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ABSTRACT
Histograms are frequently used to represent the distribution

of data values in an attribute of a relation. Most previ-

ous work has focused on identifying the optimal histogram

(given a limited number of buckets) for a single attribute

independent of other attributes/histograms. In this paper,

we propose the idea of global optimization of histograms,

i.e., single-attribute histograms for a set of attributes are

optimized collectively so as to minimize the overall error in

using the histograms. The idea is to allocate more buck-

ets to histograms whose attributes are more frequently used

and/or distributions are highly skewed. While the accuracy

of some histograms is penalized (being assigned fewer buck-

ets), we expect the global error to be low compared to the

traditional method (of allocating equal number of buckets

to each histogram).

We propose two algorithms to determine the histograms to

construct for a collection of attributes. The �rst is based

on dynamic programming, and the second is a greedy al-

gorithm. We compare the overall error of these algorithms

against the traditional method. Extensive experiments are

conducted and the results con�rm the bene�ts of global op-

timal histograms in reducing the overall error. The extent

of improvement depends on the data and query distribu-

tions, ranging from no bene�t when there is no signi�cant

di�erences in the data distributions to over a factor of 100

reduction in error in some cases we tried.

The time to compute global optimal histogram using dy-

namic programming is much longer than the time to com-

pute optimal histograms separately for each attribute, and

the di�erence widens at a faster rate as the number of his-

tograms increases. With the greedy algorithm, the time

penalty is small, but the error reduction is somewhat less as

well. We propose a third algorithm, called greedy algorithm

with remedy, that has running time similar to the greedy

algorithm, but produces results close to global optimum. In

fact, in every experiment that we tried, this algorithm found
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the exact global optimum.

1. INTRODUCTION
Most DBMSs maintain a variety of statistics of the contents

of the database relations in order to estimate various quanti-

ties, such as selectivities within cost-based query optimizers

[19, 13]. It has been established that the validity of the

optimizers' decisions may be critically a�ected by the qual-

ity of these statistics [7, 10]. This is becoming particularly

evident in the context of increasingly complex queries, e.g.

data analysis queries.

Furthermore, there has been an attempt to produce quick

approximate answers to complex decision support queries.

One popular way to accomplish this is by means of main-

taining suÆcient data statistics in the form of \synopsis"

data structures [3, 8, 4]. The availability and quality of

summarized information becomes all the more important in

such scenarios.

Histograms are widely used in DBMSs as a means of sum-

marizing information [13]. A histogram approximates the

distribution of data values in attributes of the database re-

lations by grouping the data values into a group of buckets.

This grouping into buckets loses information. It is impor-

tant to choose bucket placement wisely, to minimize this

loss of information for any chosen level of data summariza-

tion. Poor quality histograms might lead the optimizers to

choose suboptimal query execution plans that may degrade

the system performance dramatically. They can also pro-

duce results, in an approximate query answering system,

that are quite far from being correct.

Much work has been reported in the literature on the de-

sign of histograms. [16] showed that equi-width histograms

have a much higher worse-case and average error for a va-

riety of selection queries than equi-depth histograms. V-

Optimal histograms were introduced and shown to minimize

the average error for equality selectivity estimation prob-

lems [9, 11]. The experimental results in [18] show that V-

Optimal(V,A) and V-Optimal(V, F) histograms can gener-

ate estimations for range queries with low error, much lower

than equi-depth histograms. For multi-attribute selection

queries, [15] extended the work of [16] to multi-dimensional

histograms. In [17], four techniques were proposed, namely,

the singular value decomposition (SVD), Hilbert numbering,

PHASED and MHIST, and were experimentally evaluated

against multi-dimensional equi-depth histograms.



In real world database management systems, the space al-

lotted to store the histograms is limited. Each histogram

is assigned the space of the order of 200 bytes in a catalog

[18]. All histograms are given the same amount of storage

regardless of the data distributions. However, it takes dif-

ferent numbers of histogram buckets for di�erent data dis-

tribution to provide any error guarantees [12]. For example,

a uniformly distributed data set needs very few buckets to

reach satisfactory estimation, while a very skewed data set

might need many more buckets to get the same satisfactory

approximation. In other words, given a certain error bound,

we require di�erent amount of storage space to construct

histograms to achieve this bound for di�erent data distribu-

tions.

In this paper, we address the problem of globally optimiz-

ing a set of histograms: given a certain amount of space to

construct a set of histograms, determine the histograms to

construct such that the global error is minimized. Such an

approach allows us to allocate more buckets to histograms

whose attributes are more frequently used and distributions

are highly skewed. We present four algorithms to compute

this global optimum. The �rst is an expensive exhaustive

enumeration approach; the second, a dynamic programming

approach that obtains the global optimum at reasonable

cost; the third is a greedy heuristic that is very fast, and

comes close to the optimum; the fourth is a modi�cation to

the greedy heuristic that is almost as fast as the pure greedy

approach, but comes much closer to the global optimum. We

conducted extensive experiments that compare the proposed

algorithms to the conventional one [12] in terms of accuracy

and running time. Our results show that the proposed al-

gorithms can produce better selectivity estimates of range

queries compared to traditional method. The errors of the

methods are generally much lower than existing techniques.

