Abstract—Data collaboration activities typically require systematic or protocol-based coordination to be scalable. Git, an effective enabler for collaborative coding, has been attested for its success in countless projects around the world. Hence, applying the Git philosophy to general data collaboration beyond coding is motivating. We call it Git for data. However, the original Git design handles data at the file granule, which is considered too coarse-grained for many database applications. We argue that Git for data should be co-designed with database systems. To this end, we developed ForkBase to make Git for data practical. ForkBase is a distributed, immutable storage system designed for data version management and data collaborative operation. In this demonstration, we show how ForkBase can greatly facilitate collaborative data management and how its novel data deduplication technique can improve storage efficiency for archiving massive data versions.

I. INTRODUCTION

Data analytics and machine learning activities generally target at insights from data and further exploit them to enhance applications. Research on the same specific dataset usually involves multiple disciplines who run analytics or data engineering independently. And their outcomes are more or less related to certain types of collaboration. Efficient data collaboration comes from coordination and storage support. Most of the existing solutions for collaborative data coordination are built within the applications. Such ad-hoc approach not only wastes development effort that is hardly reusable across different applications, but also misses the opportunity to optimize the underlying storage. Therefore, coordination-oriented data management must rely on systematic or protocol-based coordination for scaling.

Git is the most productive solution in the practice of collaborative code management. This has been attested by its widespread adoption in countless projects around the world. In the context of database systems, many data collaboration applications have similar collaborative coordination requirements that ever drove the invention of Git. Hence, it could be beneficial to bring the Git semantics into database management and make it applicable to many kinds of branchable data applications. We call such integration Git for data. Table I briefly compares state-of-the-art Git for data systems.

Towards practical Git for data, we developed ForkBase [1] which is collaboration-centric by design and facilitates data forking, data version management and access control to the end of multi-tenant analytics. ForkBase provides Git-like operations, but focuses on data, its security, immutability and provenance. Data in ForkBase is multi-versioned, and each version uniquely identifies the data content and its history. Moreover, ForkBase employs content-based storage layout which favors fast differential query and efficient data deduplication.

II. SYSTEM OVERVIEW

ForkBase [1] is a distributed storage system designed for data version management and data collaborative operation. It internally implements Git-compatible data version control and branch management based on Merkle directed acyclic graph (DAG), which empowers tamper evidence and efficient tracking of data provenance. Moreover, ForkBase is endowed with a novel content-based data deduplication technology that can remarkably reduce data redundancy between different data versions in the physical storage as well as efficiently support differential queries between data versions.

The overall architecture of ForkBase is illustrated in Fig. 1. At the bottom layer, data are deduplicated at the chunk level. At the representation layer, versions and branches are organized based on Merkle DAG. The API layer exposes interfaces for data manipulation, data property tracking and version/branch management. Supported data types include primitives (string, number, boolean), blob, map, set and list, as well as composite
data structures built on them (e.g., relational table). The
semantic view layer includes access control, command-line
interface and RESTful APIs to support applications at the
top layer, such as a web-based UI for data exploration across
versions and branches.

A. POS-Tree

Existing primary indexes in databases focus on improving
read and write performance. They do not consider data page
sharing, which makes page-level deduplication ineffective. Fork-
Base addresses this issue by introducing the Pattern-Oriented-
Split Tree (POS-Tree). POS-Tree implements the Structurally-
Invariant Reusable Index (SIRI) [1] which facilitates page
sharing among different index instances.

Definition 1. SIRI Let \(I \) be an index structure. An instance
\(I \) of \(I \) stores a set of records \(R(I) = \{r_1, r_2, \ldots, r_n\} \). The
internal structure of \(I \) consists of a collection of pages (i.e.
index and data pages) \(P(I) = \{p_1, p_2, \ldots, p_m\} \). Two pages
are equal if they have identical content and hence can be shared
(i.e. deduplicated). \(I \) is called an instance of SIRI if it has the
following properties:

1) Structurally invariant: For any instance \(I_1, I_2 \in I \),
\[
R(I_1) = R(I_2) \iff P(I_1) = P(I_2)
\]

2) Recursively identical: For any instance \(I_1, I_2 \in I \) such
that \(R(I_2) = R(I_1 + r) \) for any record \(r \not\in I_1 \),
\[
|P(I_2) - P(I_1)| \leq |P(I_2) \cap P(I_1)|
\]

3) Universally reusable: For any instance \(I_1 \in I \) and page
\(p \in P(I_1) \), there exists another instance \(I_2 \in I \) such that
\[
|P(I_2)| > |P(I_1)| \land (p \in P(I_2))
\]

Specifically, the first property means that the internal
structure of an index instance is uniquely determined by the
set of records. By avoiding the structural variance caused by
the order of modifications, all pages between two logically
identical index instances can be pairwise shared. The second
property means that an index instance can be represented
recursively by smaller instances with little overhead, while
the third property ensures that a page can be reused by many
index instances. By avoiding the structural variance caused by
index cardinalities, the third property means that a large index
instance can reuse pages from smaller instances. As a result,
instances with overlapping content can share a large portion
of their sub-structures.

