
R-Store: A Scalable Distributed System for
Supporting Real-time Analytics

Feng Li1, M. Tamer Özsu2, Gang Chen3, and Beng Chin Ooi1

1{li-feng,ooibc}@comp.nus.edu.sg, School of Computing, National University of Singapore, Singapore
2tamer.ozsu@uwaterloo.ca, David R. Cheriton School of Computer Science, University of Waterloo, Canada

3cg@zju.edu.cn, College of Computer Science, Zhejiang University, P.R. China

Abstract—It is widely recognized that OLTP and OLAP
queries have different data access patterns, processing needs
and requirements. Hence, the OLTP queries and OLAP queries
are typically handled by two different systems, and the data
are periodically extracted from the OLTP system, transformed
and loaded into the OLAP system for data analysis. With the
awareness of the ability of big data in providing enterprises useful
insights from vast amounts of data, effective and timely decisions
derived from real-time analytics are important. It is therefore
desirable to provide real-time OLAP querying support, where
OLAP queries read the latest data while OLTP queries create
the new versions.

In this paper, we propose R-Store, a scalable distributed
system for supporting real-time OLAP by extending the MapRe-
duce framework. We extend an open source distributed key/value
system, HBase, as the underlying storage system that stores data
cube and real-time data. When real-time data are updated, they
are streamed to a streaming MapReduce, namely Hstreaming, for
updating the cube on incremental basis. Based on the metadata
stored in the storage system, either the data cube or OLTP
database or both are used by the MapReduce jobs for OLAP
queries. We propose techniques to efficiently scan the real-time
data in the storage system, and design an adaptive algorithm to
process the real-time query based on our proposed cost model.
The main objectives are to ensure the freshness of answers and
low processing latency. The experiments conducted on the TPC-
H data set demonstrate the effectiveness and efficiency of our
approach.

I. INTRODUCTION

Database systems implemented for large scale data pro-
cessing are typically classified into two categories: OLTP
systems and OLAP systems. The data stored in OLTP systems
are periodically exported to OLAP systems through Extract-
Transform-Load (ETL) tools. In recent years, MapReduce [8]
framework has been widely used in implementing large scale
OLAP systems because of its scalability, and these include
Hive [26], Pig [23]. Most of these only focus on optimizing
OLAP queries, and are oblivious to updates made to the OLTP
data since the last loading. However, with the increasing need
to support real-time analytics, the issue of freshness of the
OLAP results has to be addressed, for the simple fact that
more up-to-date analytical results would be more useful for
time-critical decision making. The idea of supporting real-time
OLAP (RTOLAP) has been investigated in traditional database
systems. The most straightforward approach is to perform near
real-time ETL by shortening the refresh interval of data stored
in OLAP systems [27]. Although such an approach is easy
to implement, it cannot produce fully real-time results and the

refresh frequency affects system performance as a whole. Fully
real-time OLAP entails executing queries directly on the data
stored in the OLTP system, instead of the files periodically
loaded from the OLTP system. To eliminate data loading
time, OLAP and OLTP queries should be processed by one
integrated system, instead of two separate systems. However,
OLAP queries can run for hours or even days, while OLTP
queries take only microseconds to seconds. Due to resource
contention, an OLTP query may be blocked by an OLAP query,
resulting in a large query response time. On the other hand,
since complex and long running OLAP queries may access the
same data set multiple times, and updates by OLTP queries are
allowed as a way to avoid long blocking, the result generated
by the OLAP query would be incorrect (the well-known dirty
data problem).

In this work, we try to address the problem of large
scale RTOLAP processing using MapReduce. The RTOLAP
is defined as follows: a real-time OLAP (RTOLAP) query ac-
cesses, for each key, the latest value preceding the submission
time of the query [9]. Specifically, we propose and design a
scalable distributed RTOLAP system called R-Store, in which
the storage system supports multi-versioning, and each version
is associated with a timestamp. Each OLAP query operates
on the version of data that exists at the time it is submitted
whereas each OLTP transaction creates a new version. R-
Store uses the MapReduce framework where the mappers
of the OLAP query directly access the real-time data stored
in the storage system. The storage system is implemented
by extending HBase [1]. HBase supports the HBaseScan
operation that takes a timestamp as input and returns the
version of the data with the largest timestamp before the scan
operation. Though this can be used to offer consistent data
to OLAP queries, simply using this default scan operation for
querying the data stored in HBase is inefficient due to the
following reasons:

1) HBase only stores a fixed number of versions for
each key, and automatically removes the versions that
exceed this cap by its default compaction policy. To
support real-time querying, this number has to be set
to infinity in case the old versions are removed during
the running of an OLAP query. However, this will
lead to continuously increasing of the data size, and
waste too much space to store the unused data.

2) For each OLAP query, the entire HBase table has to
be scanned and shuffled to the mappers, which is a
very costly process.

To facilitate efficient processing of RTOLAP queries, we
periodically materialize the real-time data into a data cube
and implement an IncrementalScan operation in HBase
to avoid the shuffling of the entire HBase table to MapReduce
during real-time querying. To the best of our knowledge, this
is the first work that proposes a scalable RTOLAP distributed
system based on MapReduce framework. In summary, the
contributions of this paper are as follows:

1) We propose a scalable distributed system framework
called R-Store, for performing RTOLAP. R-Store
evaluates an OLAP query by transforming it into a
MapReduce job, which is run on our modified HBase
(in the remaining of this paper, we name it as HBase-
R in order to differentiate it from HBase), to obtain
the real-time data.

2) We propose an efficient storage model for caching the
data cube result. The data cube is treated as historical
data, while the data updated after the refresh time of
the data cube are real-time data. We also propose a
more efficient scan operation in the storage model for
obtaining the real-time data.

3) We integrate streaming MapReduce into our system,
which maintains a real-time data cube in the reducers,
and periodically materializes the data cube. This data
cube update method is much faster than the data cube
re-computation method, and in turn accelerates the
processing of RTOLAP since fewer real-time data are
scanned during the query execution.

4) We design an algorithm to efficiently process the
RTOLAP queries, which takes both the historical data
cube and the real-time table as input. We also propose
a cost model that guides the adaptive processing of
RTOLAP.

5) We perform an extensive experimental study on a
cluster with more than one hundred nodes, which
confirms the effectiveness of the cost model, and the
efficiency and scalability of R-Store.

The remaining of the paper is organized as follows. In
Section II, we review some related research. We subsequently
present the architecture, design and implementations of R-
Store in Section III and IV. In Section V, we discuss the
processing of real-time OLAP. We evaluate the performance
of R-Store in Section VI and conclude the paper in Section
VII.

II. RELATED WORK

Our proposal touches on a number of areas such as OLAP
processing, distributed processing and data cube maintenance.
We review related work that are most relevant to ours.

A. Real-Time Data Warehousing

The growing demand for fast business analysis coupled
with increasing use of stream data have generated great interest
in real-time data warehousing [28]. Some have proposed near
real-time ETL [27], as a means to shorten the data warehouse
refresh intervals. These works require fewer modifications to
the existing systems, but they cannot achieve 100% real-time.
Other studies proposed online updates in data warehouses
by using differential techniques [12], [25], or multi-version

concurrency control [17]. In C-store [25] two separate stores
are used to handle in-place updates. The updates are stored
in a write-store (WS), while queries run against the read-
store (RS), and merged with the WS during execution. In
existing studies, the incoming updates are usually cached to
improve the performance. The cached data are then flushed to
disk once the size exceeds the upper bound. The performance
of these studies are limited by the size of the memory, and
MaSM [4] overcomes these limitations by utilizing SSDs to
cache incoming updates.