In terms of eÆciency, the time to compute global optimal

histogram using dynamic programming is much longer than

the time to compute optimal histogram separately for each

attribute. Moreover, the di�erence between the two tech-

niques widens at a faster rate as the number of histograms

increases. With the greedy algorithm, the time penalty is

small, but the error reduction is somewhat less as well. We

also show that the greedy algorithm with remedy has run-

ning time similar to the greedy algorithm, but produces re-

sults close to global optimum. In fact, in every experiment

that we tried, this algorithm found the exact global opti-

mum. To our knowledge, till now, there is no reported work

that takes the total space limitation for histogram storage

into consideration while leveraging the di�erence of data dis-

tributions to achieve global optimization of the histograms.

To free the database designer and administrator from the

task of constructing and maintaining every histogram that

is related to a query, research has been conducted towards

automatically identifying the right set of histograms for a

database recently. To identify the critical histograms, [6]

proposed techniques to determine the minimal set of his-

tograms for a database based on the workload characteris-

tics. Our proposal is an alternative solution. What is more,

our proposal not only takes the workload characteristics into

consideration, but also the distribution of the attributes, to

identify the critical histograms. Our proposal is much eas-

ier to be implemented than the techniques proposed in [6].

As described in the following, when an attribute is assigned

only one bucket for its histogram, this histogram of the at-

tribute is not in the minimal set. And its space freed can be

assigned to other critical histograms.

The rest of this paper is organized as follows. We de�ne his-

tograms, error metrics and formulate the problems we study

in Section 2. In particular, we describe the idea of a Global

Optimal Histogram. Then, in Section 3, we present the four

proposed algorithms to compute the global optimum. In

Section 4, we present the results of our experiments, and

discuss the e�ectiveness of the Global Optimal Histogram

and the eÆciency of the techniques, and �nally, we conclude

in Section 5.

2. DEFINITIONS AND PROBLEM FORMU-
LATION

Consider a relation R containing an attribute X. The value

set V of X is the set of values of X that are present in

R. For each v 2 V , the frequency f(v) is the number

of tuples r 2 R with r:X = v. We assume that the el-

ements of V have been sorted according to some sort pa-

rameter(following [18]), commonly according to the values

of V , e.g. V = fvij1 � i � Ng where i < j i� vi < vj
and N is the number of distinct values. We denote f(vi) as

fi, and de�ne the data distribution of X as the set of pairs

T = f(v1; f1); (v2; f2); : : : ; (vN ; fN )g.

A histogram of an attributeX is constructed by partitioning

the data distribution T into b(� 1) buckets, and approximat-

ing the frequencies and values in each bucket. The accuracy

of any operation performed using a histogram depends on

the accuracy of the approximation.

Let M denote the number of histograms in the system cat-

alog, and let the set of histograms be H = fhij1 � i �Mg.
As noted in the last section, for real world DBMS, the space

in a system catalog for storing the histograms is limited. Let

B be the total number of buckets used to represent all the

histograms. Let us denote by the pair (hi; bi) the allocation

of bi buckets to histogram hi, (1 � i �M).

De�nition 1 A set of histograms H = fhij1 �
i � Mg is called the set of Global Optimal
Histograms (GOH), f(hi; bi)j1 � i � Mg, ifPM

i=1
bi � B and min(

PM

i=1
pi � ei), where ei is

the error of histogram hi and pi is the probability

of attribute Xi being queried.

2.1 Error Metrics
From an application perspective, the error metric we most

care about are absolute error and relative error [14] in the

estimate returned by a histogram. Let Si be the actual size

of a query qi and let S0i be the estimated size of the query

by a histogram. The absolute error of the query is de�ned

as:

e
abs
i = jSi � S

0

ij



And the relative error of the query is de�ned as:

e
rel
i =

eabsi

Si
=
jSi � S0ij

Si

Absolute error and relative error are calculated based on a

speci�c query or a set of queries. As such, it is very hard

to apply absolute error or relative error directly to assess

histogram quality universally.

We address this diÆculty by introducing an error metric

Average Standard Deviation, which can be calculated

directly from a histogram and its corresponding data dis-

tribution. Our proposal is an enhancement of intrinsic his-

togram quality metrics proposed by a long line of researchers.

(See next paragraphs). Our extensive experiments show that

minimization of this error metric leads to reduction in both

absolute error and relative error over a wide range of queries.

To evaluate the accuracy of a histogram, [12] proposed an

error metric, Sum Squared Error, which is de�ned as follows:

for any interval [i; j]; i � j,

SSE(i; j) =

jX

k=i

(fk � avg(i; j))
2

where

avg(i; j) =

Pj

k=i
fk

j � i+ 1

A histogram constructed with the minimal SSE under a lim-

ited number of buckets is known as a V-Optimal histogram

[11]. V-optimal(V,F), V-optimal(V,A) histograms were re-

ported [18] among the most accurate histograms for equality

and range selection. If storage has already been allocated

at the level of individual histograms, then the best we can

do is to construct a V-Optimal(V,F) histogram for each.

We note that
p
SSE is actually the standard deviation, �,

of a data distribution. Clearly, minimizing SSE minimizes

�. Di�erent attributes may have di�erent number of val-

ues, distinct values and their corresponding histograms may

have di�erent number of buckets. To make the error metrics

of di�erent histograms comparable, they have to be scaled.

This scaling is much easier done for standard deviation than

for SSE, since the former is measured in the same units as

the attribute in question, whereas SSE is measured in square

units. As such, we prefer stating the V-Optimal problem in

terms of minimizing standard deviation rather than of min-

imizing SSE.

