
An Adaptive and Efficient Dimensionality Reduction Algorithm for
High-Dimensional Indexing

Hui Jin
�

Beng Chin Ooi
�

Heng Tao Shen
�

Cui Yu
�

Ao Ying Zhou
�

�

Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, USA

�

Department of Computer Science

National University of Singapore, Singapore
�

Department of Computer Science

Monmouth University, NJ 07726, USA

�

Department of Computer Science

Fudan University, China

Abstract

The notorious “dimensionality curse” is a well-known
phenomenon for any multi-dimensional indexes attempting
to scale up to high dimensions. One well known approach
to overcoming degradation in performance with respect to
increasing dimensions is to reduce the dimensionality of
the original dataset before constructing the index. How-
ever, identifying the correlation among the dimensions and
effectively reducing them is a challenging task. In this
paper, we present an adaptive Multi-level Mahalanobis-
based Dimensionality Reduction (MMDR) technique for
high-dimensional indexing.

Our MMDR technique has three notable features com-
pared to existing methods. First, it discovers elliptical clus-
ters using only the low-dimensional subspaces. Second,
data points in the different axis systems are indexed using
a single B

�

-tree. Third, our technique is highly scalable in
terms of data size and dimensionality.

An extensive performance study using both real and syn-
thetic datasets was conducted, and the results show that our
technique not only achieves higher precision, but also en-
ables queries to be processed efficiently.

1 Introduction

Many database applications, such as multimedia re-
trieval, exploratory data analysis, market basket application
and time-series matching, involve high-dimensional data.
Indexing high-dimensional data has been an area of active
research for a long time and many indexing techniques have
been proposed [13]. However, the performance of these in-
dexes degrades rapidly with increasing dimensionality [3].

One approach to minimizing the effect of “dimension-
ality curse” is to reduce the number of dimension of the

high-dimensional data before indexing on the reduced di-
mension [10, 5]. Data is first transformed into a much lower
dimensional space using dimensionality reduction methods
and then an index is built on it.

Transforming data from a high-dimensional space to a
lower dimensional space without losing critical information
is not a trivial task. In this paper, we propose a dimension-
ality reduction technique called Multi-level Mahalanobis-
based Dimensionality Reduction (MMDR) for indexing
based on the following two observations. First, elliptical
shaped (correlated) clusters are more suitable for dimen-
sionality reduction than spherical shaped clusters. Sec-
ond, we observe that certain level of the lower dimensional
subspaces may contain sufficient information for correlated
cluster discovery in the high-dimensional space. In the
MMDR, Principal Component Analysis(PCA) [8] is em-
ployed to find the lower dimensions for dimension reduc-
tion. Most of the information in the original space can be
condensed into a few dimensions along which the variances
in the data distribution are the largest. We make use of the
Mahalanobis distance (MahaDist) in our approach instead
of the standard well-known L-norm distance functions.

Mahalanobis distance could be applied to find ellipsoidal
correlated data, by taking local elongation into account. In-
stead of equally treating all values, MahaDist weights the
differences by the range of variability in the dimension of
the data points. It weights the variation along the axis of
elongation less than that in the shorter axis of the ellipse.
It can be shown that the surfaces on which MahaDist is a
constant are ellipses.

Euclidean distance-based clustering algorithms are not
meant to discover elliptical shape since the clusters iden-
tified are in circular shape. Figure 1 illustrates two clus-
ters, one obtained using Euclidean distance and the other
obtained by Mahalanobis distance. Point A is a valid point
and point B is a noise in the cluster of the circle if Euclidean
distance is employed. However, in terms of Mahalanobis

1

measurements, point B has a substantially smaller distance
to the centroid than point A since it lies along the direc-
tion of the group that has the largest variance. Thus point
A is a noise while point B is valid. Therefore, while Eu-
clidean distance based algorithms produces circular subsets
as shown in Figure 1, Mahalanobis distance based algo-
rithms will produce elliptical clusters where data points are
well correlated and more natural for dimensionality reduc-
tion, as dimensions with large variance of data are kept and
dimensions with small variance of data are eliminated.

Figure 1. Mahalanobis vs. Euclidean

Based on multi-level low-dimensional projections pro-
duced by PCA and the Mahalanobis distance function, the
MMDR can quickly identify highly correlated elliptical
clusters. After the dimensionality reduction, each cluster
of data is in a different axis system. Instead of creating one
index for each cluster, we build one index for all the clus-
ters for K nearest neighbor (KNN) queries. We extend a
recently proposed B

�

-tree based index - iDistance[13, 14],
to index the data projections from the different reduced-
dimensionality spaces. The extended iDistance allows us
to index data points from different axis systems in a single
index efficiently. Performance studies using real and syn-
thetic datasets were conducted to evaluate the effectiveness
and precision of the technique. The results show significant
performance gain over an existing method [5]. Experiments
on datasets with very high dimensionality (up to 200 dimen-
sions) show that the proposed method is scalable in terms of
both size and dimensionality.

The rest of the paper is organized as follows. In Section
2, we present some related works. In Section 3, we pro-
vide the definitions for using Principal Component Analysis
and Mahalanobis distance in dimensionality reduction. We
present our MMDR algorithm and its variant in Section 4.
In Section 5, we propose an extended iDistance for indexing
data points in reduced-dimensionality spaces. Experiments
are presented in Section 6 and conclusion is drawn in Sec-
tion 7.

2 Related Work

In dimension reduction for indexing, [5] proposed two
strategies. In the first strategy, called the Global Dimension-
ality Reduction (GDR), all the data is reduced as a whole
down to a suitable dimension on which search time and ac-
cess costs are optimized. This strategy is unable to handle
datasets that are not globally correlated. The other strategy,
called the Local Dimensionality Reduction (LDR), divides
the whole dataset into separate clusters based on correlation
of the data and then indexes each cluster separately. Un-
fortunately, the LDR is not able to detect all the correlated
clusters effectively, because it does not consider correlation
nor dependency between the dimensions.