POS-Tree being an instance of SIRI inherits the above
properties. Moreover, POS-Tree is additionally endowed with
the following three properties: it is a probabilistically balanced
search tree; it is efficient to find differences and to merge two
instances; and it is tamper evident. This structure resembles a
combination of a \(B^+ \)-tree and a Merkle tree [8]. In POS-Tree,
the node (i.e. page) boundary is defined as patterns detected
from the contained entries, which avoids structural differences.
Specifically, to construct a node, we scan the target entries
until a pre-defined pattern occurs, and then create a new node
to hold the scanned entries.

1) Tree Structure: Fig. 2 illustrates the structure of a POS-
Tree. Each node in the tree is stored as a page, which is the
unit for deduplication. The node is terminated with a detected
pattern, unless it is the last node of a certain level. Similar to
a \(B^+ \)-tree, an index node contains one entry for each child
node. Each entry consists of a child node’s identifier and the
mapping from the child node’s identifier to its children.

2) Node Split: In order to avoid structural variance for
POS-Tree nodes, we define patterns similar to content-based
slicing [9] used in file deduplication systems. These patterns
help splitting the nodes into smaller ones of similar sizes. Given
a \(k \)-byte sequence \((b_1, b_2, \ldots, b_k) \), let \(\Phi \) be a function taking
\(k \) bytes as input and returning a pseudo-random integer of at
least \(q \) bits. The pattern occurs if and only if:
\[
\Phi(b_1, b_2, \ldots, b_k) \mod 2^q = 0
\]
In other words, the pattern occurs when the function \(\Phi \) returns 0
for the \(q \) least significant bits. This pattern can be implemented
via rolling hashes which support continuous computation
over sequence windows and offer satisfactory randomness.

<table>
<thead>
<tr>
<th>System</th>
<th>Data Model</th>
<th>Deduplication</th>
<th>Tamper Evidence</th>
<th>Branching</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForkBase [1]</td>
<td>structured/unstructured, immutable</td>
<td>page level</td>
<td>Merkle validation</td>
<td>Git-like</td>
</tr>
<tr>
<td>OrpheusDB [4]</td>
<td>structured (table), mutable</td>
<td>table oriented</td>
<td>none</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>MusaeusDB [5]</td>
<td>structured (table), mutable</td>
<td>table oriented</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>RStore [6]</td>
<td>unstructured, mutable</td>
<td>key-value</td>
<td>none</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>Irmin [7]</td>
<td>structured/unstructured, mutable</td>
<td>file level</td>
<td>content addressable</td>
<td>Git-like</td>
</tr>
</tbody>
</table>
where \(\oplus \) is the exclusive-or operator, and \(\Gamma \) maps a byte to an integer in \([0, 2^8)\). \(\delta \) is a function that shifts its input by 1 bit to the left, and then pushes the \(q \)-th bit back to the lowest position. As a consequence, each time the above recursion removes the oldest byte and adds the new latest one.

Initially, the entire list of data entries is treated as a byte sequence, and the pattern detection process scans it from the beginning. When a pattern occurs, a node is created from recently scanned bytes. If a pattern occurs in the middle of an entry, the page boundary is extended to cover the whole entry, so that no entries are stored across multiple pages. In this way, each node (except for the last node) ends with a pattern.

B. Diff and Merge

POS-Tree supports fast Diff operation which identifies the differences between two POS-Tree instances. Because two sub-trees with identical content must have the same root id, the diff operation can be performed recursively by following the sub-trees with different ids, and pruning ones with the same ids. The complexity of Diff is therefore \(O(D \log(N)) \), where \(D \) is the number of different leaf nodes and \(N \) is the total number of data entries.

