i < 2d; i++)
if intersect(pyri, rg)

determine range(pyri, rg, hlow, hhigh)
if low[i] =NULL //pyri hasn’t been searched before

low[i] = intvl.low = i + hlow

high[i] = intvl.high = i + hhigh

Si = Si ∪ intvl
else //pyri has been searched before

if low[i] 6= i //has not reached the top of pyri

intvl.high = low[i]
low[i] = intvl.low = i + hlow

Si = Si ∪ intvl
if high[i] 6= i + 0.5 //has not reached the base of pyri

intvl.low = high[i]
high[i] = intvl.high = i + hhigh

Si = Si ∪ intvl
return Si

end MapAnnulus

As we have enlarged the query region from a hypersphere to a hypercube, this
kNN search tends to be more expensive. However, since the range search of the
Pyramid technique in high-dimensional space is reported to be efficient [Berchtold
et al. 1998], the algorithm may work well for certain workloads. In any case, it
provides a mechanism to extend the Pyramid technique for processing kNN queries.

One may also try to use this strategy in the UB-Tree as only range query algo-
rithms have been proposed for this structure. However this is hard for the UB-Tree
since in the enlarged portion of the hypercube, the Z-curve is quite segmented,
which would generate a large number of key ranges. Besides, it is hard to identify
these segmented key ranges. This is not the case for the Pyramid technique as
the enlarged portion is easily mapped to two continuous ranges of keys for each
intersected pyramid.

4.4 GiMP for iDistance

iDistance was proposed for efficient kNN search [Yu et al. 2001; Jagadish et al.
2005]. In iDistance, the data space is split according to some space-based or data-
based partitioning strategy and a reference point is chosen for each partition. To
discriminate these partitions, each partition is assigned a number i. A data point
belongs to a partition if the reference point of the partition is the nearest to the
point among all the reference points. Then the data points are indexed by their
distance to the reference point plus some number to scatter the keys of points from
different partitions, which is i multiplied by a constant c (i.e., the key is the distance
plus i · c). To implement iDistance in GiMP, the function Reference(P ) returns the
nearest reference point to P ; Base(P ) equals to i · c, where i is the number of the
partition P belongs to, and Distance() is the metric distance function (usually the
Euclidean distance).

Figure 1 shows how the kNN search algorithm works with iDistance. O1, O2, O3

are 3 reference points. There are three possible relations between the query sphere
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and a partition. (1) The partition contains the query sphere; (2) The partition
intersects the query sphere but does not contain it; (3) The partition does not
intersect the query sphere. For convenience, we use the reference points to represent
the partition. The relationship between partitions O1, O2, O3 and the query Q are
of cases (1), (2), (3) respectively. The query sphere starts with radius r0 and
terminates at radius r1. For each intersected partition, we can calculate the keys of
the points in the query sphere with regard to the partition’s reference point. Then
the query sphere corresponds to a key range for each intersected partition. All the
points with the keys within this key range in the partition are retrieved for further
checking. In the figure, the shaded region in partitions O1 and O2 are the mapped
region of the query region, and all the points in this shaded region are retrieved for
further checking. As the mapped region encloses the query sphere, following our
kNN search algorithm guarantees the correctness of the answers.

Now let us see how MapAnnulus() should be defined for the iDistance kNN search.
When the query sphere enlarges, the accessed region of the partition increases in
both the inward and outward directions as shown by the arrows in the query sphere,
and the key range to be searched also expands towards left and right in leaf nodes
of the B+-tree, as shown by arrow A and B. In case the partition intersects but does
not contain the query sphere, the key range to be searched expands in one direction
as shown by arrow C. In either case, the keys to be searched in one partition form a
continuous range. This is similar to the way that kNN search works for the Pyramid
technique. Therefore, similar methods can be used here. Function MapAnnulus()
for iDistance is defined as below. Let Np be the total number of partitions. Note
that in iDistance, an array maintains the farthest point to the reference point in
each partition. Therefore, we can have an array of the largest key in each partition.
Let farkey[Np] be this array, where Np denotes the number of partitions. Two
arrays low[Np] and high[Np] are used to record the keys the search stopped at in
the previous iteration of the kNN search algorithm. pari is used to denote the i-th
partition and Oi is the reference point of pari. sphere(O, r) means a hypersphere
centered at reference O with radius r.

IntervalSet MapAnnulus(Q, rmin, rmax)
IntervalSet Si = ∅
Interval intvl
static KeyType low[Np], high[Np] with all their elements initialized to NULL
KeyType keylow, keyhigh
for (i = 0; i < Np; i++)

if pari intersects or contains sphere(Q, rmax)
keylow =dist(Oi, Q)− rmax + i · c
keyhigh =Min{dist(Oi, Q) + rmax + i · c, farkey[Np]}
if low[i] =NULL //pari hasn’t been searched before

low[i] = intvl.low = keylow
high[i] = intvl.high = keyhigh
Si = Si ∪ intvl

else //pari has been searched before
if low[i] 6= 0 //has not reached Oi

intvl.high = low[i]
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low[i] = intvl.low = keylow
Si = Si ∪ intvl

