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1 Introduction

With rapid advances in electronics miniaturization, wireless communication and positioning tech-

nologies, the acquisition and transmission of spatiotemporal data using mobile devices are becoming

pervasive. This fuels the demand for location-based services (LBS) [23, 4, 29, 28]. A skyline query

retrieves from a given dataset a subset of interesting points that are not dominated by any other points

[6]. Skyline queries are an important operator of LBS. For example, mobile users could be interested in

restaurants that are near, reasonable in pricing, and provide good food, service and view. Skyline query

results are based on the current location of the user, which changes continuously as the user moves.

The existing work on skyline queries assumes a static setting, where the distances from the query

point to the data points do not change. Using the common example in the literature shown in Figure

1, assume there is a set of hotels, and for each hotel, we have its distance to the beach (x axis) and its

price (y axis). The interesting hotels are all the points not worse than any other point in both the distance

to the beach and the price. Hotels 2, 4 and 6 are interesting and can be derived by a skyline query, for

their distances to the beach and their prices are preferable to those of any other hotels. Note that a point

with minimum value in any dimension is a skyline point – hotels 2 and 6 for example. Also, skyline is

different from convex hull in that it is not necessarily convex. In this example, hotel 4 makes the skyline

not convex.
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Figure 1. An example of skyline in a static scenario

In the above query, the skyline is obtained with respect to a static query point; in this case, it is the

origin of both axes. Now, let us change the example to the scenario of a tourist walking about to choose

a restaurant for dinner. We consider three factors in the skyline operation, namely the distance to the
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restaurant, the average price of the food and the restaurant rank. Different from the previous example,

the distance now is not fixed since the tourist is a moving object. Figure 2 shows the changes in the

skyline due to the movement. In the figure, the positions of the restaurants are drawn in the X-Y plane

while the table shows their prices and ranks. Lower values are preferred for all three dimensions. A

tourist as the query point moves as the arrow indicates from timet1 to t2. The skyline – which refers to

the interesting restaurants – changes with respect to the tourist’s position. Skylines at different times are

indicated by different line chains. The situation becomes more complex when all data points can move,

which is frequent in real-time applications like e-games and digital war systems. For instance, one player

in a field fighting game wants to keep track of those enemies who are close and most dangerous in terms

of multiple aspects like energy, weapon, strategy and etc.
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Figure 2. Skylines in mobile environment

In this paper, we address the problem of continuous skyline query processing, where the skyline query

point is a moving object and the skyline changes continuously due to the query point’s movement. We

solve the problem by exploiting its spatiotemporal coherence. Coherence refers to properties that change

in a relevant way from one part to other parts within a scene in computer graphics [8], which is used

to build efficient incremental processing for operations such as area filling and face detection. We use

spatiotemporal coherence to refer to those spatial properties that do not change abruptly between con-

tinuous temporal scenes. The positions and velocities of moving points do not change by leaps between

continuous temporal scenes, which enables us to maintain the changing skyline incrementally. First, we

distinguish the data points that are permanently in the skyline and use them to derive a search bound

to constrain the processing of the continuous skyline query. Second, we investigate the connection be-
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tween the spatial locations of data points and their dominance relationship, which provides an indication

of where to find changes in the skyline and update it. Third, to efficiently support the processing of

continuous skyline queries, we propose a kinetic-based data structure and the associated efficient query

processing algorithm. We present concise space and time cost analysis of the proposed method. We also

report on an extensive experimental study, which includes a comparison of our proposed method with

an existing method adapted for the application. The results show that our proposed method is efficient

in terms of storage space, and is especially suited for continuous skyline queries. To the best of our

knowledge, this is the first work on continuous skyline queries in the mobile environment.

The rest of this paper is organized as follows. In Section 2, we present the preliminaries including our

problem statement and a brief review of related work. In Section 3, we present a detailed analysis of the

problem. In Section 4, we propose our solution which continuously maintains the skyline for moving

query points through efficient update. The experimental results are presented in Section 5. Section 6

concludes the paper.

2 Preliminaries

2.1 Problem Statement

In LBS, most queries are continuous queries [28]. Unlike snapshot queries that are evaluated only

once, continuous queries require continuous evaluation as the query results vary with the change of

location and time. Continuous skyline query processing has to re-compute the skyline when the query

location and objects move. Due to the spatiotemporal coherence of the movement, the skyline changes

in a smooth manner. Notwithstanding this, updating the skyline of the previous moment is more efficient

than conducting a snapshot query at each moment.

For intuitive illustration, we limit the data and the moving query points to a two-dimensional (2D)

space. Our statement is however sufficiently general for high-dimensional space too. We have a set of

n data points in the format<xi, yi, vxi, vyi, pi1, ..., pij, ..., pim> (i = 1, ..., n), wherexi andyi are

positional coordinate values in the space,vxi andvyi are respectively velocity in the X and Y dimensions
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while pij ’s (j = 1, ..., m) are static non-spatial attributes, which will not change with time.

For a moving object,xi andyi are updated usingvxi andvyi. When it is stationary,vxi andvyi are zero.