POS-Tree supports three-way merge which consists of a diff phase and a merge phase. In the first phase, two objects \(A \) and \(B \) are diffed against a common base object \(C \), which results in \(\Delta_A \) and \(\Delta_B \) respectively. In the merge phase, the differences are applied to one of the two objects, i.e., \(\Delta_A \) is applied to \(B \) or \(\Delta_B \) is applied to \(A \). In conventional approaches, the two phases are performed element-wise. In POS-Tree, both phases can be done efficiently at sub-tree level. More specifically, we do not need to reach leaf nodes during the diff phase, as the merge phase can be performed directly on the largest disjoint sub-trees that cover the differences, instead of on individual leaf nodes, as illustrated in Fig. 3.

C. Storage Efficiency

Another advantage brought by POS-Tree is its powerful data deduplication ability. As illustrated in Fig. 2, data are split into chunks, each of which is immutable after complete construction and uniquely identified by its SHA-256 hash. Chunks are materialized into the key-value based physical storage so that each distinct chunk is stored exactly once and can be shared across different data objects according to the identical content, e.g., in the example shown in Fig. 3.

D. Tamper-evident Version

ForkBase adopts an extended key-value data model: each object is identified by a key, and contains a value of a specific type. A key may have multiple branches. Given a key we can retrieve not only the current value in each branch, but also its historical versions. Similar to other data versioning systems, ForkBase organizes versions in a directed acyclic graph (DAG) called version derivation graph: Each node in the graph is a structure called \(FNode \), and links between \(FNodes \) represent their derivation relationships. Each \(FNode \) is associated with a \(uid \) representing its version, which can be used to retrieve the value. The \(uid \) uniquely identifies both the object value and its derivation history, based on the content stored in the \(FNode \).

Two \(FNodes \) are considered equivalent, i.e., having the same \(uid \), when they have both the same value and derivation history. This is due to the use of POS-Tree—a structurally invariant Merkle tree—to store the values. In addition, the derivation history is essentially a hash chain formed by linking the bases fields, thus two equal \(FNodes \) must have the same history.

Each \(uid \) is tamper evident. Given a \(uid \), the user can verify the content and history of the returned \(FNode \). This integrity property is guaranteed under the threat model that the storage is malicious, but the users keep track of the last \(uid \) of every branch that has been committed. Instead of introducing a new tamper evidence design, ForkBase supports this property efficiently as a direct benefit from the POS-Tree design.

III. Demonstration

Our demonstration using the ForkBase Web UI aims to highlight some novel aspects of the ForkBase system. In particular, we focus on the capability of ForkBase to deduplicate data, perform fast differential query, branch dataset with Git-compatible semantics, and track versions with tamper evidence.

A. Data Deduplication

First, we showcase the fine-grained data deduplication feature of ForkBase. As shown in Fig. 4, two external CSV datasets with a single-word difference in terms of text content are loaded into ForkBase as two separate datasets. Loading the
first dataset increases 338.54 KB to the storage, but afterwards loading the second dataset only increases 0.04 KB. As the two datasets share a large portion of duplicated data, ForkBase can effectively detect such redundancy and consequently store only the marginal difference into the underlying immutable storage for the second loading. This manifests ForkBase’s fine-grained data deduplication can significantly improve storage efficiency.

B. Fast Differential Query

ForkBase is able to perform fast differential query to retrieve differences among data versions and branches. To showcase such feature, we designed the ForkBase Web UI to visualize differences between datasets and their branches. For example, Fig. 5 shows the result of performing Diff operation between the master and VendorX branches of Dataset-1. Data differences are highlighted at multiple scopes, e.g., from dataset to data entry. This is akin to the Git-diff utility which helps user identify the changes of data.

C. Tamper Evidence and Validation

Along with data updates, each Put operation is stamped with a unique version that is appended to the corresponding branch of the dataset, as shown in Fig. 6. Data versions in ForkBase are generated according to the Merkle root hash of data chunks [1, 8], and encoded using the RFC 4648 Base32 alphabet [10]. Such versioning scheme enables ForkBase to provide tamper evidence against malicious storage providers. Given a version, the application can fetch the corresponding data from the storage provider (i.e., physical storage) and validate the content and its history by checking whether the Merkle root hash calculated on the spot is identical to the data version. This guarantees data stored in ForkBase is tamper-proof in spite of the underlying storage infrastructure.

IV. CONCLUSION

This demonstration sheds light on the basic workflow of Git-like data management for collaborative data processing. By pushing down the Git-compliant versioning and branching semantics from the application layer to the storage layer, ForkBase benefits various kinds of branchable applications built on top of it with reduced development effort. The fine-grained data deduplication feature of ForkBase favors improved storage efficiency in collaborative data activities.

ACKNOWLEDGMENT

This work is supported by Singapore Ministry of Education Academic Research Fund Tier 3 under MOE’s official grant number MOE2017-T3-1-007.

REFERENCES