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Abstract—With a huge volume and variety of data accumulated
over the years, OnLine Analytical Processing (OLAP) systems are
facing challenges in query efficiency. Furthermore, the design of
OLAP systems cannot serve modern applications well due to their
inefficiency in processing complex queries such as cohort queries
with low query latency. In this paper, we present Cool, a cohort
online analytical processing system. As an integrated system
with the support of several newly proposed operators on top
of a sophisticated storage layer, it processes both cohort queries
and conventional OLAP queries with superb performance. Its
distributed design contains minimal load balancing and fault
tolerance support and is scalable. Our evaluation results show
that Cool outperforms two state-of-the-art systems, MonetDB and
Druid, by a wide margin in single-node setting. The multi-node
version of Cool can also beat the distributed Druid, as well as
SparkSQL, by one order of magnitude in terms of query latency.

Index Terms—Cohort Analysis, OLAP, Distributed System

I. INTRODUCTION

A wide variety of data is accumulated by companies and
organizations during their operation. For example, e-commerce
websites collect data about sales products and customer pur-
chasing histories while Health Information Systems (HIS)
keep electronic medical records such as lab-test results and
admission histories on patients. To fathom such data and
extract deep insights, OnLine Analytical Processing (OLAP)
system is often used by analysts. In practice, the analytical
system treats the data that has been imported through “Extract,
Transform, Load” (ETL) processes, as conceptual “data cube”,
and performs cube queries to support drill-down and roll-up
analysis [1]–[3].

A cohort analysis is gaining popularity as a method of
analyzing a metric by comparing the behavior between dif-
ferent groups of users (buyers, patients etc.) [4], [5], and the
grouping is done either based on events or the time users start a
service. That is, a cohort query is to explore the user behavioral
pattern from two major factors, i.e., aging and social changes.
Intuitively, the execution of a cohort query is divided into
three steps: (1) Find birth user cohort, which is to locate users
experiencing similar given events or characteristics and group
them into corresponding cohorts. (2) Calculate the ages of the
users in the cohorts, which is to, for each user in the cohort,

TABLE I: Glucose Cohort vs. Readmission

Cohort
#Patients Age Month after discharge

1 2 3 4 5 6
< 99 mg/dL (130) 10 4 3 5 1 1

100-130 mg/dL (350) 30 17 9 6 3 1
130-160 mg/dL (90) 22 20 15 14 11 5
160-190 mg/dL (50) 15 13 9 8 2 1
> 191 mg/dL (12) 12 - - - - -

cut the corresponding records into diverse segments by given
delimiters along time axis. (3) Aggregate the metrics, which is
to measure the value on each segment by a given aggregator.

Take the following scenario in healthcare industry as an
instance [6]: “A doctor is keen on discovering the relation-
ship between diabetic patients’ readmission and their blood
glucose when the patients are admitted and discharged by the
hospital”. The query can be processed by grouping patients
into cohorts based on their blood glucose lab-test value and
comparing the cohorts by the number of readmissions along
different time intervals. An illustrative result is shown in
Table I, where the total number of patients of each cohort is
recorded in parentheses. The doctor can easily find interesting
phenomenons from the table, such as the fact that the higher
glucose level a patient has, the more likely the patient is
readmitted by the hospital.

Cohort query has also been used in retention analysis of
web applications [7]–[9]. However, traditional OLAP systems
have not been designed to support such queries. As reported
in [6], the query latency of a typical cohort query executed
in MonetDB is one order of magnitude slower than performed
in a state-of-the-art specialized engine called Cohana, albeit
its inability of running cube queries. As a result, it is often
difficult and slow to run such queries and cube queries simul-
taneously on existing OLAP systems. For example, running a
drill-down analysis while checking the customer retention with
respect to the customer occupations may result in a long wait
just because of inefficient processing. Such composite queries
that integrate OLAP queries and cohort queries together are
frequently applied in real-world applications, such as funnel
analysis in Mixpanel [10].

In addition, the rapid and continuous increase of data



volume and variety over the years have caused a sharp increase
in both storage space requirement and query latency [11].
For emerging patabyte scale OLAP systems [11], [12], the
huge size of the cube causes frequent disk accesses and hence
significantly hurts their performance.

Most existing solutions tackle the above challenges sepa-
rately, using independent designs and layouts in system im-
plementation. In particular, they either make use of columnar
architecture to scale up [13] or take advantages of distributed
processing for specific queries [14], [15]. Realistically, it is
non-trivial integrating them as a general system to leverage the
advances of different solutions. For instance, to process a suc-
cessive query whose input is the output of another precedent
query, redundant storage consumption and transformation cost
can be easily incurred once the processors for the two queries
have incompatible input/output format and resort to different
storage layouts.

In this paper, we propose Cool, a cohort OLAP system.
Cool supports both conventional OLAP queries and emerging
cohort queries as an integrated platform for data analytics.
Specifically, the following contributions are made:

• We provide an integrated solution to support both con-
ventional OLAP query and cohort query. The queries
are formatted with a pre-defined and consolidated JSON
format. With the support of two database operators for
OLAP query, i.e., metaChunk selector and dataChunk
selector, and three operators for cohort query, including
birth selector, age selector and cohort aggregator, the
system is able to perform both types of queries with
similar processing flows.

• We also present a sophisticated storage layout for the
system with optimization in query processing and space
consumption. With configurable and compressed pre-
computation results embedded in storage, Cool can trade
little space for large execution boost when processing
OLAP queries.

• We scale the system with an efficient distributed process-
ing architecture. With the help of HDFS and Zookeeper,
the system is able to effectively balance the workload and
recover from the failures.

• We experimentally compare Cool with two state-of-the-
art analytical systems, namely Druid and MonetDB, in
single-node settings. The results show that Cool not only
offers more flexibility than the two baselines, but also
performs the best in terms of query efficiency and space
consumption. Our evaluation on distributed environment
also indicates that Cool can be one order of magnitude
faster than two state-of-the-art systems, namely Spark-
SQL and distributed Druid.

The rest of the paper is organized as follows. Section II
presents the state-of-the-art work in the literature on OLAP
systems. The single-node architecture of Cool is introduced
in Section III while the distributed version is proposed in
Section IV. We evaluate Cool with our baselines in both single-
node and distributed environments in Section V and conclude

this work in Section VI.