We useTuple(i) to represent thei-th data tuple in the database. Users move in the 2D plane. Each of

them moves in velocity(vqx, vqy), starting from position(xq, yq). They pose continuous skyline queries

while moving, and the queries involve both distance and all other static dimensions. Such queries are

dynamic due to the change in spatial variables. In our solution, we only compute the skyline for(xq, yq)

at the start time0. Subsequently, continuously query processing is conducted for each user by updating

the skyline instead of computing a new one from scratch each time. Moving points are allowed to

change their velocities, which will be addressed in Section 4.2.1. Without loss of generality, we restrict

our discussion to what follows the MIN skyline annotation [6], in which smaller values of distance or

attributepij are preferred in comparison to determine dominance between two points.

2.2 Time Parameterized Distance Function

In our problem, the distance between a moving query point and a data point is involved in the skyline

operator. For a moving data pointpti starting from(xi, yi) with velocity (vix, viy), and a query point

starting from(xq, yq) moving with(vqx, vqy), the Euclidean distance between them can be expressed as

a function of timet: dist(q(t), pti(t)) =
√

at2 + bt + c, wherea, b andc are constants determined by

their starting positions and velocities:a = (vix − vqx)
2 + (viy − vqy)

2; b = 2[(xi − xq)(vix − vqx) +

(yi − yq)(viy − vqy)]; c = (xi − xq)
2 + (yi − yq)

2. For simplicity, we use functionfi(t) = at2 + bt + c

to denote the square of the distance. Whenpti is static,a, b andc are still determined by the formulas

above withvix = viy = 0. This time parameterized distance function has been used in literature to help

processing queries in moving object databases [27, 10, 21].

2.3 Terminologies

For two pointspt1 andpt2, if dist(pt1, q) ≤ dist(pt2, q) andpt1.pk ≤ pt2.pk,∀k, and at least one<

holds, i.e.,∃k, such thatpt1.pk < pt2.pk, we saypt1 dominatespt2. We saypt1 andpt2 areincomparable

if pt1 does not dominatept2, andpt1 is not dominated bypt2. We usept1 ≺ pt2 to represent thatpt1
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dominatespt2, andpt1 ¹ pt2 to represent thatpt1 dominatespt2 for all static non-spatial dimensions.

In kinetic data structures, acertificateis a conjunction of algebraic conditions, which guarantees the

correctness of some relationship to be maintained between mobile data objects. Readers are referred

to [3] for the formal and detailed description of kinetic data structures (KDS). In this paper, we use a

certificate to ensure the status of a data point is valid within a period of timet. For example, a certificate

of a point can guarantee it staying in the skyline for a period of timet. Beyondt, its certificate is invalid

and an event will trigger a process to update the certificate, which may result in a change in the skyline.

2.4 Related Work

One area with related work concerns skyline queries. Inspired by work on contour problem [15],

maximum vectors [14], convex hull [20] and multi-objective optimization [25], Borzonyi, Kossmann

and Stocker [6] introduced the skyline operator into relational database context and proposed two pro-

cessing algorithms:Block Nested Loop(BNL) andDivide-and-Conquer(D&C). D&C approach parti-

tions the dataset into several parts, processes each part in memory and finally merges all partial skylines

together. BNL scans the dataset sequentially and compares each new point to all skyline candidates

kept in memory. Chomicki, Godfrey, Gryz and Liang [7] proposed a variant of BNL by pre-sorting the

dataset according to some monotone scoring function. Tan, Eng and Ooi [26] proposed two progressive

processing algorithms. InBitmapapproach, each data point is encoded in a bit string and skyline is

computed by some efficient operations on bit matrix of all data points. InIndexapproach, data points

are transformed into a single dimensional space and then indexed by B+-tree which facilitates skyline

computation. Kossmann, Ramsak and Rost [13] proposed another progressive processing algorithm

Nearest Neighbor(NN) based on the depth-first nearest neighbor search [22] via R∗-tree. Papadias and

Tao [18, 19] proposed an improved algorithm namedBranch-and-Bound Skyline (BBS) based on the

best-first nearest neighbor search [9]. By accessing only nodes that contain skyline points, BBS incurs

optimal node access and so far is the most efficient skyline algorithm in static settings. In a slightly

different context, Balke, Guntzer and Zheng [2] addressed skyline operation over web databases where

different dimensions are stored in different data sites.
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Another area with related work is that of kinetic data structures (KDS). Basch, Guibas and Hersh-

berger [3] proposed a conceptual framework for KDS as a means to maintain continuously evolving

attributes of mobile data. KDS keeps the relationship of interest between data in some specific struc-

tures, and the contents do not change unless the relationship has changed. In this way, data retrieval

results based on the relationship of interest can be maintained when the data points move continuously.