Because the estimation error for a range query is caused by

the bucket in which a query `straddles', if the average of

standard deviation of each bucket is low, we argue and our

comprehensive experiments show, the average error of the

estimation would also be low. In other words, we should

use the standard deviation normalized by the number of

buckets as the error metric. We denote it as average standard

deviation:

�
avg

=

p
SSE

number of buckets

We customize the de�nition of GOH as

De�nition 2 A set of histograms H = fhij1 �
i � Mg is called the set of Global Optimal
Histograms (GOH), f(hi; bi)j1 � i � Mg, ifPM

i=1
bi � B and min(

PM

i=1
pi � �avgi ), where

�
avg

i is the standard deviation of histogram hi
normalized by bi, and pi is the probability of at-

tribute Xi being queried.

pi can be obtained from workloads by monitoring and log-

ging queries on the database systems. For simplicity, we will

set it as 1 in this paper as this does not a�ect our results.

We note here that GOH proposed in this paper can be ap-

plied to other kinds of single attribute histograms, such

as Compressed histograms, Maxdi� histograms, and multi-

dimensional histograms. [17] reported that the techniques

proposed require less space for low and high dependency

multi-dimensional histograms than that for intermediate de-

pendency histograms given a certain error criterion. If in-

termediate dependency histograms are assigned more space

than low and high dependency multi-dimensional histograms,

we can expect improvement in the overall quality of a group

of multi-dimensional histograms.

3. GLOBAL OPTIMAL HISTOGRAMS
While we consider di�erent data distributions of attributes,

we observe that evenly distributed data needs fewer buck-

ets to get a satisfactory approximation while very skewed

or irregularly distributed data needs a lot more buckets to

reach certain error criteria. In fact, for uniformly distributed

data, 5 buckets or 50 buckets do not make much di�erence

in selectivity estimation. But, for skewed data, even if we

increase the number of buckets only by 1 to approximate

the data distribution, the quality of the histogram might

increase signi�cantly. These are illustrated in Example 3.1.

We denote �
avg

i (j;Ni) as the average standard deviation of

histogram hi with the number of buckets j, and its data

distribution Ti has Ni distinct values.

Example 3.1 Consider two data distributions: T1 = f(1; 50),
(2; 50), (3; 50), (4; 51)g and T2 = f(10; 70), (11; 2), (12; 80),
(13; 3)g. For T1, we have �avg1 (1; 4) = 0:87 and �

avg

1 (2; 4) =

0. For T2, we have �
avg

2 (1; 4) = 72:85, �
avg

2 (2; 4) = 30:01,

�
avg

2 (3; 4) = 16:03 and �
avg

2 (4; 4) = 0. While 2 buckets and

4 buckets make no di�erence to T1, 2 buckets and 4 buckets

make much di�erence to T2 in error reduction. |

To �gure out where our buckets may be best spent, we in-

troduce the notion of marginal gain. By assigning more

buckets to histograms with greatest marginal gain, we hope

to increase the total quality of the histograms in a catalog.



De�nition 3Marginal Gain (m) The marginal

gain of a data distribution is the improvement in

the quality or accuracy (i.e., reduction in errors)

of its representative histogram as a result of ad-

ditional buckets being allocated.

m(i; j) = �
avg

(i;N)� �
avg

(j;N)

where i and j are the number of buckets assigned

and 1 � i � j, N is the number of distinct values

of the data distribution.

Example 3.2 Continuing example 3.1, we �nd thatm1(1; 2)

= 0:87 and m1(2; 3) = 0. Similarly, we get m2(1; 2) = 42:84,

m2(2; 3) = 13:98, m2(3; 4) = 16:03 and m2(4; 5) = 0. In

other words, we should not even devote a second bucket to

the �rst distribution until we have been able to devote four

buckets to the second distribution. |

Using the above intuitions, in this section, we �rst present

an exhaustive algorithm to �nd the set of Global Optimal

Histograms (GOH) based on the average standard deviation

criteria and then provide a dynamic programming algorithm

to build GOH. After that, we propose a greedy algorithm

to construct approximate GOH which is signi�cantly faster

than the exhaustive or dynamic programming algorithms.

Because the greedy algorithm misses optimal solutions in

some situations, we present a remedy for the algorithm, that,

while not provably optimal, comes very close in practice.

An important contribution of [12] is that it provided a dy-

namic programming algorithm (DP) that constructs a V-

Optimal histogram in O(N2b) time. In constructing GOH,

we apply DP to construct each individual V-Optimal his-

togram. We do so, irrespective of which of these four algo-

rithms we use to build the GOH.

3.1 Exhaustive Algorithm
In this section, we provide an exhaustive algorithm that

achieves theGOH. The exhaustive algorithm essentially tries

all possible allocations to obtain the optimal solution.

For every histogram that we want to construct, we apply

the DP [12] to calculate

�
avg

i (b;Ni)

for all 1 � b � B � M + 1; i 2 [1;M ]; where Ni is the

number of distinct values of the ith attribute. We then

store the computed values in an array. Next, all the di�er-

ent combinations of di�erent number of buckets assigned to

each histogram are enumerated and for each combination,

we compute
PM

i=1
�
avg

i (bi; Ni), where
PM

i=1
bi = B. The set

f(hi; bi)j1 � i �Mg that has the min(PM

i=1
�
avg

i (bi; Ni)) is

the GOH.

