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Abstract

An important but very expensive primitive op-
eration of high-dimensional databases is the K-
Nearest Neighbor (KNN) similarity join. The op-
eration combines each point of one dataset with
its KNNs in the other dataset and it provides more
meaningful query results than the range similarity
join. Such an operation is useful for data mining
and similarity search.

In this paper, we propose a novel KNN-join algo-
rithm, called theGorder(or the G-ordering KNN)
join method. Gorder is a block nested loop join
method that exploits sorting, join scheduling and
distance computation filtering and reduction to
reduce both I/O and CPU costs. It sorts input
datasets into theG-order and applied thesched-
uled block nested loop joinon the G-ordered data.
The distance computation reduction is employed
to further reduce CPU cost. It is simple and yet
efficient, and handles high-dimensional data effi-
ciently. Extensive experiments on both synthetic
cluster and real life datasets were conducted, and
the results illustrate that Gorder is an efficient
KNN-join method and outperforms existing meth-
ods by a wide margin.

1 Introduction
K-nearest neighbor join(KNN-join) is a new operation
proposed recently [5]. The operation combines each point
of one dataset with its K-nearest neighbors in another
dataset. With its set-a-time nature, KNN-join can be used
to efficiently support various applications where multidi-
mensional data is involved.

In particular, it is identified that many standard algo-
rithms in almost all stages of knowledge discovery process
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can be accelerated by including KNN-join as a primitive
operation. For examples,

• In each iteration of the well-known k-means cluster-
ing process, the nearest cluster centroid is computed
for each data point. A data point is assigned to its
new nearest cluster if the previously assigned cluster
centroid is different from the currently computed one.
A KNN-join with k = 1 between the data points and
the cluster centroids can thus be applied to find all the
nearest centroid for all data points in one operation.

• In the first step of LOF [7] (a density-based outlier
detection method), the K-nearest neighbors for every
point in the input dataset are materialized. This can be
achieved by a single self KNN-join of the dataset.

• In the hierarchical clustering method called
Chameleon [18], a KNN-graph (a graph linking
each point of a dataset to its K-nearest neighbors)
is constructed before the partitioning algorithm is
applied to generate clusters. The KNN-join can also
be used to generate the KNN-graph.

Compared to the traditional point-at-a-time approach that
computes the K-nearest neighbors for all data points one
by one, the set oriented KNN-join can accelerate the com-
putation dramatically[4].

In this paper, we study the efficient processing of the
KNN-join. To the best of our knowledge, the MuX KNN-
join [5, 4] is the only up-to-date algorithm specifically de-
signed for KNN-join. MuX [6] is essentially an R-tree
based method designed to satisfy the conflicting optimiza-
tion requirements of CPU and I/O cost. It employs large-
sized pages (the hosting page) to optimize I/O time and
uses the secondary structure, the buckets which are MBRs
(minimum bounding boxes) of much smaller size, to parti-
tion the data with finer granularity so that CPU cost can be
reduced.

MuX iterates over theR pages, and forR page in the
memory, potential KNN-joinable pages inS are retrieved
through MuX index onS and searched for K-nearest neigh-
bors. Since MuX makes use of an index to reduce the num-
ber of data pages retrieved, it suffers as an R-tree based
join algorithm. First, like the R-tree, its performance is
expected to degenerate with the increase of data dimen-
sionality. Second, the memory overhead of the MuX index



structure is high for large high-dimensional data due to the
space requirement of high-dimensional minimum bound-
ing boxes. Both constraints restrict the scalability of the
MuX KNN-join method in terms of dimensionality and
data size.

In this paper, we propose a novel KNN-join algorithm,
theGorder (or the G-ordering KNN) join method.Gorder
is a block nested loop join method which achieves its ef-
ficiency by sorting data based on an ordering that en-
ables effective join pruning, data blocks scheduling and
distance computation filtering and reduction. It first sorts
input datasets into theG-order (an order based on grid),
so that the the dataset can be partitioned into blocks that
are amenable for efficient scheduling for join processing.
Then, it applies thescheduled block nested loop jointo find
the K-nearest neighbors for each block of R data points.
Gorder is efficient due to the following factors: (1) It in-
herits the strength of the block nested loop join in being
able to reduce random reads. (2) It prunes away unpromis-
ing data blocks from probing to save both I/O and simi-
larity computation costs by exploiting the property of the
G-ordered data. (3) It utilizes atwo-tiers partitioning strat-
egyto optimize I/O and CPU time separately. (4) It reduces
distance computational cost by pruning redundant compu-
tation based the distance of fewer dimensions.

Our contributions can be summarized as follows.

• We developed a novel algorithmGorder for an impor-
tant operation KNN-join, that requires no index for the
source data sets.

• A comprehensive performance study was conducted
experimentally that indicates the efficiency, scalability
and robustness of the proposed algorithm.

Note that it is widely recognized that most high-
dimensional indexes do not scale up well, and in fact, many
perform worse than sequential scan when the dimensional-
ity is high. KNN join further escalates the complexity and
search cost of a high-dimensional index. We therefore de-
veloped the join method based on the block nested loop
join, however, enhanced it with sorting, data scheduling,
and distance computation filtering and reduction to attain
good KNN-join performance.