II. RELATED WORK

Due to the fast growing data volume, many OLAP systems
have been designed and proposed to process analytical queries
efficiently. Existing systems can be broadly divided into two
categories, i.e., conventional OLAP systems built on top
of database systems and the emerging query engines with
optimization on specific query types.

Conventional OLAP Systems. Due to the poor perfor-
mance of row-oriented stores on analytical workloads, colum-
nar store is proposed to improve the speed of the query pro-
cessing in the literature. Since OLAP systems ought to scan a
large volume of records for a limited set of columns, columnar
store benefits by avoiding loading data of irrelevant columns
that do not contribute to the final results. Moreover, the size
of the scanned data can be further shrunk by compression
schemes such as dictionary encoding [16], run length encoding
(RLE) [1], row re-ordering [17], etc. Representative systems
include MonetDB [13], [18], MariaDB [19] and HBase [20].

However, columnar stores have shortages that the perfor-
mance of data insertion and point query are not as good
as traditional row-oriented databases. Consequently, proposals
have been made to combine the key ideas of row-oriented store
and columnar store within one system [21]. The examples
include MemSQL [22], Oracle Database In-memory [23],
Hyper [24] and SAP HANA [25]. Such systems can maintain
data tables in either column-oriented or row-oriented format.
A hybrid storage plan, organizing the data in both row-oriented
and column oriented manners, is also employed.

To handle enormous amount of data, several offline OLAP
approaches have also been proposed in the literature. Dis-
tributed processing systems, such as Hive [26], Qylin [27]
and Impala [14], trade off between computing resources and
overall processing performance. In practice, their execution
model relies on the execution efficiency of worker nodes.
Consequently, load balancing and network communication
are two important optimization objectives [28], and Google’s
Dremel is one such example [29]. Notwithstanding, loading
the data into the query processing engine often results in long
set up time before a query task can run [30].

Emerging Query Engines. There are increasing number of
emerging classes of queries engendered by new applications,
data, and business models [31] that cannot be efficiently
supported by conventional OLAP systems. Consequently, new
systems are designed to meet these demands. For example,
Pinot [32], a query processing engine used in Linkedin, offers
near real-time response for iceberg queries [33] with respect to
the latest data injected into the OLAP system while Druid [15],
an open source data store which shares similar ideas, supports
flexible filters and efficient aggregations of the injected records
with time-dimension optimization. Data cube [34] is widely
used for queries involving multiple dimensions from the
dataset. To tackle the challenge of expensive query processing,
an index called star-tree is used to support efficient OLAP
queries irrespective of data distribution [35].
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Fig. 1: Cool Single-node System Architecture
To improve the performance of such systems, diverse com-

pression algorithms have been employed. PowerDrill employs
a two-level dictionary compression scheme to enable process-
ing of trillion record cells in seconds [16] while condensed
cube [36] reduces the size of data cubes to improve the
overall computation time. Furthermore, with the increasing
demand for real-time OLAP queries, it is also important to
improve data injection efficiency. Spark has been extended
to answer stream queries [37] and Shark further improves its
performance by leveraging distributed memories [38].

The first specialized engine for cohort queries, called Co-
hana [6], [39], reports an extraordinary performance when
compared to the implementation using traditional SQL so-
lutions. Yet, the cohort query formalized in this work only
supports a single birth event definition and time-dimension
age delimiters, which significantly constrains the diversity of
the cohorts and therefore affects its usability [40]. Compared
to Cohana, Cool differs in three aspects: (1) Cool uses a more
general definition for cohort queries. It employs a sequence
of birth events to find the valid users and implements both
temporal age delimiter and event-based age delimiter, which
will be discussed in Section III-A. (2) Cool, as an integrated
platform, also supports conventional cube queries efficiently
while Cohana does not. (3) For big data scenarios, Cool is
able to leverage the computing power of multiple nodes while
Cohana depends on standalone servers.

III. SINGLE-NODE ARCHITECTURE

We first present the single-node architecture of Cool in
this section, followed by the scalable distributed processing
architecture in the next section. There are six components
in the system as illustrated in Figure 1, consisting of loader,
controller, parser, planner, compressor and executor.

A. Data Model

Similar to conventional databases, Cool organizes data
records in tables. Each table is maintained by a user-defined

schema, consisting of multiple columns called fields or di-
mensions. A dimension file recording the hierarchy of several
dimensions is also given by the users in order to support
cube queries. Each dimension of the table is bound to a field
type describing the format of the values. The primitive types
include varied-length integer, float, string, boolean, time and
event. The first four are similar to underlying database types
while the remaining types are specifically defined by Cool.
Time deals with the timestamps of the records and event is
a particular string representing user actions or behaviors. A
dimension tree is constructed in system setup guided by the
dimension file and persisted in storage, as shown in Figure 1.
Cool employs a hybrid orientation plan for data storage, as
depicted in Figure 2. The tables are horizontally split into
different partitions called cublets. Each cublet consists of
multiple chunks, where the metaChunk contains all the values
for a corresponding field in this cublet.

In Cool, all the queries are written in JSON format with
a pre-defined syntax. Two types of queries are supported:
(1) OLAP Query. Cool can be treated as a conventional
OLAP system dealing with cube queries. The system supports
basic cube operations, including roll-up, drill-down, pivot and
slice and dice, upon data cubes built atop the fields and the
dimension tree. Cool can also provide responses for iceberg
query [33], a prevailing type of query selecting a small number
of records which satisfy some given conditions. (2) Cohort
Query. Cool can support an enhanced version of cohort
queries. Traditional cohort query, as defined in Cohana [6],
can only support aggregations on cohorts born with a single
event along a fixed time window. However, Cool supports
aggregations on cohorts born with a series of events, namely
an event sequence, along either a fixed time window or an
elastic time window delimited by given events.

