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ABSTRACT
Electronic Medical Records (EMR) are the most fundamental re-
sources used in healthcare data analytics. Since people visit hospital
more frequently when they feel sick and doctors prescribe lab ex-
aminations when they feel necessary, we argue that there could
be a strong bias in EMR observations compared with the hidden
conditions of patients. Directly using such EMR for analytical tasks
without considering the bias may lead to misinterpretation.

To this end, we propose a general method to resolve the bias
by transforming EMR to regular patient hidden condition series
using a Hidden Markov Model (HMM) variant. Compared with
the biased EMR series with irregular time stamps, the unbiased
regular time series is much easier to be processed by most analytical
models and yields better results. Extensive experimental results
demonstrate that our bias resolving method imputes missing data
more accurately than baselines and improves the performance of
the state-of-the-art methods on typical medical data analytics.

CCS CONCEPTS
•Mathematics of computing→ Time series analysis; •Comput-
ing methodologies→ Learning in probabilistic graphical models;
• Applied computing→ Health informatics;
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1 INTRODUCTION
A large amount of heterogeneous medical data has become available
in various healthcare organizations. Electronic Medical Records
(EMR) are the fundamental resource to help derive healthcare in-
sights and provide more effective healthcare. In the past, medical
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Figure 1: EMR data including socio-demographic informa-
tion, structured and unstructured medical features.

professionals performed most clinical tasks based on their rich ex-
periences, and medical researchers and clinicians conducted clinical
researches via painstaking designed and costly experiments. In re-
cent years, the rapidly increasing availability of EMR is becoming
the driving force for adopting data-driven approaches, which pro-
vides greater opportunities to automate medical practices. Expected
benefits may include more accurate diagnosis as well as prognosis,
clinical research breakthrough and improved patient management.

EMR data1 is time series data that records patients’ visits to
hospitals. As illustrated in Figure 1, EMR data typically includes
socio-demographic information, heterogeneous medical features
such as diagnoses, lab tests, medications, procedures, unstructured
data like image data (e.g., magnetic resonance imaging (MRI) data)
and text data (e.g., doctors’ notes), etc. EMR data is commonly
abstracted as a multivariate time series where each time point
is a patient’s visit, and the variable dimension consists of all the
medical features. As a consequence, voluminous researches [3, 22]
have been devoted to using advanced time series models to analyze
EMR data for various tasks such as ICU patient mortality prediction,
ICU patient diagnosis, and disease progression modelling.

However, compared with the traditional time series data, EMR
data has its own peculiar characteristics. For most time series data,
the time points can be viewed as regularly or randomly sampled
from the timeline. In contrast, for EMR data, patients tend to visit
hospital more often when they feel sick, and doctors tend to pre-
scribe the lab examinations that show abnormality. This can be
considered as a kind of “bias”. Hence, the sampling process for
each medical feature in the timeline is not only irregular, but also
biased. Without understanding such phenomenon and performing
a remedy, the analytical models may result in serious misinterpre-
tation about the input EMR data. As an illustration, a young patient
who has two visits about respiratory infections with an interval of

1For ease of reference, we shall refer to EMR as EMR data.
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six months should not be considered having the respiratory infec-
tion status over six months, as “no visits during the six months” is
actually a strong indicator that the disease may have been cured.
Meanwhile, for some other features such as chronic kidney disease
(CKD), the conclusion of cure cannot be made even there are no
visits for years since it is generally believed that the disease cannot
be cured unless given renal transplantation. In essence, the bias
and irregularity for different medical features may have different
types of characteristics, depending on the severity or pain extent
of diseases, the sensitivity and specificity of lab tests, etc.

In this paper, we propose a general method to transform the
biased irregularly sampled EMR data into unbiased regular time
series. We create multivariate time series with a regular time inter-
val, and the hidden condition for each medical feature at each time
point is learned by an inference model. Since there exists natural
uncertainty for medical features at those time points when there
are no explicit observations, the output of each medical feature is
represented as a time series of distributions over its possible values.
By doing such a transformation, we can make the best from all state-
of-the-art time series analytical models such as Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU) and their variants,
which take regular unbiased time series as input. Therefore, the
transformation can serve as a basis for various analytical tasks that
take EMR time series as input.

Our proposed inference model mainly considers two character-
istics about medical features, namely Condition Change Rate
and Observation Rate. The condition change rate refers to how a
medical feature is likely to change from its condition in previous
observations. As an illustration, the high glucose level is a medical
feature that may change even during a short period, as food can
easily affect glucose level. In contrast, diabetes, being a chronic
disease, is a medical feature that is hard to change. The observation
rate refers to the probability of one medical feature being observed
at a time point based on its actual condition (e.g. negative/normal,
positive/abnormal, etc.). For instance, the observation rate for acute
kidney injury (AKI) will be much higher in the active period, as the
patient may have many significant symptoms such as fatigue, loss
of appetite, headache, nausea and vomiting, and may visit the hos-
pital in such a situation. However, this phenomenon may be much
less significant for the first mildest stage of CKD (CKD Stage I), as
CKD is initially without specific symptoms. Our inference model
is an HMM variant that estimates both the condition change rate
and the observation rate for each medical feature, and infers the
hidden condition variable for each time point. Roughly speaking,
to predict the hidden condition of one medical feature at a certain
time point, the model is likely to infer more from the previous and
subsequent observations when the condition change rate is low,
and tends to assign the default normal value when the observation
rate for the abnormal condition is much higher than the normal
condition.

To summarize, our paper has made the following contributions.
• We identify and formalize the bias and irregularity character-
istics in EMR data, which is a major challenge on improving
the healthcare analytical performance based on traditional time
series analytical models.