Clustering algorithms have been studied recently in the
domain of data mining and pattern discrimination. Meth-
ods proposed for high-dimensional data clustering are re-
lated to our work. PROCLUS [2] clusters the data based
on the correlation among the data along certain original di-
mensions. OptGrid [7] finds clusters in a high-dimensional
space by projecting the data onto each axis and partition-
ing the data by using cutting planes at low-density points.
Wavelet transform [12] and discrete cosine transform [9]
based techniques rely on the partitioning of the data space
into grids similar to OptGrid. These approaches do not
work well when well-separated clusters in the actual space
overlap after they are projected onto certain axis.

[1] presents various results of qualitative behaviors of
L-norm distance matrices for measuring the proximity in
high-dimensional spaces, and examines the meaningfulness
of similarity in such spaces. They show that the cluster-
ing quality and answer sets vary from one distance metric
to another. In this paper, we examine a different distance
function, Mahalanobis function [6], to explore the local in-
trinsic cluster shape for elliptical clusters discovery (which
cannot be detected by L-norm functions). Mahalanobis dis-
tance has been used in face detection to discover actual non-
isotropic face patterns among thousands of face images us-
ing a k-means like algorithm called the elliptical k-means
method [11]. It is a nested loop algorithm, where the in-
ner loop is to perform k-means using Mahalanobis distance
and the outer loop is to re-compute the covariance matrix of
each cluster. Both loops stop when there is no change to the
cluster membership.

3 Definitions

In this section, we provide the basic definitions.

Definition 3.1 Ellipticity
Ellipticity(e) is the deviation of an ellipse or an ellipsoid

from the form of a circle or a sphere, which is the ratio of
the difference of the two sub-axes to the minor axis.

2

Figure 2. Illustration of Ellipticity

��� �����
�

where b is the radius along the major axis and a is the radius
along the minor axis, as shown in Figure 2.

Assuming all the points are clustered inside the ellipse.
To reduce the dimensionality, all the points are projected
onto the major axes. Thus, the minor axes can be elim-
inated. Obviously, the larger the e is, the more effective
dimensionality reduction can be obtained. When e =0, the
data points form a circle, and the dimensionality reduction
technique becomes ineffective.

Definition 3.2 Mahalanobis Distance
The covariance of data in two feature spaces measures

their tendency to vary together. In a multi-dimensional
space, the variance measures the relative ‘radius’ of a clus-
ter along each dimension, and the covariance indicates the
orientation of the cluster. Both the variance and the covari-
ance co-determine the shape of the cluster. Collecting them
together, we get the covariance matrix C. Now let us look
at the distance function called Mahalanobis Distance by
using the inverse of covariance matrix.

Given a cluster centred at � , the Mahalanobis Distance
between a point 	 and � is given as follows:

 �������������� 	������ � � 	 � �����! #"%$ � 	 � ���
where C is covariance matrix describing cluster’s shape.

From Mahalanobis Distance, we get a normalized mea-
sure: Normalized Mahalanobis Distance.

 �������������&'� 	������ �)(* �,+.-0/%� *21�354 4 �'6
� 	 � ��� � "%$ � 	 � ���7�

where
+

is the dimensionality,
1

is the trigonometric num-
ber 3.14 and

4 4
is the determinant of C. Notice that

given a spatial displacement between a point and an ellip-
soid, the standard Mahalanobis Distance tends to be smaller
for long clusters with large covariance matrices than that for
small clusters. With standard Mahalanobis Distance, the

larger cluster will keep increasing in size and eventually
overwhelm the smaller clusters. Normalized Mahalanobis
Distance avoids such situation [11].

Definition 3.3 Multi-level Projections
Principal Component Analysis (PCA) [8] examines the

variance structure in the dataset and determines the direc-
tions along which the data exhibits high variance. The first
principal component is the eigenvector corresponding to
the largest eigenvalue of the dataset’s covariance matrix C,
the second component corresponds to the eigenvector with
the second largest eigenvalue and so on. It is interesting
to note that the Principal Components in PCA are just the
eigenvectors of the covariance matrix in Mahalanobis Dis-
tance which describes the dataset’s shape. An example is
shown in Figure 3, where the preserved dimension is the
first principal component, and the eliminated dimension is
the second principal component. In dimensionality reduc-
tion, given a point 	 in a dataset, it has two projections.
One is the projection on the preserved subspace 	�8 that we
are interested in; the other is the projection on the elimi-
nated subspace 	 8 8 . The

+:9
-dimensional projection 	 8;�< can

be defined as:

	 8;�< � 	 32= ;�<
where

= ; < represents the matrix containing (2>�? to
+ ?A@9 prin-

cipal components. Change
+B9

with different value, we can
generate multi-level projections of the data for cluster dis-
covery purpose in Multi-level Mahalanobis-based Dimen-
sionality Reduction algorithm.

Definition 3.4 Projection Distance
From the above two projections, 	DCFE�G ���H���H9 measures

the distance from 	 to 	I8 and 	DCFE�G ���H���7J measures the
distance from 	 to 	I8 8 on the eliminated subspace. More
specifically, 	DCFE�G ��������9 is the information lost from orig-
inal representation 	 to its reduced

+B9
-dimensional repre-

sentation 	I8 . 	DCFE�G �������HJ is the information retained. Fig-
ure 3 illustrates the two projection distances. In the follow-
ing paragraphs, 	DCFE�G ������� represents 	DCFE�G ��������9 .

