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Abstract dividual privacy. Data must be thus properly processed be-

fore delivery in order to protect the privacy of the individ-

The demand for the secondary use of medical data is inyals they refer to. A straightforward method for achieving
creasing steadily to allow for the provision of better quality individual privacy is to de-identify (anonymize) the data, by
health care. Two important issues pertaining to this sharingreplacing any explicit identifying information by some ran-
of data have to be addressed: one is the privacy protectioiom placeholders. For instance, a randomized value may be
for individuals referred to in the data; the other is copyright used to substitute the name or social security number of each
protection over the data. In this paper, we present a unifiethatient. This alone, however, does not suffice to guarantee
framework that seamlessly combines techniques of binninghe full anonymity of medical data as pointed out by numer-
and digital watermarking to attain the dual goals of privacy ous studies (see for example, [13, 28, 26, 29]). An example
and copyright protection. Our binning method is built upon often outlined is re-identification by linking attributes such
an earlier approach of generalization and suppression by al-as birth date, zip code that are shared by the anonymized
lowing a broader concept of generalization. To ensure datamedical data and some externally collected voting records.
usefulness, we propose constraining Binning by usage metrhis has motivated many more advanced approaches in the
rics that define maximal allowable information loss, and thejiterature (see Section 2). Of particular interest is the ap-
metrics can be enforced off-line. Our watermarking algo- proach ofgeneralization and suppressi¢26, 28, 29] that

rithm watermarks the binned data in a hierarchical manner represents values by corresponding more general but seman-
by leveraging on the very nature of the data. The methodjcally accordant alternatives.

is resilient to the generalization attack that is specific to the

binned data, as well as other attacks intended to destroy the The sharing of medical data also exposes data holders
inserted mark. We prove that watermarking could not ad-to the threat of data theft. Related to this, yet another im-
versely interfere with binning, and implemented the frame-{portant protection requirement regarding outsourced medi-
work. Experiments were conducted, and the results show theal data arises, that is, how to protect data ownership (copy-

robustness of the proposed framework. right). It is quite obvious that medical data are an important
asset to the data holders who have collected and compiled
1. Introduction the information. Incentives to unauthorized data distribu-

tion arise from an increasingly thrivirgata industrywhere

Nowadays, effective sharing of medical data is essentiafirms such as biotech companies collect, compile, share or
to foster the collaboration within the health care commu-sell (bio)medical data for profits. Even though there are
nity and with other parties such as research institutes, phataws concerning copyright and ownership rights, we need
maceutical and insurance companies, so as to enhance th#ective mechanisms to establish and protect the holders’
quality and efficacy of health care provision. For example,rightful possession of the data. Consequently and naturally,
a hospital may need to outsource clinical records in its audigital watermarking techniques, initially proposed for the
tonomous databases to a research institute in an attempt pyotection of multimedia content [6, 15], have been recently
discover a new drug or evaluate a new therapy. Such neealso applied to relational data. As such, digital watermark-
is clearly shown by research trends in the area of health caneg techniques represent a viable solution for the problem of
management and procedures that are increasingly based enforcing ownership of medical data. However, a main dif-
extensive analysis of medical data. The dissemination oference of medical data with respect to data from different
medical data could also be to satisfy legal requirements. Aslomains is represented by the need of also assuring privacy.
reported by the National Association of Health Data Organi-It is thus clear that when dealing with outsourced medical
zation in 1996, 37 states in the United States had legislativelata, both individual privacy and data ownership must be
mandates to gather personal health information from hospiprotected. To meet these dual needs, we propose a frame-
tals for cost-analysis purposes [22]. work that integrates techniques of binning and digital wa-

The direct release of medical data invariably violates in-termarking. Under our framework, the medical data to be
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Figure 1. A domain hierarchy tree (DHT) for a column representing the types of person roles in a
medical domain

outsourced would undergo two consecutive steps of binning relational table containing medical data, columns can be
and watermarking, respectively. The main contributions ofcategorized into three types based on the identifying infor-
our work include: mation each contains. Columns that explicitly identify in-
1. A unified framework that seamlessly combines binningdividuals (e.g., social security number) are known as identi-
and digital watermarking for the protection of both individ- fying columns, and columns containing potentially identify-
ual privacy and data ownership. We give both theoretical andng information that could be linked with other data sets to
experimental analysis on the “seamless-ness” of the combke-identify individuals are called quasi-identifying columns.
nation. Typical examples of quasi-identifying columns include zip
2. A binning algorithm that enforces the functionality of code, birth date, etc. The other columns contain no iden-
“binning”. The method bins downward, and extends an eartifying information. In this paper, we restrict ourselves to
lier approach of generalization and suppression by allowingjuasi-identifying columns unless explicitly stated otherwise.
a broader concept of generalization. Information Disclosure Control
3. A hierarchical watermarking scheme that is resilient tolnformation disclosure arises when either the identity of an
various attacks attempting to remove the embedded markndividual is directly revealed or something about an indi-
and especially robust against the newly discoveyegeral-  vidual can be derived from the released data. By conven-
ization attack In addition, we propose an elegant solution to tion, we call the formeidentity disclosureand the latteat-
the rightful ownership problem concerning watermarking. tribute disclosurd18]. We only discuss the identity disclo-
4. The adoption of usage metrics for preserving data qualsure problem in this paper, and refer interested readers to
ity with respect to the intended usage. We define our usagg81] for in-depth discussions on the attribute disclosure.
metrics by modeling information loss, and propose an off-  one well known approach to identity disclosure con-
line enforcement of usage metrics. trol is to transform quasi-identifying columns to entertain
5. Experimental studies of the proposed framework. k-anonymity constrainti(is a constant), i.e., data are gen-
Compared to existing approaches, a main innovative aseralized and suppressed in such a way that every record
pect of our work is represented by a downward binning pro-s indistinguishable from at leakt1 other records, so that
cess to address the satisfactionienonymity specifica- no search can be narrowed down to a particular individual
tion, due to the off-line enforcement of usage metrics; oun13, 26, 28, 29]. The satisfaction kseanonymity can also be
watermarking algorithm is a novel hierarchical scheme thajinderstood as: records containing the same value constitute
exploits the very nature of the underlying data, which a|SOa bin, and the size of every bin is at least equak_toBy
provides a neat solution to the rightful ownership problem. definition, generalization deals with replacing a value with
Organization: We review related work in Section 2. In Sec-a more general but semantically accordant value, while sup-
tion 3, we give an overview of our framework. We then pression deals with preventing data releases. Generalization
proceed to detail our binning algorithm and watermarkingof categorical attributes is based on the fact that the repre-
algorithm in Sections 4 and 5, respectively. In Section 6,sentation of medical data can be normally arranged into a
we present a theoretical analysis on the seamlessness of aiémain hierarchy tredDHT), where the most general de-
framework. Section 7 provides experimental results andscription of the data is at the root of the tree while the leaves