B. Distributed Processing

MapReduce is a parallel data processing framework for
large scale data processing [8]. Its programming model consists
of two user-defined functions, map and reduce, that operate
on key/value pairs. A survey on database management using
MapReduce can be found in [19], and a detailed performance
study for MapReduce has been proposed in [14]. In this paper,
we augment MapReduce processing platform with an extended
HBase for data cube storage and maintenance.

There have been some researches on supporting both OLTP
and OLAP in one hybrid system. Previously, we have proposed
epiC [5], [13], an elastic power-aware data-itensive cxloud
platform for supporting both OLAP and OLTP. As part of
the epiC work, in this paper, we investigate how to efficiently
process the RTOLAP queries in such a hybrid system. The
concepts proposed in this paper can also be applied to epiC
though they’re implemented using MapReduce. In addition,
there are also some main memory database systems (Hy-
Per [16], HYRISE [10]) that tries to address both OLTP and
OLAP. The focus of our work is different from these systems:
our work tries to address the problem of efficiently processing
the RTOLAP queries in a large scale environment where the
data are stored on disk.

While MapReduce provides an efficient and simple plat-
form for scalable distributed processing, it is not efficient for
supporting online and continuous stream processing. HStream-
ing [2] and MapReduce Online [7] are extensions made to
the MapReduce framework that support stream processing as
follows: (1) the input of the mappers could be stream data;
(2) the data are streamed from mappers to reducers; and (3)
the output of one MapReduce job can be streamed to the next
job. S4 [22] is another distributed stream system that adopts
the actor model as its computation model. In these works, the
new data are usually appended to the system to form the data
stream, and the previously inserted data are not changed. In
contrast, in our work, we support the OLTP operations such
as insert, update and delete, and these changes in turn have an
effect on the result of the real-time OLAP queries.

C. Data Cube Maintenance

Data cube maintenance has been studied for a long time.
The earliest works focused on efficient incremental view main-
tenance for data warehouses [6], [11]. However, as the number
of dimension attributes increases, the cost of incrementally
updating data cube increases significantly. To improve the
performance of data cube maintenance, instead of generating
the delta value for all the cuboids during the update process, an
method of refreshing multiple cuboids by the delta value of a

Key/Value Store DataCube

MapReduce

MetaStore

Real-Time DataOLTP

OLAP

Refresh Cube

Incremental
Scan

FullScan
Compaction

Distributed Streaming System

Real-Time DataCube

Fig. 1. Architecture of R-Store

single cuboid has been proposed [18]. Most of these algorithms
were designed for a single node configuration and are not
scalable to a distributed environment. However, MapReduce
has been used to construct data cube in a large scale distributed
environment [24]. The MR-Cube algorithm [21] was proposed
to efficiently compute the data cube for holistic measures. In
these works, the data cube is usually used for processing OLAP
queries without the real-time requirement, while our system
considers both the data cube and the real-time data to process
RTOLAP queries.

III. R-STORE ARCHITECTURE AND DESIGN

In this section, we present the architecture of R-Store, the
design philosophy of the storage system, and how the data
cube is maintained.

A. R-Store Architecture

Figure III-A illustrates the architecture of R-Store. The
system consists of four components: a distributed key/value
store, a streaming system for maintaining the real-time data
cube, a MapReduce system for processing large scale OLAP
queries, and a MetaStore for storing some global variables and
configurations.

The OLTP queries are submitted directly to the key/value
store, while the OLAP queries are processed by the MapRe-
duce system. The simplest method of supporting RTOLAP for
MapReduce is to scan the whole real-time table and obtain
the latest version before the submission time of the OLAP
query for every key/value pair (FullScan operation), as
the input of the MapReduce job. The key/value store has to
support multi-version concurrency control in case the OLTP
queries and OLAP queries are blocked by each other. However,
this method is not efficient because obtaining one version
for each key/value pair is a costly operation in large scale
distributed systems. Note that in real applications, such as
social networks, the updates usually follow a Zipf distribution,
and within a time interval, only a small portion of keys
are updated in the table. Based on this observation, we try
to accelerate OLAP queries by materializing the real-time
table into a data cube. When an OLAP query is submitted
to the system, it first connects to MetaStore to acquire the
timestamp of the query for consistency. The statistics stored
in MetaStore are also used to optimize the query based on
our proposed cost model (Section V-C). After the optimization
by the cost model, the OLAP query can be transformed to a
MapReduce job that takes as input both the historical data in

the data cube and the real-time data in the key/value store. To
efficiently access real-time data, the key/value store is designed
to support incremental scan (Section III-B1). The real-time
data is scanned by the IncrementalScan operation, while
the data cube is scanned by the FullScan operation. The
IncrementalScan operation only shuffles the key/value
pairs that are updated after the last building of the data cube,
and thus is much faster than FullScan because fewer data
are shuffled.

The data cube is also stored in the distributed key/value
store and is periodically refreshed based on the real-time table.
The versions of the key/value pairs before the refresh time of
the data cube are compacted in order to accelerate the scan
time of the real-time table. The performance of refreshing the
data cube is crucial to our system because if the data cube
is refreshed fast, more data are compacted by our compaction
scheme, and fewer real-time data are accessed during the scan
operation. In an extreme case where no update is submitted
since the data cube refresh, the MapReduce job only needs
to scan the data cube. To efficiently refresh the data cube,
the updates applied to the key/value store are streamed to the
streaming system, and a real-time data cube is maintained
in the local storage of the streaming system. The real-time
data cube is periodically materialized to the key/value store to
refresh the data cube. Based on our experimental results, this
method is much faster than the method of re-computing the
data cube, and the throughput of this method is sufficiently
high to process the update streams from the key/value store.

Once this refresh process is completed, the timestamp
of the latest data cube is sent to MetaStore, and the com-
paction process is invoked to compact the real-time data.
The MetaStore also stores other global information, including
the submission time of each OLAP query, the frequency of
materializing the data cube, etc.

B. Storage Design

The key/value store must support multi-version concur-
rency control techniques to ensure that the OLAP query and the
OLTP query do not block each other. In addition, our storage
design considers many other features including efficient file
scan operations, compaction scheme and load balancing, which
we discuss below.

1) Full and Incremental Scans: To handle OLAP queries
and to build the data cube, a scan operation needs to be imple-
mented in the key/value store. Two types of scan operations
are required, which are used in different scenarios:

FullScan(Ti). For each region of the table in the key/value
store, the FullScan operation takes a timestamp Ti as input,
and returns the latest version of the value before Ti for all the
keys. The data returned by this operation can be used to create
or re-compute the data cube.

IncrementalScan(T1, T2). This operation takes two times-
tamps T1 and T2 (T1 < T2) as input, and returns two versions
for the keys updated after T1. The first version is the latest
value before T2, and the second version is the latest value
before T1. If a new key is inserted (not updated) into the store
after T1, only one version is returned. This operation can be
used in the RTOLAP query processing algorithm.