The remainder of the paper is organized as follows.
Section 2 defines the KNN-join problem and investigates
its properties and reviews some related work. Section 3
presents the algorithm Gorder, including its data schedul-
ing and distance computation pruning and reduction tech-
niques to optimize the both I/O and CPU time. A cost anal-
ysis is also given. Section 4 describes a performance study
and presents the experimental results. Finally, Section 5
concludes the paper.

2 Preliminary
2.1 KNN Join

In this section, we define the KNN-join problem formally
and identify its properties.

Definition 2.1 (KNN-join) Given two data sets R and S,
an integer K and the similarity metricdist(), the KNN-join
of R and S, denoted asR nKNN S, returns pairs of points
(pi, qj) such thatpi is from the outer dataset R andqj from
the inner dataset S, andqj is one of the K-nearest neighbors
of pi.

Essentially, the KNN-join combines each point of the outer
dataset R with its K-nearest neighbors from the inner
dataset S. A data point in our study is a multi-dimensional
feature vector corresponding to a complex object such as
an image. The distance metric in our consideration is the
Lρ metric, where

dist(p, q) =

(
d∑

i=1

|p.xi − q.xi|ρ
)1/ρ

, 1 ≤ ρ ≤ ∞

For demonstration purposes, we shall use the most com-
monly used metric, the square ofL2 (the Euclidean dis-
tance). The proposed technique can be adapted to otherLρ

metrics such as the Manhattan distance (L1) and the max-
imum distance (L∞) straightforwardly. In the rest of the
paper, we use R to symbolize the outer dataset and S the
inner dataset.

KNN-join has following properties:

1. It is asymmetric, that is, (RnKNN S < SnKNN R).
The reason is that the K-nearest neighbor is asymmet-
ric.

2. The cardinality of the answer set of a KNN-join is pre-
dictable, since a KNN-join returns K-nearest neigh-
bors for each point of R.

3. The distance from each point in R to its nearest neigh-
bors is unknown apriori.

Property 2 makes KNN-join more useful than another simi-
larity join – the range-join in situations where a good range
ε cannot be determined easily. The range-join returns pairs
of points from two data sets with their similarity distance
not exceeding a given value. One of the difficulties to use
similarity range-join in real application is that the distribu-
tion of data points are often unknown and giving an appro-
priate similarity distance threshold between points is rather
difficult, if not impossible. As such the results of similarity
range-join are somehow unpredictable that requires appli-
cations run on trial-and-error basis.

Property 3 inherits the difficulty of the nearest neigh-
bor query. In order to filter unnecessary distance compu-
tation, popular algorithms based on an index such as the
R-tree [12] (the RKV [14, 23] and the HS [23]) compute
the MinDist (minimum distance between the query point
and a node of the R-tree) and choose to traverse the node
with the minimum MinDist first. The MinDist is also com-
pared with the pruning distance (the distance between the
query point and its Kth nearest neighbor candidate). Nodes
with MinDist greater than the pruning distance is pruned
away.



Nearest neighbor search, which is I/O bound, has been
well studied. KNN-join raises new challenges, just as join
to selection in relational databases. We have two starting
points as the devising of the KNN-join algorithm.

1) indexed-based multiple KNN query (index nested
loop join)

2) block sequential search (block nested loop join).
Both have its strength and weakness. The index-based

multiple KNN query is optimized for the CPU cost, how-
ever, introduces tremendous I/O time because of large num-
ber of random accesses[5]. In addition, as a well-known
fact, the index often fails in high-dimensional space, where
it performs worse off than sequential scan. On the contrary,
the block sequential search is optimized for I/O time. How-
ever, without any distance computation pruning, the CPU
cost is enormous and the number of distance computation
is |R| · |S|. Gorder optimizes the block nested loop join
with efficient data scheduling and distance computation fil-
tering.

For ease of discussion, in the following, we assume that
the data space is a unit hypercube[0..1]d.

2.2 Related Work

Apart from the MuX join method introduced in the intro-
duction, we shall briefly review existing work on similarity
join. Most existing techniques have been proposed to sup-
port the similarityrange-join (also known as the distance
join[13]). They can be broadly classified into three cate-
gories. In the first category, the join methods utilize index-
ing structures, and examples include the R-tree Spatial Join
(RSJ) [8], the breadth first R-tree join [15], the incremen-
tal distance join [13] and the MuX range-join [6]. These
methods traverse the indexes of R and S synchronously
and form joining pairs according to the lower bounding
property of the minimum bounding rectangle (MBR). The
second category of techniques are hash-based. Examples
include the Spatial Hash Join [20] and the Partition-based
Spatial Merge Join [21] which partition the data space into
buckets and perform the join on pairs of buckets in a re-
cursive manner. The major drawback of such techniques
is that the data replication rate grows quickly as dimen-
sionality increases. The third category of techniques are
sort-based. The Multi-dimensional Spatial Join (MSJ) [19],
GESS [10], and the Epsilon Grid Order (EGO)[3] all be-
long to this category. [13] introduced the method to use
the incremental distance join to support the distance semi-
join (similar to the KNN-join) directly by discarding pairs
reported by the distance join. However, due to the difficulty
in pre-determining the search radius in the KNN-join, the
direct application of range-join algorithms to the KNN-join
or the implementation of KNN-join as iterative range join
is inefficient and I/O expensive.

