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Abstract—The Web is teeming with rich structured infor-
mation in the form of HTML tables, which provides us with
the opportunity to build a knowledge repository by integrating
these tables. An essential problem of web data integration is to
discover semantic correspondences between web table columns,
and schema matching is a popular means to determine the se-
mantic correspondences. However, conventional schema matching
techniques are not always effective for web table matching due
to the incompleteness in web tables.

In this paper, we propose a two-pronged approach for web
table matching that effectively addresses the above difficulties.
First, we propose a concept-based approach that maps each
column of a web table to the best concept, in a well-developed
knowledge base, that represents it. This approach overcomes
the problem that sometimes values of two web table columns
may be disjoint, even though the columns are related, due
to incompleteness in the column values. Second, we develop a
hybrid machine-crowdsourcing framework that leverages human
intelligence to discern the concepts for “difficult” columns.
Our overall framework assigns the most “beneficial” column-
to-concept matching tasks to the crowd under a given budget
and utilizes the crowdsourcing result to help our algorithm infer
the best matches for the rest of the columns. We validate the

effectiveness of our framework through an extensive experimental
study over two real-world web table data sets. The results show
that our two-pronged approach outperforms existing schema
matching techniques at only a low cost for crowdsourcing.

I. INTRODUCTION

The Web contains a vast amount of structured and unstruc-
tured information, such as HTML tables and text documents.
Structured information, in the form of web tables, can be
extracted from the Web to improve search results and to
enable knowledge discovery. Indeed, the topic of exploring
and discovering information in web tables has attracted much
interest in research community in recent years [1], [2], [3], [4],
[5], [6], [7].

Very often, information from different web tables need to
be consolidated together to build comprehensive knowledge
about various entities or concepts. An essential step towards
consolidating or integrating knowledge from different web
tables is to discover the semantic correspondences between the
columns of different web tables. The problem of discovering
the semantic correspondences between two tables is known as
schema matching, which is a topic that has been extensively
studied in the past decade or so (e.g., see surveys [8], [9]).
Even though numerous solutions have been proposed in the
past for solving the schema matching problem, web tables
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Fig. 1. Web table examples: table T1 and T2 are about movies, while T3

and T4 are about books.

are inherently incomplete, making existing schema matching
solutions inadequate for matching columns of web tables.

The first type of incompleteness in web tables arises from
the fact that web tables typically contain only a limited amount
of information, since a web table is usually extracted from a
single web page. Hence, given two web tables, even if two
columns from these web tables model the same real-world
concept (i.e., there is a semantic correspondence between
them), it can happen quite often that they may contain only a
few values in common or they may be completely disjoint. For
example, consider the web tables of school names extracted
from individual web pages of U.S. school districts. These
web tables will typically contain no more than 20 schools
in any school district and they are unlikely to share values
(i.e., names of schools). A significant number of instance-
based conventional schema matching techniques (e.g., see
surveys [8], [9]) rely primarily on the similarity between
the values of two columns to determine whether a semantic
correspondence exists between the two columns. Thus, these
conventional techniques may conclude that there is no semantic
correspondence between the web tables mentioned above.

The second type of incompleteness in web tables arises
from the fact that information about the schema of a web table
may not always be available. Traditional schema matching
techniques over relational databases rely heavily on the avail-
ability of metadata, such as column names and information
on data types (again, see surveys [8], [9]). However, column
names (i.e., table headers) in web tables are often undefined
(i.e., marked up with <th> tag) or missing. Furthermore, data
types are not explicitly specified in web tables. Even if the
header names are available, they can sometimes be meaning-
less or unreliable [6]. As such, the traditional schema matching
approaches, which depend on schema-level information to find
the matches, do not tend to work well over web tables.



To address the limitations of conventional schema matching
techniques for matching columns of web tables, we propose
a concept-based approach that exploits well-developed knowl-
edge bases with fairly wide coverage and high accuracy, such
as FREEBASE [10], to facilitate the matching process over
web tables. The FREEBASE knowledge base contains about 23
million instances over 6,852 different concepts, such as people,
location, film, etc. These concepts are rather comprehensive
and cover a significant amount of real-world instances in vari-
ous domains. One fundamental idea in our approach is to first
map values of each web table column to one or more concepts
in FREEBASE by searching the values over an instance-to-
concept index that is built over FREEBASE. Columns that
are mapped to the same concept are then matched with each
other (i.e., there is a semantic correspondence between them).
Obviously, our technique does not rely on the availability of
metadata, such as column names, (but we do exploit them if
such information is available) since we use only the values
of columns to determine the best concepts representing the
values. Furthermore, by first mapping values of different web
table columns to concepts and then determining whether or not
a pair of columns is semantically related based on whether
they match the same concept, we can now detect semantic
correspondences even between columns that may not share
any values in common. For example, with this approach, two
columns listing the names of schools from two web tables
of two different school districts will be matched to the same
concept “Education/US Schools”, even though the column
values are likely to be disjoint, since the instances of this
concept overlap with the values of each of the columns.

It should be mentioned that prior work, such as [3], [6],
use similar ideas: labels are annotated on columns of tables
with missing headers, and binary relationships are annotated
on pairs of columns, based on information that is extracted
from the Web or ontologies such as YAGO [11]. However,
these are all pure machine-based approaches and they do
not always work well on some inherently difficult matching
issues. For example, in Figure 1, the values of T1.Title
and, respectively, T3.Title, can refer to both movie titles and
book titles. However, in the context of the values in the other
columns in T1 and T3, it is clear that T1.Title refers to movie
titles while T3.Title refers to book titles. Even though it is
possible for prior work [3] to also take into account values
of other columns to collectively decide an appropriate concept
for a set of values, we observe that such classification tasks
are actually quite effortless for human who can produce more
reliable classification results. With this observation in mind, we
investigate a hybrid machine-crowdsourcing based approach
where, intuitively, the machine will do most of the “easy” work
on matching up pairs of columns through concepts and defer
to the crowd to discern the concepts only for the columns that
machines consider “difficult” (but is still quite an effortless
task for the crowd).

Contributions. To the best of our knowledge, we are the
first to exploit crowdsourcing for web table schema matching
and also the first to adopt a hybrid machine-crowdsourcing
based approach for a general solution to the matching prob-
lem. In this paper, we describe our design of the hybrid
machine-crowdsourcing based web table matching framework.
Our framework automatically assigns the most “beneficial”
column-to-concept matching tasks to the crowd under a given

budget k (i.e., the number of microtasks) for crowdsourcing
and utilizes the crowdsourcing result to help algorithms infer
the matches of the rest of tasks.

One of the fundamental challenges in the design of our
framework is to determine what constitutes a “beneficial”
column and should therefore be crowdsourced to determine the
right concept for that column. To this end, we propose a utility
function that takes both matching difficulty and influence of a
column into consideration. Intuitively, the matching difficulty
of a column refers to the degree of ambiguity of the set of
column values. The influence of a column refers to the extent
to which the knowledge of the right concept of that column
will help infer the concepts of other columns. Naturally, we
prefer crowdsourcing columns that are more difficult and have
greater influence on other columns. We prove that the problem
of selecting the best k columns to maximize the expected
utility is NP-hard in general, and subsequently, we design
a greedy algorithm that derives the best k columns with an
approximation ratio of 1− 1

e
, where e is the base of the natural

logarithm.