Cool supports composite query processing by running a
successive query atop the result of a precedent query. The
type of the precedent query and the successive query can be
any combination of the two aforementioned query types. For
instance, a cohort generated in a precedent cohort query can
act as a data source for either a successive OLAP query or a
successive cohort query. Such composite query is sometimes
called funnel analysis [10] in the literature. In the implemen-
tation, based on the user-defined schema and the dimension
tree, data cube and cohort are stored conceptually as the
intermediate structures to support such query, as shown in the
bottom part of Figure 1. The meaning of “conceptually” here
is that Cool materializes the matched records of the precedent
query as well as the corresponding dimension structure in
the storage layer and aggregates the corresponding results in
runtime, instead of storing the resultant cohort or data cube
tuples directly. By default, such intermediate structures exist
in a fixed period and the system can be configured to persist
them permanently.

B. Storage Layout

The hierarchy of the cublet is illustrated in Figure 2. A
cublet consists of a metaChunk and multiple dataChunks. Cool
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transcripts the columnar data into field and stores multiple
fields into dataChunk with the meta types derived from the
user-defined schema. The metaChunk is used to store the
meta data for each dataChunk within the cublet, including
the number of contained fields and the range or the encoding
structures of the corresponding field, as shown in the figure.
The number of dataChunks in the cublet is recorded in the
header. The “offset” in the figure records the positions of
corresponding headers or fields.

There are two basic meta types for field stores, namely
range and word. The basic types, including integer, float and
time, are converted to range field in the storage layer. The
remaining types, such as string and event, are treated as word
field in Cool. The system has different storage plans for the
two field stores as shown in the last level of dataChunk in the
figure, whose details are discussed in the next paragraph. It
is worth noting that several match sets are piggybacked when
the dataChunk is first stored in order to accelerate cube query
processing. The number of match sets is configurable in the
system setup and such match sets are in fact bitsets indicating
whether the record related to the bit equals to the given value.

Cool employs various compression algorithms and encoding
schemes based on the storage plan for different field types
in order to reduce space consumption. The storage plan for
range field is to only keep maximum and minimum values as
depicted in Figure 2. In practice, a delta encoding scheme is
used on the field to compress the data in such kind of field.
Each record is shortened as a delta value against the minimum
value to store. Meanwhile, the storage plan for word field is
to apply a double-dictionary scheme similar to [16] in order
to save the space. Each distinct string of the field is put into
a global dictionary and can be indexed by a unique number.
Therefore, the range set of the field is converted into a series of
numbers. In this way, each chunk can only store the numbers
existed in the chunk, namely the local value set. To further
reduce space cost, numbers in the local value set are further
translated into a local dictionary with shortened numbers, i.e.,
the fingers in Figure 2, to achieve a higher compression ratio.
Besides the two encoding schemes, appropriate compression
algorithms are also employed to reduce storage size. For
example, bit packing and vectorization are introduced to deal

with delta values and dictionary indexing numbers.
Indexes are used in Cool to support efficient query process-

ing on the hybrid data orientation design. For example, the
prefix tree is employed due to its competitive lookup perfor-
mance and superb space-saving ability in the aforementioned
double-dictionary scheme. Besides tree indexing structures,
other auxiliary indexes, including bitsets and hash tables, are
efficiently used to facilitate operations with filters, such as slice
and dice in OLAP and birth selection in cohort query. Another
usage of bitset is the match set piggybacked at the end of the
fields as shown in Figure 2. To reduce the consumption of
space, we further apply bit packing scheme, namely an RLE
compression, upon the match set.

C. Query Processing

In this section, we first introduce how Cool utilizes different
components shown in Figure 1 to generate same execution
paths for both conventional OLAP query and cohort query.
Then we briefly describe the predicates and the native opera-
tors implemented in Cool. Two different processing flows and
a summary of the advantages on the system is lastly presented.

1) Execution Path: There are two possible execution paths
for the system as shown in Figure 1. The green dashed line
indicates the data injection path. The data is imported into the
system through an ETL process. After the ETL process, the
records for each user are ordered chronologically and fed to
a controller. The controller passes the data to a compressor,
which applies the aforementioned compression schemes on the
data according to the user-defined schema. The compressor
stores the compressed data locally for further querying and
processing. It should be noted that we set two status, namely
“readable” and “unreadable”, for the cublets in the system
to guarantee eventual consistency of the query output. The
new cublets under injection process is set unreadable by the
controller, forbidding any query processing, and is set to be
readable by the controller when the entire injection task is
done.

In Figure 1, the orange solid line depicts the execution
path on queries within Cool. The controller receives queries in
JSON from analysts and passes them to a parser. The parser
then transforms the queries into different operators with a
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Fig. 3: An example of the predicate tree

system-defined schema. The operators are fed to a planner,
generating an execution plan and passing it to an executor. The
executor loads the compressed data from the local storage and
runs the operators according to the received plan. The result
of the query is sent to the user directly. The system can also
store the query result for subsequent reference, as shown in the
figure where the compressor can be called after the executor
finishes its job.

2) Predicates: Predicates are widely utilized to filter in-
appropriate or redundant records in query processing. There
are three types of predicates supported in Cool, including
Single, Or and And. Single is the simplest predicate without
any logical operands. Or is a joint predicate whose outermost
level of logical operand is ∨(or) while And is a joint predicate
whose outermost level of logical operand is ∧(and).

A predicate tree is generated by the planner shown in
Figure 1 and used heavily in query execution. An example
of the predicate tree is illustrated in Figure 3, where Node A
and Node B are two joint predicate nodes and Node C and
Node D are two single predicate nodes. In practice, the node
structure of the predicate tree contains following elements:

• Type. A string indicating which type of the predicate
node is, denoted as t.

• Operator. The operator in the predicate, including ∈, /∈,
≤, ≥, etc. We use symbol α to represent the operator and
set it as null for joint predicates, i.e., Or and And.

• Dimension. A string indicating which dimension the
predicate should be applied or validated, denoted as d
and set as null for joint predicates.

• Value. An array contains all the values that need to be
checked when applying the predicate, denoted as V and
set to null for joint predicates.

• Children. A pointer array contains the operands of joint
predicates, denoted as C and set to null for single
predicates.