• We propose a general method to transform the biased and ir-
regularly sampled EMR data into unbiased regular time series.
The inference model takes evidence from two parts of observa-
tions. One is condition change rate reflecting how the actual
condition of one medical feature is likely to change from past
observations. The other one is observation rate measuring how
one medical feature is likely to be observed based on its actual
condition.

• We evaluate the effectiveness of our bias resolving technique
in two designed experiments. The first evaluates that our im-
putation method achieves the highest accuracy. The second
demonstrates our method’s benefits for analytical tasks includ-
ing ICU patient mortality prediction, ICU patient diagnosis
by category and CKD patient disease progression modelling.
Compared with baselines, with the same analytical model, the
performance can be improved by using unbiased, regular time
series generated by our bias resolving method.
The rest of this paper is organized as follows. Section 2 reviews

related works. In Section 3, we define the problem. Section 4 de-
scribes our model for resolving bias in EMR data, which considers
the condition change rate and the observation rate. In Section 5, we
summarize the experimental evaluation of our proposed method
against existing proposals. Finally, we conclude in Section 6.

2 RELATEDWORK
2.1 EMR Data Analytics
EMR data captures patients’ visits to hospitals. The fact that patients
tend to visit hospitals when they feel unwell causes EMR data to be
highly irregular. For example, the time interval between consecutive
visits of a patient varies greatly, resulting in an inherently diverse
frequency of visits. Existing works alleviate such a problem using
the following three broad categories of methods.

The first category utilizes patients’ baseline features (i.e., med-
ical features recorded during patients’ first visit to the hospital)
for analytical tasks. Some of them are based on regression mod-
els [8, 20, 21]. Duchesne et al. [8] employ a robust linear regression
model to use baseline MRI features for predicting patients’ one-year
changes of MMSE scores (a lab test related to patients’ mild cogni-
tive impairment). Stonnington et al. [21] utilize MRI scans to predict
patients’ clinical scores via a relevance vector regression model.
Similarly, Schulze et al. [20] collect patients’ baseline features and
then employ a Cox regression model to predict their development
of Type 2 Diabetes. A different line of research [16, 23, 24] is based
on multi-task learning [2]. The key idea of multi-task learning in
clinical analytics is to capture the intrinsic relationship between
tasks, i.e., patients’ severity at consecutive future time points. Zhou
et al. [24] target at predicting patients’ severity and selecting a
common set of features significant to all tasks. Zhou et al. [23] add
a functionality of selecting task-specific features and Nie et al. [16]
take into account the consistency in prediction results among mul-
tiple modalities. The performance of this method category may be
affected by under-utilization of time-related features. Since patients’
medical conditions tend to change over time, such methods tend to
benefit more from utilizing more time-related features.
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Figure 2: Examples of four representative medical features.

The second category of proposals aims at incorporating as many
time-related medical features as possible for data analytics. For
instance, Pham et al. [17] modify the standard LSTM model which
is specified for regular sequential data to add an irregular time
interval term in the form of a monotonic decay or a full time-
parameterization in the model computation. Similarly, Che et al. [4]
propose to add a time interval term based on GRU which has been
designed for regular time series so that the model could handle
irregular EMR time series data. However, these works process the
“time” information in a heuristic manner, by either using a mono-
tonically decreasing function or a full matrix for learning time’s
weights. Hence, such methods may cause over-parameterization or
under-parameterization in modelling time intervals. Furthermore,
these works are based on an end-to-end implementation, which
may be specific to modifying a certain kind of models. Therefore,
the generality of these works may be affected.

The third category of related works, to which our work belongs2,
focuses on transforming the irregular EMR time series data into
a regular one through resampling the data in the time dimension
into disjoint windows [5, 14, 15, 22] or overlapping windows [3].
Due to the peculiar characteristics of EMR data, this transformation
process will introduce missing data problem. While some proposals
employ relatively simple imputation methods, including simple
combination [22], majority value imputation for binary variables
and mean imputation for others [5], forward and backward impu-
tation [3, 14], some others employ more advanced methods such as
adding a missing data indicator to forward imputation of features
to capture the missingness in EMR data [15]. However, these meth-
ods fail to consider the bias in EMR data and fill the missing data
without understanding the reason for missingness, and hence, may
cause misinterpretation of EMR data. As a consequence, the overall
analytical performance might be degraded.

Our proposed method is different from existing works in that
we take the bias in EMR data into consideration, capture the two
representative behaviours, condition change rate and observation
rate of medical features, and impute the missing data in a more
accurate manner.

2We propose our method in this category based on two considerations: (i) we hope
to avoid the possible under-utilization of time-related features involved in the first
category; (ii) instead of proposing an end-to-end implementation, we aim to propose a
general method which does not depend on specific models.

2.2 Time Series Analytics via Deep Learning
Deep learning [9, 13] has attracted a huge amount of interests from
both industry and academia in recent years due to its excellent accu-
racy in analyzing and recognizing images, audios, videos, speeches,
etc. One category of deep learning models that may be of use to
EMR data is Recurrent Neural Networks (RNN), as it has been
designed specifically for modelling sequential data and capturing
dynamic behaviour in data. Among the RNNmodels, LSTM [10] and
GRU [6] are widely applied and are proven effective for time series.
To be specific, in the area of EMR data analytics, researchers have
also shown interests in employing deep learning models in various
applications, ranging from ICU patient in-hospital mortality pre-
diction, classification and diagnosis [3–5, 14, 15] to analytical tasks
for general patients such as unplanned readmission prediction [17]
etc.