Section 8 concludes the paper. denote the most specific descriptions. Figure 1 shows a DHT
on the type of roles: leaf nodes represent all possible partic-
2. Background and Related Work ular roles a column may assume, and generality of the de-

scription increases with the level along the tree, until the root

Two classes of techniques closely related to our work arenode that distinguishes no specificity. A generalization pro-
information disclosure control and relational database waceeds by replacing the values represented by the leaf nodes

termarking, and we shall review them in this section. Givenby their corresponding ancestor nodes at a higher level. A
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Figure 2. Protection framework for outsourced medical data

valid generalization in [26, 28, 29] requires all its general-ently vulnerable, as a simple flipping of LSBs would com-
ization nodes be at the same level in the domain hierarchpletely destroy the inserted mark. [24] proposed a method
tree. for watermarking numbers that is robust because the mark
Clearly, generalization and suppression result in a los§mbedding relies on data distribution rather than on trivial
of specificity, thereby making the re-identification processLSB modification. The idea has later been integrated in a
harder. However, the tradeoff between the level of pri-framework for watermarking numeric attributes of relational
vacy and the amount of information loss must be carefullydatabases [25]. A theoretical investigation on watermarking
evaluated, as too much generalization could possibly renddechniques for databases and XML documents is presented
the data useless while slight generalization could not proin [7], which attempts to achieve watermarking while pre-
vide adequate protection. [14] suggested associating usag&rving a set of parametric queries in a specified language.
based metrics with the process of meetingnonymity. Our Another approach [23] was recently proposed dealing
framework incorporates the same idea of usage metrics, bi¥ith watermarking categorical attributes in databases. In
we define a different set of metricsy and more importanﬂy’essence, the data to be watermarked in our context become
our metrics can be enforced off-line. Metrics in [14] are categorical after binning, so our watermarking also reduces
defined in accordance with the broader notion of generalizato handling categorical data. Unfortunately, such approach
tion allowed therein, which does not require all generaliza-cannot be directly applied to our case because it is suscepti-
tion nodes stay at the same level. Tiening method in  ble to akind ofgeneralization attacksee Section 5).
[19] follows a similar broader definition of generalization. .
Considering the flexibility and finer granularity it offers, our 3. Overview of Our Framework
binning algorithm also includes such a broader notion in ex-

tending the generghzatlon and suppression in [2_6’ 28, 29]ual privacy and copyright protection regarding outsourced
Moreover, the_oflemg enforcement of usage metrics enableg, o jical data, we combine techniques of binning and digital
a downward b||jn|r_19 in our context, which has efficiency ad'Watermarking into a unified framework. As shown in Fig-
vantage over binning that proceeds upwards. ure 2, the framework comprises two key components, i.e.,
Another approach to the identity disclosure problem is topinning agent and watermarking agent, dedicated to binning
perturb the data by adding noise or swapping values, whileynd watermarking, respectively. In the framework, the med-
at the same time maintaining some statistical properties ofca| data to be outsourced would undergo two consecutive
the entire data set [17, 11]. It is again vital to determinesteps of transformation. Specifically, the binning agent first
the right tradeoff between information loss and privacy —pins the data to satisfiz-anonymity specification. After-
a topic which is now under active research [8, 32]. Otheryards, the binned data are watermarked by the watermark-
approaches dealing with data privacy and confidentiality butng agent by inserting within the data a mark, which, upon
addressing issues different from ours include [12, 30, 1, 3extraction, asserts provable ownership. The data resulting
21, 4, 8]. from these transformations are then expected to adequately
Watermarking of Relational Data protect both privacy and copyright, thereby qualified for out-
Digital watermarking has long been investigated for copy-sourcing. Both binning and watermarking are governed by
right protection, mainly over multimedia content, e.g., im- usage metrics in order to preserve data usability. Next, we
ages and video clips [6, 15]. There have been recent effortshall discuss some specific aspects of the framework.
in watermarking relational databases. Due to the very naturbJsage Metrics Usage metrics define a set of maximal dis-
of relational data, watermarking techniques for databasetortions that binning and watermarking are allowed to intro-
turned out not to be a direct deployment of techniques forduce with respect to the intended data usage (see Section 4).
multimedia data. A seminal approach to watermarking rela-Transformation exceeding the bounds is assumed to render
tional data is presented in [2]. However, the use of Least Sigthe data useless.
nificant Bits (LSB) embedding in the scheme makes it inherk-anonymity Specification k-anonymity specification in-