if high[i] 6= farkey[Np] //has not reached the edge of pyri

intvl.low = high[i]
high[i] = intvl.high = keyhigh
Si = Si ∪ intvl

return Si
end MapAnnulus

4.5 Discussions on Customizations

There are two parts to customize in order to make GiMP behave like a particu-
lar indexing scheme. First, the mapping method is defined through three basic
functions: Reference(), Distance() and Base(). Second, MapRange() or MapAn-
nulus() needs to be defined in order to process range or kNN queries, respectively.
Through the examples in the above sections, we can observe the following behav-
ior. The customization of the three basic functions are usually very simple and
point query needs no further customization. Customization of MapRange() is less
straightforward, and customization of MapAnnulus() becomes a little complicated.
This trend is determined by the difficulty of the query type and the complexity of
the mapping scheme. While definitions of MapRange() and MapAnnulus() could be
more or less complicated, they contain the minimum transformation steps which are
necessary to distinguish different mapping methods, that is, how the query region
is mapped to one-dimensional range queries. Therefore, they could not be further
generalized to the kNNSearch() algorithm of GiMP.

5. EFFICIENCY OF GIMP BASED INDEXING SCHEMES

GiMP can accommodate many existing indexing schemes and users can define new
mapping and queries by implementing a few basic functions. A question that arises
is whether an indexing scheme based on GiMP is efficient. In GiMP, queries are
mapped to a number of one-dimensional range queries, which are then processed by
the same underlying one-dimensional indexing structure, the B+-tree. Therefore,
given the same query, what causes the difference in performance is the mapping
process. In other words, what determines the efficiency of a GiMP based indexing
scheme is how the query is mapped to the one-dimensional ranges. Hence we
introduce the parameter mapping redundancy to characterize a mapping method.
Intuitively, mapping redundancy specifies the ratio between the the mapped region
and the query region. As disk page access is the salient measure of database query
performance, we define mapping redundancy in terms of page accesses as follows:

Definition 1. Let na be the minimum number of pages that can contain the
data points in the answer set of a query Q; let nm be the number of pages that
contain the data points that are in the mapped region (or point in case of point
queries) by mapping M . Then the mapping redundancy (mr for short) of M
for Q is :

mr =
nm

na
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mr reflects the overhead caused by the mapping method. Generally, the smaller
the mr, the better the efficiency. The optimal mr is 1. Note that this redundancy
is caused by the mapping method because more points are mapped to the same
value (eg., the Pyramid technique) or because the mapping cannot preserve well
the proximity of the points (eg., Z-curve).

In the following, we would focus our analysis on the average performance of the
different indexing schemes. We analyze the average mapping redundancy (amr) of
point, range and kNN queries respectively assuming that both the data and queries
are uniformly distributed. We have two objectives here. First, we show some initial
results and intuitions. Second, compared with the experimental results, we justify
the expectation that mapping redundancy is the governing factor on the efficiency
of the mapping-based indexing schemes.

We assume the data space is normalized to a unit hypercube in the following anal-
yses except the UB-Tree. The UB-Tree is intended for integer workload, therefore
we assume the side length of the data space is the integer that can be represented
by the bit string of the Z-value in one dimension. Note that how we define the size
of data space does not affect the mapping redundancy since it is a ratio.

5.1 Mapping Redundancy of Point Queries

Proposition 1. For any one-to-one mapping, mr of point query is 1.

The proof is straightforward.
The transformation of any space-filling curve is one-to-one mapping, so mr of

any space-filling curve for point query is 1, which is optimal. amr is also 1.
For many-to-one mappings, if the data is uniformly distributed, usually few data

points share the same key, so amr is not high. If the data distribution is skewed,
mr can be very large. In the worst case, all the points are mapped to the same
key and mr is equal to the total number of pages. The iMinMax and the Pyramid
technique both use many-to-one mappings, so their mr for point query is largely
determined by the data distribution.

5.2 Mapping Redundancy of Range Queries

When the size and shape of a query window varies, mr varies, too. Even for a query
of a certain size and shape, mr may be different when the query window is located at
different positions in the data space. Thus we mainly look at the average mapping
redundancy(amr for short). Here we only analyze hypercube shaped queries; other
query shapes can be similarly derived. Effects of other distributions are discussed
in Section 6.2.

The UB-Tree.
In the UB-Tree, the mapping is based on the Z-curve. Let the order of the Z-

curve be o; then each dimension of the space is divided into 2o equal intervals.
Each interval is represented by an integer, so the side length of the data space is 2o

and there are a total of 2od hypercubes in the space. Denote the average number of
points in a page as Ceff , and the total number of points in the database as n. Then
the total number of leaf pages is n

Ceff
. As mentioned above, we assume uniform
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data distribution, so the number of hypercubes in a page is

2od · Ceff

n

Assuming that data pages are hypercubes, the side length of a page is

L =
(

2od · Ceff

n

) 1
d

(1)

Now we derive how many pages are intersected by a query cube of side s. First we
examine one dimension as Figure 6 shows. The shaded rectangles correspond to
different positions of the query. Let the distance between the left edge of the data
space and the left edge of the query be x. Then x is uniformly distributed in the
range [0,m-s].