3) Key Operators: Several operators are implemented for
query processing in Cool. For OLAP queries, metaChunk
selector and dataChunk selector, are implemented.

metaChunk Selector σM
P . The metaChunk selector is used

during the scanning of metaChunk in query processing. The
input of the operator consists of the schema of chunk D, the
metaChunkM to scan and the predicate tree P . The algorithm
is a process traversing M with P . The output of the operator
is a boolean value indicating whether the chunk contains the

valid data, which means the values specified by the query can
be found in corresponding dataChunk.

The traversal of the metaChunk is conducted from the root
node of P in a Depth-First Search (DFS) manner. During the
traversal, different actions are invoked based on the type of
the traversed predicate node. For single predicate node, the
validation on whether the existing range of its corresponding
dimension d contains the given values specified by the query
is processed. Take Figure 3 as an example, the validation
on Node C succeeds once the metaChunk reflects that di-
mension “city” contains “LA” or “SF” for the corresponding
dataChunk (Such information is recorded in the “fingers” for
WordMetaField in the storage of metaChunk in Figure 2). For
the joint predicate nodes, all child nodes whose type is Single
are firstly visited and validated on the corresponding dimen-
sions. Then, other joint predicate child nodes are traversed
recursively until the validation on the entire tree is done. For
instance, in Figure 3, the traversal on Node A firstly starts on
Node C and then moves to Node B.

By firstly checking the single predicate child nodes of the
joint predicate nodes, the cost of the validation is pruned
since the traversal can be terminated early. For example, the
validation on Node A in Figure 3, whose type is And, can
return “false” immediately once the validation on Node C
fails. Hence, the validation cost of Node B is pruned as the
outermost logical operand of Node A is and. Similarly, the
validation on Node B returns “true” immediately once the
validation on Node D succeeds, and the cost of checking the
other node of Node B is eliminated. To further reduce the
traversal cost on the predicate tree, the same early termination
is also applied for the recursive validation on joint predicate
child nodes, where the result is returned directly once the
validation returns wanted results for either Or or And nodes.

It is worth mentioning that Cool always performs the pred-
icate operators on time dimension first for multiple predicates
on the same level of the tree. This is a pruning strategy in
scanning to reduce query latency since many records can be
quickly skipped. Due to the fact that the records for each user
are sorted chronologically, those whose timestamp is out of the
given time interval can be filtered out easily within at most
two comparison operations – one is for the minimal value
while the other one is for the maximal value – are needed.
Such optimization is an effective solution for the data with
time-dimension input and has been widely adapted by state-
of-the-art OLAP systems such as Druid [15] and Pinot [32].

dataChunk Selector σD
P . The dataChunk selector is used

to find the matched data records in query processing.The input
of the operator includes dataChunk R, the number of records
N and predicate tree P . The output of the operator is a
bitset B, whose length equals to the number of records the
dataChunk contains. Each bit of B represents a position which
a corresponding record holds in R. When the bit is set (equals
to 1), the record stored in the corresponding position in R is
matched to the conditions contained in the predicate tree P
and should be selected for later aggregation. On the contrary,
the record is excluded in the aggregation when the bit is unset



(equals to 0).
Similar to metaChunk selector, the selector traverses the

predicate tree from the root node and acts differently according
to the type of the predicate nodes. For a single predicate
node, the algorithm scans all the records in related dimension
and sets the corresponding bit when the record matches the
predicate. For a joint predicate node whose type is Or, the
union of all the result bitsets of its child node is returned, cal-
culated by recursively traversing the child nodes and scanning
corresponding records to find the match. The intersection of all
the result bitsets is returned for the joint predicate node whose
type is And. Similar to metaChunk operator, the optimization,
processing the predicates on time dimension with the highest
priority, is adopted to prune the scanning records.

For cohort queries, we take advantage of the essential
operators described in [6] and implement them with imper-
ative adaption for the enhanced version of cohort analysis.
Particularly, we change the semantics of birth selector and age
selector to support our version of cohort analysis and leave
cohort aggregator as it is in the original implementation.

Birth Selector σB
P . The birth selector is to capture the qual-

ified users who pass the validation on the predicates in their
event dimension. The birth selector accepts the metaChunk, the
dataChunk and the predicate tree P as input. The selector first
checks metaChunk whether the events in birth event sequence
exist in the scanning chunk and then process the selection on
dataChunk.

Age Selector σG
P,B. The age selector is used to retrieve the

age events for the users who satisfy the given birth actions. The
input of the selector contains the dataChunk, the predicate tree
P , and the bitset B, marking whether the user can be selected
for aggregation in age. Despite the age delimiter, which can be
only specified in time dimension supported in [6], we extend
this operator to support event-based age delimiters. Intuitively,
the boundary between two consecutive ages can be decided by
either a specific event or a fixed time interval.

Cohort Aggregator γCB,mf
. The records that pass both the

birth selector and the age selector are grouped by different
user cohorts and aggregated on age. The operator receives the
bitset B, which indicates the position the valid records hold
in the cublet, and the metrics mf , which is the user-defined
measurement over the field f . The aggregator scans all valid
records and aggregates the measurement into the aggregate
value based on the name of the cohort and the age. Thus, a
set of triads, consisting of the name of the cohort, the age and
the corresponding aggregate value, is output.

4) Processing Flow:
OLAP Queries. To process OLAP queries, the following

steps are conducted in the executor.
(1) Receive the execution plan produced by the planner.
(2) Fetch a cublet from the specified data source.
(3) Run metaChunk selector σM

P to scan metaChunk, check-
ing whether the cublet contains the candidate values.

(4) Go to Step (2) if there are no values matched in
metaChunk.

(5) Run dataChunk selector σD
P to scan dataChunk locating

matched records.
(6) Call aggregators on the scanning result for dataChunk

and collect the aggregation values into groups.
(7) Repeat Step (2) - (6) until all cublets are processed.
(8) Call a compressor to store the aggregate results if neces-

sary.
(9) Output the final results.