Based on the above two projection distances, we extend
the definition of ellipticity to multidimensional space as:

�K�
 �BLM� 	DCFE�G �������HJ � �
 �BLM� 	DCFE�G ��������9 �
 �BLM� 	DCFE�G ��������9 �
where

 �BLM� 	DCFE�G �������7J � is the radius along the remained
subspace, and

 �:LM� 	DCFE�G ���H����9 � is the radius along the
eliminated subspace. The cluster’s Mahalanobis radius r
is

 �BLM� 	DCFE�G �N������9 � . For dimensionality reduction, the

larger the ellipticity value, the more effective dimension-
ality reduction can be performed.

Definition 3.5 Mean 	DCFE�G ���H����9 Error (MPE)

3

Projection distance to
eliminated subspace Projection distance to

remained subspace

Figure 3. Two projection distances

����� � E�� � � � ��� C �
	��� E�� � �I� �� �
N Data Size
d Original Dimensionality+F9

Optimal Dimensionality� +:� �
Subspace Dimensionality

e Ellipsoid’s Ellipticity
r Mahalanobis Radius
C Covariance Matrix
	DCFE�G ��������9 Dist to remained subspace
	DCFE�G �������HJ Dist to eliminated subspace
MPE Mean Projection Error� Outlier Set� 	DCFE�G ��������9 Threshold 0.1
MaxMPE Max MPE Allowed 0.05
EC Elliptical Cluster
MaxEC Max EC allowed 10
MaxDim Max Remained Dim allowed 20� Data Stream Percentage 0.005�

Outlier Percentage 0.005�
Num of IDs in lookup table 3

Table 1. Table of Symbols and default values

Mean 	DCFE�G �N������9 Error is defined to be the average rep-
resentation error when points are mapped from original
space to eliminated subspace.

 	�� �������� $ 	DCFE�G
�N������9F� 	 � � �#��� ��

Table 1 gives a summary of the symbols and their respec-
tive description with default values used in experiments.

4 Multi-level Mahalanobis-based Dimension-
ality Reduction

4.1 MMDR Algorithm

The Multi-level Mahalanobis-based Dimensionality Re-
duction (MMDR) algorithm, which is outlined in Figure 4,

consists of two major steps, namely: Generate Ellipsoid and
Dimensionality Optimization.

MMDR Algorithm

Generate Ellipsoid (GE)
Variable: ellipsoid array, subspaces;
GE(data, d, s dim)
1. projections getProj(data, s dim);
2. semi ellip ellip k means(projections,s dim);
3. // process each semi ellips
4. for each semi ellip with size ! 0
5. semi ellip data restoreData(semi ellip);
6. semi ellip getProj(semi ellip data, s dim);
7. MPE getMPE(s dim);
8. if MPE ! MaxMPE and 2*s dim ! d
9. GE((data, d, 2*s dim);
10. else
11. add semi ellip data into ellipsoid array

Dimensionality Optimization
12. for each ellipsoid array[i]
13.

+F9 min(MaxDim, s dim);
14. MPE getMPE(

+:9
);

15. while change of MPE " threshold
16.

+:9��D�
;

17. MPE getMPE(
+:9

);
18. projections getProj(ellipsoid array[i],

+B9
);

19. for each projection
20. ProjDist getProDist();
21. if ProjDist # �
22. add it to this subspace;
23. else
24. add it to noise set

Figure 4. MMDR Algorithm

In Generate Ellipsoid, we recursively apply multi-level
projections from low to high dimensionality until ellipsoids
are fully discovered. At each level, Mahalanobis distance
is applied to detect possible ellipsoids. Any unqualified el-
lipsoid is passed to Generate Ellipsoid with a higher sub-
space dimensionality so that more information can be used
for clustering. We adopt this divide-lower-before-conquer-
upper approach based on the following observations. First,
in high dimensional space, some dimensions may contain
little information, which may not be very helpful when
it comes to identify the cluster membership. Second, for
the well-separated clusters in the subspace, their correspon-
dences in the higher dimensional space are usually well sep-
arated because of the property of PCA. In our algorithm,
MPE indicates how much information is lost during the pro-
jection process. It is used as the parameter to determine if

4

the subspace projections carry enough information to reflect
the shape of their correspondence in the original space.

The Generate Ellipsoid is invoked with a small subspace
dimensionality -

� +:� �
. In line 1 of Figure 4 the low

dimensional projections are produced from the original
+
-

dimensional space, followed by elliptical k-means cluster-
ing in this low dimensional subspace, line 2. The data are
then partitioned into semi-ellipsoids at

� +:� �
-dimensional

subspace. We call this
� � � �!� � � � �
	5� E � + since we have not

decided yet whether it properly indicates the shape of its
correspondence in the original space. From line 3 to line
11, each semi-ellipsoid is handled individually. For each
semi-ellipsoid discovered above, its corresponding shape is
restored in the original dimensional space (line 5), and its
local

� +F� �
-dimensional subspace is generated(line 6). The

newly produced projections are local to individual semi-
ellipsoid and different from the projections produced in line
1. At line 7, the MPE to

� +:� �
-dimensional subspace is

computed.

If a semi-ellipsoid has smaller MPE than the maximum
error allowed, it suggests that the

� +:� �
-dimensional sub-

space can approximately represent its original data. Other-
wise, there are two possible reasons for the big MPE. First,
it could be due to the overlap of several clusters in the sub-
space such that each point did not project to its local sub-
space. Higher subspace dimensionality should be retained
in order to distinguish each cluster. Second, though it is a
single cluster, the

� +:� �
could be too small for a subspace

to represent original dimensional data. To further discover
ellipsoids in each semi-ellipsoid, we increase the

� +F� �
twofold without losing generality and recursively call Gen-
erate Ellipsoid (line 9). Therefore, the semi-ellipsoid is re-
peatedly partitioned locally. This step produces possible el-
lipsoids. It should be noted that the process of discovering
ellipsoids in the subspaces is the first step of dimensional-
ity reduction, where the remained subspace dimensionality
of each ellipsoid at this stage is their respective

� +F� �
, and

further dimensionality optimization is performed in the next
step.