Summary. We summarize our contributions below. 1) We
propose a hybrid machine-crowdsourcing framework as a
general solution for the web table schema matching problem.
2) We present a concept-based schema matching approach that
first maps each column to a concept in a catalog, and then
matches pairs of columns based on whether they belong to the
same concept. 3)We propose a utility function and effective
algorithms to select the best k columns for crowdsourcing. 4)
We conduct extensive experiments and show that, with a fairly
small amount of crowdsourcing cost, our hybrid framework
outperforms existing web table annotation approaches [3], [6]
and conventional schema matching techniques.

II. HYBRID MACHINE-CROWDSOURCING FRAMEWORK

In this section, we first formally define the fundamental
problems of our work, and then introduce the architecture of
our machine-crowdsourcing hybrid framework.

A. Definitions

A web table corpus is a set of web tables, denoted by
T = {T1, T2, . . . , T|T |}. We will often write T to denote
the name of the web table and the relation that interprets
it. A web table T consists of a set of columns, denoted as
T.A = {A1, A2, . . . , A|T.A|}. For web tables, not all of the
column names are present in general but we abuse the notation
Ai to denote the name of the column (if available) or to
symbolically refer to that column. Naturally, in any web table
column T.Ai, there is a set of values associated with T.Ai,
which is given by the projection of T on attribute Ai. Figure 1
shows four examples of web tables, where each cell with a
gray background contains a column name, and each cell with
a white background contains a value.

Table Match. Like prior work on schema matching [8],
[9], we say that there is a semantic correspondence (or
simply, correspondence) between two columns A and A′

across two tables T and, respectively, T ′, if T.A and T ′.A′

are semantically related. We call the set of such column
correspondences for web tables a table match. In other words,
a table match between two web tables T1 and T2, denoted
as MT1,T2 , is a set of all pairs of columns between T1 and
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Fig. 2. Hybrid machine-crowdsourcing system architecture.
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T2 such that for every pair (Ai, Aj) ∈ MT1,T2 (Ai ∈ T1

and Aj ∈ T2), there is a correspondence between Ai and
Aj . In Figure 1, there are two correspondences in MT1,T2 :
(T1.Title, T2.Movie) and (T1.DirectedBy, T2.Director).
The other table match MT3,T4 consists of the correspondences
{ (T3.Title, T4.Book), (T3.WrittenBy, T4.Author)}.

Concept Catalog. As mentioned in the Introduction, we
exploit the availability of a concept catalog which is a triple
〈C, I,R〉. The set C is a set of concepts, I denotes a set of
instances, where each instance may belong to one or more
concepts, andR is a set of binary relations that captures the set
of relationships between concepts. We use the notation I(C)
to denote the set of all instances from I that belong to the
concept C. The set of concepts form a directed acyclic graph,
where concepts are the nodes of the graph, and there exists
an edge from a concept Ci to Cj if I(Cj) ⊆ I(Ci). Pairs of
instances of concepts can also be related through relationships
that are captured by the relations in R.

In this paper, even though we use FREEBASE as the
concept catalog, other catalogs could also be used in place
of FREEBASE. Figure 3 shows an example of a concept
catalog where the set C is the nodes in the graph, and each
node has an associated set of instances. Note that a solid
arrow connecting two concepts in FREEBASE represents the
concepts have a “whole-part” relationship. For example, the
arrows from concept Film to its child concepts represent that
Film consists of several other concepts, e.g., Film/Title and
Film/Director. In the figure, we only attach the instances
to leaf concept nodes (on the right). The instances of an
intermediate concept node are obtained by including all the
instances of its leaf concepts. The red dotted lines indicate
the relations in R. For example, R1 is the “Directed By”
relation that contains pairs of instances from two concepts,
Film/Title and Film/Director.

For ease of presentation, we summarize the notations (some
only introduced later) we use in this paper in Table I.

TABLE I. TABLE OF NOTATIONS.

eij a match between column Ai and concept Cj

Aq a column set selected for crowdsourcing

Eq crowdsourcing result for Aq

D(Ai) the difficulty of column Ai

Inf(Ai | Eq) the influence of Eq on column Ai

U(Aq|Eq) the utility of Aq given Eq

B. System Architecture

Our hybrid machine-crowdsourcing framework is illus-
trated in Figure 2. We develop our system within the CDAS
(Crowdsourcing Data Analytics System) project, along the
lines of [12], [13].

Our framework differs from traditional schema matching
techniques in two key aspects: we exploit a concept catalog
to determine column correspondences and we leverage the
wisdom of the crowd to improve the matching quality. Our
framework takes as input a web table corpus (the left side of
Figure 2) and a concept catalog (the right side of Figure 2).
A number of auxiliary indices are constructed over the web
tables and the concept catalog to improve efficiency, and table
matches are determined through the following two phases.

Phase I: Concept Determination. In this phase, we leverage
both the machine and the crowd to determine the concept
that best represents the values of each column of every web
table. The central component in this phase is the Column
Selector module, which selects the most beneficial columns
for crowdsourcing given a budget limit (further details in
Sections III and IV). For the selected columns, the HIT
Generator will create a series of questions accordingly for the
crowd. An example of the type of questions asked is shown
in Figure 4, where a concept is represented as a path from
the root to the concept itself in the concept graph. After this,
given the answers returned by the crowd, Column Concept
Determination component will determine the best concept
for each column by aggregating information from both the
machine and the crowd (Section V).

In the Column Selector component, the web tables are first
fed into the Candidate Concept Generation module to generate
candidate concepts for each column, and a Column Concept
Graph is derived to maintain such associations (Section III-A).
After this, a utility function, which quantifies the usefulness of
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columns, is used to determine the columns that will be most
beneficial for crowdsourcing. Specifically, given a column, the
utility function takes into consideration two factors. The first
factor is the difficulty for machine to determine the concept for
the column, which is computed by Column Difficulty Estimator
(Section III-B). The second factor is the degree of influence of
the column, if verified by the crowd, on inferring the concepts
of other columns. To compute this factor, the Column Rela-
tionship Generation module analyzes the influence relationship
between columns. After this, based on the derived relationship,
the Column Influence Estimator estimates the extent to which
the knowledge of the right concept of the column will help
infer the concepts of other columns (Section III-C).

Phase II: Table Match Generation. In this phase, we consider
all pairs of columns from distinct tables. For every such pair
of columns that are assigned to the same concept, we create a
semantic correspondence between the two columns. This phase
is straightforward, and thus we shall focus on Phase I hereafter.

III. COLUMN UTILITY

In our framework, a machine based similarity function is
first applied to find the candidate concepts for each column.
Then we would like to select the most useful columns for
crowdsourcing under a given budget. On one hand, we prefer
columns which are difficult for machines to determine their
concepts. On the other hand, we favor the columns, if verified
by the crowd, whose results would have greater influence on
inferring the concepts of other columns. In this section, we will
first present the machine technique to generate the candidate
concepts in Section III-A, then study the column difficulty and
influence in Section III-B and Section III-C respectively, and
finally present a utility function which captures the usefulness
of columns by considering both difficulty and influence.