3 Gorder

We now introduce Gorder KNN-join, a simple yet efficient
KNN-join algorithm based on ordering according to grid
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Figure 1: Illustration of G-ordering.

– theG-ordering. It is a block nested loop method which
achieves its efficiency by exploiting sorting, data schedul-
ing and distance computation reduction. As shown in Al-
gorithm 1, it consists two phases. In the first phase (line 1),
it sorts the input datasetsR andS based on theG-ordering.
In the second phase (line 2), it performs thescheduled block
nested loop joinon the G-ordered data and outputs the join
results. We describe the algorithm in detail in this section.

Algorithm 1 GorderKNN(R,S)
Input:

R andS are two data sets.
Description:

1: G OrderingR andS;
2: Join Grid OrderedData(R, S);

3.1 G-ordering

In relational databases, sorting is used not only to arrange
the tuples according to an order, but to group tuples with
the same value on the joining attribute together to facilitate
processing based on partitions. Similarly in Gorder, we
design an ordering based on grid called theG-orderingto
group nearby data points together, so that in thescheduled
block nested loop joinphase we can identify the partition
of a block of G-ordered data and schedule it for join.

As illustrated in Figure 1, the G-ordering has two steps
– the PCA (principal component analysis) transformation
and theGrid Order sorting.

The first step of G-ordering performs the principal com-
ponent analysis [17] on the input datasets R and S together



and transform the original data into the principal compo-
nent space. PCA captures the variance in the dataset and
determines the directions along which the data exhibit high
variance. After PCA processing, most of the information
in the original space is condenses into the first few dimen-
sions along which the variances in the data distribution are
the largest. The first principal component (or dimension)
accounts for as much of the variability in the data as possi-
ble, and each succeeding component accounts for as much
of the remaining variability as possible.

The secondary step of G-ordering sorts R and S into the
Grid Order. The Grid Order applies a grid onto the data
space and partitions it intold rectangular cells, wherel is
the number of segments per dimension of the grid. Figure 1
(c) is an illustration of a two-dimensional space partitioned
by a 7x7 grid. Cell length of the grid can be equal or vari-
able. In the following discussions, we assume the cells are
of same length1l for the simplicity of presentation, while
the methods can be easily generalized to the grid with vari-
able cell length.

We define theidentification vectorof cell as a d-
dimensional vectorν = < s1, ..., sd >, wheresi is the
segment number to which the cell belongs on theith di-
mension. Based on the identification vector of the cell, the
cells can be ordered lexicographically as illustrated in Fig-
ure 1.

TheGrid Order is defined as below.

Definition 3.1 (Grid order ≺g ) Given a grid which par-
titions thed-dimensional data space intold rectangular
cells, pointspm ≺g pn if and onlyνm ≺ νn, whereνm

(νn) is the cell surrounding pointpm.
νm ≺ νn if and only if a dimensionk exists that,

νm.sk < νn.sk andνm.sj = νn.sj , for ∀j < k.

Essentially, the grid order is to sort the data points ac-
cording to the cell surrounding the point, so after the sec-
ond phase of G-ordering, points within the same cell are
grouped together.

The G-ordered data exhibit two interesting properties:

1. Suppose we have two pointsp and q in the dataset
in the originald-dimensional space. Letpk(qk) de-
note the projection of the pointp (q) on the firstk
dimensions after G-ordering. Because the first few di-
mensions are most important,dist(pk, qk) can be very
near to the actual distance betweenp andq [9].

2. Given a block of G-ordered data B containingm
points p1,...,pm, we can calculate abounding box
which covers all points in that block by examining the
first pointp1 and last pointpm of the ordered data.

To compute thebounding box, we first calculate theac-
tive dimension[3] of the G-ordered data.

Definition 3.2 (Active Dimension of the G-order Data)
Assumeν1 (νm) is the identification vector of the cell sur-
roundingp1(pm), dimensionα is theactive dimensionof

the G-ordered data B, if

(1) ν1.sα < νm.sα
(2) ν1.sj = νm.sj ∀j < α.

Literally, α is the first dimension thatν1.sj < νm.sj (1 ≤
j ≤ d).

The bounding box ofB is represented by the low-
left point E = < e1, ..., ed > and high-right point T =
< t1, ..., td >.

ek =
{

(ν1.sk − 1) · 1
l if 1 ≤ k ≤ α

0 if k > α

tk =
{

νm.sk · 1
l if 1 ≤ k ≤ α

1 if k > α

The properties of the G-ordered data are used effectively
in Gorder for join scheduling and distance computation re-
duction. Property 1 implicates that the partial distance of
the first k dimensions between two points can approximate
the real distance effectively and Property 2 will be used to
measure the similarity of two blocks of G-ordered data and
schedule the data for joining.

3.2 Scheduled Block Nested Loop Join

In the second phase of Gorder, G-ordered data of R and
S are examined for joining. The join stage of Gorder is
characterized by two properties. First, Gorder employs the
two-tier partitioning strategyto optimize the I/O time and
CPU time separately. Secondarily, it schedules the data for
joining in order to optimize the KNN processing.