To simultaneously attain the goals of protecting individ-



cludes the system parameterand possibly also the set of o
quasi-identifying columns to be binned and other relevant - =~

constraints pertaining to binning. - S
Binning Agent Driven by the binning algorithm, the bin- o a0
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The binning algorithm takes as input the original data, the os s 104s 5% wf}m 306/:240 M/«;so soi\sm wZ\M 7.4;0 S
k-anonymity specification, the domain hierarchy trees for

each quasi-identifying attribute, and the usage metrics. We Figure 3. Constructing binary DHT for a nu-

suggest a preprocessing step to create the domain hierarchy meric attribute

trees and determine the system parameters. o o _
Watermarking AgentThe watermarking agent continues to SUggest constraining the binning process to abidasage
process the binned data by embedding an Owner_speciﬁlg\etrlcsspeC|fy|ng a set of maximal allowable information
mark. The underlying watermarking algorithm exploits a loss. More information loss than as specified would substan-
secret watermarking key (may contain several elements)t,ia”y degrade the data quality with respect to the intended
known only to the data owner, to manipulate the proces$lata usage.

of mark embed_ding. Without having possessi_on of the sey 1 Usage Metrics
cret watermarking key, no one can erase the inserted mark
from the data. Watermarking also observes usage metrics, Consider first a categorical colunarthat associates with
ensuring that it does not corrupt the data in terms of the ana domain a hierarchy treg, e.g., Figure 1. IiPharmacist
ticipated usage; the domain hierarchy trees are needed &sgeneralized taramedic under our definition of general-

well for inspection by our watermarking algorithm. ization, child nodes oParamediowvould become indiscrim-
L . inatable. This in turn implies that all entriesdrcontaining
4. Binning Algorithm Pharmacist/Nurse/Consultantould become indiscriminat-

our binni lqorith tends th h of Iable. This concept of indiscrimination leads to our approach
. t_ur |r:jn|ng algorithm eégnzg 2: gpprl?ac_ 0 gbene;a for quantifying information losgn f Loss,. for the columnc
Izationand suppressionin [. » 28, 29] Oy allowing a broader, ; ¢, q s Suppose a generalization results in a set of gen-
notion of generalization as in [14], which does not require

A I ~eralization node$p,, p2, ..., ; let S; be a set containin
all generalization nodes of a generalization to be necessarily -\ - ' oftlr?e Zs)abtrelé]?h}at i< rototepli aand the num-g
at the same level of the domain hierarchy tree. In particularber of entries in: containing values irf; ben. i — 1. M
a valid generalizatioi? is represented by a set of general- Information lossin f Loss, is defined a; v R

(&

ization nodesS¢ in the domain hierarchy tree that satisfy

the following condition:The path from every leaf to the root ZM (i \si|—1)
along the tree encounters one (to guarantee generalizabil- InfLoss, = Zle—Z\S\ 1)
ity) and only one (to guarantee deterministic generalization) D im1 M

generalization node iS¢. This definition includes the case \yheres — S11JSa ... S is the set of leaf nodes of

of a leaf node itself being a generalization node. We havgne tree7. We allow some leaf nodes to remain ungeneral-
seen domain of a categorical attribute being organized intg,oq given thak-anonymity specification is already met, in
a domain hierarchy tree; we next describe the generalizagnich casdS;| = 1.

tion of anumeric columnlt is accomplished by first divid- We next consider a numeric attributee.g., Age. Sup-
ing the domain space of the column into a series of disjoimpose the domain of, whose lower and upper bounds are
intervals, and then pairwise combining them into a binaryy, andU, respectively, is generalized infdf intervals. The
tree. With the tree, generalization proceeds in the same Wayyver and the upper bounds for these intervals Brand

as for a categorical attribute. As an example, Figure 3 deUi’ respectively; = 1..M. Letn; be the number of en-

picts the construction of a binary domain hierarchy tree forias in the column: whose values fall betweeh; and U,
the column Age with domain [0, 150). In order to avoid InfLoss, is then defined as

over-binning the data, intervals should benobderatesize

(smaller) and they need not to be of equal size. Z%l(m %_ﬁ)
Clearly, binning makes data less specific (more general), InfLossc = ——5—— (2)
thereby resulting in some information loss. It would make 2= M

no sense to medt-anonymity specification if that renders Once allInf Loss;, i = 1..C'N (CN is the total number
the data useless, thus data quality must be preserved. VWé the generalized columns) are determined, a normalized



lossInf Lossis computed by averaging over all generalized
columns in the table:
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080
CN /\
InfLoss = YiziInfLoss; 3) 80~{\120~150
CN NN N
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Likewise, other forms of information loss, e.g., total in- A\ /\
formation loss can be defined. In general, the usage metrics 0-10 10-202030 10-20 6070 70-80  120~130 130140
for controlling information loss are defined as following: ' _ '
Figure 4. A DHT by enforcing usage metrics

InfLoss; <bd; Vi=1,..,CN
InfLoss < bdgyg

(4)

whereB = {bd1,...,bdcn} C R andbd,,q € R define the
bounds for maximal allowable information loss.

In practice, the enforcement of the above metrics in a nor-
mal way might not be ideal as it involves calculating infor- @nd functions that will be used in this and the next section.

Consider an example of a transformed table, where 36 peo-
ple have an age betweéf ~ 50 and 8 people are doctors,

each satisfying-
ever, there might be only 4 people who are aged between

anonymity specification witk = 6. How-

25 ~ 50 who are also doctors.

d

For ease of referencing, we list in Table 1 the variables

mation loss and in turn checking against the bounds aftet

every step of binning. Fortunately, we can implement al

Notation

\ Meaning ]

off-line enforcement, yielding a set afaximal generaliza-
tion nodesin each domain hierarchy tree. Maximal gener-
alization nodes are defined as 1) constituting a valid gen
eralization; 2) each being the highest node in the domai
hierarchy tree to which the corresponding leaf nodes can b
generalized under the usage metrics. Usage metrics in th
form of maximal generalization nodes are obviously much
easier to enforce, only requiring that none of the leaf node
be generalized beyond its corresponding maximal genera
ization node. Itis preferable that the maximal generalization
nodes are directly given as the usage metrics, rather than b
ing transformed from the form of Equation (4).