To calculate every �
avg

i (b;Ni) requires O(
P

N2
i B). And to

enumerate every combination to calculate
P

�
avg

i (bi; Ni),

the time complexity is O(CM�1

B�1 ), which is a large exponen-

tial in the number of histograms. While this algorithm

generates the optimal solution, it is clear that it is not prac-

tical for large number of buckets and histograms. We have

included it merely for the purpose of comparison to deter-

mine the quality of the proposed algorithms.

3.2 Optimal Algorithm based on Dynamic Pro-
gramming

We observe that

min(
Pk

i=1
�
avg

i (bi; Ni)) = min(min(
Pk�1

i=1
�
avg

i (bi; Ni))

+�
avg

k
(bk; Nk))

where bk ranges from 1 to B � M + 1,
Pk�1

i=1
bi is from

(B �M + k � 1) to (k � 1) correspondingly. The solution

for min(
Pk

i=1
�
avg

i (bi; Ni)) can then be reduced to

min(

k�1X

i=1

�
avg

i (bi; Ni))

Thus, we can apply dynamic programming to calculate

min(

MX

i=1

�
avg

i (bi; Ni))

for all 1 � i �M and k �Pk

i=1
bi � (B �M + k).

Dynamic Programming Algorithm (GOHDP)

1. for i = 1 to M

for b = 1 to (B �M + 1)

Calculate �[i][b];

2. for i = 1 to (B �M + 1)

min sum error[1][i] = �[1][i];

3. for j = 2 to M

for k = 1 to (B �M + 1)f
min sum error[j][k] =

min(min sum error[j � 1][p] + �[j][q])

where p; q � 1 and p+ q = B �M ;

record the p and q that

achieve min sum error;

g
4. min sum error[M ][B�M+1] is the result:

minimal sum of average standard deviation;

When we get the min sum error[M ][B �M + 1], we can

trace back the array to retrieve bi assigned to each hi.

This algorithm also achieves perfect GOH but it is much

more time eÆcient than the exhaustive algorithm. To calcu-

late all the �
avg

i (b;Ni), the time complexity is O(
P

N2
i B).

And to execute the dynamic programming part, the time

complexity is O(BM). So, the time complexity of this dy-

namic programming algorithm is polynomial. Assume every

Ni being equal, Ni = N , the time complexity of this optimal

algorithm is of O(N2BM).



3.3 Greedy Algorithm
Even though the dynamic programming algorithm is con-

siderably more eÆcient than the exhaustive algorithm, it is

still computationally expensive. In this section, we propose

a greedy algorithm to get an approximate GOH quickly.

Before describing the algorithm, we present a lemma and a

theorem.

According to the de�nition of the average standard deviation

and V-Optimal(V,F) histogram, we have the following two

straightforward results:

Lemma 1, For any data distribution with the

number of distinct values N, and any i, j with

1 � i < j, we have

�
avg

(i;N) � �
avg

(j;N)

Based on the de�nition of marginal gain and lemma 1, we

have the following theorem.

Theorem 1, For 1 � i � j,

m(i; j) � 0; When i = j; m(i; j) = 0:

As
P

�
avg

k
(1; Nk) is a constant for a group of attributes,

and

�
avg

k (1; Nk) = �
avg

k (j;Nk) +mk(1; j); where 1 � j

given a total number of buckets, the larger the value ofP
mk(1; j), the smaller

P
�
avg

k
(j;Nk) would be. For DP,

to construct a V-Optimal(V,F) histogram of an attribute,

SSE(i-1, N) must be calculated before SSE(i, N) can be ob-

tained. This is computationally expensive and storage ineÆ-

cient. However, from theorem 1, we know thatm(i; i+1) � 0

for all i � 1. The proposed greedy algorithm exploits this

result by assigning every histogram one bucket initially, and

repeatedly allocates an additional bucket to the the his-

togram with the highest marginal gain (until all buckets are

allocated).

Greedy Algorithm (GOHGA)

1. For i = 1 to M

Compute �
avg

i (1; Ni), �
avg

i (2; Ni) and

mi(1; 2) = �
avg

i (1; Ni)� �
avg

i (2;Ni).

2. For i = 1 to M, �nd the maximum mi.

Assume this is the kth histogram. Increase

this histogram's number of bucket by 1; bk =

bk + 1. Calculate this data distribution's

new bucket marginal gain

mk(bk; bk + 1) = �
avg

k
(bk; Nk) � �

avg

k
(bk +

1; Nk)

3. Goto step 2, until the total number of buck-

ets is B.

The greedy algorithm is very eÆcient and manages to ap-

proximate GOH very well in most cases as our extensive

experiments show.

The time complexity of this greedy algorithm isO(
P

(N2
i bi)).

If we assume all Ni = N , the time complexity is O(N2B).

So, it is much more eÆcient than the optimal algorithm

based on dynamic programming.

3.4 Greedy Algorithm with Remedy
Upon examination of the cases where the greedy algorithm

fails to achieve the optimum, we notice that in all these cases

there is an \inversion" in marginal gain. That is, m(i; i+1)

might be less than m(i + 1; i + 2), for some value of i for

some distribution.

To assign each bucket, the greedy algorithm only considers

the marginal gain of one additional bucket granted to each

data distribution and selects the one with the largest gain.