The first-tier partitioning is optimized for I/O time.
Gorder partitions the G-ordered input datasets into blocks
consisting of several physical pages. Suppose we allocate
nr andns buffer pages for the data ofR andS, we parti-
tion R andS into blocks of the allocated buffer sizes. The
blocks ofR are loaded into memory sequentially and itera-
tively one block at a time and theS blocks are loaded into
memory in the sequence scheduled based on their similar-
ity to the R data in buffer. This loading of multiple pages
at a time is efficient in terms of I/O time as it significantly
reduces seek overhead. In addition, in order to optimize
the KNN processing, it schedules theS blocks so that the
S blocks that are most likely to yieldK nearest neighbors
can be loaded into memory and joined withR data in buffer
early.

The large block size reduces disk seek time, however,
as a side effect, it may introduce additional CPU cost due
to redundant pair-wise checking of tuples for KNN-join.
To overcome such a problem, we introduce the second-tier
partitioning in memory. Thesecond-tier partitioningseg-
ments the R and S data in memory into blocks of much
smaller size (the sub-blocks). The optimized size of the
sub-block is 20–50 data points according to our experiment
results. Again, similarity of two blocks data of R and S is
used to schedule the join sequence and filter distance com-
putation between blocks of data.



We measure the similarity of two blocks of G-ordered
data by the distance between theirbounding boxes. As pre-
sented in Section 3.1, thebounding boxof a block of G-
ordered data can be computed by examining the first and
last points of the G-ordered data.

Definition 3.3 (MinDist of G-ordered Data) The mini-
mum distance of two blocks of G-ordered dataBr andBs,
denoted as MinDist(Br, Bs) is defined as the minimum dis-
tance between their bounding boxes.

MinDist(Br, Bs) =
d∑

k=1

d2
k

dk = max(bk − uk, 0) (1)

bk = max(Br.ek, Bs.ek); uk = min(Br.tk, Bs, tk)

For blocks with same MinDist, they are sorted by the
MaxDist.

Definition 3.4 (MaxDist of G-ordered Data) The maxi-
mum distance of two blocks of G-ordered dataBr andBs,
denoted as MaxDist(Br, Bs) is defined as the maximum
distance between their bounding boxes.

MaxDist(Br, Bs) =
d∑

k=1

(uk − bk)2

bk = min(Br.ek, Bs.ek); uk = max(Br.tk, Bs, tk)

A direct observation is that MinDist is a lower bound
to the distance of any two points from blocks of R and S
respectively. The following corollary follows this observa-
tion directly.

Corollary 3.1 For point pr in block Br and pointps in
blockBs, MinDist(Br, Bs) is a lower bound to the dis-
tance betweenpr andps, that is,

∀pr ∈ Br, ps ∈ Bs, MinDist(Br, Bs) ≤ dist(pr, ps)

Based on Corollary 3.1, we have following pruning
strategies:

1. If MinDist(Br, Bs) > pruning distance ofp, Bs

does not contain any points belonging to the k-nearest
neighbors of the pointp, and therefore the distance
computation betweenp and points inBs can be fil-
tered. Pruning distance of a pointp is the distance
betweenp and its Kth nearest neighbor candidate. Ini-
tially, it is ∞.

2. If MinDist(Br, Bs) > pruning distance ofBr, Bs

does not contain any points belonging to the k-nearest
neighbors of any points inBr, and hence the join of
Br andBs can be pruned away. The pruning distance
of an R block is the maximum pruning distance of the
R points inside.

Algorithm 2 Join Grid OrderedData(R, S)
Input:

R andS are two G-ordered data sets that have been
partitioned into blocks.

Description:
1: for eachblockBr ∈ R do
2: ReadBlock(Br);
3: SortBlocks(S,Br);
4: for eachBs ∈ NotPruned(S, Br) do
5: ReadBlock(Bs);
6: MemoryJoin(Br, Bs);
7: OutputKNN(Br);

Algorithm 2 outlines the scheduled block nested loop
join algorithm of Gorder. It loads blocks ofR into mem-
ory sequentially (lines 1-2). For theR block in memory
Br, S blocks are sorted in the increasing order of their
distance toBr (line 3).1 At the same time, blocks with
MinDist(Br, Bs) greater than the pruning distance ofBr

are pruned (pruning strategy 2). That is, only the remain-
ing blocks are loaded into memory one by one (lines 4-5).
With each pair ofR andS block, we join them in mem-
ory by calling functionMemoryJoin (line 6). After all
unprunedS blocks are processed withBr, the KNN candi-
date sets for points inBr are output as the join results (line
7).

Algorithm 3 MemoryJoin(Br, Bs)
Input:

Br andBs are two blocks fromR andS respectively.
Description:

1: Divide Br, Bs into sub-blocks;
2: for each sub-blockB′

r ∈ Br do
3: SortBlocks(Bs, B

′
r);

4: for each sub-blockB′
s ∈ NotPruned(Bs, B

′
r) do

5: for each pointpr ∈ B′
r do

6: if MinDist(B′
r, B

′
s) ≤ PrunDist(pr) then

7: for each pointps ∈ B′
s do

8: ComputeDist(ps, pr,d2
α);

The memory join algorithm is shown in Algorithm 3.
BothR-block andS-block are divided into sub-blocks (line
1). For eachR sub-blockB′

r, the S sub-blocks are ar-
ranged according to their distance toB′

r. Pruning strat-
egy 2 is again used to pruning thoseS sub-blocks with
MinDist(B′

r, B
′
s) greater than the pruning distance ofB′

r.
Those unprunedS sub-blocks participate the join withR
sub-blocks one by one (lines 4-5). To joinR andS sub-
block B′

r andB′
s, each data pointpr in B′

r is compared
with B′

s. For each pointpr in B′
r, we examine whether

MinDist(B′
r, B

′
s) is greater than the pruning distance ofpr.