We note that a generalization comprising the maxima
generalization nodes trivially satisfi¢gsanonymity specifi-
cation given that the data abinnable The point is to meet
k-anonymity while minimizing information loss. It is thus
clear that binning would yield a set of generalization nodes

tr

tbl
mingends
maxgends
ultigends
k

ki, k2, m
wm, wmd

5 Parenttd, tr)
- Childrengd, tr)
Siblings@d, tr)
e- Leaves(r)
SubTreefd, tr)
Duplicate¢um)
Val2Nd(v, nds[])
Nd2Val(nd)
SeuBit(v, b)
Index(nd, S)
MajorVot(wmd)

h
e
e

the domain hierarchy tree for an attribute
the table to be protected

the set of minimal generalization nodes
the set of maximal generalization nodes
the set of ultimate generalization nodes
the system parameter féranonymity
elements of the secret watermarking key
actual and replicated mark, respectively
returns the parent node aff in ¢tr

returns the set of child nodes of in ¢r
returnsnd together with its sibling nodes i
returns the set of leaf nodes of

returns the subtree of rooted atnd
duplicatesvm to producewmd

returns the node inds[] that represents
returns the value representedty

sets the least significant bit ofto be the bit
returns the index ofd in the setS

majority voting overwmd

that are lower than or at most equal to the maximal general-
ization nodes. This reasonably reflects the underlying prin-
ciple that binning is not allowed to damage data usage. Let
us consider the earlier example of generalizing a numerié-2.1 Mono-attribute Binning

attribute, where we suppose the set of intervals in satisfying, o individual attribute, our binning starts from the maxi-

k-anonymity is depicted by the leaf nodes of the tree in Fig-5 ganeralization nodes downwards along the domain hier-
ure 4: enforcement of the usage metrics might most likely, oy tree. until reaching a set of lowest nodes that constitute
allows for fu_rthgr generalizations, yleldlr_lg _the set of maxi- a valid generalization catering teanonymity specification.
mal generalization nodes denoted as elliptic nodes. We term such nodasinimal generalization node©ur way

of downward binning is an advantage offered by the off-line
enforcement of usage metrics. The mono-attribute binning

We decompose binning into two steps, i.e., mono-is basically arexhaustivdrial procedure in a search for the

attribute binning and multi-attribute binning. The mono- minimal generalization nodes. For this reason, compared to
attribute binning step bins attributes individually so that previous work that bins upward along the tree (e.g., [19]),
each transformed attribute satisfieanonymity. The multi-  downward binning turns out to be more efficient. The intu-
attribute binning step is required because, while each atition is that the higher level on the tree, the less nodes are
tribute satisfieg-anonymity, combinations of them may not. to be tried. Note that the observance of usage metrics is di-

Table 1. Variables and Functions

4.2 Binning



1
rectly accomplished by starting binning from the maximal
generalization nodes. Figure 5 outlines the algorithm for

generating the set of minimal generalization nodes. D ao NE-AY O
/\ /k /l\ Maximal Generaliztion Node
34 35 36

GenMinNd(¢r, maxgends, tbl, k) 2

. Minimal Generaliztion Node
1.  mingends < NULL /]\ /\ /\ /\ /\ /\ /\
g 40 41 4243 44 47 48 49 50 51 52 53 54

2. foreachnodend € maxgends
i ir?cl;i;e;d?&-:zi(;iig; U SubGMNubtr, thl, k) Figure 6. A DHT for illustrating multi-attribute

binning
SubGMN(treestr, tbl, k) L
1 if NumTuple6tr, thl) < k ni be the number of allowable generallzathns for column
2 return NULL i, then th%}\?tal number of allowable generalizations for the
3 forany nodend € Children(tr.root,tr) table is[[;_, ni. o
4 if NumTuple(SubTreed, str), thl) < k _ Among the;e allowable genera!lzan_ons, some d_o_not sat-
5. return {str.root} |sf¥ k-anonymity, a_nd are thereby invalid; the remaining are
6 tmpset — NULL vallq for_ k-anonymity. NevetheIess, not all the;e valid gen-
7 foreachnd eChildrenfstr.root, str) eralizations are equally ;atlsfactory. Thg point here is to
8 subtr — SubTreefd, str) _choose among them a_ntlmate generall_zatlc_)rnha'_t results
9. tmpset — tmpset | SUbGMNGubtr, tbl, k) in the m_wmal mforma_tlon loss. Nod_es in this ultimate gen-
10. retum tmpset eralization are calledltimate generalization node€learly,

the calculation of information loss can be done by using
Equation (1), (2) and (3), although this may not be ideal

NumTuple(treestr, tbl . . ;
ple( ) as it may incur unacceptable computation penalty. Instead,

1 intnum =0 tor simplifvi hi lculation b ol S

2. foreachtuplet; € tbl Xve pri_ er s:mp ’|’fy|ng td|_s cahcudanon_ yhgo e y;}:onadenng

3. if #,.val € Leaves§tr) specificity loss” regarding the domain hierarchy trees. Let
the total number of leaf nodes of a tree Neand the num-

4 num «— num + 1 L L

5 return num ber of generalization nodes of an allowable generalization

be Ny, we define specificity loss due to generalization to be
Figure 5. Mono-attribute binning algorithm (N — N,)/N. This approach of estimating specificity loss
results in a more efficient implementation, but it may reduce
We employ a simple rationale in generating a minimalaccuracy.

generalization node: a node msinimal if itself meetsk- Figure 7 outlines the above approach for determining the
anonymity, but not all of its child nodes do. This might lead ultimate generalization nodes. The function EnumGen(.)
to an over-generalization of the data. A more aggressivenumerates all distinct combinations of allowable general-
strategy could be capitalized on, e.g., a node is not minimaizations among attributes, and the function Selection(.) de-
if anyof its child nodes satisfigls-anonymity. termines the generalization that incurs least specificity loss.