Since the above step produces possible ellipsoids in their
respective

� +:� �
-dimensional subspace, and ellipsoids are

effective for dimensionality reduction, the
� +:� �

of the sub-
spaces discovered in Generate Ellipsoid can be further re-
duced (it should be noted that each ellipsoid may corre-
spond to a different

� +F� �
value). That is, if the change of

MPE is less than the pre-set threshold, we decrease the di-
mensionality by 1 and the process is repeated till the above
condition is false (line 15-17). The final dimensionality is
treated as the ‘optimal’ one and denoted as

+B9
. The points

are projected into this
+B9

-dimensional subspace (line 18). A
threshold value

�
is employed to determine whether a point

belongs to a cluster. If the projection distance on (
+�� +�9

)-
dimensional eliminated subspace for a point is greater than

�
, this point is taken as an outlier (line 23-24). Otherwise,

it is classified as a member of the subspace (line 21-22).
The final output of the algorithm is a set of subspaces and

outliers. Each subspace may have a different optimal num-
ber of reduced dimensions. The outlier set remains in the
original space since its data points are not well correlated.

In a dataset, some clusters are elongated along certain di-
rections and yet they are locally correlated. Such elongation
may be detected in its lower dimensional subspaces. Given
a 2-dimensional subspace as shown in Figure 5 projected
from a higher dimensional space (say 4-dimensional). This
2-dimensional subspace can represent the original dimen-
sional space with very little information being lost. The
LDR technique [5] is able to discover correlated clusters
on the original 4-dimensional space and produces two 1-
dimensional subspaces as shown in Figure 5a. In order to
partition the bigger shape cluster for dimensionality reduc-
tion, the clustering radius must be suitably large. However,
this will result in smaller clusters being grouped together
as one. Obviously, substantial information is lost for the
smaller shaped clusters. The situation is even worse for
small shaped clusters with a high density.

Figure 5b shows three 1-dimensional subspaces pro-
duced by MMDR algorithm. MMDR first projects the orig-
inal dimensional space into 1-dimensional subspace, then
elliptical k-means method partitions 1-dimensional projec-
tions of whole data into two partitions: cluster 1’s 1-
dimensional subspace and cluster 2 and 3’s 1-dimensional
subspace. After restoring cluster 1’s 1-dimensional sub-
space back to original dimensional space and performing
local 1-dimensional projections (line 5-6), MMDR detects
that it is an ellipsoid since its MPE is small. The 1-
dimensional subspace projected from clusters 2 and 3 over-
laps heavily with the high MPE and thus its correspond-
ing full dimensional shape/data are passed to Generate El-
lipsoid by increasing the subspace dimensionality to be 2-
dimensional. At the 2-dimensional subspace, these 2 el-
lipsoids can be discovered by the Mahalanobis Function.
Dimensionality reduction is further performed in Dimen-
sionality Optimization so that both can be reduced to 1-
dimensional subspaces with less information lost than using
LDR method.

In summary, MMDR has the following advantages.
First, the ellipsoids can be effectively discovered at data’s
subspace level, rather than at the original space. Second,
the ellipsoids are able to be discovered as soon as the shapes
can be identified. Third, the cost to perform clustering using
Mahalanobis distance can be reduced dramatically since it
is performed in the low dimensional subspace.

The cost of MMDR comes mainly from elliptical k-
means method (line 2), which takes � � � � � C���� ?

� � � � C � &F& �+ ��� ��� � � �
 �:L �� �� , where
� � � C���� ? and

� � � C � &F& is
the number of iterations for outer and inner loop respec-

5

(a) Clusters generated by LDR using Euclidean
distance

 MMDR generates 3 1-d subspaces.
Cluster 1 is discovered in 1-d subspace;
cluster 2 & 3 are discovered in 2-d subspace.

cluster 3

cluster 2 cluster 1

1-d subspace for whole data

(b) Clusters generated by MMDR using Mahalanobis dis-
tance

Figure 5. LDR vs MMDR

tively,
+ ��� � �

comes from distance computation. However,
in MMDR, the input dimensionality

� +:� �
is very small

compared to the original
+
. The input data size

�
be-

comes smaller as
� +:� �

increases, which leads to
� � � C���� ?and

� � � C � & & being reduced also. We further reduce the cost
in the next subsection.

4.2 Optimization on Distance Computation

We note that the most time consuming step of the
MMDR algorithm is the Mahalanobis distance computa-
tion between centroids and data points in elliptical k-means
method. In this subsection, we reduce the computational
cost by using the following techniques. The factor MaxEC
can be reduced to a small number by avoiding computing
all the distances between MaxEC centroids and a data point.
We only need to re-compute the distance between the k most
closest centroids which might change the membership of a
point, where

� " "
 �BL �� . This is based on the follow-
ing observations. First, if a data point is to be re-assigned
to another cluster, that cluster is most probably the one with
the closest distance except the current assignment. Second,
in each iteration, only a small portion of data points might
change their membership. As the converging process con-
tinues, the number of data points changing memberships de-
creases quickly. Third, some data points may never change
their membership.

A lookup table is designed to store the k most closest
centroids’ IDs computed in the previous iteration for each
data point. In the next iteration, only those centroids whose
IDs are stored in the lookup table are taken to compute and
find the closest centroid. A data point entry in the lookup ta-
ble is updated only when its membership is changed. By do-
ing so, the factor MaxEC is removed from the overall cost.