When processing OLAP queries, the executor first gets a
plan including the predicate tree P from the planner (Step
1). Then, the executor begins to scan the cublets in the
data source. Recall that in Figure 2, each cublet contains a
metaChunk, recording the values of each field appearing in
corresponding cublet, the executor makes use of this infor-
mation to prune the unnecessary data scanned by checking
whether such values fulfil the predicate plan as presented
in Section III-C3. The executor skips the current cublet and
starts to scan the next chunk (Step 4) if the output of
metaChunk selector σM

P is false and continues to scan the
current dataChunk (Step 5) if the output is true. The scan of
the dataChunk is processed via the selection operator σD

P . In
step 6, the executor aggregates the metrics specified in the
query based on the scanning results of Step 5 and updates the
aggregate values in an intermediate group map, where the keys
are generated by group names. After all cublets are processed,
the executor flushes the aggregate result into the storage if the
query specified and renders the result as the output.

Cohort Query Processing. Recall that we adapt the birth
selection operator, the age selection operator and the cohort
aggregation operator from Cohana [6], and integrates them
into Cool. The entire process flow is described as follows.

(1) Receive the execution plan produced by the planner.
(2) Fetch a cublet from the specified data source.
(3) Run birth selector σB

P to scan metaChunk checking
whether the cublets contain the events in the birth event
sequence.

(4) Go to Step (2) if there is no event matched in metaChunk.
(5) Run birth selector σB

P to scan dataChunk locating the
birth users.

(6) Run age selector σG
P,B to calculate ages.

(7) Run cohort aggregator γCB,m to aggregate different cohorts
from the users.

(8) Repeat Step (2) - (7) until all cublets are processed.
(9) Call a compressor to store the results if necessary.

(10) Output the cohort aggregation results.

As mentioned in Section III-A, we further enhance the
functionality of cohort analysis by introducing birth event
sequence and reference cohort compared to Cohana [6]. The
motivation of introducing such enhancement is the limitation
on the outdated definition. On the one hand, the original cohort
analysis cannot be applied in many cases since only single
birth event is supported and used within the birth selection
operator. Cool offers the selection based on a sequence of
birth events so that the definition of cohorts can be relaxed in
order to support a wider range of queries. In this way, the birth
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selection now can be applied on both event field and time field
and the users who have done the sequence of such events can
be easily detected.

On the other hand, it is impossible to conduct nested cohort
analysis in Cohana, which means the system cannot process a
successive cohort query based on the result of a precedent
cohort query. Cool addresses this problem by storing the
matched records of the precedent cohort query and treat them
as a new data source called “reference cohort”. Consequently,
the system is now able to run complex queries such as
checking whether the treatment remains effective after the
readmission for the user cohort “130-160 mg/dL” in Table I.

To summarize, Cool gains the performance boost mainly
from three optimizations. Firstly, Cool can use less memory
to represent the data compared to traditional systems due to
the sophisticated storage design. That is, Cool scans more data
records than other systems in each disk fetch and therefore en-
counters less slow disk fetches for the same dataset. Secondly,
the tuning strategies in query processing further reduce the
number of records to scan, leading to competitive performance
gains. The system can skip the scanning of the cublets without
the queried values by metaChunk selection. Meanwhile, the
execution of predicates further cut down the scanning cost as
the process can be terminated early as described previously.
Thirdly, the implementation of native cohort operators can
accelerate cohort query at scale since the expensive join
operation is eliminated as compared to the implementation in
conventional systems.

IV. DISTRIBUTED SYSTEM ARCHITECTURE

In this section, we extend Cool for distributed processing in
order to serve big data needs without compromising the ability
and efficiency in supporting both OLAP and cohort queries.

A. System Architecture and Query Processing

The architecture of distributed Cool is depicted in Figure 4,
where each worker stands for a node in a distributed network.
Naturally, a distributed storage is used instead of the local
storage and besides all the components in single-node archi-
tecture, an additional broker is introduced. With the help of
Zookeeper, the broker is responsible for the allocation of tasks

among different workers, and the message passing for cross-
node communication is via HTTP protocol. The data injection
procedure now is fully assigned to a data importer, which is
individually operated out of the processing system and can be
called automatically according to the business needs by the
developers. A compressor and a loader are embedded into the
importer to assist data injection process. It is worth mentioning
that the storage of the query results is also assigned to the
importer, which is called after the query processing.

The query format for multi-node Cool is the same as the
single-node Cool, which means a parser is needed to parse
the query. However, the producer of the query plan differs.
The broker, instead of the planner in single-node version, is
responsible for the generation of the query plan in multi-node
Cool. Since the data is divided into cublets as described in
Section III-A, the query plan now contains different cublet sets
to scan for each worker. After the generation of the query plan,
the broker distributes it to idle worker nodes. As soon as each
worker node receives the query plan, it starts to process the
query with operators similar to the single-node version. The
processing results produced by the worker nodes are stored in
a temporary directory of the distributed storage, indexed by
the id of the worker node. Once the processing is complete,
each worker node individually invokes the broker to check
whether all the participated workers have completed their job.
The final results are merged by the broker and output by the
controller in the master node.

B. Load Balancing and Fault Tolerance

The multi-node Cool supports basic load balancing in terms
of task scheduling and necessary fault tolerance to node
failure. Compared to the large size of cublets processed by
multiple worker nodes, the size of the results is much smaller
and hence the combination of partial results does not affect
the overall performance severely although it is only conducted
by the broker. Therefore, we use Zookeeper to maintain the
processing status of all workers, which can be accessed by
the broker when assigning query processing tasks and merging
results. Moreover, a scheduling queue is implemented in Cool
and the tasks assigned for the workers are pushed into the
queue instead of directly flushed when the worker is busy. The
broker can re-assign the idle workers with unprocessed task
from the queue and therefore eliminates meaningless wait in
query processing as much as possible.

Despite the node status mentioned in the last paragraph, the
address of the master node and the thread id of the broker
are also recorded in the zookeeper. There exists a heartbeat
detection in Cool to guarantee that the system can recover from
the failures from either the master node or the worker node. If
a worker node crashes, the broker in the master node notifies
Zookeeper and marks its status as “lost”. The processing task
the crashed node works on is then transferred to other alive idle
worker nodes via re-sending its query plan by the broker. If a
master node crashes, the first idle worker node in the worker
list automatically picks itself as the new master node and
changes the corresponding keys in zookeeper. Meanwhile, the



TABLE II: Line of Code for the queries

System

loc Query
Q1 Q2 Q3 Q4

Cool 19 lines 15 lines 11 lines 17 lines
SQL 27 lines 5 lines 6 lines 33 lines
Druid - - 13 lines -

TABLE III: Dataset Statistics

Dataset TPC-H
tiny small medium large

#records 7.5M 15M 30M 60M
size 3.1G 6G 13G 25G

Dataset MED
tiny small medium large

#records 8.6M 17M 34M 69M
size 3.2G 6.4G 13G 26G

query results can be easily recovered since they are maintained
in the distributed storage separately and referred by zookeeper.