GenUItiNd (mingends[1..CN], maxgends[1..CN], tr[1..CN])

1. fori=1..CN

Multi-attribute binning involves further binning attributes, 2- allowblgensli] < {gery | gery is a generalization
each of which already satisfigésanonymity. However, for constrained byningends|i], mazgends|i] in tr[i]}
an individual attribute, the set of allowable generalizations3-  allgens < EnumGengllowblgensli], i = 1..CN)

for the purpose of multi-attribute binning is already defined4.  validgens < {gen | gen; € allgens )\ gery satisfies

by the nodes between the minimal generalization nodes and k-anonymity

the maximal generalization nodes. Consider Figure 6: th®-  ultigen <« Selectionfalidgens)

set of allowable generalizations constrained by the minimal
generalization nodes and the maximal generalization nodes
are enumerated g80, 31, 45, 46, 33, 22 {30, 31, 32, 33,
22}, {30, 31, 21, 22, {20, 45, 46, 33, 2R, {20, 32, 33, 22
and{20, 21, 22. As a result, the set of allowable general- A relevant observation to make is that the identifying
izations for the entire table is the enumeration of differentcolumns are most likely to be the key attributes (e.g., pri-
combinations of allowable generalizations for all attributes.mary key) of the table, containing the most important part
Let the number of quasi-identifying columns B8V, and  of information. Hence it is frequently useful to maintain the

4.2.2 Multi-attribute Binning

Figure 7. Multi-attribute binning algorithm

4.2.3 Binning Algorithm



identifying columns traceable to the data holder in healththe set of maximal generalization nodes defined by usage
care domain. For instance, as reported in [9], in some casasetrics are normally atop the set of ultimate generalization
patients may benefit from being traced in research such asodes resulting from binning. Hence, generalizations be-
the assessment of treatment safety. Moreover, many reafween the two levels still respect usage metrics, which in
world clinical projects such as those in [16] and in [10] sup-turn guarantee the viability of watermarking. It is important
port traceability of the medical data. Based on this obserio notice a special case where a ultimate generalization node
vation, our binning algorithm adopts an one-to-one replaceitself is also a maximal generalization node. Permutation of
ment for data in the identifying columns. In particular, we such nodes might resultin information loss above the thresh-
replace each data by its encrypted value that is generatenld set by usage metrics. However, watermarking affects
by an encryption functio() e.g., DES or AES. We point only a small fraction of the data set, and hence such exces-
out that keeping the identifying columns unsuppressed andive loss is expected to be minor. As a matter of fact, this is
unmanipulated further is also important for watermarking.the price that any watermarking must pay. More importantly,
Figure 8 outlines our complete binning algorithm, compris-we can readily tackle this scenario by slightly modifying the
ing the encryption of the identifying columns and the bin- way a maximal generalization node is defined. Specifically,
ning of the quasi-identifying columns. Given the ultimate in determining the set of maximal generalization nodes, the
generalizationltigenyielded by multi-attribute binning, the bounds in Equation (4) are given slightly lower than actually
function Bin(.) works by simply replacing each value in the required for sustaining data usage, so that a small fraction of
quasi-identifying columns by the value represented by itghe table is allowed to be generalized to the values repre-

corresponding node inltigen sented by the maximal generalization nodes. Note however
that such transformation on a large scale would definitely
Binning (¢bl, ultigen) destroy the data.
1. foreachtuplet; € tbl
2. t;.ident.val— £(¢;.ident.val) 5.2 Watermarking at A Single Level
3. t;.quasi-ident.val— Bin(¢;.quasi-ident.valyultigen) , ,
A direct way to take advantage of the above bandwidth
Figure 8. Binning algorithm channel is to consider permutation at the level of each ulti-
mate generalization node (together with its sibling nodes).
5. Watermarking Algorithm The exact primitive enabling bit insertion works as follows.

Suppose an ultimate generalization ngdeeeds to be per-

By its very nature, watermarking modifies the data to bemutated, ang and its sibling nodes compose a sorted set
watermarked, thereby further degrading data quality. Waterg T4 insert a bith, our basic idea for determining a target
marking works under a general assumption that the underlyﬁodeq in S such thap — ¢ encodes the bii is: the index
ing data can tolerate a certain degree of quality degradationy qin S is even, ifb = 0; the index ofq in S is odd, if
The tolerance closely relates to the bandwidth for insertion;, _ However, this does not suffice since some elements
implying that watermarking would fail unless the data can beiy g may not be ultimate generalization nodes, so if the tar-
modified. The discovery of the available bandwidth appeargyet nodey is not an ultimate generalization node, validity of
to be challenging in the case of watermarking relational datgnhe generalization (see Section 4) is violated. To solve this
[25, 23]. We next explain how to find the desired bandwidthiss e, we shall continue the permutation process downward
channel for insertion in the binned data. among the child nodes af and possibly even lower, until
5.1 Bandwidth Channel an ultimatg gt_aneralization node is reachgd. Our d_efinition

of generalizationguarantees the reachability. This idea of

In our context, columns of a table after binning becomeachieving embedding by data permutation is similar to [23],
essentially categorical, and data modification by watermarkbut we do within finer domains (sub-domain of the column),
ing is equivalent to the permutation of data. We advocateand more importantly we have solid justifications for per-
that a binned table can actually accommodate some degrewutation. Unfortunately, watermarking at this single level is
of data permutation, thereby providing the desired bandsusceptible to a kind ajeneralization attackhat can com-
width channel for watermarking. pletely destroy the inserted bits without knowing the water-

From earlier discussions, we know that generalization ofmarking key.