2.3 Bias in EMR Data
Bias in EMR data is caused by the fact that the data is not captured
with fixed frequency due to the natural occurrence of medical
events. For example, patients only visit the hospitals when they are
sick, and clinicians tend to measure sick patients on more related
features.

In [18], the biases in laboratory test results are identified via
checking the relationship between lab test value and the time to the
next same lab test, and then mitigated through separating different
lab test patterns. However, this can only resolve the coarse-grained
bias and leave the intra-pattern bias unresolved. In [11], three pro-
posed time parameterization methods are proposed and compared,
but the proposed method is heuristic in nature.

To the best of our knowledge, there are no existing works that
not only identify the bias challenge of EMR data, but also solve it.
In this paper, we propose a general method to transform the biased,
irregular EMR time series into an unbiased, regular one, as a means
to reduce the effect of misinterpretation of EMR data and further
improve the overall analytical performance.

3 PROBLEM FORMULATION
3.1 Examples
We observe that different medical features have different intrinsic
characteristics, for instance, (i) whether the feature tends to change
frequently and sharply over time; (ii) if the value of feature indicates
the abnormal condition, and whether this will cause the patient to
visit the hospital.

We shall elaborate our observations through four representative
medical features as shown in Figure 2. For each medical feature, we
show the changing trend of the severity of its value over time. We
draw a red cross in the timeline to denote that the patient visits the
hospital at that time point and if a patient stays in the hospital for
a period (in-patient case), we draw a red cross beneath the period.

For both AKI and glucose, the severity has a higher probability
of changing from the previous condition. One difference between
these two lies in that once AKI is severe, the patient tends to visit
the hospital for this reason. However, for glucose, this likelihood is
relatively lower and sometimes, the patient’s visit to the hospital
is not related to glucose. For both CKD Stage I and diabetes, the
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Figure 3: EMR regularization.

severity will not change frequently or sharply, and when the medi-
cal feature indicates abnormal, patients may not visit hospital due
to this reason.

3.2 Problem Definition
To resolve the bias in EMR data, the ideal case is to use the exact
patients’ hidden conditions as the input of analytical models.

Definition 1. (Patients’ Hidden Conditions Φ) Given a set of pa-
tients ΩP with cardinality P , a set of regular time points ΩT with car-
dinality T and a set of distinct medical features ΩD with cardinality
D, patients’ hidden states for each time point and for each medical fea-
ture is defined as Φ = {< p, t ,d,v > |∀p ∈ ΩP ,∀t ∈ ΩT ,∀d ∈ ΩD ,

v is the value of feature d for patient p at time point t}.

However, EMR data only contains a subset of Φ, which contains
records when patients visit the hospital with lab tests that are taken.
We define the observed part of Φ from EMR as EMR Series Ψ.

Definition 2. (EMR Series Ψ) Observed EMR data can be viewed
as a multivariate time series for PEMR patients ΩEMR

P ⊆ ΩP , where
T EMR regular time points ΩEMR

T ⊆ ΩT correspond to patients’ visits
and variable dimension contains DEMR distinct medical features
ΩEMR
D ⊆ ΩD . This multivariate time series is a subset of Φ and

defined as “EMR series” Ψ.

Our work is inspired by the fact that Ψ is not a randomly sampled
subset of Φ. Instead, the probability that one tuple < p, t ,d,v >
is observed may depend on the medical feature d and its value v .
Therefore, the target of our work is to estimate the unobserved
hidden conditions Φ−Ψ using EMR series Ψ (illustrated in Figure 3),
while considering that observations in Ψ may not be randomly
sampled. This process is formally defined as EMR regularization.

Definition 3. (EMR Regularization) EMR regularization is the
process of predicting the values of the unobserved hidden conditions
Φ−Ψ. Given an EMR series Ψ as the input, suppose that for each tuple
< p, t ,d,v > in Φ, its probability to be observed in Ψ is a function
depending on the medical feature d and its valuev . Since there is high
uncertainty in the prediction, for each patient p, time point t , and
medical feature d , we learn the distribution over all possible values v
instead of generating one simple prediction.

The EMR regularization is a general method designed to trans-
form biased, irregular multivariate time series data into unbiased,
regular ones, hence, can generate time series data of high quality
and avoid misinterpretation. We will illustrate the generality of our
method with relevant applications in Section 5.3.

The notations used in the remaining sections of this paper are
summarized in Table 1.

Table 1: Notations

Notation Description

P , ΩP , p Number of patients, patient set,
each patient in ΩP

T , ΩT , t Number of regular time points,
regular time point set, each time point in ΩT

D, ΩD , d Number of distinct medical features, medical
feature set, each medical feature in ΩD

Φ Patients’ hidden conditions
Ψ EMR series

yd,st Observed value for feature d at time point t
in an observation sequence s

md,s
t Mask indicator for feature d at time point t

in an observation sequence s
Yd,s An observation sequence (corresponding to

one patient) for feature d composed of yd,st
Ωd
S A set of observation sequence for feature d ,

Ωd
S = {Yd,s }

qd,st Hidden state value for feature d at time point
t in a hidden state sequence s

Qd,s A hidden state sequence for feature d
composed of qd,st

θd , θ Condition change rate of feature d , prior of θd

ϕd , ϕ Observation rate of feature d , prior of ϕd
Beta(a,b) Beta function

N Number of states in HMM
M Number of observation symbols in HMM
Z Hidden state set in HMM
V Vocabulary set in HMM
Πd Initial hidden state distribution for feature d
Ad Transition probability matrix for feature d
Bd Emission probability matrix for feature d

4 EMR REGULARIZATION MODEL
In this section, we propose our EMR regularization model through
the modelling and inference steps in detail.