V. PERFORMANCE EVALUATION

Cool has been designed and optimized as an integrated
system to support both cube queries and emerging cohort
queries. To the best of our knowledge, there is no similar
system that we can use as a baseline to compare all the
functionalities. We therefore select Apache Druid [15], one of
the most popular event-based systems for OLAP-related query
evaluation, and MonetDB [13], a fast columnar analytical
database for cohort query evaluation. For comparison on
distributed processing, we select SparkSQL and distributed
Druid. The measurement of the system includes the query
latency of queries, the compression ratio of the datasets, and
the memory consumption in processing. We use scripts to
check whether the output results from different systems are
the same and present the average metric on ten runs for each
case. The query result is ensured to be the same for all the
candidates being benchmarked.

Two datasets are used in this experiment. The first dataset is
from TPC-H benchmark generated by official scripts1. Using
the script, we generate the records for two tables, i.e., customer
and orders, for the queries. The second, a medical dataset
denoted as Med, is generated randomly based on a real
database schema from one of the public hospitals we have
been working with. The important fields include the event, the
timestamp and the treatment status and the institution where
the patient resides. The benchmarking queries are defined as
follows.
Q1. Cohort query: For MED dataset, find the number of

patients from different medical institutions, who are put
into the observation list before their operation and their
treatment remains effective after the operation.

Q2. Iceberg query: For TPC-H dataset, find all countries in
Europe area and its total amount of orders with priority
equals to “2-HIGH” between January 1st, 1993 and
December 31st, 1993.

1https://github.com/electrum/tpch-dbgen

Q3. Cube query: For TPC-H dataset, find different regions
and its total amount of orders by month.

Q4. Composite query: For MED dataset, find the total num-
ber of patients who belong to the cohort of Q1 by user’s
district.

As listed, Q1 is a retention problem by counting the number
of patients whose treatment retains effective, which can be
used to evaluate the performance of Cool in terms of cohort
analysis query processing. Q2 is an iceberg query containing
multiple selection conditions, which is aimed to evaluate the
efficiency of the database selectors implemented by Cool,
while Q3 is a typical roll-up query over the time axis of a
data cube (the minimal unit of time dimension is day), which
is targeted on the cube queries. The purpose of using Q4 in the
experiment is to validate the ability of the system in running
composite queries.

A. Query Example and Usability

We first illustrate the queries submitted to Cool, namely
Q1 and Q2, in Listing 1 and Listing 2. The full schema is
omitted due to space constraint. To compare, line of code
(loc) is collected for the three systems and the results can
be referred to Table II, where ‘-’ means that the query is not
applicable for the system. As can be observed, Cool needs
fewer lines of code for cohort query Q1 and composite query
Q4 compared to SQL. Nonetheless, Cool requires more lines
of code for iceberg query Q2 and cube query Q3. The outcome
is natural and apparently Cool sacrifices certain usability to
win the query expressiveness in supporting different query
types in system level.

B. Single-node Benchmark
The three systems are run with an Ubuntu 14.04 server with

8G memory and 2-core CPU (2.2 GHz) in this experiment. We
create four different sizes, i.e., tiny, small, medium and large,
for both datasets. The detailed statistics on the datasets are
described in Table III, where the number of records varied
from 7.5 million to 69 million and the range of the actual size
varies from 3.1 Gigabytes to 25 Gigabytes.

1) Query Latency:
We study the query latency of all the queries for the three

systems and the results are shown in Figure 5.
For the first query (Q1), we benchmark Cool and MonetDB.

Cohort query is not supported in Druid as it is impossible
to select on birth event sequence upon the injected data2

according to the official documents and hence it is omitted
in this case. From the results shown in Figure 5(a), we can
observe that Cool is generally faster than MonetDB in one
order of magnitude with respect to the query latency. The
largest gap appears in the large dataset, where the absolute
values are 25.3 seconds for MonetDB and 1.5 seconds for
Cool. The major reason for the gap is that MonetDB incurs
more disk accesses during the processing compared to Cool.
The frequent data swapping, from disk to memory undoubtedly
slows down the system performance in terms of query latency.

2https://druid.apache.org/docs/latest/tutorials/tutorial-rollup.html

https://github.com/electrum/tpch-dbgen
https://druid.apache.org/docs/latest/tutorials/tutorial-rollup.html


1 {
2 "dataSource": "MED",
3 "referName": "Q1_Result",
4 "birthSelection":[{
5 "dimension":"INSTITUTION",
6 "values": ["NUS", "NHGP"],
7 "birthActions": [
8 { "value": "observation start", "order": 1 },
9 { "value": "operating", "order": 2 }

10 ]
11 }],
12 "ageSelection": [
13 { "selectType": "set", "dimension": "TR_STATUS", "values": ["effective"] }
14 ],
15 "cohortBy": {
16 "dimension": "INSTITUTION", "ageInterval": "DAY",
17 "cohortMetric": "Retention"
18 }
19 }

Listing 1: Cohort query example (Q1)

1 {
2 "dataSource": "tpc-h",
3 "predicates": {
4 "type": "and",
5 "children": [
6 { "type": "single", "dimension": "O_ORDERPRIORITY", "operator": "=",
7 "values": ["2-HIGH"]},
8 { "type": "single", "dimension": "R_NAME", "operator": "=",
9 "values": ["EUROPE"]},

10 { "type": "single", "dimension": "O_ORDERDATE", "operator": "in",
11 "values": ["1993-01-01|1993-12-31"]}
12 ]},
13 "groupBy":[{ "dimension": "N_NAME" }],
14 "aggregations":[{ "dimension": "O_TOTALPRICE", "operator": "COUNT" }]
15 }

Listing 2: OLAP query example (Q2)

For the second query, we separate data injection into two
steps to simulate the processing in a real-time manner 3. The
first portion of data, records between January 1st, 1993 and
November 30th, 1993, is initially imported into the system.
After the query processing is done on the first portion of
data and the result is generated, the second portion of data,
records between December 1st, 1993 and January 1st, 1994, is
injected as if it is the real-time data produced from ETL tools.
The system needs to update the existing results to answer the
second query and the query latency of updates is accumulated
and drawn in Figure 5(b). We implement this workflow in SQL
for MonetDB and use materialized view to store the output of
the results on the first portion of data and also the final results.
The time used to update the materialized view is therefore
collected as the query latency of Q2 in this setting. Druid is
absent in this test since the system cannot answer such kind
of real-time queries.