Query

Data page

0

x

e

f

g

L

d 0a

b

c

s
m

Fig. 6. amr of the UB-Tree

Denote the side length of the data space as m, that is, m = 2o (m may not be
exactly divided by L). Consequently, we may get a partial page at the rightmost
page of the data space (we only consider dimension d0 here). When the query
is between positions a and b, that is, x is between 0 and d s

LeL − s, the query
intersects d s

Le pages. When the query is between positions b and c, that is, x is
between d s

LeL − s and L, the query intersects d s
Le + 1 pages. From position c,

it begins a new cycle as from position a. In this one cycle, the probability of the
query being between positions a and b is the distance between a and b divided by
the distance between a and c, that is

d s
LeL− s

L

Similarly, the probability of the query being between positions b and c is

1− d s
LeL− s

L

Therefore, the average number of page accesses in one cycle is as follows:

A1 =
d s

LeL− s

L
· d s

L
e+ (1− d s

LeL− s

L
) · (d s

L
e+ 1) (2)
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From position a to position e, that is, x is from 0 to (bm

L c − d s
Le)L, the query goes

through bm
L c − d s

Le cycles. In each cycle, the average page accesses is the same as
from position a to c, that is, A1.

When the query is between positions e and f , that is, x is between (bm
L c−d s

Le)L
and bm

L cL− s, the number of pages the query intersects is

A2 = d s

L
e (3)

When the query is between positions f and g, that is, x is between bm
L cL− s and

m−s, the number of pages the query intersects is d s
Le+m

L−bm
L c or d s

Le−1+m
L−bm

L c.
We estimate this value by the median

A3 = d s

L
e − 0.5 +

m

L
− bm

L
c (4)

The expected number of pages the query intersects is the average over all possible
values of x

A =

∫ m−s

0
A(x)dx

m− s
=

A1(bm
L c − d s

Le)L + A2(d s
LeL− s) + A3(m− bm

L cL)
m− s

(5)

A is the expected number of page accesses in one dimension. So the page accesses
in d dimensions are dAde.

For uniform data distribution, there are ( s
m )d · n points in the query range. The

minimum number of pages to contain them is

na = d (
s
m )d · n
Ceff

e

So amr of the UB-Tree range query is

amrUBrange = dAde/d (
s
m )d · n
Ceff

e (6)

In the above derivation of amr of the UB-Tree, we have assumed low-dimensional
data space. See Appendix A for amr of the UB-Tree in medium-dimensional
(around 8 ∼ 16 dimensions) space. We do not analyze amr of the UB-Tree in
high-dimensional space because some problems arise when using the UB-Tree in
high-dimensional space. The UB-Tree uses Z-values as keys. The Z-value uses a
number of bits to represent each dimension. To handle data of larger cardinality,
the number of bits is large. If the dimensionality is also large, then a Z-value needs
a lot of space to be stored. For example, if we use 8 bits for each dimension, we need
30 bytes to store a Z-value for a 30-dimensional data set, which is very large com-
pared to keys of other type such as float or integer. Besides, computing the Z-value
and getNextZvalue()/getNextZvalueExit() in the UB-Tree become expensive even
in medium-dimensional space. Such operations are prohibitive in high-dimensional
space.

The Pyramid Technique.
Here we do not elaborate the derivations but only give the amr of range queries
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of the Pyramid Technique as follows.

amrPTrange =

∑
for all pyramidsd

((2·hhigh)d−(2·hlow)d)·n
2·d·Ceff

e
d sd·n

Ceff
e (7)

hhigh and hlow are determined by the determin range() function as described in
Section 4.3. See Appendix B for the derivations and also a discussion on amr of
the iMinMax [Ooi et al. 2000] in Appendix C.

5.3 Mapping Redundancy of kNN queries

For kNN queries, we study amr of the Pyramid technique and the iDistance.

The Pyramid Technique.
Again, we only give the result for brevity. See Appendix D for the derivations.

amrPTknn =
dRk·n

Ceff
+

(
1−|1−Rk

0.5 |d+1
)
·n

2(d+1)·Ceff
e

d k
Ceff

e (8)

The iDistance.
[Yu et al. 2001] proposed two ways, space-based and data-based, to partition the

data space for indexing by the iDistance. The space-based partitioning is the same
as the partitioning in the Pyramid technique. Therefore, amr of the iDistance with
space-based partitioning is:

amrIDISTspacebased =
dRk·n

Ceff
+

(
1−|1−Rk

0.5 |d+1
)
·n

2(d+1)·Ceff
e

d k
Ceff

e (9)

The data-based partitioning uses data cluster centers as reference points. Then
data points are partitioned to the nearest reference point. [Jagadish et al. 2004]
has derived a formula to calculate the page accesses for the iDistance kNN search
using the data-based partitioning strategy. For simplicity, here we just denote it
by AIDISTdatabased. Then dividing AIDISTdatabased by the minimum number of
pages to contain the kNN d k

Ceff
e, we get amr of the iDistance with data-based

partitioning:

amrIDISTdatabased =
AIDISTdatabased

d k
Ceff

e (10)

6. EXPERIMENTAL STUDY

In this section, we present the results of our experimental study which consists
of two parts. First, we investigate the performance overhead of using GiMP to
implement a mapping-based indexing scheme. Second, we evaluate how well amr
serves as an indicator of the efficiency of the mapping-based indexing schemes.

6.1 Performance of GiMP

To study the performance overhead of using the GiMP framework, we implemented
the B+-tree, the UB-Tree, the Pyramid technique, the iMinMax and the iDistance
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based on GiMP and compared their performance with their direct implementations
(that is, the original implementations which do not depend on the functions pro-
vided by GiMP). We measured the response time for point queries, range queries of
various selectivity and kNN queries with various k. The data set sizes varies from
100K to 500K. Representative results are shown in Tables II-IV.