4.1 Model Description
The graphical representation of our EMR regularization model is
illustrated in Figure 4, which is based on the dynamic Bayesian
networks. In the model structure, we show the interaction between
all variables (either observed or hidden) in “Time Slide 1” in the left
part and the transitioning relationship between consecutive time
points (in this case, between “Time Slice t” and “Time Slice t + 1”)
in the right part.

In the model structure, ΩD denotes all distinct medical features
and d represents each medical feature. Yd = yd1 · · ·ydt · · · in filled
circles denote observed EMR series for feature d , where Qd =

qd1 · · ·qdt · · · in open circles represents the hidden states, which
are the distribution of feature d’s possible values. As discussed in
Section 3.2, the objective of EMR regularization is to inferQd based
on Yd for each feature d .
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Figure 4: Graphical representation of proposed model.

We model two patterns in our EMR regularization to describe
the characteristics of medical features.
• Condition Change Rate (CCR)

CCRmeasures how a medical feature is likely to change from its
condition in the previous observation. θd in Figure 4 represents
CCR and θ on top is the prior of feature d’s CCR. Different
medical features have different CCRs. As in our representative
examples in Section 3.1, AKI and glucose tend to have a higher
CCR, whereas CKD Stage I and diabetes may have a lower CCR.

• Observation Rate (OR)
OR measures the probability that a medical feature is exposed
at a time point based on its actual condition at that time point.
OR is denoted as ϕd in our graphical representation and ϕ on
the bottom is the prior of feature d’s OR. OR of AKI can be
quite high during the active period as it will cause much pain
to patients. However, OR of glucose, CKD Stage I and diabetes
may be much less significant.
Assigning prior to CCR and OR for medical features, which

can guide the model’s learning, is of vital importance in the EMR
regularization. We tend to assign CCR’s prior such that there is
a higher probability of being in the same state as in the previous
one. Furthermore, we tend to assign OR’s prior such that patients
are more likely to visit the hospital when their condition indicates
abnormal.

Specifically, for ease of computation, we assume that both CCR
and OR follow the Beta distribution3

Assumption 1. Given a medical feature d , its CCR’s probability
density function is:

f (θd = x) = xaccr−1(1 − x)bccr−1/Beta(accr ,bccr )

Similarly, feature d’s OR’s probability density function is:

f (ϕd = x) = xaor−1(1 − x)bor−1/Beta(aor ,bor )

3As will be discussed in Section 4.2 later, CCR and OR follow the Binomial distribution.
Therefore, we choose the corresponding conjugate prior, the Beta distribution, for ease
of computation.

In the rest of this section, we will discuss how to learn the pa-
rameters involved and infer the true hidden state sequences based
on our proposed EMR regularization model.

4.2 Learning and Inference
We employ the Baum-Welch algorithm [19], which is an instan-
tiation of the Expectation-Maximization (EM) algorithm [7] for
HMM, to find the maximum a posterior estimated values of model
parameters. The overall procedure is summarized in Algorithm 1.

Before we dive into details of Algorithm 1, we introduce some
key concepts used in our HMM variant. HMM is proposed and used
to model sequential observations based on the assumption that
such observations are generated under a hidden stochastic process.
In our case, the HMM is characterized by the following elements.4

• N denotes the number of states. In our case, N = 2 and the
state set is represented as Z = {zi } which is {−1,+1} where
“−1” denotes abnormal state and “+1” denotes normal state.

• M denotes the number of distinct observation symbols. In our
HMMmodel,M = 3 and the vocabulary set isV = {vk }which is
{−1, 0,+1} denoting abnormal, missing and normal observation
respectively.

• Π = {Πi } is the initial state distribution and Πi = P(q1 = zi )
corresponds to the probability of being in state zi initially in
the hidden state sequence.

• A = {Ai, j } is the state transition probability distribution and
Ai, j = P(qt+1 = zj |qt = zi ) for ∀1 ≤ i, j ≤ N . This A corre-
sponds to the modelling of our CCR and represents how much
the previous hidden state influences the current state.
Based on N = 2, A (i.e., CCR) follows the Binomial distribution
and A’s prior follows the Beta distribution. 5

• B = {Bj,vk } is the emission probability distribution and Bj,vk =
P(yt = vk |qt = zj ) for ∀1 ≤ j ≤ N and ∀1 ≤ k ≤ M . B is the
modelling of our OR, which denotes patient’s probability of
visiting the hospital based on the actual hidden state.
The difference between our model and HMM is our “No Misdi-
agnosis” assumption. That is, given that feature d’s actual state
qt is normal (qt = +1), it can only be emitted to either normal
or missing observation, i.e., yt = +1 or yt = 0. Analogously,
given qt = −1, it can only be emitted to yt = −1 or yt = 0.
Based on the assumption, we model B to follow the Binomial
distribution and B’s prior to follow the Beta distribution. 6

Next, we describe the procedure for learning and inference
shown in Algorithm 1 in detail. As shown, the training input is
composed of all distinct medical features ΩD with all correspond-
ing observation sequences (each sequence is Yd,s ), and the prior

4For simplicity, we omit the superscript of medical feature d and sequence s for q and
y , and omit the superscript of d for Π, A and B in the notations here.
5For multi-state situation, we can replace the Binomial distribution and the Beta
distribution to the more general Multinomial distribution and the Dirichlet distribution.
6Without the “No Misdiagnosis” assumption or with more complicated mapping
between hidden states and observations, we can replace the Binomial distribution and
the Beta distribution to the more general Multinomial distribution and the Dirichlet
distribution accordingly.