2) Global and Local Compactions: Since each key may
have several versions, the scan operations read more than one
version of the data to obtain the required versions, incurring
unnecessary I/O cost. To reduce the number of stored versions
for each key and to improve the scan performance, the data
are automatically compacted. We provide two forms of com-
paction:

Global Compaction. The global compaction process is
launched immediately following each data cube refresh. For
the same key, all the versions inserted before the data cube
refresh are merged into one version. We call this version VDC ,
which is consistent with the data cube and is used in updating
the data cube.

Local Compaction. The local compaction process is invoked
on each node. At first, the submission time of the current
running scan process (Tscan) on the region is acquired by the
compaction process. For each key, the latest version of the
data before Tscan is accessed by this scan process. Thus, the
local compaction only compacts the older versions that will
not be accessed by any scan process. Furthermore, VDC is not
changed during this compaction so that the new data cube can
be computed correctly when the data cube is refreshed.

3) Load Balancing: In most applications, some key ranges
might be updated more frequently than others, causing skewed
load on the nodes. In addition, since the update operation
inserts a new version of the key into the node instead of
replacing the old version, there is a skew on the amount of data
on the nodes. This affects the performance of the scan process
on those nodes. The solution is to split heavily updated ranges
in the key/value store and move some data to other nodes.

C. Data Cube Maintenance

To improve the performance of OLAP queries, a data cube
is maintained in the key/value store. A data cube could be
either a full data cube, an Iceberg cube, or a closed cube.
The selection of the best suitable data cube depends on the
applications, which is not the focus of this work. To make it
general, we only consider the full data cube, which consists of
a lattice of cuboids. There are two approaches to refresh the
data cube:

Re-Computation. To re-compute the data cube, the
FullScan operation is used. It takes a timestamp Ti

as input, and returns the latest version of the value before
Ti for all the keys stored in this region. Each mapper of
the MapReduce job takes the results of the FullScan
operation on one region as input. For each cuboid, a key/value
pair is generated. The map output key is the combination
of the dimension attributes for the cuboid, while the map
output value is the numeric value. The reducers compute the
aggregation value for each cell of each cuboid, and output the
result to the key/value store.

Incremental Update. The second approach is performed in
two steps: propagation step and update step. The propagation
step computes �DC (change of the data cube) from �T
(change of the table), and the update step updates data cube

based on �DC. However, not all data cubes can be incre-
mentally updated. The incremental update only works for self-
maintainable aggregate functions [20] (the new cell value can
be computed from the old cell value and the updated tuples)
such as SUM, COUNT, and the algebraic functions derived
from them.

In R-Store, the re-computation approach is used to build
the first data cube, while the incremental update approach
is adopted to maintain a real-time data cube in the stream
processing module. The streaming system updates its data cube
with the update streams coming from the key/value store, and
periodically materializes the data cube into the storage system.
As the updating of the data cube consists of two phases,
which can be processed by the MapReduce processing logic
in natural, a streaming version of MapReduce is used as the
stream processing module of R-Store.

IV. R-STORE IMPLEMENTATIONS

In this section, we present the implementations of R-
Store. Specifically, we show how we implement our storage
system, namely HBase-R, on top of HBase to fulfill the design
philosophy discussed in Section III-B.

A. Implementations of HBase-R

HBase [1] is an open source distributed key/value store. A
table stored in HBase is partitioned to several regions, which
are assigned to a certain nodes, and each node runs a region
server to manage regions and serve the transactions. Inside
a region, the data of the same column family (a group of
columns) are stored in the same structure, which is called
store. A store has an in-memory structure, memstore, and
several in-disk files, storefiles. When a new version of data
is about to be inserted into this store, it is first inserted into
the memstore and appended to the write ahead logs. Once the
size of the memstore reaches its upper bound, the data in the
memstore are transferred to a storefile. The storefiles are sorted
in inverse chronological order. Inside the memstore or storefile,
the data are sorted by keys, and the versions for each key
are sorted in inverse chronological order. HBase only supports
the FullScan operation, so we designed and implemented
IncrementalScan in HBase-R.

1) IncrementalScan: For a store in a region, by accessing
the same key across the storefiles and memstore in parallel, the
IncrementalScan operation scans the keys in ascending
order. For each key, the version with the larger timestamp is
scanned earlier. For all the versions of a key, the algorithm
checks the timestamp of each version and returns the required
two versions. If the key has only one version, which means the
operation on the key is an insertion, the IncrementalScan
only returns that version for the key.

For real-time queries and data cube update, scanning
the key/value pairs in HBase-R is the most costly step.
It is, therefore, important to improve the performance of
IncrementalScan. For this purpose, we propose an adap-
tive incremental scan algorithm.

First, we maintain an in-memory structure to estimate d(T),
the number of distinct keys updated since the last refresh of
the data cube. Estimating d(T) in a data stream has been

well studied [15]. A straightforward method is to keep all
the keys in memory, and, for each key, to maintain a bit
value to indicate whether or not it has been updated. However,
this method requires a considerable amount of memory to
store the keys. In HBase-R, the size of a region is configured
before the data are inserted. Thus, the number of keys for
a region has an upper bound (M), which can be estimated
by SizeOfRegion/SizeOfKeyV alue. Since each region
usually stores a range of consecutive keys, a hash function
h(key) can be used to map a key to a value between 0 and
M − 1, and a bit array of size M , DistinctKeys, is maintained
in memory to indicate whether or not a key has been updated.
Using this bit array, to compute the number of updated values
on a node with even one billion distinct keys, only 128 MB
of memory are required.

To improve the performance of IncrementalScan,
the above data structure is used in the adaptive incremental
scan algorithm (Algorithm 1). When an IncrementalScan
request is sent to a region server, the first parameter (T1)
is always set to the refresh time of the current data cube
(TDC), and the second parameter (T2) equals to the submission
time of the query (TQ). Instead of scanning all the key/value
pairs before TQ, the key/value pairs in memstore are scanned
first. Note that in memstore, there might be several versions
for a key, and only the newest version is cached in kvMap
(line 1). The number of key/values updated after TDC but not
in memstore is then computed (line 7), and the random read
cost of these key/values is estimated. If this cost is smaller
than the cost of scanning all the data between TDC and TQ, the
storefile index is used to directly read the values for these keys
(lines 8 to 14). In this way, the latest versions for the updated
keys are obtained. Then, by simply scanning the key/values
before TDC , the latest versions before TDC for the updated
keys are returned to the client. Since the cost of scanning
memstore (in-memory structure) is much lower than the cost of
scanning storefile, when d(T) is large, the adaptive incremental
scan is almost the same as the default IncrementalScan. In
contrast, when d(T) is small, this adaptive scan strategy incurs
fewer I/O operations.

2) Compaction: HBase’s default compaction process com-
bines all the storefiles into one file and retains only one
version for each key. The global compaction in HBase-R is
similar to HBase’s default, but with a different triggering
condition; local compaction only compacts the versions earlier
than a certain timestamp. To ensure that the compaction
process does not block the scan processes, the compacted data
are stored in different files, instead of directly replacing the
un-compacted data. The files that contain the old versions
are replaced by the compacted files when they are not ac-
cessed by any scan process. Since the compaction process
competes with OLAP queries for CPU and I/O resources,
there is a trade-off between the frequency of the compaction
and the performance of the whole system. We define a
threshold so that the local compaction process is triggered
when (numberOfTuples)/(numberOfDistinctKeys) ex-
ceeds this threshold.