A. Candidate Concept Generation

Machine-based techniques for matching web table columns
to concepts in a catalog typically employ similarity functions.
A similarity function takes the values of column A and a
concept C as inputs, and outputs the likelihood that A and
C are related. If the likelihood is positive, then we say that C
is a candidate concept for column A.

Matching Likelihood. We employ a straightforward similar-
ity function to measure the likelihood of matching a table
column to a concept in the catalog. More specifically, let
eij = 〈Ai, Cj〉 be a possible match between column Ai and
concept Cj , the likelihood of this match is

w(eij) =
|Ai.V ∩ I(Cj)|

|Ai.V|
(1)
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Fig. 5. An example of column concept graph.

where Ai.V denote the set of values in column Ai, and
I(Cj) the set of instances attached to concept Cj in the
catalog. Note that the above matching likelihood can also be
measured by any reasonable similarity function, such as the
sophisticated techniques proposed in [3], [6] and functions
that support fuzzy matching [14]. The focus of this work
is on effectively exploiting the power of crowdsourcing to
improve the matching results, so we do not look deep into
these sophisticated techniques in this paper. We demonstrate
in our experiments (see Section VI-C) that, in cooperation
with crowdsourcing, even this simple method can significantly
outperform the sophisticated techniques [3], [6].

Column Concept Graph. We represent the matches between
table columns and their candidate concepts as a bipartite graph
G(A ∪ C, E), where A is the set of columns in T , and C the
set of concepts in the catalog. A match eij = 〈Ai, Cj〉 is
represented as an edge between Ai and Cj with the matching
likelihood w(eij) computed via Equation (1) as weight. The
set of all edges of A is denoted by E(A). With a slight abuse
of notation, we will use eij = 〈Ai, Cj〉 to refer to either a
match between column Ai and concept Cj , or an edge in
column concept graph, depending on the context. Figure 5
shows an example of column concept graph for the web tables
in Figure 1. For simplicity, we only present five columns and
six candidate concepts, where every edge is labeled with its
corresponding matching likelihood. For example, column A1

is associated with candidate concepts C1, C2, and respectively,
C3 represented as edges e11, e12 and, respectively, e13.

B. Modeling the Difficulty of a Column

We would like to identify table columns for which it will
be difficult for machine-based methods to identify the correct
concepts. Intuitively, given a column A, it is difficult for a
machine to determine the best concept to represent A if the
weights of edges in E(A) are almost identical. On the other
hand, if there is a clear “winner” (i.e., an edge whose weight
is clearly higher than the rest) among all the edges in E(A),
then it is easy for an algorithm to determine which is the best
concept to match A.

Based on the observation, we model difficulty of a column
as the amount of entropy in the distribution of edge weights
associated with that column. The reason is that entropy has
the following properties: if the distribution is skewed (e.g.,
one edge has a much higher likelihood than the others), then
its entropy is low; if it is close to a uniform distribution, its
entropy is high. Formally, the difficulty of column A, denoted
as D(A), is:
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D(A) = −
∑

e∈E(A)

w(e)

Z
· log

w(e)

Z
(2)

where the matching likelihood w(e) is computed via Equa-
tion (1), and Z =

∑
e∈E(A) w(e) is used for normalization.

Note that Equation (2) can still be used to compute difficulty
when other models are applied to compute w(e).

We use WWT dataset (See Section VI-A) to examine the
effectiveness of our column difficulty model. We sort columns
in the ascending order of their entropies, and divide them
into equal-size buckets. Each bucket contains 50 columns,
and so the i-th bucket consists of columns ranging from 50i
to 50(i + 1). We then apply machine algorithm (Equation
1) and pure crowdsouring scheme to the columns in each
bucket to find the best concepts. For machine algorithm, we
choose the concept with the highest matching likelihood as its
answer. For crowdsourcing, we publish each matching task to
3 workers and get the answer via majority-voting. Once the
answers are obtained, accuracy is computed for each bucket
by a comparison with ground truth. Figure 6 shows the results,
where x-axis represents the bucket number. We can see that
the accuracy of pure crowdsourcing scheme remains relatively
stable while the accuracy of pure machine method decreases
significantly as entropy increases. This clearly validates that
our proposed model can effectively capture the difficulty of
a column, and crowdsourcing is much more accurate than
machine on difficult columns.

Example 1: Consider column A3 and A4 in Figure 5 (refer
to Figure 1 for table values). As the values in column A3 can
refer to both film and book (with similar matching likelihood
0.5 and 0.4), it is quite difficult for the machine to choose the
correct concept (D(A3) = 0.99). For column A4, since “A.
Lee” and “C. Nolan” are film directors only, it is easier for
the machine to make the right decision (D(A4) = 0.85).

C. Modeling the Column Influence

The knowledge of the column-to-concept associations for
some columns can help us infer the concepts for the other
columns. To model the column influence, we consider two
types of influence relationships: intra-table influence and inter-
table influence. In what follows, we discuss each influence
relationship separately. For ease of presentation, we shall first
describe the influence model for one single column, and then
introduce the aggregated influence for a column set.

Intra-Table Influence. Intuitively, the columns in a table are
usually coherent in semantics and tend to be highly correlated.
For instance, if we know that the column T1.Title in Fig-
ure 7(a) matches with concept Film/Title, we can conjecture
that the likelihood that the intra-table column T1.Directed By

matches with Film/Director is higher than that with other
candidate concepts, such as TV/Director.

We formalize our intuition as follows. Let eq = 〈Aq, Cq〉
denote the crowdsourcing result where column Aq is known to
match with concept Cq . Consider another edge eij = 〈Ai, Cj〉.
If Ai and Aq are in the same table, we estimate the influence of
eq on eij , denoted by P (eij | eq), as the relatedness between
concepts Cq and Cj . Consider the example in Figure 7(a). We
can estimate the influence of crowdsourcing result e12 on e45,
P (e45 | e12) as the relatedness between C2 and C5.

A straightforward method to compute concept relatedness
is to set P (eij | eq) = 1 if there is a relation from
Cq to Cj in the catalog; otherwise P (eij | eq) = 0.
A drawback of this method is that it does not consider
the relative “strength” of different relations between con-
cepts. For example, consider concepts Film/Director and
Language/HumanLanguage in the concept catalog. Suppose
the former concept only has a connecting concept Film/Title
while the latter has more relations that respectively connect
to concepts Film/Title, Movie/Title and TV/Title. In-
tuitively, Film/Director should have larger influence on
Film/Title, compared with Language/HumanLanguage. In
other words, a title column is more likely to be Film/Title
given that the same table contains Film/Director while
having Language/HumanLanguage column is not sufficient
to infer the domain of the title column. However, the
simple method fails to differentiate Film/Director and
Language/HumanLanguage in this case.

To address this problem, we further consider pairs of
instances that participate in the relations in the catalog.
Let 〈Cq, Cj〉 be the set of instance pairs that participate
in the relation between Cq and Cj in the concept catalog,
and 〈Aq, Ai〉 be the set of value pairs in column Aq and
Ai. We denote all the candidate concepts of column Ai

as C(Ai). We estimate intra-table influence P (eij | eq) =
|〈Cq,Cj〉∩〈Aq,Ai〉|∑

Cm∈C(Ai)
|〈Cq,Cm〉∩〈Aq,Ai〉|

. Using this method, in the above

example, Film/Director would have larger influence on
Film/Title than Language/HumanLanguage.