If true, by pruning strategy 1,B′
s cannot contain any points

1Note that after the G-ordering, the bounding box for each block of S
is kept in in memory, so the sorting doesn’t require any disk accesses. The
memory for recording the bounding boxes is very limited as there are only
a small number of blocks.



that are K-nearest neighbors ofpr and so theB′
s can be

skipped (lines 6-7). Otherwise, functionComputeDist is
called forpr and each data pointps in B′

s (line 8). Function
ComputeDist, as described in the following subsection, in-
serts thoseps with dist(pr, ps) smaller than the pruning
distance ofpr into the KNN candidate set ofpr. dα

2 is the
distance between the bounding boxes ofB′

r andB′
s on the

α-th dimension,2 whereα = min(B′
r.α,B′

s.α).

3.3 Distance Computation

Distance computation reduction is important for optimiza-
tion of CPU time because of the complexity of the distance
metric and the high-dimensional data.

The bounding boxes of the G-ordered data has some
special properties which we can utilize for distance com-
putation reduction.

Property 3.1 The edge of the bounding box of a block G-
ordered dataB extends the full domain from 0 to 1 on di-
mensionj (j > B.α), whereB.α is the active dimension
of B.

This property is directly observable from the compu-
tation of bounding box. Therefore, when we compute
the similarity of two blocks of G-ordered data, we only
need to take the firstα dimensions into account, where
α=min(B1.α, B2.α) andB1.α (B2.α) is the active dimen-
sionB1 (B2). As a result, the computation of MinDist and
MaxDist are reduced to:

MinDist(B1, B2) = MinDist(B1,α,B2,α)
MaxDist(B1, B2) = MaxDist(B1,α,B2,α) + d− α

B1,α (B2,α) is the projection ofB1 (B2) on the firstα
dimensions.

The next important property of thebounding boxis as
follows:

Property 3.2 The projection of the bounding box of a
block of G-ordered data B containingm pointsp1,...,pm

on the firstB.α − 1 dimensions is corresponding to a grid
cell in the firstB.α− 1 dimensions.

The reason is, according to the definition ofGrid Order, p1

≺g...≺g pm ⇔ ν1 ≺...≺ νm, whereνk is the cell surround-
ing pointpk. Based on the definition ofactive dimension,
ν1.sj = νm.sj (∀j < B.α), so we haveν1.sj = ... =
νm.sj (∀j < B.α).

This property indicates that the projection of all points
in a block of G-ordered data B on the firstB.α− 1 dimen-
sions are within one grid cell in the firstB.α − 1 dimen-
sions. Hence, for any pointsp andq from B1 andB2 re-
spectively,MinDist(B1,α−1, B2,α−1) can be used to ap-
proximate the distance between the projection ofp andq
on the firstα− 1 dimensions when the grid is of fine gran-
ularity. The approximated distance is the low bound of the
real distance. That is,

2Refer to Equation 1 in Definition 3.3.

MinDist(B1,α−1, B2,α−1) ≈ dist(pα−1, qα−1).
pα−1 (qα−1) is the projection ofp (q) on the firstα − 1
dimensions.

Based on the above two properties, we now are able to
define the pruning strategy based on the approximate dis-
tance as formalized by the following corollary.

Corollary 3.2 For any point p and q from the
G-ordered blocks Br and Bs respectively, if
MinDist(Br,α−1, Bs,α−1) + dist(p{α,k}, q{α,k})(α ≤
k ≤ d) is greater than the pruning distance ofp, q
cannot be a K-nearest neighbor candidate ofp, whereα
=min(Br.α, Bs.α) andp{i,j} (q{i,j}) is the projection ofp
(q) on the dimensions fromi to j.

Algorithm 4 ComputeDist (p, q, d2
α)

Input:
p, q are two data points fromBr andBs respectively.
d2
α is the distance between the bounding boxes ofBr

andBs on theα-th dimension.2

Description:
1: pdist := MinDist(Br, Bs)− dα

2;
2: for k := α to d do
3: pdist :=pdist+(p.xk − q.xk)2;
4: if pdist > pruning distance ofp then
5: Pruneq;
6: pdist := pdist− (MinDist(Br, Bs)− dα

2);
7: for k:=1 toα-1 do
8: pdist :=pdist+(p.xk − q.xk)2;
9: if pdist > pruning distance ofp then

10: Pruneq;
11: Insertq into the KNN candidate set ofp;

Algorithm 4 outlines the algorithm in reducing distance
computation. It calculatesMinDist(Br,α−1, Bs,α−1)
from MinDist(Br, Bs) first (line 1). Then, it accumu-
lates the distance betweenp andq from dimensionα, where
α=min(Br.α, Bs.α) (lines 2-5). Wheneverpdist is greater
than the pruning distance ofp, q cannot be one of the K-
nearest neighbors ofp and can be pruned away (lines 4-5).
If q cannot be pruned by the approximation distance, we re-
move the approximation factor (line 6) and calculate their
real distance (lines 7-10). Ifdist(p, q) is smaller than the
pruning distance ofp, q is inserted into the KNN candidate
set ofp.