3) Load Balancing: HBase has its default region size,
which is 256MB. If the size of the data for a region is larger
than this size, it is automatically split to two sub-regions, which
are distributed to other nodes. In HBase’s default setting, only a

Algorithm 1: Adaptive IncrementalScan

input: Timestamp TDC , Timestamp TQ, boolean[]
DistinctKeys, int NumDistinctKeys

1 kvMap ← new HashMap<Key, Value>();
2 for KeyValue kv ∈ MemStore do
3 if kvMap.contain(kv.key) then
4 continue;
5 else
6 kvMap.put(kv.key, kv.value);

7 NumKeysNotInMemory ← NumDistinctKeys -
kvMap.size();

8 if CostOfRandom×NumKeysNotInMemory <
CostOfScan×NumOfUpdatedKeyV alues then

9 for key updated but not in kvMap do
10 kv ← randomRead(key);
11 kvMap.put(kv.key, kv.value);

12 for each kv before TDC do
13 if kvMap.exist(kv.key) then
14 send kvMap(kv.key) and kv;

15 else
16 delete kvMap;
17 invoke the default IncrementalScan(TDC , TQ)

fixed number of versions for a key are stored. Once the number
of versions for all the keys in this region reaches the maximum
number, the size of the region would not change regardless of
the frequency of key updates in this region. This requires users
to manually split the hot region. In contrast, in R-Store, we
do not strictly remove the old versions of the updated keys
once the number of versions exceeds HBase’s default setting.
We wait until the size of frequently updated region reaches its
upper bound, and the split happens automatically.

B. Real-Time Data Cube Maintenance

R-Store adopts HStreaming for maintaining the real-time
data cube (note that other streaming MapReduce systems can
also be used in R-Store). Each mapper of HStreaming is
responsible for processing the updates within a range of keys.
The map function of the data cube update algorithm is shown
in Algorithm 2. When an update for a key arrives, the old value
for this key is retrieved from the local storage if exists. To
efficiently retrieve the old value, a clustered index is built for
the key/values, and the frequently updated keys are cached in
memory. In reality, the updates are usually on a small range of
keys, and the old value of the updates have a high probability
to be directly retrieved from the cache. If the key is new (thus,
does not exist in local storage), for each cuboid, one key/value
pair is generated and shuffled to the reducers. The map output
key is the combination of the dimension attributes, and the
map output value is the numeric value. If the key of the update
exists in local storage and the updated key/value pair falls into
the same cell for a cuboid, one key/value pair is shuffled to the
reducer, and the numerical value is equal to the value change.
Otherwise, two key/value pairs are generated, one is the new
value with a tag “+”, and the other is the old value with a tag
“-”.

The reduce function is invoked at a time interval wr

Hbase-R
Region Server

MapReduce

...

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer OLAP

MetaStore

Obtain timestamp
and statistics

Updates

Region for Original Table
Store Store

...

Region for Data Cube

...

MemStore
StoreFile StoreFile

MemStore

...

... ...

Region Server

...

Region for Original Table
Store Store

...

Region for Data Cube

...

MemStore
StoreFile StoreFile

MemStore

... ...

Hstreaming

Mapper

Mapper

Reducer

Reducer

Compact Region

Refresh Cube

Fig. 2. Data Flow of R-Store

Algorithm 2: Map Function for Incremental Update

input: KeyValue kv
1 oldkv = retrieveFromLocal(kv.key);
2 if oldkv == null then
3 for cuboid in data cube do
4 CuboidK ← extractCuboidKey(cuboid,

kv.value);
5 CuboidV ← extractCuboidValue(kv.value);
6 CuboidV.setTag(“+”);
7 Emit(CuboidK, CuboidV);

8 insertToLocal(kv);
9 else

10 oldCuboidV ← extractCuboidValue(oldkv.value);
11 oldCuboidV.setTag(“-”);
12 newCuboidV ← extractCuboidValue(kv.value);
13 newValue.setTag(“+”);
14 for cuboid in data cube do
15 oldCuboidK ← extractCuboidKey(cuboid,

oldkv.value);
16 newCuboidK ← extractCuboidKey(cuboid,

kv.value);
17 if oldCuboidK == newCuobidK then
18 newCuboidV.set(computeChangeOfCell

(oldCuboidV,newCuboidV));
19 Emit(newCuboidK, newCuboidV);
20 else
21 Emit(oldCuboidK, oldCuboidV);
22 Emit(newCuboidK, newCuboidV);

23 updateToLocal(kv);

specified by the user. For example, if the time interval is
set to one second, the reducers will cache the incoming
intermediate data within the past second, and apply the reduce
function to them. Another time interval, wcube, defines how
frequently the data cube is materialized. The reduce function to
incrementally update the data cube is shown in Algorithm 3. A
reducer merges the local data cube (DC) with the intermediate

Algorithm 3: Reduce Function for Incremental Update

input: Key key, List¡Value¿ vlist, Context context
1 i ← 0, sum ← 0;
2 for Value v in vlist do
3 if v.timestamp < TDC then
4 MergeWith(key, v, DC)
5 else
6 MergeWith(key, v, �DC ′)

key/value pairs that it receives from mappers (which is a cell
in a cuboid) if these are due to an update before next cube
refresh time (TDC). Otherwise, it stores these key/value pairs
in �DC ′. When the timestamps of the incoming updates
on all mappers are larger or equal to TDC , the data cube
refresh process is invoked, which writes the local data cube to
HBase-R (different cuboids are written to separate HBase-R
tables). The incoming cells during this refresh process are still
written to �DC ′ since their timestamps are no less than TDC .
When this refresh process is completed, TDC is incrementally
changed, and DC is merged with �DC ′. In streaming system,
to deal with fault tolerance, the accumulated states of the
stream computation have to be checkpointed periodically. The
data streams after the checkpointing time are stored in logs and
will be used during the recovering process. In R-Store, the data
cube materialized to key/value store is indeed a checkpointing
of the real-time data cube. Since the key/value pairs after
the last data cube refresh are still stored in the storage (even
though some intermediate versions of the key/value pairs might
be removed by the local compaction process, the necessary
versions for building the next data cube are still there), the real-
time data cube maintenance process can be recovered using
the data cube and the real-time table without extra efforts of
checkpointing.

C. Data Flow of R-Store

Figure 2 illustrates the data flow between HBase-R,
HStreaming and MapReduce in R-Store. Each HBase-R region

server handles several regions. Some of these regions belong
to the real-time table, while the others belong to the data cube.
An OLTP query is submitted to one of the region servers, and
stored in memstore of the region it belongs to. If the size of
the memstore reaches its upper bound, the data are written into
HDFS as a storefile. Once the update is written to HBase-R,
it is streamed to a mapper in HStreaming based on the key of
this update. In the mappers of HStreaming, the change of a
cell for each cuboid is computed and shuffled to reducers. On
the reduce side, the real-time data cube is updated and cached
in local disk. At time interval, HStreaming materializes its
local data cube into HBase-R and notifies MetaStore with the
timestamp of the latest data cube. The compaction process is
then launched to compact the versions of data before data cube
is refreshed.

When an OLAP query arrives, it acquires a timestamp from
the MetaStore, together with the statistics of the real-time table
stored in HBase-R. It is then transformed to a MapReduce job
based on the data statistics, and submitted to the system. Each
mapper starts a scan operation over its input region belonging
to either the real-time table or the data cube. At the end of the
job, the results of OLAP query are stored in HBase-R.