Inter-Table Influence. The basic idea of inter-table influence
is that similar columns are more likely to match to the same
concept. For example, if we know T2.Movie is similar to
T1.Title, then whenever one of them is determined to match
to concept Film/Title, the other would have more likelihood
to be inferred to match to the same concept.

Formally, consider a known match eq = 〈Aq, Cq〉 and a
candidate match eiq between column Ai and the same concept
Cq . We measure the influence of eq on eiq , denoted as P (eiq |
eq), by considering the relatedness between Ai and Aq . In
Figure 7(b), given crowdsourcing result e12, we can compute
P (e22 | e12) as the relatedness between column A1 and A2.

We adopt a concept-based method to measure the column
relatedness. More specifically, for each column Ai, we gener-

ate a concept vector, denoted as
−→
C (Ai). Each dimension in

−→
C (Ai) represents a concept in the catalog (e.g., Cj ), and the
weight of this dimension is the matching likelihood computed
by Equation (1) (e.g., w(eij)). The relatedness between Ai

and Aq is computed as the cosine similarity of their concept

vectors, i.e., P (eiq | eq) = cosine
(−→
C (Ai),

−→
C (Aq)

)
.



Figure 7(b) shows an example. The concept vectors for
column A1, A2, and A3 are depicted in the left part of the
figure. Clearly, the concept vector of A1 is more similar to
that of A2, compared with A3. Therefore, the influence of e12
on e22 is larger than e32.

One may argue that we can also use concept-based related-
ness to directly generate column correspondences. However, as
shown in our technical report [15], this method produces low
F-Measure. As a result, we do not treat high concept-based
relatedness between two columns as “hard evidences” that the
two columns are semantically correlated. Instead, we use such
relatedness as an influencing factor on inferring the concept of
a given column.

Aggregated Influence. We are now ready to discuss the
influence of multiple crowdsourcing columns. Let Aq denote
the set of columns that are selected for crowdsourcing, and
Eq denote the matches returned by the crowd for Aq . For
each A ∈ Aq , there is exactly one match 〈A,C〉 in Eq which
states that column A is matched with concept C. We assume
that the influences of matches in Eq on a candidate match are
independent with each other. We use P (eij | Eq) to represent
the influence of Eq on eij , which can be interpreted as the
probability that the candidate match eij is influenced by at
least one match in Eq. We can first compute the probability of
the complementary event, i.e., eij cannot be influenced by any
match in Eq. Then, the influence of a column set, P (eij | E

q)
can be computed as:

P (eij | E
q) = 1−

∏

eq∈Eq

(
1− P (eij | e

q)
)

(3)

where P (eij | eq) is either intra- or inter-table influence. In
this way, all the possible influences on a particular candidate
match are aggregated.

Example 2: Consider the column concept graph in Fig-
ure 5. Suppose column A2 and A4 are selected for crowd-
sourcing and the returned result is Eq = {e22, e45}. We next
examine the influences of e22 and e45 on a candidate match,
say e12. 1) As Figure 7(a) shows, there exists a relation R1

between concept C2 and C5, so the intra-table influence of
e45 on e12 is P (e12 | e45). 2) As shown in Figure 7(b), the
concept vectors of column A1 and A2 are similar. Hence,
the inter-table influence of e22 on e12 is P (e12 | e22).
Finally, according to Equation (3), the aggregated influence
is P (e12 | Eq) = 1−

(
1− P (e12 | e45)

)
·
(
1− P (e12 | e22)

)
.

We next describe the influence of the crowdsourcing result
Eq on a column Ai ∈ A, denoted as Inf(Ai | Eq). Similar
with the above, we say a column is influenced by Eq if at
least one of its candidate matches is influenced by Eq. With
the independence assumption, Inf(Ai | Eq) is computed as

Inf(Ai | E
q) = 1−

∏

eij∈E(Ai)

(
1− P (eij | E

q)
)

(4)

Utility of crowdsourcing columns Aq with result Eq. Next
we would like to propose a utility function to measure the
benefit of columns. As mentioned earlier, our utility function
considers both column difficulty and the influence on other
columns. We use U(Aq|Eq) to denote the utility of Aq , given
that the crowd returns Eq as the result. For each column Ai ∈
A, we first examine the influence Inf(Ai | Eq) of Eq on Ai.
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Fig. 7. Influence of the crowdsourcing result.

Note that Inf(Ai | Eq) = 1 if Ai ∈ Aq . Otherwise, Inf(Ai |
Eq) can be computed using Equation (4). Also, we consider
the difficulty D(Ai) of Ai. Combining the above two factors,
we measure the utility U(Aq|Eq) as:

U(Aq|Eq) =
∑

Ai∈A

D(Ai) · Inf(Ai | E
q) (5)

IV. UTILITY-BASED COLUMN SELECTION

This section presents a utility-based method for column
selection. We first introduce the expectation of utility, named
expected utility, for column selection in Section IV-A, and
then develop an efficient algorithm for column selection given
a budget limit in Section IV-B.

A. Expected Utility of Columns

The utility introduced in Section III assumes that the
crowdsourcing result of the selected columns is given. How-
ever, in the phase of column selection, the result of the
columns is unknown. Thus, we introduce the expected utility
to model the expectation of utility for the selected columns
when considering all the possible crowdsourcing results.

Formally, let E(Aq) be the Cartesian product of the can-
didate edge sets associated with columns Aq , i.e., E(Aq) =
E(A1) × E(A2) × . . . × E(Ak) where Ai ∈ Aq . An element
Eq ∈ E(Aq) represents a possible result of Aq . Based on all
the results in E(Aq), we define the expected utility of Aq as:

E[U(Aq)] =
∑

Eq∈E(Aq)

P (Eq) · U(Aq|Eq)

=
∑

Ai∈A

D(Ai)
∑

Eq∈E(Aq)

Inf(Ai | E
q) · P (Eq) (6)

where U(Aq|Eq) is the utility in Equation (5), and P (Eq) is
the probability that Aq obtains the result Eq .

Next, we explain how to compute P (Eq). Let eq denote
an edge in Eq corresponding to column Aq . By assuming the



crowdsourcing results of different columns are independent of
each other, we can estimate P (Eq) =

∏
P (eq | Aq), where

P (eq | Aq) is the probability that the crowdsourcing result of
Aq is eq. Since the crowdsourcing result is unknown at this
stage, we use either a uniform distribution or the matching
likelihood w(eq) (Section III-B) to estimate it.

Example 3: Take Figure 5 as an example. Suppose there
are two crowdsourcing columns, i.e., Aq = {A1, A5}. By con-
sidering all possible crowdsourcing results, we have six possi-
ble correct edge sets, i.e., Eq

1 = {e11, e54}, E
q
2 = {e12, e54},

Eq
3 = {e13, e54}, Eq

4 = {e11, e56}, Eq
5 = {e12, e56} and

Eq
6 = {e13, e56}. Suppose that we use the uniform assumption,

we have P (Eq
i ) = 1/6 where i = 1 . . . 6. Finally, we can

compute the expectation of utility based on Equation (6).

For ease of presentation, we use Inf(Ai | Aq) to denote
the sum

∑
Eq∈E(Aq) Inf(Ai | Eq) · P (Eq) in Equation (6).