This process would be optimal if marginal gains decrease

monotonously with more buckets { that is, if the \law of di-

minishing returns" is followed exactly. However, in practice,

it appears that marginal gain has only a generally decreas-

ing trend as number of buckets is increased, with occasional

exceptions. This might lead the greedy algorithm to reach a

sub-optimal result, as illustrated in the following example.

Example 3.3 Suppose histogram H1 has been allocated 3

buckets and has m1(3; 4) = 30, m1(4; 5) = 130. We also

have histogram H2 with 4 buckets and has m2(4; 5) = 40,

m2(5; 6) = 40. Assume there are 2 more buckets to assign.

GOHGA will choose to raise the number of buckets of H2

by 2 instead of assigning the two buckets to H1 to get the

optimal result.|

This problem can be avoided if we could get the greedy al-

gorithm to examine not just the single step marginal gain,

but also the marginal gain after more steps. Doing this in-

de�nitely is not cost e�ective. However, checking just one

additional bucket allocation is possible to do, at limited ad-

ditional computational cost. Based on this idea, we propose

a modi�cation to the greedy algorithm.

From the results of step 3 of the greedy algorithm, we per-

form the following steps repeatedly until there is no further

gain:

1. We check every histogram whether there is an inversion

if two extra buckets are assigned. We then determine

the largest marginal gain of step-width-2 and its cor-

responding histogram. Then, we �nd the two smallest

marginal gain of step-width-1 that the buckets have

already been assigned. If their sum is less than the

largest marginal gain of step-width-2 found, we per-

form the following remedy: we decrease the bucket

allocation of the �rst two histograms by 1 each and

increase the latter histogram's bucket allocation by 2.

2. We transfer one bucket from a histogram to another.

The transfer is considered bene�cial if
P

�avg is re-

duced. If the transfer is not bene�cial, we undo the

allocation.



4. PERFORMANCE STUDY
In this section, we experimentally study the bene�ts of GOH

compared to the histograms constructed by assigning each

one the same number of buckets. Then we discuss the ef-

�ciency of the algorithms. We denote the algorithm that

constructs each V-Optimal histogram with the same number

of buckets using dynamic programming as DP [12], the ex-

haustive algorithm as GOHEA, the dynamic programming

algorithm as GOHDP, the greedy algorithm without rem-

edy as GOHGA and the greedy algorithm with remedy as

GOHGR.

We investigate the gain of GOH for estimating range query

result size. Absolute error and relative error are applied

as the ultimate error metric. The average error due to a

histogram was computed over a set of queries. That is, for

a set of L queries. The average absolute error Eabs was

computed as:

E
abs

=
1

L

LX

i=1

e
abs
i

and the average relative error Erel was computed as:

E
rel

=
1

L

LX

i=1

e
rel
i

We can now evaluate the quality of a collection of histograms.

These histograms should be regarded as one entity because

they are optimized as a whole. With a weighting corre-

sponding to the frequency of access pi for an attribute, and

each absolute error of a query as eabsi = jSi � S0ij, we de�ne
the absolute error upon a group of histograms as:

�
abs

=

MX

i=1

pijSi � S
0

ij =
MX

i=1

pie
abs
i

and the relative error as:

�
rel

=
�absPM

i=1
piSi

where M is the number of histograms, Si is the actual size

of a query and S0i is the estimated size of the query by his-

togram hi. As pi is set as 1 in section 2, every attribute in

the group has the same probability to be accessed. we have

the absolute error as:

�
abs

=

MX

i=1

e
abs
i

and the relative error as:

�
rel

=
�absPM

i=1
Si

The average error due to a collection of histograms should

be computed the same as that for a histogram:

E
abs
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4.1 A Comparative Study on Effectiveness
The data sets we used in our experiments included synthe-

sized zipf data [20], TPC-D data [1] and UCI KDD Database

Repository [2]. The results of our experiments did not vary

signi�cantly for di�erent data sets or di�erent range query

sets. To illustrate the bene�ts of GOH and accuracy of the

algorithms proposed, we present test results on two groups

of data sets.

For both data sets, the range queries executed were of the

form b � X � a, b � X and X � a, where a and b were

generated randomly and was in the domain of each data set.

On each data set, 10; 000 such queries were executed and

average absolute and relative error were calculated. Here

we only present the results of X � a as the results of the

other query types are similar.

It was reported in [18], each histogram was stored in a cat-

alog in the order of 200 bytes. As such, the total number of

buckets used in our study are in increments of 25.

4.1.1 Test Group 1
The �rst test group contained �ve data sets. All the �ve data

sets were synthesized zipf data with z = 0; z = 0:01; z =

0:1; z = 1:0 and z = 2 individually. Each data set was

generated with the size of 500; 000 and N = 500. The fre-

quencies of the synthesized zipf data were mapped to the

values randomly.

Our �rst experiment is to study the e�ectiveness of the vari-

ous schemes given that the total number of buckets available

is 75. For DP, each histogram was assigned 15 (= 75/5)

buckets. Figure 1 shows the results on the average abso-

lute error for each histogram (data sets 1 to 5) as well as

the average absolute error for the collection of 5 data sets.

From the �gure, we note that all the three schemes GOHEA,

GOHDP and GOHGR have the same average relative error.