As can be observed in Figure 5(b), Cool outperforms Mon-

3The test on the entire dataset produces similar results to Figure 5(a).

etDB by almost one order of magnitude in real-time settings.
However, the gap between the two candidates becomes small
when the size of the dataset grows. The reason for such
outcome is the reduction of the records scanned in the system.
MonetDB incurs less disk accesses since it only needs to deal
with the incremental dataset and update the existing results.
The decrease of the absolute value for the query latency
can also indicate this trend, where MonetDB only uses 198
milliseconds in Figure 5(b) on tiny dataset compared to 979
milliseconds on the same dataset for Q1.

Since Q3 is a typical roll-up query over a data cube
with time dimension, we can easily implement the query in
Druid. As can be seen in Figure 5(c), the query latency of
Cool is almost one third of the query latency of Druid. The
reason which causes the differences between the two systems
stems from the implementation of the precomputation of the
dimensions in data cube. Although we use precomputation on
time dimension for Druid by setting the granularity to day
when injecting the dataset, it is not as efficient as Cool’s bitset
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implementation since Druid has more complex management
tasks for the data segments.

For Q4, we directly measure the time period from the
query submission to the result receiving. As can be seen,
the difference value between the two systems becomes larger
compared to the gap in either Figure 5(a) or Figure 5(d). This
is caused by the fact that Cool can directly derive the results
of Q4 from the results on the precedent query, namely Q1,
while MonetDB cannot directly make use of the results of Q1
due to the heterogeneity of the input and output formats of
the two queries. In practice, MonetDB has to run a composite
query which meets both the criteria of Q1 and Q4.

2) Processing Memory:
We compare the memory consumption during query pro-

cessing between Cool and MonetDB for Q1 and compare the
same metric between Cool and Druid for Q3. The results are
shown in Figure 6(a) and Figure 6(b), respectively.

As can be seen in Figure 6(a), Cool performs better than
MonetDB for all the datasets; Especially in the tiny dataset,
Cool consumes only 232 megabytes of memory while Mon-
etDB takes 1999 megabytes of memory. The reason is that
Cool utilizes compression schemes with higher efficiency than
MonetDB and incurs no additional memory costs to maintain
the schema of both the tables and the dimensions. For Q3,
it can be observed from Figure 6(b) that Druid consumes
much more memory space than Cool. Even for the largest
dataset, the memory used by Druid is still three times of that
used by Cool. This is mainly due to two reasons. First, Druid
needs to maintain auxiliary system components in order to
manage the data segments, which is complex and incurs high
overhead. However, Cool exploits a relatively simple storage
hierarchy and therefore eliminates such extra costs. Second,
Druid must map the data from disk to memory during query
processing even for the tiny dataset while for Cool, due to the
highly compressed cublet structures, it may keep the entire
dataset in memory for small datasets, which further leads to
the performance gap between the two systems.

C. Compression Ratio

To assess the compression efficiency for the sophisticated
storage layout in Figure 2, we compare the size of the raw
datasets and the size of the compressed datasets in this test
case. We further make a breakdown analysis here by compar-

ing the compressed datasets with and without the compression
on match set enabled. The results are shown in Figure 7.

It can be inferred from the figure that the compression ratio
of the raw data to our storage design is around 3. For the tiny
dataset, Cool can even achieve a compression ratio of 3.8,
where the absolute value is 0.779G compressed data vs. 3.1G
raw data. Additionally, the RLE compression in match sets
can achieve a compression ratio around 1.6 in most cases.
The worst compression ratio is about 1.4 occurred in small
dataset, where the size with match set compression enabled is
2.75G and the size with the compression disabled is 3.88G.

D. Multi-node Benchmark

For distributed processing benchmark, we employ 1 to
16 nodes to evaluate the system performance. Each node is
equipped with Intel Xeon E5-2698 CPU (2.3 GHz) and 8GB
memory. The operating system installed is Ubuntu 18.08. We
generate 80 Gigabytes data for both datasets using the same
scripts in single-node tests.

The results are shown in Figure 8. For SparkSQL, we
complete the injection by converting the raw data into parquet
partitions. Similar to single-node experiment, we also run Q3
on druid although the distributed version is employed. As can
be seen from the figure, Cool runs one orders of magnitude
faster than SparkSQL for cohort query (Q1). Specifically,
Cool spends 7.03 seconds when processing with 16 nodes
while SparkSQL incurs 328 seconds. Similar conclusion is
also derived for the composite query (Q4). For iceberg queries
(Q2), Cool achieves comparable performance to SparkSQL. As
for 8-node case, Cool incurs 49.1 seconds while SparkSQL
needs 45 seconds. The reason why the latency increases when
the number of nodes changes from 8 to 16 for SparkSQL is
that the merge of all the results, instead of the computation
of each parquet partition, dominates the system performance.
The advantage becomes more obvious for the composite
query (Q4) since Cool can directly make use of the results
of precedent query, namely Q1, while SparkSQL needs to
run Q1 first before processing Q4. For cube queries (Q3),
Cool achieves comparable latency to SparkSQL and performs
slightly better than Druid with 1 worker node. For 16-node
case, Cool can get 3x faster latency than the two systems.