To further reduce the cost for large datasets, we intro-

duce one additional field called
� �������:� � �

to the lookup table
to indicate how frequently a data point changes its member-
ship. It records the number of iterations that a data point
does not change its membership. If the value of

� � �����B� � �
is

larger than a threshold, we say this data point is
� � � ������� � ,

otherwise
� � ����� � . � � � � ����� � data points need not make any

further distance computation and re-assignment unless the
number of clusters is changed. This reduces the value of�

dramatically at each iteration. Assume that at each itera-
tion, only $� ?

J 9����	� of the dataset change their memberships,

the factor of
�

is replaced by �� ?
J�9
���	� . As the converg-

ing process continues, the number of points which change
their membership decreases dramatically. Therefore, the
time complexity becomes � ��������	�
��� ��� ������� ��� � . Com-
paring with the LDR’s time complexity of � � � � + � �
 �BL �� � , MMDR has a smaller dimensionality of

+ ��� �
than

+
, but with a larger factor of

� � � C�� � ? than

 �:L �� .

4.3 Scalability for Large Datasets

For a very large dataset which cannot be completely
loaded into the main memory buffer, the data scan at each
iteration is extremely expensive. To make the MMDR scal-
able for very large datasets, we divide the dataset into a
number of data streams, which is defined as a sequence of
data points read in order of indices, and we process one data
stream at a time. We set the size of a data stream to be �
percent of the data size. A temporary array called Ellipsoid
Array is created to store the ellipsoids’ centroids generated
for each data stream. Scalable MMDR loads a single data
stream at a time and performs Generate Ellipsoid operation
to generate small size ellipsoids. These small ellipsoids’
centroids are stored in the Ellipsoid Array. After all the
data streams have been processed, only the Ellipsoid Array
is in the buffer. By calling Generate Ellipsoid on Ellipsoid

6

Array, Scalable MMDR forms bigger size of ellipsoids by
merging smaller ellipsoids whose centroids are stored in El-
lipsoid Array.

The size of data stream is much smaller than original
data size N. Empirically, it is reasonable to expect that
� � � C ; � ? � > ?

9�J ��� " � � � C�� 9 ����� & ��� ; � ? � . Hence, the total time
required to cluster $� data streams of size � � � is generally
less then the time required to cluster N data points.

5 Indexing Reduced Subspaces by Extended
iDistance

After dimensionality reduction, the projections in re-
duced dimensionality subspaces have to be indexed using
efficient indexes. Instead of using an index for each sub-
space, we want all the projections to be indexed in a single
structure for ease of maintenance. We selected the iDistance
[13] as our base index due to its efficiency and its B

�

-tree
base structure.

The design of iDistance was motivated by two fac-
tors. One, the triangular inequality relationships enable the
(dis)similarity between a query point and a data point to be
derived with reference to a chosen reference point. Two,
data points can be ordered based on their distances to a
reference point, and indexed based on such distance value.
This enables one to represent high-dimensional data in a
single dimensional space and use an existing B

�

-tree. How-
ever, the iDistance has to be extended to index subspaces in
different axis systems and handle dynamic insertion of data
points.

The data partitioning strategy and reference point selec-
tion are straight forward, as the data partitions are deter-
mined by the MMDR algorithm and the centroid of each
cluster is the ideal choice as the reference point. For each
subspace (outliers as a subspace in its original dimensional-
ity), all data points in subspaces are represented in a single
dimensional space with reference to its centroid of cluster.
This is achieved by the following mapping function:

� � �	� � 6 +F������� 	���� � �
where the P is a data point in the subspace of

� ?A@ ellipsoid
�� � , and � � is its centroid.

+F�H����� 	 � � � � is the distance
function that returns distance between � � and P. y is the
index key for P. c is some constant to stretch the data range
so that distance values are range partitioned based on refer-
ence points. That is, it serves to partition the single dimen-
sion space into regions so that points in the

� ?A@ cluster will
be mapped to the range [i

�
c, (i+1)

�
c].

Extended iDistance employs three data structures:

 A B
�

-tree is used to index the transformed single value
points to facilitate speedy retrieval.

 An array is required to store the centroids and Principal
Components of ellipsoids, and their respective nearest
and farthest radius that define the subspace. This array
is used for searching purpose.

 An array is required to store covariance matrices of el-
lipsoids, Mahalanobis radius, and the dimensionality
retained. This array is used for the purpose of dynamic
insertion (due to page limit, we omit the algorithm for
dynamic insertion and its experiments).

To search for the
�

nearest neighbors of a query point � ,
the distance of the

�
th nearest neighbor to � defines the

minimum radius required for retrieving the complete an-
swer set. Such a distance cannot be predetermined, and
hence, an iterative approach that examines increasingly
larger sphere in each iteration has to be employed.

The algorithm works as follows. Given a query point
� , finding

�
nearest neighbors (NN) begins with a query

sphere defined by a relatively small radius around � . For
each cluster �� � , the query point is mapped into � � , which
is the projection of � on the

� ?A@ subspace.

O1

O2

q2

q3

O3

q1

 R

R

 R

R3

 R1

R2

 Z

 Y

X

Figure 6. Searching for NN queries � $, � � and
���

Figure 6 shows an example with 3 clusters’ max radius
ranges in the different axis systems, where �� $ is in XY
plane, �� � in XZ plane and �� �� in YZ plane. Here, for a
query point � , its projection on 3 subspaces are � $, � � , and
��� respectively. The shaded regions are the areas that need
to be checked.