This shows clearly that GOHGR's bucket allocation is op-

timal in terms of the optimization criterion. We note that

all the schemes do not have any error for data set 1. This

is because data set 1's distribution is uniform. It turns out

that all GOH-based schemes allocate only 1 bucket to this

data set. Moreover, the answers for the queries can be deter-

mined accurately. Next, we also note that the GOH-based

schemes have a larger error for data sets 2 and 3 than the DP

scheme, but the errors for data sets 4 and 5 for the GOH-

based schemes are signi�cantly lower than the DP scheme.

These results are expected as the GOH-based schemes fa-

vor highly skewed distributions by allocating more buck-

ets to them at the expense of lowly skewed distributions.



Finally, we observe that the overall performance for GOH-

based schemes are superior compared to the DP scheme (see

the group result in �gure) { we see that the average absolute

error decreased by nearly a half, from 2997 to 1545.

Figure 2 shows the result of the average relative error. As

shown, for lowly skewed data sets (sets 2-3), the relative

error for GOH-based schemes are slightly worse than the DP

scheme. However, the di�erence is negligible. On the other

hand, for highly skewed data sets (set 4 and 5), the GOH-

based schemes continue to perform well, in the sense that the

relative error remains low. For the DP scheme, the relative

error increases signi�cantly as the data distributions become

more skewed. Again, on the whole, GOH-based scheme is

shown to be more e�ective than the DP scheme with the

average relative error decreased over 4 times, from 0:95% to

0:22%. The explanations for these results are similar to that

for the absolute error results, i.e., GOH-based schemes are

able to allocate more buckets to highly skewed data sets and

thus allow the histograms to re
ect more accurate summary

data.

Figure 3 shows the average standard deviation results. While

the average standard deviation of GOH-based schemes for

data sets 2 and 3 is slightly larger than the DP scheme,

that of data sets 4 and 5 was much lower. The resultant ef-

fect is that the GOH-based schemes' total average standard

deviation is less than half that of the DP scheme.

Looking at the three �gures (Figures 1-3), we observe that

there is a correlation in the average standard deviation re-

sults with the average absolute and relative errors, i.e., the

relative performance among the various schemes are the

same in all these �gures. This is expected. Since a low av-

erage standard deviation implies a more accurate histogram

representation, the relative and absolute errors would also

be low. This result is con�rmed in the three �gures. When

a histogram is assigned more buckets, it captures the orig-

inal data distribution more accurately. For data sets 2 and

3, GOH-based schemes allocate fewer buckets to represent

the histogram than the DP scheme. As a result, the average

standard deviation for the GOH-based schemes are larger

than the DP scheme, and so are the average absolute and

relative errors. On the other hand, for data sets 4 and 5,

GOH-based schemes assign these histograms more buckets,

so the average standard deviation, average absolute and av-

erage errors are lower than those of DP. It turns out that

the e�ect on the overall allocation shows similar correlation.

We also evaluated the e�ectiveness of the proposed schemes

as the total number of buckets varies from 25 to 100. The

corresponding bucket allocation for each histogram under

DP is given by (total number of buckets/5). We shall only

present the results for the collection of histograms, rather

than individual histogram.

Figure 4 and Figure 5 show that GOH -based schemes scale

very well with di�erent assignment of space. First, we ob-

serve that as the number of buckets increases, all scheme's

errors also reduces. Second, the average absolute errors for

GOH-based schemes are about half that of the DP tech-

nique, and their average relative errors are also much lower

than the DP scheme. Third, as shown in Figure 5, we see

that the solution obtained by GOHGA is a little worse than

that by the other GOH-based schemes in the test of total

number of buckets 50. This is because GOHGA is greedy in

nature, and may miss the optimal solution. Finally, Figure 6

shows the average standard deviation results as the num-

ber of buckets varies. The result is consistent with earlier

observations that the GOH-based schemes can outperform

the DP scheme by a wide margin by having smaller average

standard deviation.

4.1.2 Test Group 2
The second test group contained �ve data sets. They were

extracted from TPC-D data sets with skewed data [5]. We

took the 4th attribute of customer.tbl, the 6th attribute of

part.tbl, the 4th attribute of supplier.tbl, and the 3rd and

5th attributes of lineitem.tbl as test data sets. The TPC-D

data was populated with the scale 0.2 and z = 1:0. In total,

the total cardinality of the datasets contain about 2.36M

tuples.

As before, we shall report the results when we use a total

of 75 buckets �rst. Figure 7 shows the absolute error result.

As in the result for the test group 1, the absolute errors for

the GOH-based schemes for data sets 1, 2 and 3 is larger

than the DP technique, while that for data set 4 is slightly

lower and that for data set 5 is very much smaller. For the

GOH-based schemes, the group's average absolute error is

nearly a half that of the DP scheme.

Figure 8 shows the relative error result. While the relative

performance is largely the same as that for test group 1 for

individual histograms, the di�erence between GOH-based

schemes and the DP schemes for some individual histograms

is greater. For example, for data set 3, GOH-based schemes

is 8 times worse than the DP schemes. However, we see that

for the overall result, the GOH-schemes remain superior -

while the relative error for DP is 1.07%, the relative error for

GOH-based schemes is about 0.46%. Upon investigation, we

note that this is because data sets 1, 2 and 3 have relatively

fewer number of tuples and fewer number of distinct values

compared to data sets 4 and 5. The penalty of the quality

of histograms of data sets 1, 2 and 3 is not comparable to

the improvement of the quality of histograms of data sets 4

and 5.