Selectivity 5% 10% 15%

Direct implementation 594 1031 1484

GiMP based implementation 599 1037 1491

Table II. Average response time (millisec), B+-tree range query, 200K 1D points

Selectivity 5% 10% 15%

Direct implementation 1056 1760 2244

GiMP based implementation 1059 1764 2250

Table III. Average response time (millisec), iMinMax range query, 100K 8D points

K 10 20 30 40

Direct implementation 90 95 100 105

GiMP based implementation 90 96 101 106

Table IV. Average response time (millisec), iDistance kNN query, 100K 16D points

It is expected that a general structure cannot match a specially developed index-
ing scheme in terms of performance. GiMP-based versions are always a little slower
than their direct implementation counterparts. This small performance penalty is
caused by the function calls and some general procedures that may be redundant for
a particular indexing method. However, we note that the performance compromise
is negligible (less than 1%). Also, a recent study on the Click router [Kohler et al.
2000] shows that the penalty caused by function calls could be completely removed.
Moreover, GiMP facilitates ease of implementation of novel indexing methods and
integration into commercial systems (as it employs B+-tree). In table II-IV, the
response time of range queries is larger than the response time of kNN queries; this
is because of the large selectivity.

6.2 Evaluation of Mapping Redundancy

We evaluated the impact of amr on the efficiency of mapping-based indexing
schemes by employing synthetic data sets with uniform, exponential and normal
distribution and a real data set. Figure 7 shows 2-dimensional images of the data
sets with exponential and normal distribution. The standard deviation of the nor-
mal distribution is 0.2. The real data set is the Co-occurrence Texture data set from
Corel Image Features [corel image ]. The Texture data set contains 16-dimensional
data, which are co-occurrence in 4 directions extracted from 68040 images. We
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 7. Synthetic data sets

have normalized the values of each dimension of the above data sets to [0,1]. The
page size was set to 4KB.
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Fig. 8. Page accesses of range queries

For range queries, we tested the two range query processing techniques, the Pyra-
mid technique and the UB-Tree. The size of the synthetic data sets was 500,000.
The selectivity of the queries is 0.02%. The page access number is averaged over
200 queries which follow the same distribution as the data. Figures 8 and 9 show
the results. To see whether mapping redundancy really represents the efficiency
of the various mapping-based indexing schemes, we also calculated amr of range
queries for the UB-Tree and the Pyramid technique according to Equations 6, 7
and 11 using the above experimental parameters (data set size, selectivity, etc) and
plotted it in Figure 10. We observe that the Pyramid technique always has more
page accesses and larger amr. The indexing scheme having larger amr has larger
number of page accesses to process the same query. We also observe that the trend
of the number of page accesses is similar to the trend of amr. To better see how
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Fig. 9. Page accesses of range queries
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accurate amr is an indicator of the performance (in terms of number of page ac-
cesses), we compare amr with the performance of the two techniques relatively as
follows. First, we divide the number of page accesses of the Pyramid technique by
that of the UB-Tree and obtain a page access ratio of the two techniques. Then, we
divide the amr of the Pyramid technique by the amr of the UB-Tree and obtain
an amr ratio. If the two ratios are similar, then amr is a good indicator of the
performance. The page access ratios of different data sets and the amr ratio are
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compared in Figure 11. We can see that, in most cases, the page access ratios are
close to the amr ratio. Therefore, mapping redundancy is a governing factor for
the efficiency of mapping-based indexing schemes.
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Fig. 12. Page accesses of kNN queries

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 8 12 16

P
ag

e 
ac

ce
ss

es

Dimensionality

Pyramid T.
iDistance

0

200

400

600

800

1000

1200

4 8 12 16

P
ag

e 
ac

ce
ss

es

Dimensionality

Pyramid T.
iDistance

(a)Normal distribution data (b) Co-occurrence Texture data

Fig. 13. Page accesses of kNN queries
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For kNN queries, we tested the two kNN query processing techniques, the Pyra-
mid technique and the iDistance. Each synthetic data set has 500,000 tuples. k is
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Fig. 15. Comparison of amr with number of page accesses, kNN queries

set as 10. The page access number is still averaged over 200 queries which follow
the same distribution as the data. Figures 12 and 13 show the results. We calcu-
lated amr of kNN queries for the Pyramid technique and the iDistance according
to Equations 8 and 10 using the above experimental parameters (data set size, se-
lectivity, etc) and plotted it in Figure 14. Still, the number of page accesses has
similar trend to amr. In all the cases, the iDistance has a better performance than
the Pyramid technique. Therefore, we divide the number of page accesses or amr
of the Pyramid technique by those of the iDistance and obtain ratios between them.
The amr ratio and page access ratios on different data sets are shown in Figure
15. Similar to the results on range queries, in most cases, the page access ratios
are close to the amr ratio. Therefore, we reach the same conclusion that map-
ping redundancy is a governing factor in the efficiency of mapping-based indexing
schemes.