3.4 Analysis of Gorder

The Gorder algorithm produces KNN-join results correctly.
Firstly, the MinDist of two blocks of G-ordered data is the
low bound to the distance of any two points from these two
blocks respectively (Corollary 3.1). Secondly, Gorder only
skips the S blocks (sub-blocks) whose MinDist from the R
block (sub-blocks) is greater than the pruning distance of R
block (sub-blocks). Finally, the reduced distance computa-
tion only prunes away S data points that are not one of the
K-nearest neighbors of a R point (Corollary 3.2). Hence,



for all blocks of R data, Gorder finds the correct K-nearest
neighbors.

Now we analyse the I/O and CPU cost of Gorder. Sup-
pose the number of R (S) data pages isNr (Ns). In the
G-ordering phase, the PCA transformation needs to per-
form the sequential scan of R and S twice. The cost is
2(Nr + Ns). Suppose that there are B buffer pages avail-
able in memory, the sorting step of the G-ordering requires

2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+ 2Ns

(⌈
logB−1

Ns

B

⌉
+ 1

)

page accesses using the external merge sort algorithm [22].
In thescheduled block nested loop joinphase, suppose

we allocatenr buffer pages to R data andns buffer pages
to S data. The I/O cost is

Nr +
Nr

nr
·Ns · γ1

whereγ1 is the selectivity of the S blocks. Consequently,
the total I/O cost in terms of the number of page accesses
is:

2(Nr + Ns) + +Nr + Nr

nr
·Ns · γ1

+2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+ 2Ns

(⌈
logB−1

Ns

B

⌉
+ 1

)

The major CPU cost of Gorder is the distance compu-
tation in thescheduled block nested loop joinphase. The
number of distance computation is:

Pr · Ps · γ2

wherePr (Ps) is the number of points of R (S),γ2 is the se-
lectivity of distance computation. The PCA processing of
G-ordering performs(Nr + Ns) · d2 multiply [11]. How-
ever, the multiply and comparison operations incurred in
the G-ordering phase are comparatively much less signifi-
cant.

We estimate the selectivity ratioγ1 and γ2 using the
Minkowski Sum model proposed in [2] and [6] which has
been shown to be effective in high-dimensional data.

γ =
d∑

k=0


 ∑

{i1...ik∈2{0...d−1}}




k∏

j=1

aij





 · V d−k

sphere(ε)

(2)

V d−k
sphere(ε) =

√
πd−k

Γ
(

d−k
2 + 1

) · εd−k (3)

ε = d

√
K · Γ(d/2 + 1)

NS
· 1√

π
(4)

where,Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π.
Following the analysis in [2], we simplify Equation 2

by approximating thebounding boxeswith the hypercube.
Therefore,

Parameter Default Setting
number of nearest neighbors (K) 10
buffer size around 10% of total

size of R and S
size of R data in buffer around 20% of buffer
number of segments per dimension32
buffer page size 8192

Table 1: Default parameter values.

γ =
d∑

k=0

(
d
k

) (
d

√
Mr

Pr
+ d

√
Ms

Ps

)k

· V d−k
sphere(ε) (5)

whereMr (Ms)is the number of points in the block of R
(S) data. When we replaceMr andMs with the number of
points in the block (or sub-block) of data R and S, we get
γ1 (or γ2).

4 Performance Evaluation

We conducted extensive experimental study to evaluate the
performance of Gorder and present the results in this sec-
tion. In the study, we used both synthetic cluster datasets
and real life datasets. The synthetic cluster datasets were
generated using the method described in [16], and the real
life datasets are from UCI KDD data repository [1]. We
used the Corel dataset which contains 64 dimensional fea-
ture vectors of 30K images, and the Forest FCoverType
dataset which contains 580K records. The original Forest
FCoverType dataset has 54 attributes(10 real, 44 binary)
and we used the 10 attributes of real value in the experi-
ments.

We compared Gorder with MuX and simple block
nested loop join (NLJ). The MuX join [6, 5] is the current
state-of-art method for the KNN-join processing, which has
been shown to be optimized for both CPU and I/O time and
that it outperforms the join algorithm based on the R-tree
(RSJ) significantly.

The experiments were conducted on a Sunfire 4800
server with 750MHz Ultra Sparc III CPU and connected
with 2 Sun T3 Disk Array. The buffer allocated for all
methods is around 10% of the datasets of R and S. Ex-
tra memory was allocated to MuX for storing the internal
nodes. The number of nearest neighbor (K) is 10 by default.
The default settings of Gorder are summarized in Table 1.

Performance is presented in terms of the elapsed time
(which includes I/O and CPU time), the I/O time and the
distance computation selectivity. The elapsed time and I/O
time of Gorder includes the time for both G-ordering and
joining phases. Time of MuX does not include the index
building time. Distance computation selectivity is calcu-
lated by the following equation:

number of point distance computations

|R| · |S| .
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Figure 2: Effect of the number of segments per dimension (Corel dataset)
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Figure 3: Effect of sub-block size (Corel dataset)

4.1 Evaluation Using Real Datasets

In this set of experiments, we study the performance of
Gorder using the real life KDD dataset.