Algorithm 1: EMR regularization with smoothing

Input: medical features ΩD , observation sequences
Ωd
S = {Yd,s |Yd,s = yd,s1 , · · · ,y

d,s
T } for each feature d and for

each sequence s . A’s prior for feature d is Beta(adA,b
d
A) , B’s

prior for feature d is Beta(adB ,b
d
B ).

Output: parameters λd = (Πd ,Ad ,Bd ) for each d ∈ ΩD , hidden
state probability sequence P(qd,st = zi |Y

d,s , λd ).
1: For each medical feature d ∈ ΩD
2: Initialize λd = (Πd ,Ad ,Bd )
3: Iterate EM process until convergence
4: E-Step:
5: For each observation sequence s ∈ Ωd

S
6: Compute ξt (qd,st = zi ,q

d,s
t+1 = zj ) (Equation 3)

7: Compute γt (qd,st = zj ) (Equation 4)
8: M-Step:
9: Update Π̂d

i (Equation 5)
10: Update transition matrix Âdi, j (Equation 6)
11: Update emission matrix B̂dj,vk (Equation 7)

12: Compute P(qd,st = zi |Y
d,s , λd ) (Equation 8)

13: return λd = (Πd ,Ad ,Bd ), P(qd,st = zi |Y
d,s , λd )

parameters for A and B for each feature d . Then the model’s out-
put consists of learned parameters λd and hidden state probability
sequence P(qd,st = zi |Y

d,s , λd ).
Then in Line 1-11, we iteratively compute the expectation of

latent variables needed in the E-step (expectation step) and then
update the parameter values in the M-step (maximization step) to
maximize the joint log-likelihood of all observation sequences.
E-Step (Line 4-7 in Algorithm 1). For each feature d’s each
observation sequence Yd,s (corresponding to one patient), we need
to compute the forward probability αt (qd,st = zi ) and the backward
probability βt (q

d,s
t = zj ) as follows.

αt (q
d,s
t = zi ) = P(yd,s1 ,y

d,s
2 , · · · ,y

d,s
t ,q

d,s
t = zi |λ

d ) (1)

denotes the probability of seeing partial observation sequence until
t and staying in state zi at time point t given λd .

βt (q
d,s
t = zj ) = P(yd,st+1,y

d,s
t+2, · · · ,y

d,s
T |qd,st = zj , λ

d ) (2)

represents the probability of seeing the partial observation after t
given λd and being in state zj at time point t .

Next, we compute the following two probability distributions
described below:

ξt (q
d,s
t = zi ,q

d,s
t+1 = zj ) = P(qd,st = zi ,q

d,s
t+1 = zj |Y

d,s , λd )

=

αt (q
d,s
t = zi )A

d
i, jB

d
j,yd,st+1

βt+1(q
d,s
t+1 = zj )∑N

i=1
∑N
j=1 αt (q

d,s
t = zi )A

d
i, jB

d
j,yd,st+1

βt+1(q
d,s
t+1 = zj )

(3)

for ∀t , zi and zj , which is the probability of being in zi at time point
t and in zj at time point t + 1 given the observation and the model.

Then we can compute the following:

γt (q
d,s
t = zj ) = P(qd,st = zj |Y

d,s , λd )

=
αt (q

d,s
t = zj )βt (q

d,s
t = zj )∑N

j=1 αt (q
d,s
t = zj )βt (q

d,s
t = zj )

(4)

for ∀t and zj , which is the probability of being in zj at time point t
given the observation and the model.
M-Step (Line 8-11 in Algorithm 1). We need to update the
parameters summarizing computed expectation values from all
observation sequences in Ωd

S , including the initial state distribu-
tion (Equation 5), the transition probability matrix (Equation 6)
and the emission probability matrix (Equation 7). With Ad ’s prior
Beta(adA,b

d
A), we assign adA,b

d
A to corresponding entries in Ad and

obtainuAi, j for ∀i, j ∈ Z . Similarly, for Bd , using adB ,b
d
B , we getu

B
j,vk

for ∀j ∈ Z and ∀vk ∈ V [1].

Π̂d
i =

1
|Ωd

S |

∑
s ∈Ωd

S

γ1(q
d,s
1 = zi ) (5)

Âdi, j =

∑
s ∈Ωd

S

∑T−1
t=1 ξt (q

d,s
t = zi ,q

d,s
t+1 = zj ) + u

A
i, j − 1∑

s ∈Ωd
S

∑T−1
t=1

∑N
j=1 ξt (q

d,s
t = zi ,q

d,s
t+1 = zj ) +

∑
j (u

A
i, j − 1)

(6)

B̂dj,vk =

∑
s ∈Ωd

S

∑T
t=1s .t .yd,st =vk

γt (q
d,s
t = zj ) + u

B
j,vk

− 1∑
s ∈Ωd

S

∑T
t=1 γt (q

d,s
t = zj ) +

∑
vk (u

B
j,vk

− 1)
(7)

Inference. After the EM algorithm has converged, we can infer
the hidden state distribution. We first compute the forward proba-
bility and the backward probability using learned parameters after
convergence, then based on the Bayesian rule, the hidden state
distribution is as follows:

P(qd,st = zi |Y
d,s , λd ) =

αt (q
d,s
t = zi )βt (q

d,s
t = zi )

P(Yd,s |λd )
(8)

The expectation of this P(qd,st = zi |Y
d,s , λd ) is the desired output

of our EMR regularization model.

5 EXPERIMENTS
We design two experiments to evaluate the effectiveness of our
proposed EMR regularization model: (i) imputation accuracy evalu-
ation, which is to randomly hide positions in the time series, and
then to compare the imputation results with the ground truth val-
ues; (ii) benefits for analytical tasks, which is to apply data imputed
by different methods into further analytical tasks and to compare
the corresponding analytical results. We report the results of these
two experiments in Section 5.2 and Section 5.3 respectively.