Searching in extended iDistance begins by scanning the
auxiliary structure to identify the centroids whose data
space (sphere area of cluster) overlaps with the query sphere
defined by � � and . The search starts with a small global
radius for all subspaces, and step by step, the radius is
increased to form a bigger query sphere. For each enlarge-
ment, there are three main cases to consider.

1. The data space �� � contains � � . In this case, we want
to traverse the data space sufficiently to determine the

7

�
nearest neighbors. This is done by first locating

the leaf node where � � may be stored. Since this node
does not necessarily contain points whose distance are
closest to � � compared to its sibling nodes, we need
to search left and right (inward and outward of data
space) from the reference point accordingly. This situ-
ation is illustrated by the subspace �� $ and � $.

2. The data space intersects the query sphere. In this
case, we only need to search leftward (inward) since
the query point is outside the data space. This situa-
tion is illustrated by the subspace �� � and ��� .

3. The data space does not intersect the query sphere.
Here, we do not need to examine the data space. This
situation is illustrated by the subspace �� � and � � .

The search stops when the distance of the
� ?A@ NN ob-

ject to � is less than search radius . The search is correct
as the distance between image query point and data point
always lower bounds the actual distance between the actual
query point and data point in the original space. The search-
ing subspace can be fast pruned by using triangle inequality
property.

��� � 	 ��������� � 	 ����������� � � �	� � � 	 � � � �	�������� � � �	� � �

Where Q is query, P is original data point,
�
�

is the projec-
tion in G ?A@ subspace, 	 � is the projection of P in G ?A@ sub-
space, � � is the reference point in G ?A@ subspace, and � is
the max radius in G ?A@ subspace.

����� � � �	� � � specifies
the tightest searching bound for G ?A@ subspace.

6 Performance Study

In this section, we present the performance study to eval-
uate the effectiveness of MMDR and the efficiency of ex-
tended iDistance. For the experiments, we use the default
values as shown in table 1, and all experiments were done
with Ultra-10 SunOS 5.7 processor (333 MHz CPU and 256
MB RAM).

We have two categories of test data.

1. Real life datasets: The real life dataset consists of
64-dimensional color histogram extracted from 70,000
color images from Corel Database, used in LDR[5].

2. Synthetic datasets: We have four sets of synthetic
datasets. One small synthetic dataset contains 100,000
points in 64-dimensional space. Three large synthetic
datasets with 1,000,000 points are in 50-, 100-, and
200-dimensional spaces respectively. For each syn-
thetic dataset, we use the algorithm (Appendix A) to
generate correlated clusters in different subspaces with

different distensibilities. Each subspace has different
size, orientation and ellipticity.

We used 100 queries to obtain the mean precision and
query cost on 10NN, and L � distance was used for searching
(Note that the Mahalanobis distance is used for discovering
intrinsic ellipsoids, not for searching). The query precision
is defined as follows:

	DC � � �H��� E�� � ;�<� ;
 ;

where ; and ;�< are the results respectively returned from
the original space and reduced subspaces.

6.1 Query Precision

Here dimensionality reduction methods serve for the pur-
pose of efficient indexing. However, they are lossy in na-
ture. When a dimensionality method tries to reduce more, it
may cause bigger loss of information and hence query pre-
cision. The query precision is also affected by correlation
between data points and number of correlated clusters. Here
we use the small dataset with 100,000 points.

Figure 7a shows the query precision with respect to in-
creasing ellipticity. As we can see, the MMDR method per-
forms much better than the LDR and GDR methods. The
GDR method can achieve at most 15% of precision as the
dataset is not globally correlated. As ellipticity decreases,
LDR drops faster than MMDR. Obviously, less correlation
has more negative effect on the query precision of LDR
then MMDR. In the next experiment, we varied the num-
ber of correlated clusters to test its effect on query preci-
sion. The results in Figure 7b show that all MMDR, LDR
and GDR perform equally well when there is only one cor-
related cluster. But as the number of correlated clusters in-
creases, the MMDR is able to locate all correlated clusters
effectively and maintains its query precision. However, the
query precision of the LDR drops rapidly, and so does the
GDR method. It indicates that when clusters intersect and
have different ellipticities and scales, LDR can not discover
all of them. As more such clusters exist, LDR performs
worse. In contrast, the MMDR can discover the intrinsic
number of correlated cluster based on Mahalanobis distance
and thus is independent of the number of correlated cluster.

To see the effect of the number of eliminated dimen-
sions on the effect of query precision, we conducted ex-
periments using the small synthetic dataset and color his-
togram dataset. In this experiment, we set the maximum re-
mained subspace dimensionality

 �BL ��� �
to be 20. Fig-

ure 8 presents the effect of the number of dimensions re-
tained after dimensionality reduction on the query preci-
sion on two datasets. All the three methods show increas-
ing precision as the remained dimensionality increases for
three datasets. MMDR achieves much higher precision. As

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Pr
ec

is
io

n

Ellipticity

MMDR
LDR
GDR

(a) Effect of ellipticity

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

Number of correlated clusters

MMDR
LDR
GDR

(b) Effect of number of clusters

Figure 7. Effect on precision

shown in Figure 8a for the synthetic dataset, at 20 dimen-
sions, LDR only can achieve at most 60% of precision. and
GDR cannot achieve more than 25% of precision due to un-
correlated property. Figure 8b shows the effect of retained
dimensionality on the query precision using the color his-
togram dataset. It is interesting to note all three methods
are not performing as well as before. Nevertheless, the
MMDR method performs the best and is least affected. The
higher precision obtained by the MMDR method confirms
two important observations. First, there exist some local
elongated clusters. Second, some intrinsic local elongated� � ��	 � � � � E C2C � � �:��� E�� � cannot be detected by LDR. Com-
pare to the synthetic dataset (Figure 8a), the precision of
the methods on color histogram dataset are much worse.
One reason could be that the real dataset may have clus-
ters that are highly uncorrelated. Too many outliers may be
another reason. This is possible, as for each image in the
real dataset, the color histograms tend to be very skewed
towards a small set of colors, with many attributes being 0.