7. MAPPABILITY

Mapping redundancy is a significant factor for the efficiency of a mapping-based
indexing scheme. The smaller the mr, the more efficient the indexing is. Proposition
1 says that mr of point query is 1 for one-to-one mappings, therefore the point
query of a one-to-one mapping-based indexing scheme is more efficient than the
point query of a many-to-one mapping-based indexing scheme. We also observe
that other kinds of queries based on one-to-one mappings tend to have smaller mr
and therefore access less disk pages than many-to-one mappings. However, can
we always have a one-to-one mapping from a d-dimensional data space to a one-
dimensional domain? If a one-to-one mapping exists, how can we construct it?
This is the problem of mappability. We found that mappability is determined by
the nature of the data space.

Let DS be a d-dimensional data space. Let Dimi be the domain of the i-th
dimension of DS, where i=1, 2, ..., d. We say that dimension i is countable if
Dimi is a countable set.

Theorem 1. If all dimensions of DS are countable, there exists a one-to-one
mapping from DS to a one-dimensional value set. This one-dimensional value set
is countable.

Proof It is proved that the union of a countable number of countable sets is count-
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able [Kolmogorov and Fomin 1970]. Since Dim1 and Dim2 are both countable, the
set Dim1 ×Dim2 is the union of a countable number of countable sets, therefore
Dim1 × Dim2 is countable. Similarly, Dim1 × Dim2 × Dim3 is countable. By
induction, we can prove Dim1 × Dim2 × ... × Dimd is countable, that is, DS is
countable. Therefore DS can be mapped to a one-dimensional countable set. 2

Let M(p1, p2, ..., pd) be a mapping2 from DS to a one-dimensional value set. M
is a d-ary function. We can restrict M to one dimension so that M becomes a unary
function; in this case, we denote the restriction on dimension i as M(pi), and we
consider the other variables as constants.

Theorem 2. Let M(p1, p2, ..., pd) be a mapping from DS to a one-dimensional
value set. Let S1 be the range of M(p1). Then S1 is also a one-dimensional value
set. If for any given values of (p2, p3, ..., pd), S1 always contains at least one in-
terval, and at least one dimension in Dim2, Dim3, ..., Dimd is uncountable, then
M(p1, p2, ..., pd) cannot be a one-to-one mapping.

Proof Assume M is a one-to-one mapping and dimension 2 is the uncountable
dimension. We denote the range of M(p1) for a given value p2 in Dim2 as S1,p2 .
Because we assume that M is a one-to-one mapping, for any p2, p

′
2 ∈ Dim2, if

p2 6= p′2, then S1,p2

⋂
S1,p′2 = ∅.

Next, we construct a mapping M2 on Dim2 as follows:

∀p2 ∈ Dim2, M2(p2) := a rational number in the interval that is contained in
S1,p2 (remember that ∀p2, S1,p2 contains at least one interval, and we can always
find a rational number in an interval).

When p2 6= p′2, S1,p2

⋂
S1,p′2 = ∅, and M2(p2) ∈ S1,p2 ,M2(p′2) ∈ S1,p′2 , so

M2(p2) 6= M2(p′2). That is, p 6= p′2 =⇒ M2(p) 6= M2(p′2). Therefore, M2 is a
one-to-one mapping.

The domain of M2 is Dim2, which is not countable. The range of M2 is a subset
of rational numbers, which is countable. We reach the conclusion that M2 is a
one-to-one mapping from an uncountable set to a countable set, which is wrong.
Therefore the assumption that M is a one-to-one mapping is wrong.2

Theorem 2 is meaningful when two or more dimensions of the data space are
real number sets (or intervals). It is proved in the set theory that the set of all
ordered d-tuples of real numbers has the power3 of the continuum [Kolmogorov
and Fomin 1970], which means that there exists a one-to-one mapping from any
d-dimensional space to a one-dimensional space. In [Dalen et al. 1978], Theorem
18.8 shows a way to map d-dimensional space to one-dimensional space. Basically
it interleaves the digits from the d coordinates of a d-dimensional point to compose
a one-dimensional point. Obviously, this one-to-one mapping is not applicable in

2In fact, we mean “function” by “mapping”, that is, one-to-many mapping is out of consideration
here, because for any point, we have only one key.
3“Power” is a term from the set theory. It is a synonym of the term “cardinal number” and is
also referred to as “cardinality” in some literature.
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practice due to the space limitation on keys. The range of most functions we can
use in practise, such as all the elementary functions4, on real number set contains
an interval. At the same time, the other dimension that is a real number set is
uncountable. According to Theorem 2, the mapping cannot be one-to-one.

When more than two dimensions of the data space are real number sets, no
one-to-one mapping from the data space to a one-dimensional value set exists in
practice, so the UB-Tree is not applicable. In this case, we can utilize the Z-curve in
another way, that is, we map all the points (with real number coordinates) within an
interval to an integer. For example, any point in [i, i+1) is mapped to i. Then the
UB-Tree can also index any real number, but the mapping is no longer one-to-one,
which causes the efficiency of the UB-Tree to deteriorate.

Theorem 3. Let M(p1, p2, ..., pd) be a mapping from DS to a one-dimensional
value set. Let S1 be the range of M(p1). Then S1 is also a one-dimensional
value set. If for any given values of (p2, p3, ..., pd), S1 always contains at least
one interval, but no dimension in Dim2, Dim3, ..., Dimd is uncountable, then
M(p1, p2, ..., pd) can be a one-to-one mapping.