4.1.1 Study of Parameters of Gorder

The first set of experiments evaluates the effect of various
parameters on the performance of Gorder. With the expec-
tation that the real life dataset is usually skewed, we imple-
mented the GorderH for comparison purposes. GorderH
applies a grid with variable cell length onto the data space
during the G-ordering phase. We compute a equi-width his-
togram for each dimension in the PCA transformation stage
and partition each dimension into segments with equal
number of points inside. We performed the self KNN-join
on the datasets. The presented time for GorderH includes
the time for histogram processing.

Effect of grid granularity We first evaluate the effect
of the granularity of the grid by varying the number of seg-
ments per dimension of the grid from 8 to 128. Figure 2
presents the results of on the Corel dataset. From the re-
sults, we observe that when we increase the number of seg-
ments from 8 to 32, the performance of Gorder improves
noticeably with a speed-up factor of 0.88. The speed-up
factor of GorderH is 0.12. The reason is that with finer
granularity grid, thebounding boxbounds the data points
more tightly. Hence, the MinDist low bound becomes more
accurate and more effective in pruning. An interesting
observation is that when we further increase the number

of segments per dimension, Gorder (which uses the equi-
length grid) becomes as efficient as and even better than
the GorderH (which uses the variable length grid based on
histogram). This indicates the fine-granularity grid makes
Gorder adaptive to the data distribution and eliminates the
need to maintain the histogram.

Comparing the I/O time with the total elapsed time, we
notice that the I/O time is much less significant than the
CPU time (only around 1% of the total response time),
which confirms the benefit of using the block accessing and
that the KNN-join is CPU critical due to the large number
and the complexity of the distance computations.

Effect of sub-block sizeFigure 3 summarizes the effect
of the size of the sub-block on KNN-join processing. In
this experiment, the size of the sub-block is varied from 6 to
480 and we conducted the experiment on the Coral dataset.
As can be observed, the selectivity of distance computa-
tion degrades when the number of points in the sub-block
grows. The volume of the sub-block increases when there
are more points in it, and consequently, its pruning ability
become ineffective. This is consistent with the cost anal-
ysis. However, on the other hand, smaller sub-blocks do
not necessarily lead to better elapsed time. We observed
that when the size of the sub-block increases from 6 to 15,
the performance of Gorder in terms of the elapsed time im-
proves around 10% despite the slight degeneration of the
distance computation selectivity. The reason is that de-
crease of sub-block size increases the number of sub-blocks
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Figure 4: Effect of buffer size for R data (Corel dataset)
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Figure 5: Effect ofK (Corel dataset)

and therefore, introduces more MinDist computations. So
there is a trade-off between the MinDist computation and
the point distance computation. The results indicate that
the best setting of the size of sub-block is between 20–50.

Effect of buffer size for R dataNext we study the effect
of buffer size allocated to R data and present our study in
Figure 4. We fixed the buffer size at around 10% of input
data set and decreased the number of buffer pages for R
from 90% of buffer to 10% of buffer. Size of sub-block
is 30. Figure 4 shows that as we reduce the buffer size
for R, the I/O time increases quickly with the drop of the
number of R buffer pages because the reduction in R buffer
size causes the loading time of the S blocks to increase.
However, the overall performance of Gorder with regard to
the elapsed time hasn’t been influenced a lot. The reason is
when R buffer size shrinks, more S data can be loaded in
buffer and hence, the R data in memory are more likely to
join with the S data that yield real K-nearest neighbors first
and the selectivity is improved. Therefore, the increase of
the I/O time is absorbed by the decrease of CPU time.

4.1.2 Effect of K

We now study the effect of K and compare the performance
of Gorder with MuX and NLJ. Figure 5 presents the results
on the Corel dataset when we varied the number of nearest
neighbors K form 5 to 50.

From the results, we observe that with the increase of

number of nearest neighbors, the elapsed time of Gorder in-
creases moderately, while MuX is more affected by K. The
gap of the elapsed time between MuX and Gorder widens
with the increasing K. On average, Gorder outperforms
MuX with the speed-up factor of around 2 with regard to
the elapsed time. In terms of distance computation selectiv-
ity, Gorder is better than MuX by the average factor of 1.22.
Note that the speed-up of the elapsed time is more signif-
icant than the improvement of selectivity. This is due to
the distance computation reduction technique Gorder em-
ploys. Gorder uses a subset of dimensions for block simi-
larity computation and the block similarity is also used to
reduce point distance computation; hence the speed-up in
terms of elapsed time is even better than the reduction of
selectivity. Figure 5(b) presents the I/O time incurred by
different methods. Memory allocation of NLJ is the same
as Gorder. That is, around 20% for R data and 80% for S
data. Gorder outperforms MuX due to its one time access-
ing one block of data so that the expensive disk seeking
time is saved. Gorder is also more efficient than NLJ be-
cause with the pruning strategy it filters out S blocks that
will not yield KNNs.

Figure 6 presents the results on the Forest dataset. Costs
of NLJ are not shown on the graphs because its elapsed
time is more than 10,000 seconds. Again, Gorder outper-
forms MuX significantly with the speed-up factor of 2.45
in terms of elapsed time.
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Figure 6: Effect ofK (Forest dataset)
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Figure 7: Effect of buffer size (Forest dataset)

4.1.3 Effect of Buffer Size

In dealing with large datasets, the KNN-join algorithm
must be efficient in utilizing the limited buffer space. In
this experiment, we study the behavior of the join methods
with respect to buffer sizes.