5.1 Experimental Set-Up
5.1.1 Datasets, Applications and Evaluation Metrics. We conduct

experiments using two real-world EMR datasets to evaluate the
performance of our proposed method. We perform different analyt-
ical tasks in the datasets described as follows, with corresponding
evaluation metrics.
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Figure 5: Analytical applications including in-hospital mor-
tality prediction, diagnosis by category, and disease progres-
sionmodelling.Medical features for illustration include glu-
cose, HbA1c (Hemoglobin A1c), cholesterol and creatinine.

Table 2: Dataset Statistics

Dataset # of Features # of Samples Missing Rate

MIMIC-III 53 46776 92.87%
NUH-CKD 332 18344 99.03%

MIMIC-III Dataset is a public EMR database [12] consisting of
records of over 40,000 ICU patients who are admitted to the hospital
between 2001 and 2012. This dataset includes patients’ lab tests,
medications, procedures, demographics, and vital sign measure-
ments, etc.

In this dataset, we use each admission as a sample, which refers
to one of a patient’s visits to the hospital. For each admission,
there is an in-hospital mortality label denoting whether the patient
dies in the hospital. Furthermore, there are several ICD-9 (Ninth
Revision of the International Classification of Diseases) diagnosis
codes assigned by doctors denoting which diseases the patient
has. We extract the admissions with a time span longer than 48
hours as samples and perform two prediction tasks: (i) In-hospital
mortality prediction is to predict whether the patient will die in
the hospital in this admission and this prediction task is modelled
as a binary classification problem; (ii) Diagnosis by category is
to predict the disease categories the patient has. We categorize
available ICD-9 diagnosis codes into 20 categories by separating E
codes and V codes7. After removing one category which does not
appear in our data, we formalize this task as a 19-label classification
problem.

For evaluation, we report the AUROC value (area under the
ROC curve) for classification. We report AUROC for in-hospital
mortality prediction and the average AUROC value of the 19 labels
for diagnosis by category.

NUH Dataset is a real-world longitudinal EMR dataset from Na-
tional University Hospital in Singapore. We conduct experiments
in a sample dataset of the NUH dataset with over 100,000 patients
admitted in NUH from 2011 to 2012. Patients’ medical features such
7https://en.wikipedia.org/wiki/List_of_ICD-9_codes

as diagnoses, lab tests, medications and procedures are collected in
this dataset.

In this dataset, we perform disease progression modelling
(DPM) task, which is to predict the future severity of patients
suffering from a target disease. We choose CKD patients who are
in Stage 3 or latter stages8 as our cohort and denote this dataset as
the NUH-CKD dataset. We predict the patients’ future GFR values
and formalize the DPM task as a regression problem. GFR9 is a
lab test short for Glomerular Filtration Rate, which measures the
severity of CKD patients. The lower the GFR value is, the more
severe the patient is. After consulting medical experts, according to
The Renal Association10, to examine the loss of GFR value over one
year is of vital importance. To be specific, if a patient suffers from
a loss of 5ml/min/1.73m2 in GFR value in less than one year, this
patient is having a deteriorating state and needs assessment from
medical specialists. As a consequence, our DPM task is medically
meaningful in the NUH-CKD dataset.

We use MSE (mean squared error) and R value (Pearson product-
moment correlation coefficient) as our evaluation metrics. R value
with range [−1, 1] measures the linear relationship between the
predicted value and the true value, where R > 0 denotes a positive
relationship and R < 0 represents a negative relationship. A good
regression model will have a small MSE value and a large R value.

We illustrate the three analytical tasks described above in Fig-
ure 5. In the bottom, the left part denotes the longitudinal EMR
data we can make use of, and the right part denotes data unavail-
able in the future. As shown in Figure 5, the in-hospital mortality
prediction task and the diagnosis by category task in the MIMIC-III
dataset target at classifying admission sequences and the DPM task
in the NUH-CKD dataset aims at predicting the future severity
trajectory of CKD patients.

We show some statistics information including number of fea-
tures, number of samples and missing rate11 about the MIMIC-III
dataset and the NUH-CKD dataset in Table 2. Compared with the
MIMIC-III dataset, the NUH-CKD dataset has more features but
fewer samples. Moreover, NUH-CKD dataset has a larger missing
rate.

5.1.2 Baseline Methods and Implementation Details. We com-
pare our proposedmethodwith several basic methods and advanced
methods. The corresponding details are as follows.

We employ the following methods to impute the missing data in
the time series sequence:
• Forw: use the nearest previous value for the missing time point,
called forward imputation

• Mean: use the mean value for the missing time point, called
mean imputation

• Zero: use zero for themissing time point, called zero imputation
Though basic, these three methods for handling missing data

are widely applied in the area of EMR data analytics[3, 5, 14].

8http://www.renal.org/information-resources/the-uk-eckd-guide/ckd-stages
9https://labtestsonline.org/understanding/analytes/gfr/tab/test
10http://www.renal.org/information-resources/the-uk-eckd-guide/
deteriorating-function
11In this table, “missing rate” is computed for lab tests and is defined as the ratio of
non-zero entries over all entries, where the total number of entries is (# of features) ×
(# of time points) × (# of samples).

https://en.wikipedia.org/wiki/List_of_ICD-9_codes
http://www.renal.org/information-resources/the-uk-eckd-guide/ckd-stages
https://labtestsonline.org/understanding/analytes/gfr/tab/test
http://www.renal.org/information-resources/the-uk-eckd-guide/deteriorating-function
http://www.renal.org/information-resources/the-uk-eckd-guide/deteriorating-function


Recently, an advanced model [15] proposes to employ a mask
indicator to denote whether a position has value or not, to improve
the performance of EMR data analytics. The mask indicator ismd,s

t ,
wheremd,s

t = 1 indicates the value for feature d in sequence s at
time point t is missing, andmd,s

t = 0 indicates not missing. Hence,
this method can be considered as adding mask indicators to original
input features based on the Forw method. Through adding such
mask indicators, the information loss of the original data caused
by imputation can be reduced, and Lipton et al. show improved
predictive performance in their results [15].