Proof We only need to prove that there exists a mapping which satisfies the
premise of the theorem and it is a one-to-one mapping.

Let M(p1) be the following one-to-one mapping, which maps (−∞, +∞) to (0,1):

M(p1) =
1
π

arctan(p1) +
1
2

Dim1 is always a subset of (−∞, +∞), so S1 is a subset of (0,1). We let Dim1

contain at least an interval, then S1 also contains at least an interval.
On the other hand, dimensions 2,3,...,d compose a data space DS2, dimensions

of which are all countable. According to Theorem 1, there exists a one-to-one
mapping from DS2 to a countable one-dimensional set, say, the integer set. Let
M(p2, p3, ..., pd) be such a mapping.

M(p1, p2, ..., pd) maps DS to a subset of the real number set. It maps dimension
1 to the fraction part and all the other dimensions to the integer part. If two
points in the DS are mapped to the same real number, they must have the same
integer part and fraction part respectively, which means they must be the same in
dimension 1 and in all the other dimensions. In other words, if P1, P2 ∈ DS and
M(P1) = M(P2), then P1 = P2. Similarly we can prove that if M(P1) 6= M(P2),
then P1 6= P2. Therefore M(p1, p2, ..., pd) is a one-to-one mapping from DS into a
one-dimensional value set.2

The premise of Theorem 3 is just a little stricter than that of Theorem 2, but
the result is quite different. Theorem 3 is meaningful when only one dimension of
the data space is the real number set. We can define a one-to-one mapping on it.
An indexing scheme based on this one-to-one mapping is likely to be more efficient
than the many-to-one mapping schemes such as the iMinMax and the Pyramid
technique.

4An elementary function is one which can be obtained by addition, multiplication, division, and
composition from the rational functions, the trigonometric functions and their inverses, and the
functions log and exp [Michael 1967].
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Suppose DS is a d-dimensional data space that: Dim1 is the real number set,
while Dim2, Dim3, ...Dimd are all integer sets. We can define the following mapping
scheme for DS:

Let P (p1, p2, ..., pd) be a point in DS. Let a and b be the integer part and fraction
part of p1, respectively. Let P ′ = (a,p2,p3,...pd). Then P ′ is a point that all the
dimensions are integers. Now we can calculate the Z-value of the point P ′ and
then add b to the Z-value. We call the result Z∗-value and use it as the key to be
indexed.

We implemented this “Z∗-curve” based on GiMP and compared it with the UB-
Tree for point and range queries. Because Dim1 is not countable, in the UB-Tree,
we will map any point in [i, i + 1) to i. In this case, the mapping of the UB-Tree
is not one-to-one and hence the mr for point query is not 1, either. The data sets
used are 500,000 points with uniform, exponential and normal distribution. Figures
16 and 17 show the results. As expected, the Z∗-curve has fewer page accesses in
answering point queries because it is one-to-one mapping while the UB-Tree is
not. The advantage of the Z∗-curve decreases as dimensionality increases. This
is because in higher dimensions, the data points become sparse and therefore, the
mapping redundancy of the UB-Tree decreases. For range queries, the Z∗-curve
performs almost the same as the UB-Tree in all cases (only the results of uniform
data is presented), because when the query is a range, mapping many points to a
single value in the range (as in the UB-Tree) has the same mapping redundancy as
mapping the points to many values in the range (as in the Z∗-curve). The Z∗-curve
is an example of the applicability of Theorem 3.
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Fig. 16. Z∗-curve vs. UB-Tree

8. CONCLUSION AND FUTURE WORK

In this paper we presented GiMP, a Generalized structure for multi-dimensional
data Mapping and query Processing. GiMP can be customized easily to behave
like many competitive multi-dimensional indexing techniques such as the UB-Tree,
the Pyramid technique, the iMinMax, and the iDistance, as well as the classic B+-
tree. Each of these techniques is optimized for specific types of queries, so GiMP can
handle all these queries efficiently. Users can also extend GiMP for other mappings
and tailor it to the special requirements of their applications. We implemented
the above indexing schemes and the results indicate that the GiMP-based systems
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Fig. 17. Z∗-curve vs. UB-Tree

have similar performance as their original versions while reducing the efforts of
implementation.

We employed GiMP to study the efficiency of these mapping-based indexing
schemes. Specifically, we introduced the mapping redundancy parameter to mea-
sure the disk access overhead due to the mapping functions. We calculated the
mapping redundancy of existing techniques and analyzed their efficiency under dif-
ferent workloads. Experiments on data sets with various distributions demonstrate
that mapping redundancy directly determines the efficiency of mapping-based in-
dexing schemes. It is not only a good parameter for analyzing existing techniques,
but also provides guidance for designing new mapping methods. We demonstrated
this by designing the Z*-curve index, which has improved performance over the
UB-Tree (that uses the Z-curve).

Motivated by the fact that one-to-one mappings are generally more efficient than
many-to-one mappings, we investigated when such mappings exist. We proved that
the existence of one-to-one mapping depends on the nature of the data space.

In our efficiency analysis, we have focused on the average mapping redundancy.
One direction for future work is to analyze the upper/lower bounds as in the index-
ability theory. Further, distinguishing pages containing or not containing answers
in all retrieved pages and studying the overheads due to the pages not containing
answers may also produce interesting insights.