The study is performed on the Forest dataset and we re-
duced the buffer size from around 1000 pages (40% of the
dataset size) to around 250 pages (10% of the dataset size).
The buffer size for R was kept at 25 pages. In Figure 7, we
compare the performance of Gorder and MuX. The result
shows that MuX is more sensitive to the decrease of buffer
size and its elapsed time increases by 23% when the buffer
size decreases from 1000 pages to 250 pages. In compari-
son, performance of Gorder is more stable and degenerates
by only 10% for the same amount of reduction. Gorder is
therefore more efficient with respect to buffer space.

We observe that the reduction in buffer space does not
affected the I/O performance much. The reduction in buffer
size reduces the volume of the bounding box and conse-
quently, leads to the improved effectiveness of the filtering
of S blocks. However, the smaller block size of S intro-
duces more disk seeking time. As a balance, the I/O time
of Gorder is not much affected by the buffer size.

4.2 Evaluation Using Synthetic Datasets

We study the scalability of Gorder on the synthetic datasets
of various sizes and dimensionalities. Since real life data
set are often clustered and correlated, we utilized method

in [16] to generate clustered datasets containing 10 clusters.

4.2.1 Effect of Dimensionality

In this experiment, we shall evaluate the effect of data di-
mensionality on the join performance by varying the num-
ber of dimensions from 8 to 64. Figure 8 presents the
results on the 100K clustered datasets. We observe that
the efficiency of MuX deteriorates with the increasing di-
mensionality. The reason is that MuX, like the R-tree, its
performance degenerates with the increase of data dimen-
sionality. Figure 8(c) shows the degeneration of distance
computation selectivity of MuX with the increase of the
number of dimensions. In addition, the cost of similarity
computation of MuX also goes up linearly with the data
dimensionality.

The deterioration of distance computation selectivity
with the increasing dimensionality is not obvious for
Gorder. In addition, Gorder employs the distance compu-
tation reduction technique to alleviate the distance compu-
tation cost for high dimensional data. Therefore, Gorder
is more scalable to high-dimensional data and its perfor-
mance gain over MuX widens as the dimensionality grows.
The speed-up factor of Gorder over MuX increases from
0.68 at dimensionality of 8 to 2.9 at dimensionality of 64.

4.2.2 Effect of Size of Dataset

In the second experiment, we study the performance be-
havior with varying size of datasets. We performed the self
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Figure 8: Effect of dimensionality (100k clustered dataset)
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Figure 9: Effect of data size (16-dimensional clustered datasets)

KNN-join of the clustered data in the 16-dimensional space
and varied the dataset size from 10,000 to 1,000,000 ob-
jects. The results are summarized in Figure 9. From the
result, Gorder is noted to be the most efficient method for
datasets of various sizes. With the increase of dataset size,
the elapsed time of MuX grows faster than Gorder. The
speed-up factor of Gorder over MuX ranges from 0.51 to
2.6. Note that even for small datasets where the distance
computation selectivity of Gorder is higher than MuX, the
elapsed time of Gorder is still lower than MuX due to the
use of distance computation reduction technique.

From Figure 9 (c), we observe that the distance compu-
tation selectivity improves when the number of data points
grows. The reason is that the increase of the number of
data points densifies the clusters and reduces the distance
between a point and its K nearest neighbors. Therefore,
more points can be filtered from distance computation. The
study demonstrates that Gorder is scalable to large size of
data and has even better performance than MuX for large
datsets.

4.2.3 Effect of Relative Size of Dataset

In the last set of experiments, we joined two datasets of
different sizes and studied the effect of the relative sizes on
the performance of the join algorithms. To study such an
effect, we fixed the size of R at 100K points and varied the
size of S from 10K to 1,000K so that the relative size of R:S
is changed from 10:1 to 1:10. Figure 10 shows the results.

Both the elapsed time and I/O time of Gorder increase

moderately with the increase in S data size. The cost
of MuX goes up comparatively faster, which leads to the
wider performance gap between Gorder and MuX as S
dataset size increases. Furthermore, note that even at S
size of 10K and 50k, where the selectivity of MuX is better
than Gorder, Gorder is still much faster. With regard to the
elapsed time, the average speed-up factor of Gorder over
MuX is 0.59, which confirms the scalability of Gorder with
respect to the data size again.

5 Conclusion
In this paper, we have investigated the KNN-join problem.
The K-nearest neighbor (KNN) similarity join is an
operation that combines each point of one data set with its
KNNs in the other data set, and it can be used to facilitate
data mining tasks such as clustering, classification and
outlier detection. It is also capable of providing more
meaningful query results than just the range similarity join.
We proposedGorder, an efficient KNN-join processing
algorithm that exploits sorting, data page scheduling and
distance computation filtering and reduction to reduce both
I/O and CPU costs. We presented our performance study
on both synthetic cluster and real life datasets and the
results confirm that Gorder is efficient and scalable with
regard to both data dimensionality and size, and that it
outperforms existing methods by a significant margin. Our
future work is to design the KNN-join algorithm based on
[24].
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Figure 10: Effect of relative size of datasets (16-dimensional clustered datasets).
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