a node in the hierarchy tree to its parent node renders inGeneralization attack

discrimination among this node and its sibling nodes. In The generalization attack is specific to the binned data.
essence, a random permutation of values represented btyworks as follows: the attacker starts a further general-
these nodes equals the effect of the generalization. As lonzation on the watermarked table, generalizing each value
as such a generalization is allowed, watermarking relyingo the value represented by a higher generalization node in
on the data permutation would definitely work. Recall thatthe domain hierarchy tree. Because of the gap between the



maximal generalization nodes and the ultimate generalizaA straightforward way to achieve multiple embedding is to
tion nodes, the table would sustain data usage. The generaluplicatewm for [ times intowmd, as long as we attempt
ization attack appears fatal as it does not require the secreini-embedding, and then to insestnd in place ofwm.
watermarking key at all. A careful analysis indicates thatit Taketbl.c, a quasi-identifying column afy! for exam-

is the way we consider watermarking only at the level of ul-ple, our hierarchical watermarking algorithm by integrat-
timate generalization nodes that makes possible the attacing the above ideas, is outlined in Figure 9. The function
To thwart this attack, we must additionally watermark all in- MaxGNd(d, tr, maxgends) returns the maximal general-
termediate levels between the maximal generalization nodegation node that associates with.

and the ultimate generalization nodes. This constitutes the

basic idea of our hierarchical watermarking scheme. Embedding(tbl, tr, maxgends, ultigends, k1, k2, 1, wm)
1.  bitswmd « Duplicate¢um)
5.3 A Hierarchical Watermarking Scheme 2. foreachtuplet; € tbl
) i , ) 3. if H(¢;.ident, k1) modn =0
In .the hierarchical watermarking, we consider _wa'Fer-4_ nodetargnd — Val2Nd(t;.c, ultigends)
marking at every level, from the maximal generalization

h HE | . targnd < MaxGNd(argnd, tr, maxgends)
nodes to the ultimate generalization nodes. Specifically, fog do

an ultimate generalization nogeto be permutated, water- - targnd — Permutatelargnd, tr, t;, kv, ks, wmd)
marking starts by first determining the maximal generaliza-8_ while targnd ¢ ultigends

tion nodeg that corresponds tg, followed by executing per- 0. t,.c — Nd2Valtargnd)

mutations downward along the domain hierarchy tree from

the level of the child nodes af, until the target node is an Permutate(nodend, tr, tuplet;, ks, bits wmd)

ultimate generalization node. The exact primitive enabling, sortedses «— {s; | s; € Childrenqd, tr)}

permutation at each level is the same as above. Consid%r_ intinda — H(t;.ident,ks) mod|S|

Figure 6 for example (for illustration’s sake, we need to in—3_ indz — SepBit(indx, wmd[H(t;.ident, ks) mod [wmd]])

tentionally take the minimal generalization nodes therein a3 return s;,g,

the ultimate generalization nodes), where node 46 is going

to be permutated. First, the corresponding maximal 9€NDetection(thl, tr, maxgends, ultigends, ki, ks, 1, wm)
eralization node 21 is determined. Next, permutation pro-; bitswmd — NULL  /* set wmd to be empty */

ceeds within nodes 32 and 33. If the target node is node 33 foreachtuplet; ¢ tbl

then permutation stops; otherwise, the permutation contin3: if #(t;.ident, k) modz = 0
ues within nodes 45 and 46, and eventually stops. a. nodetmpnd — Val2Nd(t;.c, ultigends)
To avoid a large scale alteration, watermarking is ide-g bit b=NULL,inti=0 /*reset*
ally restricted to a (small) portion of the whole data set.g do
We leverage on the (encrypted) identifying columns of the, sortedses «{s; | s; € Siblings¢mpnd, tr)}
binned table to select some tuples for embedding, recalling intindz — Index@mpnd, S)
that the encrypted identifying columns are assumed to keeg bli] — indz&1
intact. Based on a secret kaéy together with a secret tun- 10. i i1
able parametey, tuplest; in the tablefdl satisfying the fol- 14 tmpdnd — Parenttmpnd, tr)
lowing equation are chosen for insertion: 12. while tmpnd ¢ mazgends
13. wmd[H(t;.ident, k) mod |wmd|] «— MajorVot(b)
H(t;.ident k1) modn =0 Vi; € tbl (5) 14.  wm — MajorVot(wmd)

where H() is a cryptographic hash function e.g., MD5
or SHA1L, andtbl.ident denotes the encrypted identifying
columns oftbl. Note that the way of secretely selecting tu-
ples directly pertains to the resilience of watermarking.
Typically, the available bandwidth is greater than the bit
length |wm| of the markwm. This affords a multiple em-

Figure 9. Hierarchical watermarking algorithm

In the algorithm, we exploit distinct keyls, and ko for
different calculations, which is vital in ensuring that there
is no mutual correlation between these calculations. Notice

beddi fom f b That i that the hierarchical scheme enables to insert several copies
edding ofwm for robustness reasons. That Is, we repeat, , it o¢ every single embedding position, and the actual

edly embedwm many times until the available bandwidth number is equal to the number of levels from the correspond-

IS exhausted. 'T‘ ”_W" d_etectlon phase, the final mark_ls OIE%'ng maximal generalization node to the ultimate generaliza-
termined bymajority votingover all the recovered copies. tion node. Thus, when recovering a bit from a single em-

LIn case the identifying columns cannot be relied on, we can establislpedding posit_ion, the pit is determined by mal:ority vpting.
virtual key attributes as in [20] by turning to other columns Interestingly, in the voting process, we can assign a different




weight to each copy from a distinct level, depending on itsproblem is solvable only when the original data are avail-
credit in determining the bit. This is of special use when en-able in court. We believe this directly applies to the context
forcing the policy that the copy from a higher level is more of databases. Considering the large number of data a table

reliable than that from a lower level. contains, we actually suspect the practicality of presenting to
) ) ) the judge the entire original table as court proof in other pro-
5.4 Resolving Rightful Ownership Problem posals. Surprisingly, the nature of the binned data enables us

. legantly resolve this problem in our context. Recall th
Robustness to attacks attempting to erase the embeddt%eega tly resolve this proble our context. Recall that