APPENDIX

A. AMR OF THE UB-TREE RANGE QUERIES IN MEDIUM-DIMENSIONAL SPACE

In medium-dimensional space (around 8 ∼ 16 dimensions), the side length of a page
grows to the magnitude of half the side length of the data space. We assume the
page region is hyperrectangle shaped and each page has equal volume, so if a page
is split into two in a dimension, each resultant page has the side length of half the
side length of the data space. In medium-dimensional space, not all dimensions are
split. For example, in a 16-dimensional space, if each dimension was split once, there
would be 216 = 65536 pages, which correspond to over 3,000,000 points using our
experiment settings. We used 500,000 data set size in the UB-Tree experiments, so
we need to estimate the number of dimensions that have been split by the following
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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equation [Bohm 2000],

ds =
⌈
log2

(
n

Ceff

)⌉

Page2

ba

G
G
2 2

G

s

d

m

0

1Page

Fig. 18. amr of the UB-Tree in medium-dimensional space

Then we analyze how many pages are accessed by the query window in one
dimension. Figure 18 shows a dimension in which the space is split for 2 page
regions. Points are sparse in medium-dimensional space and there are large gap
between them which is not negligible. To estimate the gap, we first estimate ap-
proximately the number of points in one dimension by d

√
n. Then the gap between

them is G = m/ d
√

n. When the query window is between positions a and b, it only
intersects Page1. The distance from a to b is m/2 + G/2− s, so the probability of
the query window intersecting only Page1 is

m/2 + G/2− s

m− s

The probability of the query window intersecting only Page2 is the same.

In other cases, the query window intersects both pages. So the probability of the
query window intersecting both pages is

1− 2 · m/2 + G/2− s

m− s

The average page access in the whole dimension d0 is

Am =
m/2 + G/2− s

m− s
· 1 +

(
1− 2 · m/2 + G/2− s

m− s

)
· 2 +

m/2 + G/2− s

m− s
· 1

=
m−G

m− s

There are ds dimensions that are split, so the total number of pages accessed is

dAds
m e
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For uniform data distribution, there are ( s

m )d · n points in the query range. The
minimum number of pages to contain them is

na = d (
s
m )d · n
Ceff

e

So amr of the UB-Tree range query in medium-dimensional space is

amr′UBrange = dAds
m e/d

( s
m )d · n
Ceff

e (11)

B. AMR OF RANGE QUERIES OF THE PYRAMID TECHNIQUE

To comply with analysis on the Pyramid technique in previous work, we assume the
data space is normalized to a unit hypercube. [Berchtold et al. 1998] has derived
that the volume of a pyramid with height hpyr is

v =
(2 · hpyr)d

2 · d
As mentioned in Section 4.3, the range query is mapped to a height range [hlow, hhigh]
for each pyramid (for pyramids not intersected by the query window, hlow = hhigh =
0). So the total volume accessed by the query is

vPTrange =
∑

for all pyramids

(2 · hhigh)d − (2 · hlow)d

2 · d (12)

Given uniform data distribution, the number of pages affected by the mapped region
is

nm =
∑

for all pyramids

d
(
(2 · hhigh)d − (2 · hlow)d

) · n
2 · d · Ceff

e (13)

The volume of the query is sd. For uniform data distribution, there are sd ·n points
in the query range. The minimum number of pages to contain them is

na = ds
d · n

Ceff
e

Therefore amr of the Pyramid technique range query is

amrPTrange =

∑
for all pyramidsd

((2·hhigh)d−(2·hlow)d)·n
2·d·Ceff

e
d sd·n

Ceff
e (14)

C. AMR OF RANGE QUERIES OF THE IMINMAX

First, we analyze which region is accessed by a range query of the iMinMax. Con-
sider a range query in a 2-dimensional unit data space as shown in Figure 19. The
data space is divided into 2 triangular partitions by the diagonal with ends (0,0)
and (1,1). In the triangle (0,0),(1,0),(1,1), the x-coordinate is larger than the y-
coordinate. When y < 1 − x, that is, when the point is below the line y = 1 − x,
the y-coordinate is indexed so all the data points having the same y-coordinate as
the query range (the region a, b, c in the figure) are accessed; when y ≥ 1 − x,
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that is, when the point is above the line y = 1− x, the x-coordinate is indexed, so
all the data having the same x-coordinate as the query range (the region d, e in
the figure) are accessed. In the triangle (0,0),(0,1),(1,1), the x-coordinate is smaller
than the y-coordinate. In this case, when the point is below the line y = 1− x, the
x-coordinate is indexed, so all the data having the same x-coordinate as the query
range are accessed; when the point is above the line y = 1 − x, the y-coordinate
is indexed, so all the data having the same y-coordinate as the query range are
accessed.

x

y

1
(1,1)

0 1

a b
c

d

e
Query window

y = 1 − x

+
Accessed region

Fig. 19. Region accessed of the iMinMax range query

Observing the accessed region in Figure 19, we find that it is the same as in the
Pyramid technique. The above analysis can be easily generalized to d-dimensional
space. What makes the iMinMax different is that it has a tuning parameter θ which
in fact shifts the position of the line y = 1−x so that it can adapt to the data skew.
For uniform data, the iMinMax performs best when θ=0, so it has the same amr
as the Pyramid technique. For skew data, θ is tuned, which results in a smaller
amr, so that the iMinMax performs better than the Pyramid technique.