Obviously, the intuition of Inf(Ai | Aq) is the expected
influence of the crowdsourcing columns Aq on column Ai.
Then, the expected utility can be simply represented as the
weighted summation of the expected influence on columns,
where the weight is column difficulty, i.e.,

E[U(Aq)] =
∑

Ai∈A

D(Ai) · Inf(Ai | A
q) (7)

B. Algorithm for Column Selection

Our problem of crowdsourcing column selection, which we
define next, is defined based on the expected utility.

Definition 1 (k Column Selection Problem): Given a col-
umn concept graph G, a concept catalog 〈C, I,R〉 and a budget
k, the column selection problem finds a subset Aq ⊆ A
of columns so that |Aq| ≤ k and the expected utility in
Equation (7) is maximized.

Theorem 1: The k column selection problem is NP-hard.

Proof: (sketch) We prove that the k column selection
problem is NP-hard by a reduction from the k Maximum
Coverage (KMC) problem, which is known to be NP-hard.

Recall that an instance of the KMC problem (E,S, k) con-
sists of a universe of items E = {s1, s2, . . . , sn}, a collection
of subsets of the universe E, i.e., S = {S1, S2, . . . , Sm} where
any Si ∈ S satisfies Si ⊆ E, and a number k. The optimization
objective is to select k subsets from S, denoted by S ′, so that
the number of covered items |

⋃
S∈S′ S| is maximized.

Our reduction creates the set {A1, A2, . . . , An} of columns
based on E in our column concept graph G, where each
column Ai is associated to exactly two candidate concepts Ci

and C′
i . Furthermore, R is constructed as follows: given an

element sj in E, if sj ∈ Si, we add two relations: one is from
concept Ci to Cj , and the other is from concept C′

i to C′
j . We

can show that using this construction of G and R, there is zero
inter-table influence. We can also show that the expected intra-
table influence Inf(Aj | Ai) calculates to 1 if sj ∈ Si and 0
otherwise. Each set Si in the KMC problem corresponds to the
column Ai and the elements covered by Si correspond to the
set of columns Aj influenced by Ai, where Inf(Aj | Ai) > 0.
We can show that selecting the k best columns Aq so that the
expected utility is maximized is equivalent to finding the k best

sets so that the number of elements covered is maximized. A
complete proof can be found in our technical report [15].

Despite the above result shows computing the “best”
crowdsourcing columns is intractable in general, we show that
the expected utility possesses two good properties, namely
monotonicity and submodularity. These properties enable us to
develop an algorithm which greedily determines the columns
that maximize the expected utility and has an approximation
ratio of 1− 1/e, where e is the base of the natural logarithm.

In order to prove the aforementioned two properties, we
first provide a formula to compute the delta expected influence
of a column Aq , i.e., the increase in expected influence when
adding Aq to the crowdsourcing column set Aq , denoted by
△Inf = Inf(Ai | Aq ∪ {Aq})− Inf(Ai | Aq).

Lemma 1: The delta expected influence △Inf = Inf(Ai |
Aq ∪ {Aq})− Inf(Ai | Aq) can be computed as

△Inf = Inf(Ai | A
q) ·

(
1− Inf(Ai | A

q)
)

(8)

Proof: Based on the definition of Inf(Ai|Aq) in
Section IV-A, we must have Inf(Ai | Aq ∪ {Aq}) =∑

Eq∈E(Aq)

∑
eq∈E(Aq) Inf(Ai | Eq ∪ {eq}) · P (Eq ∪ {eq}).

Then, from Equation (3) and (4), we know that
Inf(Ai | Eq∪{eq}) = 1−

(
1−Inf(Ai | Eq)

)(
1−Inf(Ai | eq)

)
.

Since we also know that P (Eq ∪ {eq}) = P (Eq)P (eq), we
can prove that Inf(Ai|Aq ∪ {Aq}) = Inf(Ai|Aq) + Inf(Ai |
Aq) ·

(
1 − Inf(Ai | Aq)

)
. Then, we can easily obtain that

△Inf = Inf(Ai|Aq) ·
(
1 − Inf(Ai|Aq)

)
. Thus, we prove the

lemma.

Now, we are ready to prove the monotonicity and submod-
ularity of the expected utility, which is shown as follows.

Lemma 2: The expected utility given by Equation (7) is
monotone and submodular.

Proof: Since linear combination of monotone and sub-
modular functions is also monotone and submodular, we only
need to show that the term D(Ai) · Inf(Ai | Aq) is monotone
and submodular.

We first prove the monotonicity. That is, given two sets
of crowdsourcing columns Aq

1 ⊆ A
q
2, we must have Inf(Ai |

Aq
1) ≤ Inf(Ai | A

q
2). Consider each possible crowdsourcing

result Eq
1 ∈ E(A

q
1). We can find a collection of edge sets,

each of which, Eq
2 , is a superset of Eq

1 , i.e., E = {Eq
2 | E

q
2 ⊇

Eq
1 , E

q
2 ∈ E(A

q
2)}. From Equation (3) and (4), we know the

influence satisfies Inf(Ai | E
q
2) ≥ Inf(Ai | E

q
1) given Eq

2 ⊇
Eq

1 . Since we also know P (Eq
1) =

∑
E

q
2∈E P (Eq

2), we can

prove the monotonicity Inf(Ai | A
q
1) ≤ Inf(Ai | A

q
2). Hence,

D(Ai) · Inf(Ai | Aq) is also monotone.

Next, we prove the submodularity property. That is, given
two sets of columns Aq

1 ⊆ A
q
2 and a column Aq , we must have

Inf(Ai | A
q
1 ∪ {A

q})− Inf(Ai | A
q
1) ≥ Inf(Ai | A

q
2 ∪ {A

q})−
Inf(Ai | A

q
2). According to Lemma 1, we have the following

equation Inf(Ai | Aq ∪ {Aq}) − Inf(Ai | Aq) = Inf(Ai |
Aq) ·

(
1− Inf(Ai | A

q)
)
. Then, due to the proved monotonicity

of Inf(Ai | A
q), we have Inf(Ai | A

q
1) ≤ Inf(Ai | A

q
2). Thus,

we prove the submodularity.

Based on Lemma 2, we develop a greedy-based approxi-
mation algorithm to find the k best crowdsourcing columns.



Algorithm 1: SelectColumns (G, 〈C, I,R〉, k)

begin1

for each column A in A do2

Compute difficulty D(A) using G;3

Compute influence Inf(Aj | A) for each Aj ∈ A ;4

Aq ← ∅ ;5

for i = 1 to k do6

for each column A in A−Aq do7

△Ũ(A)← ComputeDeltaUtility(A,A,Aq) ;8

A∗ = argmaxA∈A−Aq

{
△Ũ(A)

}
;9

Aq ← Aq ∪ {A∗} ;10

Update utility for ∀A ∈ A using the new Aq ;11

return Aq ;12

end13

Algorithm 2: ComputeDeltaUtility (A,A,Aq)

begin1

△Ũ(A)← 0 ;2

for each column A′ in A−Aq do3

△Inf = Inf(A′ | Aq ∪ {A}) − Inf(A′ | Aq) ;4

△Ũ(A)←△Ũ(A) +D(A′) · △Inf ;5

return △Ũ(A) ;6

end7

Greedy-based Approximation Algorithm. The pseudo-code
of our greedy-based algorithm is shown in Algorithm 1. For
each column A ∈ A, the algorithm computes difficulty D(A),
and its influence on each column Aj ∈ A, i.e., Inf(Aj | A).