. . e identifying columns of a binned table to be watermarked
mark is among the fundamental requirements of a sound wa-__ . :
) . L .._are in encrypted format, which means the attacker has no
termarking. However, this does not necessarily imply its

- . . . way to know the clear-text. So the mark in our scheme is
sufficiency in establishing ownership, because of the attack- y

ing scenarios in Figure 10X, W, and, are respectively specified by applying the one-way functigf{.) to a certain

the original data, the mark and the secret watermarking I(eitatistical value (e.g., mean) of these clear-text of the iden-
. ' = ifyin lumns. In resolving ownership di he owner
of the entityz, D,, andD,, denote the watermarked data). fying columns esolving ownership dispute, the owne

present; decrypts the identifying columns and does the
same statistical computation over the decrypted data to get
v'; compares the two as valid|if—v’| < 7, wherer is a pre-
defined threshold; extracts the mark from the table in dispute
and compares it wittF (v) as usual in a normal watermark-
ing scheme. Note that most probably, the watermarked table
in dispute had been attacked, e.g., some tuples were deleted
or some spurious tuples were added, and this explains why
d we acquire the mark from a statistical value instead of the
Attacker ! atiack 2 : el | actual clear-text.

=== == The proposed solution is specific to our integration of
binning and watermarking, since a normal database does not
have such encrypted attributes. In nature, we do not violate
“original data as court proof”, whereas the integrated prop-

A“‘?‘C"_li the attaclfer m_serts his bogus mafk, into D, . erty of our framework provides an effective means to get
which is the owner’s valid watermarked data, to create his

bogusD,,. Now that bothIV, and W, are contained in over direct reliance on the entire original table.
D,, the attacker and the owner can both claim the ownerg. Analysis
ship overD,,. This attack can be resolved by requiring the
attacker and the owner each to present his original data. As We next explore the seamlessness of our framework from
the attacker’s “original” datd,, containsl¥, of the owner,  a theoretical perspective. In other words, we are concerned
false ownership claim by the attacker is clear. with the effect watermarking has on the result of binning.
Attack 2: In this case however, the attacker “extracts” The main issue is related to the fact that watermarking in our
w, from D,, to obtain his bogus original dat@,, so that context involves permutation such that some tuples in a bin
D, &k, Ws = D,,, whereg,,, denotes the embedding func- may be permutated to other bins, and thus some bins may
tion under keyk,. This attack is more subtle to handle, since have, after watermarking, a size less thanThis means
it does not always hold thd?, containgV, andD, doesnot  that watermarking may compromise the satisfactiorkto
containWW,. So far, the only practical solution in multime- anonymity of binning. Without loss of generality, we re-
dia watermarking is to restrié¥’, to be F(D,,), whereF(.) strict our discussions to a particular quasi-identifying col-
is an one-way function, so that givén,, itis impossible to  umn ¢, which corresponds to a domain hierarchy tree hav-
acquireD,, satisfyingF (D, ) = W, by the attacker. ing m maximal generalization nodés; (: = 1..m), andn;
These attacks are in fact the rightful ownership problemultimate generalization nodes associated with each nde
originally raised in [27] in multimedia context. It will be of We further make the following assumptions: (i) bins that
particular interest to see how the rightful ownership prob-correspond to the ultimate generalization nodes are of equal
lem is handled in our case. We notice that virtually none ofsize; (ii) when a bit-embedding proceeds downward from
the existing proposals for watermarking databases has praV;, all then,; ultimate generalization nodes associated with
vided a satisfactory solution to this problem, as either theyV; have equal probability of becoming the target node when
considered merely one case of it (e.g., [2, 20]) or they didpermutations halt. The actual effect of watermarking on bin-
not address it at all (e.g., [25, 23]). Results from the mul-ning can be reduced to the way any particular EHN) that
timedia sector show that without invoking a third party for corresponds to a ultimate generalization na&@N is af-
certifying the watermarked dafa,,, the rightful ownership fected by any bit-embedding).

Figure 10. Rightful ownership attacks



Lemma 1. Let the maximal generalization node corre- have a simple yet practical method to tackle the interference
sponding to UGN béV;,, and the probability of E reducing by applyingk+ ¢ (e is a small number) to binning in meeting
the bin size of BIN by be Pr-, then Pr = — 21 k-anonymity specification. A conservative method for deter-

- .

» e Zizl"i mining € would be as follows: let be the biggest bin size
Proof: Intuitively, for £ to reduce the bin size aBIN 5145 be the sum of all bin sizes, then= (s/8) * jwmd|.
by 1, it must hold that as per our hierarchical watermark-

ing algorithm, 1) the bit chosen b for insertion comes
from BIN; 2) afterwards,E executes downward permu-
tations (starting fromV;) among then,, ultimate general-
ization nodes that Correspond 19, and the target node We implemented and conducted extensive eXperimentS
of such permutations is néfGN. From assumption (i), ©On the above algorithms. The real world data set we ex-
probability that the tuple chosen by comes fromBIN perimented on include one (randomized) identifying column

7. Experimental Studies

is «—-——, and from assumption (i), probability of the and five quasi-identifying columns, whose schenf&({ssn
=1 _ o age zip_code doctor, symptomprescriptior). By a prepro-
target node not being/ GN is “-=. Hence, altogether cessing step, we created a DHT for each quasi-identifying
Pr= = —m — X "f;:l = %Zl . ¢ column: the DHT forsymptornris based on the International
i=1 ¢ Mk D i TV

Classification of Diseases (ICD-9), and other attributes are

Lemma 1 states the probability of any particular bit- 5y self-defined ontology, e.g., that fageis similar to Fig-
embeddingE’ permutating a tuple out of a particular bin e 3 put of narrower intervals. The whole data set contains
BIN. We next check the probability o permutating @  around 20000 tuples. Experiments were done on a PC with
tuple from another bin t& /N . 2G CPU and 512M RAM, and source codes were written
Lemma 2. Let the maximal generalization node corre- in Microsoft C++. A mainsimplificationwe made is that a
sponding to UGN béV,,, and the probability of E increasing set of maximal generalization nodes is directly given to each
the bin size of BIN by be Prt, then Prt = %7;1 column as usage metrics.