D. AMR OF KNN QUERIES OF THE PYRAMID TECHNIQUE

The answer set of a kNN query is contained in a hypersphere. Figure 20 shows
the region accessed by a query sphere. The query point Q is the anchor point of
the query sphere. It is uniformly distributed in the data space. Observe that as
long as the bottom of the query sphere, B is within pyri, the region accessed in
pyri is the same as if the query sphere was a query cube identical to the minimum
bounding hypercube of the query sphere. Even if B is outside of pyri, as long
as it is not very far from pyri, the region accessed is still similar. In fact, the
query radius of kNN search is typically larger than 0.5, which satisfies the above
condition. Therefore, we calculate the region accessed by the query cube as an
estimation for the region accessed by the query sphere. The region accessed in pyri

is also a pyramid pyr with base parallel to the base of pyri and similar to pyri.
Their volume are proportional to hd

p, where hp is the height of the pyramid. The
volume of the whole data space is 1. Let h be the coordinate of Q in dimension y.
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Then the height of pyr is r − (h − 0.5). The volume of pyri is vpyri
= 1

2d and the
height of pyri is 0.5. Therefore the volume of pyr is

vpyr =
(

r − (h− 0.5)
0.5

)d

· vpyri =
(

r − (h− 0.5)
0.5

)d

· 1
2d

Similarly, we can calculate the volume of pyr′

vpyr′ =
(

h + r − 0.5
0.5

)d

· 1
2d

The total volume accessed in the pyramid pair pyri and pyr′i is

v = vpyr + vpyr′ =
(

r − (h− 0.5)
0.5

)d

· 1
2d

+
(

h + r − 0.5
0.5

)d

· 1
2d

Q is uniformly distributed in the data space, so h is uniformly distributed in [0,1].
When h is different, the expression of v is different, but the derivation is similar as
above. We therefore only list v for different scenarios as follows:

If 0.25 < r ≤ 0.5

(1) when 0 ≤ h ≤ 0.5− r, v1 = 1
2d −

(
0.5−h−r

0.5

)d 1
2d

(2) when 0.5− r ≤ h < r, v2 = 1
2d +

(
h+r−0.5

0.5

)d 1
2d

(3) when r ≤ h < 1− r, v3 =
(

h+r−0.5
0.5

)d 1
2d +

(
0.5−(h−r)

0.5

)d
1
2d

(4) when 1− r ≤ h < 0.5 + r, v4 = 1
2d +

(
0.5−(h−r)

0.5

)d
1
2d

(5) when 0.5 + r ≤ h ≤ 1, v5 = 1
2d −

(
h−r−0.5

0.5

)d 1
2d

We can obtain an average of v by integrating over h and then dividing the result
by the size of the interval of h, 1. The average volume accessed in an opposite
pyramid pair is

va =
∫ 0.5−r

0

v1dh +
∫ r

0.5−r

v2dh +
∫ 1−r

r

v3dh +
∫ 0.5+r

1−r

v4dh +
∫ 1

0.5+r

v5dh
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= (r +
1− (1− r

0.5 )d+1

2(d + 1)
)
1
d

There are d pyramid pairs in total, so the total volume accessed by the kNN
query sphere is

vt = r +
1− (1− r

0.5 )d+1

2(d + 1)

We can derive vt for r within other ranges similarly.

If 0 ≤ r ≤ 0.25, we obtain

vt = r +
1− (1− r

0.5 )d+1

2(d + 1)

If 0.5 < r ≤ 1, we obtain

vt = r +
1− ( r

0.5 − 1)d+1

2(d + 1)

We note that we can combine the above cases for all 0 ≤ r < 1 into one equation:

vt = r +
1− |1− r

0.5 |d+1

2(d + 1)
(15)

When r > 1, almost all the data in the data space are accessed. The Pyramid
technique is very inefficient and performs worse than sequential scan, and hence we
do not take the scenario of r > 1 into account.

To use Equation (15) to calculate volume affected by the query, we still need to
know the query radius. [Bohm 2000] provides a method to estimate the expectation
of kNN query radius and we just sketch the method as follows:

The probability that at least k points are inside the volume v(r) is

Pk(r) = 1−
∑

0≤i<k

(
n

i

)
· v(r)i · (1− v(r))n−i

The probability density function p(r) can be derived by differentiation

pk(r) =
∂Pk(r)

∂r

Then the expected value of the k-th NN distance is the following integration

Rk =
∫ ∞

0

r · pk(r)∂r (16)

Note that to calculate v(r) in high-dimensional space, boundary effects should be
considered. Please refer to [Bohm 2000] for details of these formulas.

Substitute r in Equation 15 by Rk, we get

vt = Rk +
1− |1− Rk

0.5 |d+1

2(d + 1)
(17)
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Given uniform data distribution, the number of pages affected by the mapped

region is

nm = dRk · n
Ceff

+

(
1− |1− Rk

0.5 |d+1
) · n

2(d + 1) · Ceff
e (18)

The minimum number of pages to contain the kNN is

na = d k

Ceff
e

Therefore amr of the Pyramid technique kNN query is

amrPTknn =
dRk·n

Ceff
+

(
1−|1−Rk

0.5 |d+1
)
·n

2(d+1)·Ceff
e

d k
Ceff

e (19)
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