Finally, Figure 9 shows that the relative performance of the

various schemes remain largely the same for the standard

deviation result. The total of average standard deviation of

GOH-based schemes is less than half that of the DP scheme.

We also repeated the experiments when the total number

of buckets are 25, 50, 75 and 100. The results of the ex-

periments are shown in Figure 10, Figure 11 and Figure 12.

As shown, the relative performance between the GOH-based

schemes and the DP algorithm is largely similar to test group

1's results, i.e., GOH-based schemes outperform DP scheme.

To summarize, the results of the experiments indicate that

for all the GOH-based schemes, the average absolute and

relative errors of the histograms was much lower than the

DP scheme. Among the GOH-based schemes, the greedy

algorithms are comparable to the optimal schemes. More-

over, we note that GOHGR can outperform GOHGA with-



out excessive overhead (as we shall see in the subsequent

experiments).

4.2 On the Effectiveness of GOH
In the last subsection, we observe that the bene�ts of GOH

di�ers considerably in di�erent test groups | di�erent com-

bination of data sets. In this section, we discuss about when

GOH gain the most. More experimental results are pre-

sented to support our discussion.

Intuitively, compared to assigning the same number of buck-

ets to di�erent histograms, when a histogram of a data dis-

tribution with high marginal gain and a histogram of a data

distribution with low marginal gain are both constructed in

a catalog, GOH can gain much by allotting the one with

high marginal gain many more buckets than the one with

low marginal gain. For example, if one histogram is built

for a very irregular distributed data and another is con-

structed for a uniformly distributed data, GOH will bene�t

signi�cantly. On the contrary, building histograms for data

distributions with little di�erence of marginal gain, the gain

of GOH will be low.

In the following experiment, 6 sets of zipf data were synthe-

sized. Each had the size of 500; 000 and N = 698. z was

varied from 0 to 2:0. The frequencies of the synthesized zipf

data were mapped with the values in decreasing order. The

data sets with z = 0 and z = 2:0 were assigned to test group

3. The data sets with z = 0:02 and z = 1:80 were assigned

to test group 4. And the data sets with z = 1:8 and z = 2:0

were assigned to test group 5. The data distributions are

depicted in Figure 13. We applied GOHDP to construct

GOH for each of these three test groups. Each GOH has 30

buckets. For comparison, a histogram with 15 buckets for

each data set were constructed by DP schemes. The average

absolute and relative error for each test group are presented

in Figure 14 and Figure 15.

It is clear from the �gures that in test groups 3 and 4, the av-

erage error were reduced greatly by GOH compared to DP,

nearly 6 times for test group 3 and nearly 3 times for test

group 4, while the average error of test group 5 decreased

little, about 3%. To understand this phenomenon, let us ex-

amine the data distribution in Figure 13. We see that when

the z value is high, z = 1:8 and z = 2:0, the data distribu-

tion is highly skewed, but when z value is small, z = 0 and

z = 0:02, all values have approximately the same number of

occurrences. For test groups 3 and 4, we combined highly

skewed data (with z = 2:0 and z = 1:8) with uniformly dis-

tributed data (with z = 0 and z = 0:02). As a result, more

buckets are being allocated to the highly skewed data (which

has higher marginal gain) by GOH-based schemes. Thus,

the GOH obtained reduced the error signi�cantly compared

to the DP scheme. In test group 5, the two data distribu-

tions combined were with little di�erence of skew, that is to

say, with almost the same marginal gains. Thus, the bene�t

of GOH diminishes.

4.3 A Comparative Study on Efficiency
In this section, we show the time eÆciency of the algorithms:

DP, GOHGA, GOHGR, GOHDP and GOHEA.

In this set of experiments, 8 data sets are generated with
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z = 0, z = 0:02, z = 0:04, z = 0:06, z = 0:08, z = 0:10,

z = 1:80 and z = 1:00 respectively. We shall denote these

data sets as DSi, 1 � i � 8. Each data set has the size

of 500; 000 and N = 698. The frequencies of the zipf data

are mapped with the values in decreasing order. A total of

7 experiments are conducted. Experiment j contains data

sets DS1 to DSj+1. The total number of buckets allocated

to each experiment is proportional to the number of data

sets, with each data set having an average of 15 buckets.

The time spent to construct each group is shown in Fig-

ure 16. As shown, GOHEA is the most ineÆcient. As the

number of histograms and buckets increase, the processing

time of GOHEA increases exponentially. Thus, GOHEA is

not a practical strategy, and has been included in our study

as a basis to measure the e�ectiveness of the other schemes.

For GOHDP, we also observe that its processing time in-

creases dramatically as the number of histograms increases.

We also note that the time spent by GOHGA and GOHGR

are comparable and are both very close to that by DP. Since

both algorithm generate better GOH than DP, this makes

the greedy algorithms promising strategies to adopt. These

results con�rm our analysis in Section 3.
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5. CONCLUSIONS
In this paper, we have proposed a novel idea of Global Opti-

mal Histograms. Instead of generating an optimal histogram

for each attribute (independent of other attributes/histograms),

we generate a collection of histograms. By having a global

view of the collection of histograms, it allows us to allocate

more buckets (space) to histograms that represent highly

skewed data and/or more frequently accessed data, and fewer

buckets to histograms that captures uniformly distributed

data. As a result, the overall quality of the histograms im-

proves, which means that the system can provide overall

better statistics.