Nk i=1 nq

Proof: For E to increase the bin size @/N by 1,itmust 7 1 Robustness of Binning
hold that 1) E' selects the tuple for insertion from any, but
UGN, of then,, ultimate generalization nodes that are asso-

ciqted V,VithN k3 2) the target ”‘?de ‘?f the dovmward PETMU~ rithm in satisfyingk-anonymity. By providing to the algo-
tations isUGN. From assumption (i), probability of the for- i,y gifferent values ok, we recorded the corresponding

. nr—1 . . .
meris g~—r and from assumption (ii), probability of the |,q¢ of information. Figure 11 shows the relationship:of

i=1 . .
latter is-L-. Hence,Prt = &—1 x L = —m—1 versusinformation loss.

1
m k "
i=1 i Nng =1 z

First, our experiments focus on testing the binning algo-

Lemma 1 and Lemma 2 suggest that on average, the wa- | == Monoatribuis Binning ‘ ]
termarking process would neither decrease nor increase the R e — A
bin size of any bin sincé’r~ = Pr*. We therefore con- = Fattd ]
clude that watermarking does not interfere with binning in ] .,?“
the satisfaction ok-anonymity specification under the two £ 7 i ]
ideal assumptions. ™ |

It is of importance to examine the assumptions from a R I e
practical perspective. Making valid the first assumption is sbba—g—==s Sieot k"
not that hard: we can incorporate “restrained swapping”

(e.g., swapping tuples among bins that correspond to sibling Figure 11. k vs. information loss

nodes) into binning. In contrast, the second assumption is

more tricky, because its validity totally rests with the local- From the figure, multi-attribute binning causes much
ity of ultimate generalization nodes on the domain hierarchymore information loss than mono-attribute binning, and
tree. Even so, we believe that by relaxing the two assumpencek increases to a certain extent, information loss reaches
tions, watermarking still cannot seriously interfere with bin- a saturation point and becomes rather stable. This is consis-
ning because: 1) only a small percentage of the whole dattent with the rationale in determining a valid minimal gen-
gets watermarked; 2) and the use of hash function in theralization node (Section 4.2), and this could be further op-
“suitability” selection step (Equation (5)) renders a uniform timized if the more aggressive strategy as introduced there
culling, which means no particular bin will be drastically is employed. Further, we should also note that information
affected. To attest this, we have done experiments and oless is closely related to the data size, the number of quasi-
tained consistent results (see next section). After all, wadentifying columns and.
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Figure 12. Robustness of hierarchical watermarking

7.2 Robustness of Watermarking where Iva] and uva) define bounds of theé!” deletion,

within which the tuples are to be deleted. Figure 12 (c) plots
In this set of experiments, we test the robustness of the hithe series of mark loss due to the deletions. From the fig-
erarchical watermarking scheme to the attacks that endeaveire, it indicates that the hierarchical scheme is resilient to

to destroy the embedded mark, while in the absence of thghe Subset Deletion attacks, and mark loss increases almost
secret watermarking key. The following experiments werejinearly with the amount of data deleted.

conducted by implementing a multiple embedding of a 20-  \ye also tested the information loss due to watermarking,
bit mark. and Figure 13 presents the results. Clearly, information loss

- Subset Alteration caused by watermarking is minor.
In these attacks, the attacker chooses at random a subset of

the data and then modifies them arbitrarily without affecting

the rest of the data. We vary the size of the randomly altered
data, and calculate the corresponding mark loss. Figure 12
(a) outlines the results. Clearly, the results show that our wa-
termarking scheme performs well against this attack. Even

info loss (%)

in the case of more than 70% of data loss, our scheme loses AM
only approximately 30% of mark bits. Another fact shown il ~ A
in the figure is that smalley (more bandwidth) offers more size of n

resilience, whereas more alteration to the data would be in-
curred. This is a trade-off that must be carefully considered

in practice. 7.3 Seamlessness of Framework
- Subset Addition

In these attacks, new tuples are frequently added to the wa- Finally, we shall examine how watermarking interferes
termarked set by the malicious attacker. Although this at+ith binning, complementing the theoretic analysis in the
tack does not involve erasing existing bits, it neverthelesgreceding section. The results are presented in Figure 14,
misleads the selection criteria (Equation (5)) to falsely takewhere the data in each column respectively represents the to-
some of the newly-added tuples as watermarked, thereby inal number of bins, number of bins having bin size changed
troducing errors in majority voting the final mark. Keep in and number of bins having bin size less tharit can been
mind that if the size of the new data exceeds the original datgeen that a majority of the bins are affected by watermark-
size, priority of the former would dominate the latter. Fig- ing, whereas the interference is minor in terms of satisfying
ure 12 (b) highlights the scheme’s robustness to the Subs@tanonymity: none of the bins cannot meeanonymity
Addition attacks. The results reflect the fact that the newly-after watermarking. This is consistent with our analysis
added bogus bits do not take precedence over the existingiat watermarking does not dramatically affect binning in

bits in the majority-voting process. its compliance withk-anonymity specification.
- Subset Deletion

The attacker randomly deletes a percentage of the tuples i8. Conclusion

an attempt to remove the mark. To test the effect of dropping

tuples to the loss of mark bits, we continually delete some Two important issues inherent to the outsourcing of med-

tuples each time by the following SQL clause: ical data are the protection of individual privacy and copy-
DELETE FROMR WHERE SSN> Ival; AND SSN < uval; right protection over the data. To meet these dual needs,

Figure 13. Information loss of watermarking
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