V. REAL-TIME OLAP

Section III to IV described in detail the architecture and
implementation of R-Store. In this section, we discuss how the
real-time OLAP queries are processed. In R-Store, if the input
of the MapReduce job is only the data cube, the performance
of the scan phase on the map side is maximized, but the result
might be stale. To maximize the freshness of the OLAP query,
all the updated key/value pairs before the submission time of
the query must be considered. Thus, not only the data cube,
but also the real-time table must be scanned.

Suppose the creation time of the data cube is TDC and
the submission time of the query is TQ. For each updated
key after TDC , IncrementalScan running on the real-
time table returns both the old version before TDC and the
latest version before TQ, if its two parameters are set to TDC

and TQ respectively. By merging these two versions with the
numeric values of each cuboid, the latest cuboid value can be
computed on demand, and the freshness of the OLAP query
can be satisfied. In the following subsection, we present the
query processing algorithm (called IncreQuerying) making use
of the IncrementalScan operation.

A. Querying Incrementally-Maintained Cube

We implement MultiTableInputFormat so that each MapRe-
duce job can scan the data of multiple tables, and the scan
operation of each table can be configured as either full scan or
incremental scan. Using this input format, the MapReduce job
for IncreQuerying can access two types of input tables: one is
the cuboid table for which a full scan is performed, and the
other is the real-time table over which the incremental scan is
used.

Map. Algorithm 4 describes the map function. The mappers
filter the cell and the real-time tuple based on the filtering
condition. The cells and tuples that will be aggregated are
assigned the same partition key and shuffled to the same

Algorithm 4: Map Function for IncreQuerying Algo-
rithm

input: KeyValueList kvlist, Context context
1 key ← null, value ← null;
2 if kvlist.size == 1 then
3 key ← extractKey(kvlist[0].key);
4 if key is not filtered then
5 value ← kvlist[0].value;
6 value.setTag(“Q”);
7 Emit(key, value);

8 else
9 key ← extractKey(kvlist[0].value);

10 if key is not filtered then
11 value ← extractValue(kvlist[0].value);
12 value.setTag(“+”);
13 context.write(key, value);
14 value ← extractValue(kvlist[1].value);
15 value.setTag(“−”);
16 Emit(key, value);

TABLE I. DATA CUBE OPERATIONS

Operator Parameters
addFilter attribute name, function, value

addGroupBy group-by attribute

setAggregationFunc aggregation function name

setNumericAttribute numeric attribute name

reducer. The output value for the cell is the selected numeric
value, while the output value for the real-time tuple is the
original value, which will be used to re-compute the numeric
value. The value is attached with a tag “Q”, “-” or “+” to
indicate whether it is the cell value of a cuboid, the old value
of a key/value pair, or the new value, respectively. This phase
is similar to the map phase of incrementally updating the data
cube, except that a filtering process is added, and the partition
key could be different from the dimension attributes of the
data cube.

Reduce. The reduce function calculates the new value of each
cell based on the old cell value, the change of the cell and the
aggregation function. The cell key of the reduce function is
different from that of Algorithm 3. For example, for the TPC-
H part table, to compute a rectangular subset of the cube
(mfgr = “Manufacturer#13”), the key of the reduce function
is the combination of the attributes (brand to container) after
removing mfgr.

Figure 3 shows the data flow of IncreQuerying alogrithm
for an OLAP query on a two-dimensional cuboid (mfgr,brand).
The query computes the summation of price for each brand
produced by “M1”. To ensure the freshness of the results,
all the data of the queried table and the cuboid are scanned
to process the real-time query. Note that the row key of
the stored data cuboid is the combination of the dimension
attributes. Therefore, if the filtering condition contains some
attributes that could form a prefix of the row key, such as
“Manufacturer#1” and “Brand#13”, the range scan function of
HBase-R can be used to avoid scanning the entire data cube.
The min key for the range scan is “Manufacturer#1,Brand#13”,
and the max key is “Manufacturer#1,Brand#14”.

Cube

Part

FullScan

Incremental
Scan v1

M1,B1,831
key
101

mfgr,brand
M1,B1

M2,B1

price
2954

2440

v2
M1,B2,940

Mapper1

Mapper2
M2,B1,690101 M1,B1,540

M2,B2 3513

M1,B2 1945

Filter Condition
=M1 brand

B1
price

2954,Q
B2 1945,Q

brand
B1

price
831,+

B2 940,-
B1 540,-

Reducer1

Reducer2

brand
B1

price
3245

B2 1005

Fig. 3. Data Flow of IncreQuerying

Algorithm 5: Example Data Cube Query

input: DataCube cub
1 cub.addFilter(“mfgr”, “=”, “Manufacturer#1”);
2 cub.addFilter(“brand”, “=”, “Brand#13”);
3 cub.addGroupBy(“type”);
4 cub.setNumericAttribute(“retailprice”);
5 cub.setAggregateFunc(“sum”);
6 cub.setOutputTable(“resultTable”);
7 SubmitQuery(cub);

To relieve users from having to merge the real-time data
and the historic data cube, we define new data cube operators
and automatically translate these operators into a MapReduce
job. The processing of the real-time data is transparently encap-
sulated into the operators shown in Table I. Algorithm 5 shows
an example that computes the summation of the retailprice for
all the parts with “Brand#13” produced by “Manufacturer#1”,
grouped by type.

B. Correctness of Query Results

When an OLAP query is submitted to the system, a
timestamp TQ is acquired for this query from the MetaStore. To
guarantee correctness, if the query needs to scan a table several
times, the scan process on each node always returns the data
before time TQ. However, in a distributed system, although
clocks can be synchronized to a certain extent, there might
still be some difference between the clocks of different nodes.
If the current timestamp Tk on a certain node k is smaller
than TQ, the next scan process on this node would return
some data between Tk and TQ, which leads to an inconsistent
state. To avoid this inconsistency, if the timestamp TQ is larger
than Tk, the scan process is blocked for a while until TQ is
equal to or smaller than Tk. Since clock synchronization can
achieve one millisecond accuracy in local area networks under
ideal conditions, the delay of the scan process can be ignored
compared to the processing time.

C. Cost Model

The IncreQuerying algorithm discussed above is not always
better. The IncrementalScan scans not only the real-
time table, but also the data cube, incurring a higher cost.
In addition, it shuffles two versions for each updated key
to MapReduce. When there are fewer OLTP transactions or
the OLTP transactions access a small range of keys, Incre-
Querying algorithm is better because IncrementalScan
only transfers a small amount of data to the mappers. An
alternative implementation of real-time querying is similar
to re-computing the data cube: a FullScan operation is
used to return one version for each key/value pair regardless

TABLE II. PARAMETERS

Parameter Definition
|T | number of tuples in table T
d|T | number of distinct keys updated

f(T) size of the tuple in table T
s(T) percentage of the keys that are updated since the last data

cube refresh

|C| number of cells in the selected cuboid

d(C) size of dimension attributes of cuboid

n(C) size of numeric attribute of cuboid

|Q| number of tuples in the query result

s(Q) filtering selectivity of the query

d(Q) size of query result key

n(Q) size of query result value

shHBase cost ratio of shuffling from HBase-R

wHBase cost ratio of HBase-R writes

shMR cost ratio of shuffling in MapReduce

cL cost ratio of local I/Os

mT number of mappers for table T

mC number of mappers for the cuboid

B block size

of whether or not it has been updated. When the updates
are uniformly distributed across all the keys, this baseline
implementation could be more efficient. To be able to select
a more efficient approach, we propose a cost model. Table II
shows the parameters of the cost model. The most important
one is s(T), which is the percentage of the keys that are
updated after refreshing the data cube: s(T) = d(T)/|T |.