SparkSQL achieves better scalability in iceberg query than
cohort query and OLAP query. The execution time for Spark-
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SQL shrinks more than a half when the number of nodes in-
creases from 4 to 8 in Figure 8(b) while the same measurement
only drops around 40% with the same change. Similar trend
can also be observed for Cool. The main cause of such trend
is that cohort query requires a more complex aggregator than
iceberg query, which is commonly done by a single node and
therefore hinders the scalability.

We further extend the test on a huge dataset for Cool and
SparkSQL to compare the query latency4. In this test, we run
16 worker nodes equipped with 32GB memory and 2.3 GHz
CPU for the two system and the size of the two datasets is
800GB. The results for the four queries are shown in Figure 9.
As can be observed, Cool has comparable query latency to
SparkSQL for cube query (Q3) and runs slightly better than
SparkSQL for iceberg query (Q2). Moreover, Cool is almost
one order of magnitude faster than SparkSQL in terms of
cohort query (Q1). The results of the four different queries
indicate that Cool has equal query expressiveness to SparkSQL

4Druid fails the ingestion after we wait for three days in this test case.

TABLE IV: System Comparison in OLAP scenarios

System Query
Latency

Query
Expressiveness

Real-time
Ingestion
Support

Distributed
Processing
Support

RDBMS High Very High Not Typically Not Typically
Cohana Low Low No No
Druid Moderate Moderate Yes Yes
Spark Moderate High Yes Yes
Cool Low High Yes Yes

yet achieves better query performance.

E. Feature Comparison

We summarize the pros and cons of Cool as well as
the systems tested in our experiments in Table IV. Druid,
Spark and Cool all support real-time ingestion and distributed
processing. However, as confirmed by our evaluation results,
the query latency provided by Cool is lower than the other two
systems. Besides, it is obvious that traditional RDBMS trades
off the query performance for the highest query expressiveness
while Cohana sacrifices the query expressiveness as much as
possible for a superb query latency.

We additionally compare the query latency of Cohana and
Cool to verify this statement. Due to the inability of running
all the previous queries for Cohana, we adapt Q1 to a simpler
query, namely “for MED dataset, find the number of patients
from different medical institutions who are operated and the
treatment remains effective after the operation”. The result
of this test shows that, in terms of query latency, Cohana is
around 12% superior than Cool (292ms vs. 345ms) on single-
node settings for the specific query, proving the efficiency
of the system. Considering the fact that Cool performs the
fastest in cohort query processing among other baselines with



higher or equivalent query expressiveness, this result shows
that Cool trades off little performance in query processing for
the significant enhancement in supporting wider range of query
types compared to Cohana.

VI. CONCLUSIONS

We propose Cool, an online cohort analytical processing
system, to support both cohort based and conventional data an-
alytics. We present details of Cool, including the design prin-
ciple, the architecture, the storage hierarchy and the execution
framework, and conduct an extensive performance evaluation.
Further, we extend the system to a distributed environment
with sufficient load balancing and fault tolerance support.
Despite providing the full functionality to support both OLAP
queries and cohort queries, the experimental results show that
Cool has superb performance in terms of query efficiency and
memory consumption compared to Druid and MonetDB. For
distributed settings, Cool outperforms SparkSQL and Druid by
one order of magnitude in query latency.
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“Efficient Transaction Processing in SAP HANA Database - The End
of a Column Store Myth,” in SIGMOD Record, 2012, pp. 731–742.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” VLDB, vol. 2, no. 2, pp. 1626–1629, 2009.

[27] L.-Y. Ho, T.-H. Li, J.-J. Wu, and P. Liu, “Kylin: An efficient and scalable
graph data processing system,” in IEEE BigData. IEEE, 2013, pp. 193–
198.

[28] B. Arres, N. Kabbachi, and O. Boussaid, “Building olap cubes on a
cloud computing environment with mapreduce,” in AICCSA. IEEE,
2013, pp. 1–5.

[29] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
VLDB, vol. 3, no. 1-2, pp. 330–339, 2010.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[31] W. M. Mason and S. Fienberg, Cohort analysis in social research:
Beyond the identification problem. Springer Science & Business Media,
2012.

[32] J.-F. Im, K. Gopalakrishna, S. Subramaniam, M. Shrivastava,
A. Tumbde, X. Jiang, J. Dai, S. Lee, N. Pawar, J. Li et al., “Pinot:
Realtime olap for 530 million users,” in SIGMOD Record. ACM,
2018, pp. 583–594.

[33] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D.
Ullman, “Computing iceberg queries efficiently,” in VLDB, 1998.

[34] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals,” Data mining
and knowledge discovery, vol. 1, no. 1, pp. 29–53, 1997.

[35] D. Xin, J. Han, X. Li, and B. W. Wah, “Star-cubing: Computing iceberg
cubes by top-down and bottom-up integration,” in VLDB. VLDB
Endowment, 2003, pp. 476–487.

[36] W. Wei, F. Jianlin, L. Hongjun, and J. X. Yu, “Condensed cube: an
effective approach to reducing data cube size,” in ICDE, 2002, pp. 155–
165.

[37] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,” in
SOSP. ACM, 2013, pp. 423–438.

[38] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: fast data analysis using coarse-grained distributed
memory,” in SIGMOD Record. ACM, 2012, pp. 689–692.

[39] Z. Xie, Q. Cai, F. He, G. Y. Ooi, W. Huang, and B. C. Ooi, “Cohort
analysis with ease,” in SIGMOD, 2018, pp. 1737–1740.

[40] Q. Cai, Z. Xie, M. Zhang, G. Chen, H. Jagadish, and B. C. Ooi,
“Effective temporal dependence discovery in time series data,” VLDB,
vol. 11, no. 8, pp. 893–905, 2018.

https://kb.tableau.com/articles/howto/additional-cohort-analysis-example
https://kb.tableau.com/articles/howto/additional-cohort-analysis-example
https://chartio.com/resources/tutorials/performing-cohort-analysis-using-mysql/
https://chartio.com/resources/tutorials/performing-cohort-analysis-using-mysql/
https://amplitude.com
https://mixpanel.com/retention/
https://rjmetrics.com/
https://mixpanel.com/blog/2009/06/10/introduction-to-analytics-funnel-analysis/
https://mixpanel.com/blog/2009/06/10/introduction-to-analytics-funnel-analysis/