Next, the algorithm initializes an empty set of crowdsourc-
ing columns Aq ← ∅. Then, it iteratively selects the next
best column by computing the delta expected utility, i.e., the
increase in expected utility, of each column. In each iteration,
given the current Aq , the algorithm examines every column
A ∈ A − Aq , and computes the delta expected utility of

adding A to Aq , which is denoted by △Ũ(A). Then, the

algorithm selects the column A∗ with the maximum △Ũ(A)
and inserts it to the set of crowdsourcing columns. Finally, the
algorithm updates the expected utility based on the new Aq ,
and continues to the next iteration.

The important task in Algorithm 1 is to compute the delta

expected utility △Ũ(A) and the computation is described in
Algorithm ComputeDeltaUtility. According to Equation (7),
the function examines each column A′ ∈ A−Aq and computes
the delta expected influence △Inf = Inf(A′ | Aq ∪ {A}) −
Inf(A′ | Aq). Based on Equation (8), the value △Inf is com-
puted incrementally as△Inf = Inf(A′ | A)·

(
1−Inf(A′ | Aq)

)
.

Thus, we can materialize the expected influence Inf(A′ | Aq)
for each column A′ ∈ A − Aq , which is computed in last
iteration. When examining column A, we only need to on-the-
fly compute Inf(A′ | A), and then compute the delta expected
influence incrementally.

Proposition 1: The greedy-based algorithm described in
Algorithm 1 achieves an approximation ratio of 1−1/e, where
e is the base of the natural logarithm.

Proof: Given the monotone and submodular properties of
the expectation of utility in Lemma 2, the approximation ratio
of the greedy algorithm is 1− 1/e as shown in [16].

Algorithm 3: DetermineConcepts (A, Eq)

begin1

for each column A in A do2

if A ∈ Aq then Insert 〈A,C〉 into r∗ ;3

else4

for each candidate edge e ∈ E(A) do5

Compute w(e) via Equation (1) ;6

Compute P (e | Eq) via Equation (3) ;7

P (e)← α · w(e) + (1− α) · P (e | Eq) ;8

Insert column A and the concept of the edge9

with maximum P (e) into r∗ ;

return r∗ /* Column-concept pairs */;10

end11

V. CONCEPT DETERMINATION

After the crowdsourcing result is obtained, we can then
proceed to determine which candidate edge is the best for each
column. Formally, given the crowdsourcing result Eq of the
set Aq of columns and a column Ai, we wish to find the edge
eij ∈ E(Ai) with the maximum probability P (eij) as the edge
for column Ai, where P (eij) denotes the probability that an
edge eij = 〈Ai, Cj〉 is correct.

To compute the probability P (eij), we consider two
sources of evidences. One evidence, denoted as θM, is based
on the machine. We utilize the matching likelihood w(eij) in
Section III-B to capture if the machine considers edge eij to
be correct. The other evidence, denoted as θq is based on the
influence of the crowdsourcing result Eq . When considering
this evidence, we employ P (eij | Eq) in Section III-C to
capture the confidence that eij is inferred to be correct given
Eq . Then, we combine the two evidences as follows.

P (eij) = P (eij | θM) · P (θM) + P (eij | θq) · P (θq)

= w(eij) · P (θM) + P (eij | E
q) · P (θq) (9)

where P (θM) and P (θq) are prior probabilities representing
our belief on the machine and the crowdsourcing influence
respectively. Since we only have two evidences, we simply
denote P (θM) as α and P (θq) as (1 − α). The value of α is
determined by experiments.

Algorithm 3 presents the pseudo-code which determines
the best concept for each column. The algorithm takes the set
A of columns and the result Eq of the crowdsourcing columns
Aq as input. It iteratively examines each column A ∈ A and
determines the best concept of A. The algorithm considers two
cases. If A ∈ Aq , the algorithm outputs the concept determined
by crowdsourcing. Otherwise, the algorithm computes P (e) =
αw(e) + (1−α)P (e | Eq) for each candidate edge e ∈ E(A).
Finally, the algorithm finds the edge with maximum P (e) (ties
are broken arbitrarily) and takes the corresponding concept as
the matched concept of column A.

VI. EXPERIMENTS

This section evaluates the performance of our approach
to web table matching. First, we examine the accuracy of
column-to-concept matches produced by our hybrid machine-
crowdsourcing method. Then, we compare the hybrid method
with existing web table annotation techniques. Finally, we
evaluate our concept-based approach on web table matching,
and compare it with conventional schema matching techniques.
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Fig. 8. Value overlap of matched
column pairs.
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A. Experimental Setup

Web Table Datasets. We conduct extensive experiments on
two real-world web table datasets, WWT and WIKI, for
evaluation. Table II shows the statistics of these two datasets.

TABLE II. STATISTICS OF WEB TABLE DATASETS.

Dataset # tables # columns # labeled columns

WWT 607 1,166 1,166

WIKI 92,618 189,072 161

1) WWT [3]: We randomly select 607 web tables from
WWT and manually label string columns with FREEBASE

concepts as the ground truth. The number of the considered
columns is 1,166.

2) WIKI [17]: The web table corpus extracted from
Wikipedia data dump contains 92, 618 web tables with
189, 072 string columns. Due to its size, it is not feasible to
manually label FREEBASE concepts for all the columns, and
we therefore randomly select 161 columns and label them with
concepts as ground truth.

On both datasets, we derive correct column matches based
on the ground truth. Then, we measure the value overlap
between each pair of matched columns, i.e., the Jaccard
similarity between the value sets of the two columns. Figure 8
shows the result. The value overlap of more than 90% of
the column pairs is smaller than 0.1 in each dataset. This
result illustrates the incompleteness of web tables presented in
Introduction: it is quite often that the matched columns have
a few values in common or they may be completely disjoint.

Concept Catalog. We use FREEBASE [18] as our concept
catalog. FREEBASE has 22,985,650 instances over 6,852 dif-
ferent concepts and 6,826 relations. For example, the concept
“Film/Title” has 146,147 instances, including “Titanic”, “In-
ception”, etc. Next, we examine the coverage of FREEBASE

over the values in a web table column. Given a column Ai

and its ground-truth concept Cj in FREEBASE, we compute
the percentage of Ai’s values that are covered by the instance
set of Cj . As shown in Figure 9, 82% (66%) of the columns
on the WWT (WIKI) contain more than 50% values which
are covered by the correct concepts. This illustrates that
FREEBASE has a large coverage on the column values, and
thus it can be employed for web table matching.

Crowdsourcing on AMT. We use Amazon Mechanical Turk
(AMT) as the platform for crowdsourcing. We generate the
human-intelligence tasks (HITs) and publish the HITs on
AMT. We take 20 microtasks as one HIT, where each mi-
crotask contains a table column and its candidate concepts. To
assist workers in understanding the column, we provide the
entire web table as the context (see Figure 4 as an example).