1) Cost Analysis of the Baseline Method: The baseline
algorithm is a MapReduce job that is essentially similar to
re-computing the entire data cube. First, we estimate the cost
of the scan phase on the map side. The scan phase consists
of two parts: scanning the local data on each HBase-R node
(FullScan or adaptive IncrementalScan discussed in
Section III-B1) and shuffling these data to mappers. The
FullScan scans all the storefiles of the real-time table, while
the adaptive IncrementalScan scans fewer storefiles when
d(T) is small and the memstore has enough number of
keys. However, whether the adaptive IncrementalScan is
activated depends on the status of each HBase-R node and
cannot be easily estimated. Thus, we assume that the cost of
reading the local data on each HBase-R node are the same
for FullScan and IncrementalScan. The difference is
in the number of tuples transferred from HBase-R to mappers.
Thus, we base our analysis on the network transfer cost. The
FullScan operation shuffles one version for each key, and
the cost of the scan phase of the MapReduce job is estimated
as

Cscan = shHBase × |T | × f(T)

The mapper outputs one key/value pair for each tuple. Thus
the size of the map output is

SMO = s(Q)× (|T |/mT)× (d(Q) + n(Q))

and the cost of external sorting the map output is:

Csort−map = mT × 2cL × ((SMO × logB(SMO/(B + 1)))

When the mappers complete, the reducers start to pull the
sorted key/value pairs from the mappers. The cost of shuffling
is:

Cshuffling = shMR × s(Q)× |T | × (d(Q) + n(Q))

The pulled data are cached in the local file system, whose cost
can be ignored since the shuffling process and the local writing
process are pipelined. The data shuffled from the mappers are
then merged into one sorted run using the multi-way merge-
sort method, which only requires reading and writing the files
once.

Creduce−merge = 2cL × s(Q)× |T | × (d(Q) + n(Q))

Finally, the result table is written into HBase-R, whose cost is
computed as

Creduce−write = wHBase × |Q| × (d(Q) + n(Q))

2) Cost Analysis of IncreQuerying Algorithm: The MapRe-
duce job for IncreQuerying reads both the data cube and the
updated data. Therefore, its cost is different from that of re-
computation. At first, the mappers scan both the real-time data
and the data cube. The cost of shuffling the real-time data and
data cube to mappers is:

Cscan−R = shHBase × 2|T | × f(T)× s(T)

while the cost of scanning the data cube is:

Cscan−C = shHBase × |C| × (d(C) + n(C))

After the scan phase, the real-time data and the data cube
are sorted. The size of the map output for these two types of
data is:

SMO−R = 2× (s(Q)× |T | × s(T)/mT)× (d(Q) + n(Q))

SMO−C = (|C|/mC)× s(Q)× (d(Q) + n(Q))

and the cost of external sorting the map output is:

Csort−map−R =mT × 2cL×
((SMO−R × logB(SMO−R/(B + 1)))

Csort−map−C =mC × 2cL×
((SMO−C × logB(SMO−C/(B + 1)))

The data on all the mappers are shuffled to the reducers
after the mapper completes. The cost of shuffling is:

Cshuffling =shMR × s(Q)×
((2× |T | × s(T) + |C|)× (d(Q) + n(Q))

In the reduce phase, the cost of sort merging process is:

Creduce−merge =2cL × s(Q)×
(2× |T | × s(T) + |C|)× (d(Q) + n(Q))

and the cost of writing the data into HDFS is:

Creduce−write = wHBase × |Q| × (d(Q) + n(Q))

Based on the cost model discussed above, the more efficient
approach is dynamically selected when a real-time query is
submitted.

VI. EVALUATION

In this section, we evaluate the R-Store on our in-house
cluster of 144 nodes. Each node is equipped with Intel X3430
2.4 GHz processor, 8 GB of memory, 2x500 GB SATA disks,
each of which is connected by a gigabit Ethernet and running
CentOS 5.5. The cluster nodes are evenly placed onto three
racks. We adopt TPC-H data for the experiments. However,
TPC-H updates only append new keys, while we need online
transactions that update the existing keys. Therefore, we write
our own scripts to update the TPC-H data. The scripts can
update the keys based on either a uniform distribution or Zipf
distribution. In most of the following experiments, we use the
TPC-H part table to build the data cube.

A. Performance of Maintaining Data Cube

In this experiment, we first measure the throughput of our
real-time data cube maintenance algorithm to ensure that it
has sufficiently high processing capacity to handle the update
streams from HBase-R. As can be seen in Figure 4, when
HStreaming is configured with 10 nodes, the algorithm can
process more than 100K updates per second, which is even
higher than the throughput of HBase-R with 40 nodes (the
throughput of HBase-R will be discussed in Section VI-C).

We compare the two methods for refreshing the data cube:
re-computation and incremental update. We deploy the system
on 100 nodes, with 40 nodes for MapReduce, 40 nodes for
HBase-R, and 20 nodes for HStreaming. The scale factor of
the TPC-H data is set to 8000, so that there are 1,600,000,000
keys for part table. On each HBase-R node, there are 4.8 GB
data. The data cube is built after the part table is loaded into
HBase-R.

Figure 5 shows the processing time of the two methods.
The distribution of updated keys follows a Zipf distribution.
We adjust the factor of the Zipf distribution so that about 1%
keys are updated, while the number of updates is increased
from 8 million to 1,600 million. Since HBase-R does not
remove the previous version of the data, 0.024 GB to 4.8
GB of new data are inserted into each HBase-R node. The
processing time of re-computation has two parts: the blue
rectangle (ReCompScan) is the scan time of the real-time table,
and the yellow rectangle (ReCompExe) is the execution time
of the MapReduce job after the scan phase. As the number
of updates increases, the data stored on each HBase-R node
increases as well. Thus, more data are scanned at the HBase-
R side for the re-computation approach, and the running time
of the scan phase for re-computation is increased over time.
However, as illustrated in Figure 5, the running time of the
ReCompExe decreases as the number of updates increases,
which is counterintuitive. We expected that the execution time
of the MapReduce job should remain the same in different set-
tings as they process the same number of key/value pairs. The
reason for the decrease in ReCompExe is that ReCompScan
and ReCompExe are pipelined. The more time ReCompScan
takes, the more these two phases overlap, reducing the time
ReCompScan takes.