The above experiments confirm that the MMDR method
is a much more effective dimensionality reduction tech-
nique in correlated environments with lower loss of distance
information, as it can achieve the better reduction perfor-
mance with higher precision, which should lead to faster
searching and retrieval.

6.2 Query Efficiency

In this experiment, we examine the query performance
of the index methods on reduced dimensionality data points.
Note that the final purpose of performing effective dimen-
sionality reduction by using MMDR is to improve the
query performance, as it is well known that existing multi-

dimensional indexing structures are not be able to index
very high (30 or greater) dimensional data space. Here we
have three indexing schemes to compare: extended iDis-
tance on MMDR data (iMMDR), extended iDistance on
LDR data (iLDR) and Global indexing method [5] on LDR
data (gLDR). The Global indexing method makes use of
one Hybrid tree [4] for each cluster, and maintains the in-
formation about each cluster and index in an array. Here we
use the same datasets as in the last sub section.

Figure 9 shows the I/O cost for three indexing schemes,
and sequential scan in reduced subspaces, when the sub-
space dimensionality varies from 10 to 30. Figure 9a
shows that for synthetic dataset, as the dimensionality in-
creases, the iMMDR has much lower I/O cost than the
iLDR, which confirms that a more effective dimensional-
ity reduction method leads to an overall improved query ef-
ficiency. We also notice that the gLDR is worse than the
iLDR, and when the dimensionality reaches 20, its cost is
higher than that of direct sequential scan. The extended
iDistance is more efficient in terms of I/O cost as it has
to traverse only one index, and this index is smaller since
only the 1-dimensional distance values are used in the in-
ternal nodes. Figure 9b shows the similar trends for color
histogram.

Figure 10 provides the CPU cost of three indexing
schemes for three datasets. From Figure 10a, we can see
that as the dimensionality increases, the gap becomes wider
between iLDR and gLDR. iMMDR is the best. Perfor-
mance difference between iMMDR and iLDR is relatively
small. When the dimensionality reaches 30, the CPU cost
for gLDR is an order of magnitude higher than that for iM-
MDR and iLDR. The main reason is clear. In gLDR in-
dexing structure, tree nodes contain multi-dimensional data

9

0

0.2

0.4

0.6

0.8

1

5 10 15 20

Pr
ec

is
io

n

Number of dimensions

MMDR
LDR
GDR

(a) Synthetic data

0

0.2

0.4

0.6

0.8

1

5 10 15 20

Pr
ec

is
io

n

Number of dimensions

MMDR
LDR
GDR

(b) Color histogram

Figure 8. Effect of dimensionality on query precision

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30

I/
O

 C
os

t (
N

um
be

r o
f p

ag
e

ac
ce

ss
)

Number of dimensions

Seq-scan 30-d
Seq-scan 20-d
Seq-scan 10-d

iMMDR
iLDR
gLDR

(a) Synthetic data

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30

I/
O

 C
os

t (
N

um
be

r o
f p

ag
e

ac
ce

ss
)

Number of dimensions

Seq-scan 30-d
Seq-scan 20-d
Seq-scan 10-d

iMMDR
iLDR
gLDR

(b) Color histogram

Figure 9. Effect of dimensionality on I/O cost

0

0.5

1

1.5

2

2.5

3

10 20 30

C
PU

 C
os

t (
Se

co
nd

s)

Number of dimensions

iMMDR
iLDR
gLDR

(a) Synthetic data

0

0.5

1

1.5

2

2.5

3

10 20 30

C
PU

 C
os

t (
Se

co
nd

s)

Number of dimensions

iMMDR
iLDR
gLDR

(b) Color histogram

Figure 10. Effect of dimensionality on CPU cost

10

50

100

150

200

250

300

0 200 400 600 800 1000

T
R

T
 (

M
in

ut
es

)

Data Size (K)

MMDR

(a) Effect of data size

0

100

200

300

400

500

600

700

50 100 150 200

T
R

T
(M

in
ut

es
)

Number of dimensions

MMDR

(b) Effect of dimensionality

Figure 11. Effect on total response time

points. However, in extended iDistance structure, tree nodes
contain 1-dimensional key values. Extended iDistances
(iMMDR and iLDR) incur single dimensional value com-
parison in searching while L-norm computation is involved
in the Global structure’s Hybrid-Tree. Thus computation in
gLDR is much more expensive. Again, Figure 10b for color
histogram dataset shows the similar trend as Figure 10a.
In terms of both CPU and I/O cost, the single dimensional
extended iDistance index outperforms the Global indexing
structure significantly. Furthermore, more effective dimen-
sionality reduction method leads to more efficient indexing.

6.3 Scalability

All high-dimensional indexes are affected by the data
size and number of dimensions. In this experiment, we look
at scalability of MMDR. We set the data stream ratio � as
0.005, and the

�
value in the lookup table to be 3 and the

number of iterations that indicates a point as
� � � � ����� � as

10. The parameter we used here is the total response time
(TRT) for MMDR to generate the optimal subspaces from
the original data.

Figure 11a describes the effect of data size on the total
response time. We keep the number of dimensions fixed at
100, while we vary the data size from 50,000 to 1,000,000.
From Figure 11a we make the following observation. The
response time increases linearly to the data size. When the
data size reaches the limit of buffer - 500K, there is no jump
in response time for scalable MMDR since we need only
scan the whole dataset once. Figure 11b shows the effect of
the number of dimensions on the total response time. For
this experiment, we used 1,000,000 data points and varied
the number of dimensions from 50 to 200. As expected, the

total response time is nearly quadratic to the dimensionality.
The results again exhibit that the limited buffer has no effect
on the total response time.