Hence, we add the followingmethods as our baselines to compare
with [15] as well.
• Forw-Mask: further add mask indicators based on Forw
• Mean-Mask: further add mask indicators based on Mean
• Zero-Mask: further add mask indicators based on Zero
For the MIMIC-III dataset, we make use of the LABEVENTS

modality, which records patients’ lab test results. We extract the
first 48 hours of each admission sequence as input and then divide
the sequence into two-hour time windows for utilization. For both
applications, in the deep learning model structure, we input the
time series features through an input layer, then connect it to an
RNN (GRU, LSTM or Vanilla RNN) layer, and next to a dense layer
followed by the activation layer serving as the output layer. For
in-hospital mortality prediction, we use one siдmoid unit as the
output layer in the model. For diagnosis by category, we use one
siдmoid unit per diagnosis category, ending up with a 19-dimension
output layer. We aim to minimize the cross-entropy loss during the
training of the constructed deep learning model.

For the NUH-CKD dataset, we extract each patient’s lab tests in
the first 200 days and aggregate them by week for utilization. We
feed the extracted time series data into an RNN layer and then a
dense layer, followed by a ReLU (rectified linear units) activation
layer. Furthermore, we select the GFR lab tests after each patient’s
200-day time point as our prediction target, incorporate the time
span between the prediction and the utilized time series data as
an input feature into our deep learning model and use a dense
layer with one unit to predict the target GFR values as a regression
problem.

For all application experiments, we randomly partition the whole
dataset into 80%, 10%, 10% representing training data, validation
data, and testing data respectively.We train the deep learningmodel
and keep the hyper-parameters which achieve the best performance
in the validation data, and then apply the trained model in the
testing data for reporting the experimental results.

5.2 Imputation Accuracy Evaluation
We conduct experiments in both the MIMIC-III dataset and the
NUH-CKD dataset to show that our proposed method is more
accurate in filling in missing data than baseline methods including
Forw, Mean and Zero12.

In this experiment, we cannot evaluate the performance of dif-
ferent methods directly as we do not have access to the ground

12We do not compare with Forw-Mask, Mean-Mask and Zero-Mask in this experi-
ment because these methods based on mask indicators do not impute missing data
directly. We compare with these methods for specific analytical tasks in Section 5.3.
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Figure 6: Imputation accuracy evaluation results.

truth, i.e., EMR data at certain time points when the data is missing,
meaning when the patients do not visit the hospital. As a conse-
quence, we perform random hiding for evaluating the imputation
accuracy, which is to randomly hide one position’s value in a time
sequence and then apply different methods to fill in this position.
Then through comparing the difference between the imputed value
and the original value which is hidden, we can evaluate different
methods’ imputation accuracy.

After hiding a position with value in a sequence randomly, we
employ our method and baseline methods on randomly selected
10% sequences and then compare the imputed results. We evaluate
different methods’ performance by calculating the ℓ1-norm of the
difference between the prediction result and the ground truth value.
The ℓ1-norm of the difference (∈ [0, 2]) provides a direct comparison
for the imputation accuracy of different methods. The smaller this
calculated ℓ1-norm is, the more accurate the method is.

We illustrate the imputation results of different methods in both
the MIMIC-III dataset and the NUH-CKD dataset respectively in
Figure 6. This figure is a violin plot13 with the ability to show
data’s probability density in different values. For each dataset in
Figure 6, we show all testing sequences’ Error ℓ1-norm, which is
computed as the difference (in terms of ℓ1-norm) between the filled
value and the corresponding ground truth value. The results of
four methods are shown from left to right, namely Forw, Mean,
Zero and our method. The filled dot represents the average of all
testing sequences’ Error ℓ1-norm for each method (i.e., average
Error ℓ1-norm for short). In the MIMIC-III dataset, the average
Error ℓ1-norm for four methods is 0.6872, 0.7625, 1.0 and 0.5732. In
the NUH-CKD dataset, the average value is 0.7862, 0.7009, 1.0 and
0.5664 respectively.

As illustrated in Figure 6, the Error ℓ1-norm of the Forw method
is 1.0 in many sequences. This might be because there exists few en-
tries with values in each sequence. Hence, there is a high probability
that there are no previous values before the hidden position for the
Forw method and in this case, the Error ℓ1-norm for this hidden
position is 1.0. The Error ℓ1-norm of the Mean method is computed
using the difference between the mean value and the filled value in
this hidden position. The shape of the Mean method results shows
the deviation of the original values in the hidden positions from
the mean value. For the Zero method, the Error ℓ1-norm is always
1.0 for all sequences. As shown, our proposed EMR regularization
method fills most hidden positions with a smaller Error ℓ1-norm
and therefore, imputes the hidden positions more accurately than
other methods.

13https://en.wikipedia.org/wiki/Violin_plot

https://en.wikipedia.org/wiki/Violin_plot
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Figure 8: MIMIC-III diagnosis by category results.