In contrast, the processing time of incremental update
consists of only one part (the red rectangle): the time it takes
to write data cube into HBase-R. This is because our real-time
data cube maintenance algorithm is fast enough to update the

 0

 100

 200

 300

 400

 500

10 20 30 40 50 60 70

U
pd

at
es

 P
er

 S
ec

on
d

(K
)

Number of Nodes

Throughput

Fig. 4. Throughput of Real-Time Data Cube Mainte-
nance Algorithm

 0

 2,000

 4,000

 6,000

 8,000

 10,000

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

Pr
oc

es
si

ng
 ti

m
e

(s
)

Number of Updates
8M 400M 800M 1,200M 1,600M

Update
ReCompExe
ReCompScan

Fig. 5. Performance of Data Cube Refresh

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

50 75 100 125 145

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of Nodes

ReComputation
IncrementalUpdate

Fig. 6. Scalability

real-time data cube with the data streams from HBase-R. Thus
the latency of periodically refreshing the data cube in HBase-
R equals to the time of writing the real-time data cube into
HBase-R. This time is related to the the size of the data cube
and does not change as the number of updates increases.

We also evaluate the scalability of R-Store. In this experi-
ment, the number of nodes and the data size increase with the
same ratio. The percentage of updates is set to 1% for different
scalability settings. As can be seen in Figure 6, the running
time of both re-computation (the brown line) and incremental
update (blue line) do not change much as the number of nodes
increase, which demonstrates the scalability of R-Store.

B. Performance of Real-Time Querying

In this experiment, we investigate the performance of real-
time querying. First, we compare the IncreQuerying algorithm,
which optimizes the real-time query using the data cube, with
the Baseline algorithm implemented with the FullScan op-
eration. The cluster settings are the same as those of Figure 5,
except that we fix the number of updates to 8,000 million and
vary the percentage of the keys updated.

Figure 7(a) shows the processing time of both algorithms
for a typical data cube slice query:

SELECT sum(prices) FROM part

WHERE mft = “Manufacture#1′′

GROUPBY brand, type, size, container

The processing time of the Baseline algorithm consists of two
parts: the black rectangle (ReCompScan) is the time to scan the
real-time table, and the yellow rectangle (ReCompExe) is the
execution time of the MapReduce job after the scan phase. In
contrast, the processing time of IncreQuerying consists of three
parts: the red rectangle (CubeScan) is the time to scan the data
cube, the blue rectangle (UpdateScan) is the time to scan the
part table in HBase-R, and the grey rectangle (UpdateExe) is
the execution time of the MapReduce job after the scan phase.

When only a small range of keys are updated, IncreQuery-
ing performs much better than Baseline. It outperforms the
Baseline approach for two reasons: (1) by using adaptive incre-
mental scan, it scans fewer data in HBase-R and shuffles fewer
data to MapReduce; (2) its MapReduce job processes fewer
data than that of re-computation. However, as the percentage

of updated keys increases, more data are shuffled from HBase-
R to MapReduce. Thus, both the scan time and the execution
time increase. In contrast, for Baseline, since the FullScan
always shuffles one version for each key to MapReduce, the
amount of data shuffled from HBase-R is constant. As a
result, the running time of Baseline is almost constant. Due to
the existence of the filtering condition on attribute mft, most
tuples of the table are filtered, and fewer data are sorted and
shuffled during the execution of the MapReduce job. As a
result, the difference between the execution times is not so
significant. In general, IncreQuerying algorithm outperforms
Baseline algorithm when the percentage of keys being updated
is low.

In addition to the data cube slice query, we also evaluate
TPC-H Q1 (Figure 7(b)) with the same experimental settings.
We did not illustrate other benchmark queries as they involve
multiple tables, which will not be able to illustrate as clearly
the effectiveness of the basic operators supported in R-Store.
The parameter shipdate of TPC-H Q1 is set to “365” days, and
only about 15% of the tuples are filtered (shipdate larger than
“12-01-1998”). Thus, the execution time of the MapReduce job
after the scan phase is longer than that of Figure 7(a). For the
Lineitem table, since we only build the data cube on attributes
shipdate, returnflag and linestatus, the data cube is much
smaller than the real-time table, and the time to scan the data
cube is around 20 seconds. Overall, Figure 7(b) demonstrates
that the performance of IncreQuerying is significantly better
than that of Baseline.

To select the better querying method among the two, we
use the cost model (Section V-C) to estimate the number
of I/Os. Figure 8 shows the running time of IncreQuerying,
and the I/Os estimated for both Baseline and IncreQuerying
algorithms. The y-axis on the left is the processing time of the
query, while the y-axis on the right is the estimated I/Os. The
estimated number of I/Os for IncreQuerying (the blue line)
increases linearly with almost the same slope (the histogram)
as the processing time of the query, while the estimated number
of I/Os for the Baseline (the brown line) is constant, which is
around 2.52×1011. This result hence verifies the accuracy of
our cost model.

Compared to querying only the data cube, RTOLAP queries
require two additional steps, which incur additional cost:
scanning the real-time data from HBase-R, and merging the
real-time data with the data cube on demand in MapReduce.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

Pr
oc

es
si

ng
 ti

m
e

(s
)

Percentage of keys being updated
1% 5% 10% 15% 20% 25%

IncreQueryExe
IncreQueryScan
CubeScan
BaselineExe
BaselineScan

(a) Data Cube Slice Query

 0

 1,000

 2,000

 3,000

 4,000

 5,000

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

Pr
oc

es
si

ng
 ti

m
e

(s
)

Percentage of keys being updated
1% 5% 10% 15% 20% 25%

IncreQueryExe
IncreQueryScan
CubeScan
BaselineExe
BaselineScan

(b) TPC-H Q1

Fig. 7. Performance of Querying

 0

 1200

 2400

 3600

 4800

 6000

1% 5% 10% 15% 20% 25%
 0

 0.8

 1.6

 2.4

 3.2

 4

Pr
oc

es
si

ng
 T

im
e

(s
)

I/O
s (

X
10

11
)

Percentage of Keys Updated

CubeScan
IncreQueryScan
IncreQueryExe
I/Os estimated for IncreQuery
I/Os estimated for Baseline

Fig. 8. Accuracy of Cost Model

 0

 500

 1000

 1500

 2000

0 10 20 30 40 50 60 70 80 90 100

Pr
oc

es
si

ng
 T

im
e

(s
)

Freshness Ratio (%)

CubeScan
IncreQueryScan
IncreQueryExe

Fig. 9. Performance vs. Freshness

On each HBase-R node, the key/values are stored in storefile
format. Though only one or two versions of the same key are
returned to MapReduce, HBase-R has to scan all the storefiles
of the part table.

Since the memstore is materialized to HDFS when it is
full, these files are sorted by time. Thus, instead of scanning
all the storefiles and memstore between TDC and TQ, only
the storefiles between TDC and a user specified timestamp Ti

(Ti < TQ) are scanned. The value of Ti decides the freshness
of the result. There is a trade-off between the performance
of the query and the freshness of the result: the smaller Ti

is, the fewer real-time data are scanned. Figure 9 shows the
query processing time with different freshness ratios, which
is defined as the percentage of the real-time data we have to
scan for the query. In this experiment, |part| = 1600 million,
and 800 million updates on 1% distinct keys are submitted to
HBase-R. When the freshness ratio is 0, the input of the query
is only the data cube. Thus, the cost of scanning the real-time
data is 0. When the freshness ratio increases to 10%, the cost
of scanning the real-time data is around 1500 seconds because
the cost of scanning the real-time table dominates the OLAP
query. As the freshness ratio increases, the running time of
IncreQuerying method increases slightly, which is due to two
reasons: (1) the data before TDC still need to be scanned; and
(2) the amount of data shuffled to mappers are roughly the
same with different ratios.