7 Conclusions

In this paper, we have presented an effective and
fast dimensionality reduction algorithm – Multi-level
Mahalanobis-based Dimensionality Reduction, which is
able to reduce the number of dimensions while keeping the
precision high, and able to effectively handle large datasets.
We used an extended iDistance to index the data points in
different reduced subspaces. We conducted extensive ex-
perimental studies using both real and synthetic datasets to
compare the algorithm with existing approaches. The re-
sults show that the proposed technique, as a whole, is very
effective and efficient in supporting KNN search in very
high-dimensional space. Furthermore, it is scalable for very
large databases.

Acknowledgment
We would like to thank Kaushik Chakrabarti for provid-

ing us the source codes of LDR and Hybrid-tree.

References

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On
the Surprising Behavior of Distance Metrics in High
Dimensional Spaces. In ICDT, pages 420–434, 2001.

[2] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and
J. S. Park. Fast Algorithms for Projected Clustering.
In SIGMOD, pages 61–72, 1999.

11

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is nearest neighbors meaningful? In
ICDT, 1999.

[4] K. Chakrabarti and S. Mehrotra. The Hybrid Tree: An
Index Structure for High Dimensional Feature Spaces.
In ICDE, pages 322–331, 1999.

[5] K. Chakrabarti and S. Mehrotra. Local Dimension-
ality Reduction: A New Approach to Indexing High
Dimensional Spaces. In VLDB, pages 89–100, 2000.

[6] R. Duda. Pattern Recognition for HCI. In
http://www.engr.sjsu.edu/k̃napp/.

[7] A. Hinneburg and D.A. Keim. An Optimal Grid-
Clustering: Towards Breaking the Curse of Dimin-
sionality in High Dimensional Clustering. In VLDB,
1999.

[8] I.T. Jolliffe. Principle Componet Analysis. Springer-
Verlag, 1986.

[9] J.H. Lee, D.H. Kim, and C.W. Chung. Multi-
dimensional Selectivity Estimation Using Com-
pressed Histogram Information. In SIGMOD, pages
205–214, 1999.

[10] B.C. Ooi, K.L. Tan, C. Yu, and S. Bressan. Indexing
the Edges - A Simple and Yet Efficient Approach to
High-Dimensional Indexing. In PODS, pages 166–
174, 2000.

[11] K.K. Sung and T. Poggio. Example-Based Learning
for View-Based Human Face Detection. In PAMI,
pages 20(1):39–51, 1998.

[12] J.S. Vitter and M. Wang. Approximate Computation
of Multidimensional Aggregates of Sparse Data Using
Wavelets. In SIGMOD, pages 193–204, 1999.

[13] C. Yu. High-dimensional indexing. Lecture Notes in
Computer Science 2341, Springer-Verlag, 2002.

[14] C. Yu, B.C. Ooi, K.L. Tan, and H. V. Jagadish. Index-
ing the Distance: An Efficient Method to KNN Pro-
cessing. In VLDB, 2001.

Appendix A: Generate Synthetic Datasets
In order to generate the local correlated datasets, we use

the algorithm outlined in Figure 12 to generate different
clusters in different subspaces with different orientations
and distensibilities retained.

In this algorithm, array s dim[i] contains the dimensions
which should be remained for each cluster.We can ran-
domly choose which dimension should be retained. For
simplicity, we make remained dimensions continuous start-
ing with s r dim[i]. For example, if s r dim[i]=6, then

Generate Correlated Dataset (GCD)

input: N,d,EC,EC size[EC],s dim[EC],s r dim[EC],
variance e[EC],variance r[EC], lb[EC]
Output: datasets[EC]
Algorithm:
1. for i from 0 to EC-1 do
2. for j from 0 to EC size[i]-1 do
3. for k from 0 to s remained dim[i]-1
4. datasets[i][j*d+k]= gen float(lb[i], variance e[i])
5. for k from s r dim[i] to s r dim[i]+s dim[i]-1
6. datasets[i][j*d+k]= gen float(lb[i], variance r[i])
7. for k from s r dim[i]+s dim[i] to d-1
8. datasets[i][j*d+k]= gen float(lb[i], variance e[i])
9. rotate datasets[i] to be arbitrarily oriented

Figure 12. Synthetic Datasets Generation

the remained dimensions for
� ?A@ cluster starts from

� ?A@ to� � 6 � +:� � � ?A@ dimensions. Specifying the different values
for each cluster allows each reduced subspace in different
axis systems. Method gen float() will return a random float
value in [lb,lb+variance]. It can also return a value based
on other distribution functions, such as Zipfian. For each
cluster, we also specify their different lower bound values,
which can be used to control the positions of centers of each
cluster together with its variance. Along each of the re-
maining s dim[i] dimensions, we assign a randomly chosen
value falling in range of [lb[i], lb[i]+variance r[i]] to all the
points in the cluster. Along each of the reduced (d-s dim[i])
dimensions, we assign a randomly chosen value falling in
range of [lb[i], lb[i]+variance e[i]] to all the points in the
cluster. The ratio between variance r[i] and variance e[i]
in fact specifies the ratio between the energy carried by re-
mained and reduced dimensions for each cluster, or the de-
gree of correlation/ellipticity. Both values can be adjusted
for different clusters in order to have different level of cor-
relation. To make the subspace arbitrarily oriented, we can
generate a random orthonormal rotation matrix (generated
using MATLAB) and rotate the cluster by multiplying the
data matrix with the rotation matrix.

12