We developed a dynamic programming algorithm for com-

puting GOH in time proportional to the square of the num-

ber of distinct data values. The polynomial running time of

this algorithm when compared with the polynomial running

time of dynamic programming techniques to compute the

V-optimal histogram for individual attributes in isolation,

such as [12], is worse only by a factor equal to the number

of histograms.

We also developed a greedy algorithm, and a remedy for

common errors in the greedy algorithm, which are much

more time eÆcient than dynamic programming.

Our extensive experiments and results show the bene�ts

of Global Optimal Histograms using V-Optimal histograms

and the absolute error and relative error metric. GOH was

shown able cut error by a factor greater than 5 compared

to the traditional approach. The experiments showed that

the extent of quality improvement varied in di�erent data

sets. When highly skewed data sets joined with uniform dis-

tributed data sets, the gain of GOH was the largest. Our

results also show that the greedy algorithm with remedy

approximated GOH very well (achieved GOH in all of our

experiments) without sacri�cing computational eÆciency.

In future research, we plan to apply GOH in constructing a

set of Maxdi� histograms, because Maxdi� histogram gives

best overall performance [18] for highly skewed data, and

also to extend GOH to multi-dimensional histograms.

6. ACKNOWLEDGEMENTS
The work of H.V. Jagadish was supported in part by NSF

under grant IIS-0002356.

7. REFERENCES
[1] TPC BENCHMARK D(Decision Support).

Transaction Processing Performance Council

http://www.tpc.org.

[2] UCI KDD Database Repository { the most popular

datasets used for research in machine learning and

knowledge discovery . http://kdd.ics.uci.edu.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. The Aqua Approximate Query

Answering System. In Proceedings of the ACM

SIGMOD Conference, pages 574{576, 1999.

[4] D. Barbar�a, W. DuMouchel, C. Faloutsos, P. J. Hass,

J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish,

T. Johnson, R. Ng, V. Poosala, K. A. Ross, and K. C.

Sevcik. The New Jersey Data Reduction Report.

IEEE Data Engineering Bulletin, 20(4), 1997.

[5] S. Chaudhuri and V. R. Narasayya. TPC-D Data

Generation with Skew. Available via anonymous ftp

from

ftp.research.microsoft.com/users/viveknar/tpcdskew.

[6] S. Chaudhuri and V. R. Narasayya. Automating

Statistics Management for Query Optimizers. In

Proceedings of the International Conference on Data

Engineering, pages 339{348, 2000.

[7] S. Christodoulakis. Implications of Certain

Assumptions in Database Performance Evaluation.

ACM Transactions on Database Systems,

9(2):163{186, 1984.

[8] P. B. Gibbons and Y. Matias. New Sampling-Based

Summary Statistics for Improving Approximate Query



Answers. In Proceedings of the ACM SIGMOD

Conference, pages 331{342, 1998.

[9] Y. E. Ioannidis. Universality of Serial Histograms. In

Proceedings of the 19th International Conference on

Very Large Databases, pages 256{267, 1993.

[10] Y. E. Ioannidis and S. Christodoulakis. On the

Propagation of Errors in the Size of Join Results. In

Proceedings of the ACM SIGMOD Conference, pages

268{277, 1991.

[11] Y. E. Ioannidis and V. Poosala. Balancing Histogram

Optimality and Practicality for Query Result Size

Estimation. In Proceedings of the ACM SIGMOD

conference, pages 233{244, 1995.

[12] H. V. Jagadish, N. Koudas, S. Muthukrishnan,

V. Poosala, K. C. Sevcik, and T. Suel. Optimal

Histograms with Quality Guarantees. In Proceedings

of the 24th International Conference on Very Large

Databases, pages 275{286, 1998.

[13] M. V. Mannino, P. Chu, and T. Sager. Statistical

Pro�le Estimation in Database Systems. ACM

Computing Surveys, 20(3), 1988.

[14] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based

Histograms for Selectivity Estimation. In Proceedings

of the ACM SIGMOD conference, pages 448{459,

1998.

[15] M. Muralikrishna and D. J. DeWitt. Equi-Depth

Histograms for Estimating Selectivity Factors for

Multi-Dimensional Queries. In Proceedings of the

ACM SIGMOD Conference, pages 28{36, 1988.

[16] G. Piatetsky-Shapiro and C. Connel. Accurate

Estimation of the Number of Tuples Satisfying a

Condition. In Proceedings of the ACM SIGMOD

conference, pages 256{276, 1984.

[17] V. Poosala and Y. E. Ioannidis. Selectivity Estimation

Without the Attribute Value Independence

Assumption. In Proceedings of the 23rd International

conference on Very Large Databases, pages 486{495,

1997.

[18] V. Poosala, Y. E. Ioannidis, P. J. Hass, and E. J.

Shekita. Improved Histograms for Selectivity

Estimation of Rage Predicates. In Proceedings of the

ACM SIGMOD Conference, pages 294{305, 1996.

[19] P. G. Selinger, D. D. Astrahan, R. A. Chamberlain,

R. A. Lorie, and T. G. Price. Access Path Selection in

a Relational Database Management System.

Proceedings of the ACM SIGMOD conference, pages

23{34, 1979.

[20] G. Zipf. Human Behavior and the Principle of Least

E�ort. Addison Wesley, 1949.