Figure 10 depicts the effectiveness of our compaction
scheme. In this experiment, we measure the processing time
of the data cube slice query when the compaction scheme

is applied (Baseline and IncreQuerying) and when it is not
(Baseline-NC and IncreQuerying-NC). We submit 800 million
updates to the server each day, and the percentage of keys
updated is fixed to 1%. The data cube is refreshed at the
beginning of each day, and the OLAP query is submitted to the
server at the end of the day. Since the data are compacted after
the data cube refresh, the amount of data stored in the real-time
table are almost the same at the same time of each day. The
processing time of Baseline and IncreQuerying are thus almost
constant. In contrast, when the compaction scheme is turned
off, HBase-R stores much more data, and the cost of locally
scanning these data becomes larger than the cost of shuffling
the data to MapReduce. As a result, the processing time of
Baseline-NC and IncreQuerying-NC increases over time.

C. Performance of OLTP

In this experiment, we investigate the performance of
OLTP queries when OLAP queries are running. The workload
is update-only, and the keys being updated are uniformly
distributed. We launch ten clients to concurrently submit the
updates when the system is deployed on 100 nodes. Each
client starts ten threads, each of which submits one million
updates (100 updates in batch). Another client is launched to
submit the data cube slice query. That is, one OLAP query
and approximately 50,000 updates are concurrently processed
in R-Store. The system reaches its maximum usage in this
setting based on our observation. When the system is deployed
on other number of nodes, the number of clients submitting
updates is adjusted accordingly.

Figure 11(a) shows the throughput of the system. The
throughput increases as the number of nodes increases, which
demonstrates the scalability of the system. However, when
OLAP queries are running, the update performance is lower
than running only OLTP queries. This result is expected, be-
cause the OLAP queries compete for resources with the OLTP
queries. We also evaluate the latency of updates when the
system is approximately fully used. As shown in Figure 11(b),
the aggregated response time for 1000 updates are similar with
respect to varying scales.

VII. CONCLUSION

MapReduce is a parallel execution framework, which has
been widely adopted due to its scalability and suitability in

 0

 3000

 6000

 9000

 12000

1 2 3 4 5 6 7

Pr
oc

es
si

ng
 T

im
e

(s
)

Time since the Creation of Data Cube (day)

Baseline
IncreQuerying
Baseline-NC
IncreQuerying-NC

Fig. 10. Effectiveness of Compaction

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70

U
pd

at
es

 P
er

 S
ec

on
d

(K
)

Number of Nodes

Updates only
Updates + OLAP

(a) Throughput

 0

 2

 4

 6

 8

 10

10 20 30 40 50 60 70

R
es

po
ns

e
Ti

m
e

fo
r 1

00
0

U
pd

at
es

(s
)

Number of Nodes

Updates only
Updates + OLAP

(b) Latency

Fig. 11. Performance of OLTP Queries

a large scale distributed environment. However, most existing
works only focus on optimizing the OLAP queries and assume
that the data scanned by MapReduce are unchanged during the
execution of a MapReduce job. In reality, the real-time results
from the most recently updated data are more meaningful
for decision making. In this paper, we propose R-Store for
supporting real-time OLAP on MapReduce. R-Store leverages
stable technology (HBase and HStreaming) and extends them
to achieve high performance and scalability. The storage sys-
tem of R-Store adopts multi-version concurrency control to
support real-time OLAP. To reduce the storage requirement, it
periodically materializes the real-time data into a data cube and
compacts the historical versions into one version. During query
processing, the proposed adaptive incremental scan operation
shuffles the real-time data to MapReduce efficiently. The data
cube and the newly updated data are combined in MapReduce
to return the real-time results. In addition, based on our
proposed cost model, the more efficient query processing
method is selected. To evaluate the performance of R-Store, we
have conducted extensive experimental study using the TPC-
H data. The experimental results show that our system can
support real-time OLAP queries much more efficiently than the
baseline methods. Though the performance of OLTP degrades
slightly due to the competition for resources with OLAP, the
response time and throughput remain good and acceptable.

ACKNOWLEDGMENT

The work described in this paper was in part supported
by the Singapore Ministry of Education Grant No. R-252-
000-454-112 under the epiC project, and M.T.Özsu’s work
was partially supported by Natural Sciences and Engineering
Research Council (NSERC) of Canada. We would also like to
thank the anonymous reviewers for their insightful comments.

REFERENCES

[1] http://hbase.apache.org/.

[2] http://hstreaming.com/.

[3] http://www.comp.nus.edu.sg/∼epic/.

[4] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica.
Masm: efficient online updates in data warehouses. In SIGMOD, pages
865–876, 2011.

[5] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu,
and Q. Xu. Es2: A cloud data storage system for supporting both oltp
and olap. ICDE, pages 291–302, 2011.

[6] S. Ceri and J. Widom. Deriving production rules for incremental view
maintenance. In VLDB, pages 577–589, 1991.

[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In NSDI, pages 313–328, 2010.

[8] J. Dean, S. Ghemawat, and G. Inc. Mapreduce: simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[9] L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling updates in a
real-time stream warehouse. ICDE, pages 1207–1210, 2009.

[10] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. Hyrise: a main memory hybrid storage engine. Proc.
VLDB Endow., 4(2):105–116, Nov. 2010.

[11] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally (extended abstract). In SIGMOD, pages 157–166, 1993.

[12] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. Boncz.
Positional update handling in column stores. In SIGMOD, pages 543–
554, 2010.

[13] D. Jiang, G. Chen, B. C. Ooi, and K.-L. Tan. epic: an extensible and
scalable system for processing big data. 2014.

[14] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of mapreduce:
an in-depth study. Proc. VLDB Endow., 3(1-2):472–483, Sept. 2010.

[15] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for
the distinct elements problem. PODS ’10, pages 41–52.

[16] A. Kemper, T. Neumann, F. F. Informatik, T. U. Mnchen, and D-
Garching. Hyper: A hybrid oltp&olap main memory database system
based on virtual memory snapshots. In In ICDE, 2011.

[17] T.-W. Kuo, Y.-T. Kao, and C.-F. Kuo. Two-version based concurrency
control and recovery in real-time client/server databases. IEEE Trans.
Comput., 52(4):506–524, Apr. 2003.

[18] K. Y. Lee and M. H. Kim. Efficient incremental maintenance of data
cubes. In VLDB, pages 823–833, 2006.

[19] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed data management
using mapreduce. In ACM Computing Survey, 2014.

[20] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes
and summary tables in a warehouse. In SIGMOD, pages 100–111, 1997.

[21] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed cube
materialization on holistic measures. In ICDE, pages 183–194, 2011.

[22] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
stream computing platform. In ICDMW, pages 170–177, 2010.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD, pages
1099–1110, 2008.

[24] K. Sergey and K. Yury. Applying map-reduce paradigm for parallel
closed cube computation. In DBKDA, pages 62–67, 2009.

[25] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik. C-store: a column-oriented dbms. In VLDB,
pages 553–564, 2005.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive - a warehousing solution over a map-
reduce framework. PVLDB, 2(2):1626–1629, 2009.

[27] P. Vassiliadis and A. Simitsis. Near real time ETL. In Annals of
Information Systems, volume 3, pages 1–31. 2009.

[28] C. White. Intelligent business strategies: Real-time data warehousing
heats up. DM Review, 2012.