We pay $0.2 each time a worker completes an HIT and
$0.005 to AMT for publishing each HIT. We employ the multi-
assignment strategy by assigning each HIT to 3 workers and
combining their answers via majority voting. In addition, we
use qualification test to estimate worker’s accuracy and filter
out those who are not qualified to perform our HITs.

B. Hybrid Machine-Crowdsourcing Method

In this set of experiments, we examine our hybrid ma-
chine crowdsourcing method for generating column-to-concept
matches. We use accuracy as the evaluation metric. For each
column, we compare the concept produced by one method
against the ground truth, and compute accuracy as the percent-
age of the correct column-to-concept matches with respect to
all columns. Since we have ground truth for all columns on
WWT, we use this dataset to compare our strategies against
the alternatives in each component of our hybrid method.

1) Machine-Based vs. Crowdsourcing-Based: We first eval-
uate the pure machine-based method. For each column, this
method computes the matching likelihood to each concept in
the catalog using Equation 1 (refer to Section III-A), and se-
lects the concept with the maximum matching likelihood. The
experimental result shows that the method achieves only 54%
on accuracy. From a careful error analysis, we observe that
for 31% columns their ground-truth concepts are not consistent
with the concepts with the maximum matching likelihood , and
thus the method fails to discover the correct concept matches
for these columns. For the remaining columns, 60% of them
have multiple concepts (including the ground-truth one) with
the maximum matching likelihood. In this case, the machine-
based method may produce false positives.

TABLE III. EVALUATING CROWDSOURCING-BASED METHOD (WWT).

Metric # asg. = 1 # asg. = 2 # asg. = 3

Accuracy 68% 70% 77%

Cost $12 $24 $36

Next, we evaluate the pure crowdsourcing-based method
by generating HITs for all the 1,166 columns. We assign
the same microtask to different workers (varying the number
of workers from 1 to 3) and choose the result via majority
voting. The accuracy of crowdsourcing is shown in Table III.
The results show that the crowdsourcing-based method sig-
nificantly outperforms the machine-based methods. Even if
we assign each microtask to only one worker, crowdsourcing
still outperforms the machine-based method by 14%. The
experimental results confirm our claim that human can produce
more reliable column-to-concept matching results. However, in
the crowdsourcing-based method, the higher the accuracy we
want to achieve, the more money we have to pay. For instance,
to improve the accuracy from 68% to 77%, we need to pay
additional $24 to publish more microtasks on AMT. Clearly,
we need to combine the machine-based and crowdsourcing-
based methods to produce accurate column-to-concept matches
while lowering the cost.

2) Evaluation on Hybrid Machine-Crowdsourcing Concept
Determination: To evaluate our concept determination method
proposed in Section V, we first randomly select x% of columns
for crowdsourcing and obtain the concepts produced by the
crowd. Next, we utilize Algorithm 3 to determine concepts
for the other columns. Finally, we compute the accuracy as
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Fig. 10. Evaluation of machine-crowdsourcing concept determination (WWT).

follows. We pick the columns with ground truth excluding the
crowdsourcing ones, and compute the percentage of columns
whose concepts are correctly determined. We use the same
accuracy metric in Section VI-C. We run the experiment three
times to obtain different sets of columns for crowdsourcing,
and compute the average accuracy.

We first empirically learn the prior probabilities of the
machine (α in Section V) and crowdsourcing influence (1−α).
The priors are used to reconcile the machine-generated w(e)
and the influence of the crowdsourcing result P (e | Eq). We
vary α from 0 to 1 and examine the accuracy of our algorithm
with different budgets (i.e., the percentages of columns for
crowdsourcing). As shown in Figure 10(a), depending only
on either crowdsourcing influence (α = 0) or the machine-
generated likelihood (α = 1) cannot achieve satisfactory
accuracy. In contrast, reconciling the machine result and the
crowdsourcing influence (0 < α < 1) produces much better
accuracy. We also observe that α = 0.8 achieves the best
accuracy in different budgets. Thus, we set 0.8 as the default
value of α in the rest of the experiments.

Next, we study the effectiveness of the column influence
model (Section III-C). Our model InfConceptSim not only
considers intra-table influence, but also uses concept-based
relatedness to compute inter-table influence. We compare
it against the following two baselines. 1) NoInf does not
consider column influence at all. Specifically, it employs
the crowdsourcing result for the x% of columns, and the
result produced by the pure machine-based method for the
remaining columns. 2) InfHeaderSim also considers intra-
table influence, but for inter-table influence it utilizes the
Jaccard similarity on the token sets of column headers.

As illustrated in Figure 10(b), our model InfConceptSim
outperforms the two baselines at every budget. Compared
to NoInf, we can see that using crowdsourcing results
to infer the concepts of other columns can improve the
accuracy by 12% on average (across different budgets).
In addition, InfConceptSim achieves higher accuracy than
InfHeaderSim which depends on header similarity for model-
ing influence. The low accuracy of InfHeaderSim is attributed
to the high heterogeneity in column headers: columns with
similar headers can refer to different concepts (false positives);
columns corresponding to the same concept may have dissim-
ilar headers (false negatives).

We also observe that, given larger crowdsourcing budgets,
our influence model can obtain higher accuracy. This meets
our expectation, since the more crowdsourcing columns, the
more reliable column-to-concept matches that we can use
to infer other matches. In contrast, NoInf remains nearly
unchanged when increasing the number of crowdsourcing

columns, because it can not take advantage of crowdsourcing.
In addition, we notice that InfHeaderSim does not follow
a certain trend with increasing crowdsourcing budgets. This
is because InfHeaderSim influences other columns simply
based on the header similarity. However, the influences are not
always reliable due to the heterogeneity in web table headers.

3) Evaluation on Column Selection: We evaluate our utility
function on selecting crowdsourcing columns. This function,
denoted as Utility, quantifies the usefulness of a column by
considering both its difficulty and influence on other columns,
and we employ Algorithm 1 to select the best columns that
maximize the expected utility. We compare Utility against
the following two baselines. 1) Method Difficulty considers
only column difficulties. It selects the most difficult columns.
2) Method Inf considers only column influence. It selects the
columns which have the largest influence.

Figure 10(c) summarizes the results. Our column selection
approach Utility achieves the best accuracy in all the cases
except 2% budget (23 out of 1,166 columns for crowdsourc-
ing). When the number of crowdsourcing columns is small,
their influence on inferring the concepts of other columns
is limited. Therefore, all three column selection alternatives
produce comparable accuracies. With increasing budget, the
improvement of Utility over the other two alternatives
becomes more notable. The strength of Utility is mainly
attributed to the combination of both column difficulty and
influence in our utility function. In contrast, Difficulty and
Inf only consider either difficulty or influence. Difficulty
selects columns which are difficult for the machine. The se-
lected columns, however, may not be helpful on inferring other
column-to-concept matches. Similarly, the columns selected by
Inf have large influence on other columns, which may be easy
for the machine to determine their concepts and hence are not
ideal for crowdsourcing.

We have also roughly estimated the possible cost when ap-
plying our hybrid machine-crowdsourcing method on a large-
scale web table corpus based on the scalability of the WWT
dataset (see our technique report [15] for details). We estimate
that, on the large WIKI dataset with 189,072 columns, to
achieve accuracy of 60%, 65% and 70%, the crowdsourcing
costs are about $200, $340 and $500, respectively. Such cost
is affordable in real applications.