5.3 Benefits for Analytical Tasks
5.3.1 MIMIC-III In-Hospital Mortality Prediction. We compare

our proposed method with all six baseline methods in predicting
in-hospital mortality in the MIMIC-III dataset illustrated in Figure 7.

In this experiment, we change three different commonly em-
ployed RNN models (GRU, LSTM and Vanilla RNN) for processing
input time series data, and we compare our proposed method with
three basic baseline methods as well as three advanced methods
incorporating mask indicators.

For each RNN model, methods incorporating mask indicators
(mask-based methods) outperform corresponding basic baselines in
most cases (for instance, Forw-Mask is more accurate than Forw).
This observation indicates that analytical tasks can benefit from
incorporating mask indicators which reduce the information loss
caused by specific imputation methods. GRU and LSTM can achieve
competitive performance in the AUROC value of this task and
both models outperform Vanilla RNN. For all three RNN models,
our proposed EMR regularization method achieves the highest
AUROC value in testing data among all methods, indicating that
our consideration of CCR and OR helps resolve the bias in EMR data
and contributes to more accurate in-hospital mortality prediction.

5.3.2 MIMIC-III Diagnosis by Category. In this experiment, we
employ the three RNN models as in Section 5.3.1, but target at the
diagnosis by category task in the MIMIC-III dataset. We report the
average AUROC value for 19 diagnosis categories in Figure 8.

The insight we can obtain from this experiment are similar to
that from the in-hospital mortality prediction task. First, mask-
based methods perform better in the average AUROC value than
corresponding basic methods in most cases. This means mask in-
dicators provide more information beneficial to the task. Second,
the average AUROC values achieved by GRU and LSTM are similar,
but are higher than that achieved by Vanilla RNN. Third, within
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Figure 9: MSE for NUH-CKD disease progressionmodelling.
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Figure 10: R value for NUH-CKD disease progression mod-
elling.

all three RNN models, our proposed EMR regularization method
outperforms other methods in terms of the average AUROC value.
This indicates our method manages to help resolve the bias and
hence is beneficial to the diagnosis by category task.

From these two analytical tasks in the MIMIC-III dataset, one in-
teresting observation is that the most competitive baseline method
of our proposed method is Zero-Mask when employing GRU and
LSTM. This is a bit surprising, as intuitively we believe that Zero
imputation (or Zero-Mask) may not convey as much information
as Forw (or Forw-Mask) and Mean (or Mean-Mask). However, the
results may indicate that using EMR data recorded explicitly is
better than imputing missing data without considering the bias,
even if mask indicators are added as auxiliary information. The
advantage of Zero-Mask method shown in our experiments agrees
with [15].

5.3.3 NUH-CKD Disease Progression Modelling. As described
in Section 5.1, DPM in the NUH-CKD dataset is modelled as a
regression problem andMSE, R value are used as evaluation metrics.
A better regression model gives a smaller MSE value and a larger R
value. We illustrate the comparison results between our proposed
method and all baseline methods in Figure 9 and Figure 10 for MSE
and R value respectively.

For advanced RNN models (GRU and LSTM), we observe that
mask-based methods achieve similar performance (in terms of both
MSE and R value) to basic methods without much superiority. This
phenomenon is different from the results in the MIMIC-III dataset
which show the advantages of mask-based methods over basic
ones. The reason may be that the MIMIC-III dataset is an ICU EMR
dataset which collects patients’ more dense information. However,
the NUH-CKD dataset is a general EMR dataset which has a more
severe issue of missing data (as shown in Table 2). As a consequence,



the superiority of mask-based methods in providing useful infor-
mation of missingness may be weakened in the NUH-CKD dataset.
For Vanilla RNN model which might suffer from gradient explod-
ing or vanishing when processing long-term dependencies [10],
the performance tends to degrade. Moreover, compared with the
MIMIC-III dataset, the NUH-CKD dataset has a larger number of
features but a smaller number of samples. Vanilla RNN is likely to
overfit without enough training samples and when adding mask
indicators, the feature dimension further increases, mask-based
methods are therefore badly influenced by the overfitting problem
in Vanilla RNN.

Our proposed EMR regularization method achieves the smallest
MSE and the largest R value among all methods when employ-
ing three RNN models. This further demonstrates that our bias
resolving method provides benefits for analytical tasks.

6 CONCLUSION AND FUTUREWORK
In this paper, we identify and formalize the bias in EMR data, which
may degrade the analytical performance if not carefully handled.
Then we propose a general method to resolve the bias through
transforming biased, irregularly sampled EMR time series into an
unbiased, regular one and define this process as EMR regularization.
Specifically, we employ an HMM variant as the inference model to
conduct the transformation by considering the two characteristics
of medical features, i.e., condition change rate and observation rate.

We conduct two experiments to evaluate the proposed EMR
regularization method. In the imputation accuracy evaluation, we
use random hiding to select the positions for imputation and the
experimental results show our proposed method outperforms base-
lines. This demonstrates that our bias resolving approach imputes
missing values more accurately. When checking our method’s ben-
efits for analytical tasks, we use our method as a pre-processing
step for transforming EMR data and then feed the data into further
analytical tasks. We compare with three basic methods and their
corresponding advanced methods incorporating mask indicators.
The experimental results demonstrate that our method achieves the
highest accuracy and hence, our method can improve the analytical
performance by resolving the bias.

This work can be further extended towards multiple directions.
For instance, instead of modelling different diseases independently,
how to take into account modelling them jointly in the probabilistic
graphical model for capturing the relationship between diseases
is interesting and medically meaningful. Furthermore, different
patients might behave differently in terms of condition change rate
and observation rate. How to model the patient personalization in
the model is also well worth exploring.
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