C. Comparison with Table Annotation

We compare our hybrid concept determination method
HybridMC with two recently proposed table annotation tech-
niques [3], [6], which also discern concepts for table columns.
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Fig. 11. Evaluation of discovering column correspondences on both datasets.

1) Annotate1 [3] devises a collective graphical model to
annotate table columns with concepts in a knowledge base. It
considers not only the similarities between column headers and
concept names, but also the matching degree between column
values and concept instances.

2) Annotate2 [6] utilizes more sophisticated scoring
schemes based on the maximum likelihood hypothesis to
annotate columns with concepts.

We have implemented the above two methods and used
them to annotate columns with FREEBASE concepts. In par-
ticular, on the WIKI dataset, we first run one method to
determine concepts for all the 189,072 columns, and then
compute accuracy based on the 161 columns with manually
labeled ground-truth concepts (see Table II).

TABLE IV. COMPARISON OF CONCEPT DETERMINATION.

WWT data set WIKI data set

Method Accuracy Method Accuracy

HybridMC 75.0% HybridMC 54.0%

Annotate1 58.7% Annotate1 35.4%

Annotate2 52.1% Annotate2 32.3%

Table IV presents the result on the two datasets, which
shows that our proposed method achieves better accuracy
than the annotation techniques. For the WWT dataset,
our method improves the accuracy by 16.3% and 22.9%
against Annotate1 and Annotate2 respectively. Similarly, we
achieve about 20% improvement on the WIKI dataset. This
is because the machine-based annotation techniques cannot
effectively produce high-quality results on some inherently
difficult matching issues. Further, the improvement in accuracy
could be achieved without incurring a high cost. Specifically,
HybridMC only publishes 116 (10%) columns costing $3.69
for the WWT dataset, and 190 (0.1%) columns costing $6.15
for the WIKI dataset respectively. This confirms the feasibility
of using our method in the real-world web table matching
applications for improving their column-to-concept matches.

D. Evaluation on Table Matching

In this section, we evaluate the performance of our hybrid
approach on discovering column correspondences. Given the
ground truth, we compute the precision as the number of
correct correspondences over the number of returned ones. We
compute the recall as the number of correct correspondences
over the number of all correspondences in the ground truth.
Finally, we compute the F-measure as 2·Precision·Recall

Precision+Recall
.

Our hybrid approach HybridMC generates a correspon-
dence when the two columns refer to the same concept. We

shall now compare our approach with the following two con-
ventional schema matching methods. 1) HeaderSim employs
schema-level information by computing Jaccard similarity be-
tween column headers, and it produces a correspondence if
the similarity exceeds a threshold. We tune the threshold such
that HeaderSim achieves the best F-measure. 2) InstanceSim
makes use of the instance-level information and it produces a
correspondence if the two columns share common values.

As shown in Figure 11, HybridMC outperforms the conven-
tional techniques by a wide margin on F-Measure. As analyzed
in Section VI-B2, the weak performance of HeaderSim is
due to the heterogeneity in column headers. InstanceSim

performs poorly on recall due to the fact that the semantically
related columns may quite often share very few common
values or even be completely disjoint. In summary, the results
confirm our claim that conventional schema matching tech-
niques are inadequate for matching columns in web tables.

VII. RELATED WORK

There is a large body of works on processing structured
data on the web, including web tables [2], [1], [3], [6], HTML
lists [19], [20] and the hidden Web [21], [22]. In this paper,
we pay our special attention on web tables.

Web table annotation [6], [3] is closely related to our
work. Limaye et al. [3] proposed a probabilistic graphic model
to collectively annotate web tables using YAGO [11]. They
annotate table cells with entities, columns with types and
column pairs with relations. The idea is to use joint inference
to enhance the quality of all the annotations. Later Venetis et
al. [6] solved the same problem using a Web-scale knowledge
base, where all the class labels and relationships are extracted
from the Web. Both of them focus on improving the quality
of pure machine-based approach, while our work concentrates
more on leveraging the power of crowdsourcing and building a
hybrid machine-crowdsourcing framework. The main problem
we tackle is to wisely choose the columns for crowdsourcing
and effectively utilize the crowdsourcing results to achieve
overall high quality. To the best of our knowledge, we are the
first to exploit crowdsourcing for web table schema matching.

Some work recently has concentrated on soliciting the user
feedback to overcome the limitations of machine approaches.
One of the key problems is to determine in what order the
candidates are presented to the users for their feedback. Jeffery,
Franklin, and Halevy [23] defined a holistic utility function to
rank the candidate matches. They assume a query workload
is available, and their utility function is crafted over the
workload. In contrast, we define the column utility based



on the column difficulty and its influence on other columns.
Stonebraker et. al [24] propose a data curation system that
entails machine learning approaches with human assists. They
employ human domain experts with one or more areas of
expertise to answer questions, e.g., verifying if two attributes
are matched. In contrast, our work does not assume the crowd
has specific expertise, and provides a hybrid framework to
better leverage the intelligence from the non-expert crowd.

Another direction of crowdsourcing-based integration is
entity resolution. In [25], the objective is to ask as few ques-
tions as possible to cover all the candidate entity matches. The
work in [26] introduced a probabilistic approach for question
selection in crowdsourcing entity resolution framework. The
key contribution of this work is that they took transitive closure
into consideration when selecting questions. Our work is to
discover column correspondences and we only choose the most
valuable columns for crowdsourcing under a given budget.

There also exists much work on studying the quality
of crowdsourcing answers, such as predicting the minimal
number of workers to satisfy a required accuracy, and choosing
the correct answer in a wise manner rather than simple majority
voting [12]. These techniques can be easily adopted by our
framework to improve the accuracy of our approach.

VIII. CONCLUSION AND FUTURE WORK

We have described a hybrid machine-crowdsourcing frame-
work to effectively discover the schema matches for web
tables. To the best of our knowledge, our system is the first hy-
brid machine-crowdsourcing system for tackling the web table
matching problem. Unlike traditional schema matching tech-
niques, the machine part of our framework leverages a concept-
based approach. Due to the inherent semantic heterogeneity in
web tables, pure machine algorithms cannot always work well.
To this end, we harness the power of human intelligence as the
crowdsourcing part of our framework to further improve the
matching quality. As a first attempt towards the development
of a hybrid machine-crowdsourcing system, we have proposed
an effective utility function to measure the benefit of crowd-
sourcing columns. Our experiments on two real-world web
table datasets reveal that our hybrid machine-crowdsourcing
framework is promising; even with a first-cut model of the
utility function, our hybrid system already provides a much
higher accuracy, compared to existing methods, with a low
crowdsourcing cost. In this paper, we made a simplification
that the crowd was assumed to produce perfect answer, which
is not always the case. As part of our future work, we plan to
take the crowd accuracy into account in the model. Another
direction is to look into an online scheme that crowdsources
questions in multiple batches instead of crowdsourcing all
questions in one single phase. The challenge is then how to
optimally batch the questions and how to effectively adjust
the utilities according to partial crowdsourcing results. One
possible approach is to investigate active learning techniques
that proactively adjust the crowdsourcing columns based on
a subset of answers provided by the crowd for the utility
function.
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