KDS and its underlying ideas have inspired some unique query processing techniques for moving ob-

jects database (MOD). Mokhtar, Su and Ibarra [16] proposed an event-driven approach to maintain the

results ofk-NN queries on moving objects while time elapses. All moving objects are sorted by their

distance to the query point, while events are computed and stored to indicate when and how the order

will change. To reduce the points sorted in the KDS, Iwerks, Samet and Smith [10] proposed the Con-

tinuous Windowing (CW)k-NN algorithm, which limits search to a smaller region and accesses other

points only as needed.

3 The Change of Skyline in Moving Context

In this section, we analyze the change in skyline in continuous query processing. We first point out

the search bound that can be used to filter out unqualified data points in determining the skyline for a

moving query point. Then we carry out an analysis of the skyline change due to the movement, which

reveals some insights for the algorithms in the next section.

3.1 Search Bound

Although in our problem the skyline operator involves both dynamic and static dimensions, some

data points could be always in the skyline no matter how the data points and query points move. This

is because they have dominating static non-spatial values, which guarantee that no other objects can

dominate them. We denote this subset of skyline points asSKns and the whole set of skyline points as

SKall. We callSKns thestatic partial skyline, andSKall thecomplete skyline.

We call points inSKns permanent skyline points. In this way, we distinguish those points always in

the complete skyline from the rest of the dataset. The benefit of this discrimination is threefold:
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(1) It extracts the unchanging part of a continuous skyline query result from the complete skyline

SKall. This allows efforts in query processing to be concentrated on the changing part only, i.e.,SKall−
SKns. We name that partSKchg, and call those points in itvolatile skyline points. In continuous skyline

query processing, onlySKchg needs tracking for each query. In this manner, we can reduce overall

processing cost.

(2) The discrimination can reduce the amount of data to be sent to clients. SinceSKns is always in the

final skyline result, we need to send it only once from server to client. This benefits mobile applications

where clients and servers are usually connected via limited bandwidth.

(3) Static partial skylineSKns also provides an indication of the search bound for processing a contin-

uous skyline query. SinceSKns is always contained inSKall, for any point not inSKns to enterSKall,

it must be incomparable to any item inSKns. More specifically, it must have advantage in distance to

the query point since it is dominated in all static dimensions by at least one point inSKns. This leads to

Lemma 3.1.1.

Lemma 3.1.1 At any timet, if spf is the farthest point inSKns to the query point, then any pointpt not

nearer to the query point thanspf is not in the complete skyline.

Proof. Obviouslypt /∈ SKns, thus∃sp ∈ SKns s.t. ∀k, sp.pk ≤ pt.pk and at least one inequality

holds. Fromdist(q, sp) ≤ dist(q, spf ) anddist(q, spf ) ≤ dist(q, pt), we getdist(q, sp) ≤ dist(q, pt)

by transitivity. Because of its disadvantage in both spatial and non-spatial dimensions,pt is dominated

by sp at timet so that it is not in the complete skyline.¦

Lemma 3.1.1 indicates a search bound for the complete skyline. This can be used to filter out unqual-

ified points in query processing: those farther away than all points inSKns cannot be in the complete

skyline. Refer to the example in Figure 2,SKns = {3, 5}. At time t1, SKchg = {1} and restaurants 2, 4

and 6 are not in the skyline as they are farther to the query point than restaurant 5, which is the farthest

permanent skyline point to the query point.
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3.2 Change in the Skyline

When the query pointq and data points move, their distance relationships may change. This causes

the skyline to change as well. As discussed in Section 3.1, such changes only happen toSKchg, i.e.

SKall − SKns. It is also mentioned in Section 2.2 that the square of the distance from each point to the

query point can be described as a function of timet. Figure 3 illustrates an example of such functions of

several points with respect to the moving query point.
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Figure 3. An example of distance function curves

Intuitively, a skyline pointsi in SKchg before timetx may leave the skyline aftertx. On the other

hand, a non-skyline pointnsp at time tx may enter the skyline and become part ofSKchg after tx.

For the former, after timetx, si must be dominated by a skyline pointsj in SKall. For the latter,

whennsp enters the skyline after timetx, those points that used to dominatensp beforetx will stop

dominating it. That momenttx is indicated by an intersection of two distance function curves. We use

<pt1, pt2, tx> to represent an intersection shown in Figure 3, where at timetx pointpt2 is getting closer

to the query than pointpt1, opposite to the situation beforetx. From the figure, we can see that such an

intersection only alterspt1 andpt2’s presence in or absence fromSKchg if it does cause change. This is

because before and after the intersection, the only change of comparison isdist(q, pt1) < dist(q, pt2)

to dist(q, pt2) < dist(q, pt1). If no intersections happen, the skyline does not change at all because

the inequality relationship between the distances of all points to the query point remains unchanged.

Nevertheless, not every intersection necessarily causes the skyline to change. Whether an intersection

<pt1, pt2, tx> causes change is relevant to which setpt1 and pt2 belong to just before timetx, i.e.,

SKns, SKchg or SKall (neither of the former two, i.e., not inSKall). We have following lemmas to
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clearly describe these possibilities.

Lemma 3.2.1 An intersection<pt1, pt2, tx> (dist(q, pt1) < dist(q, pt2) beforetx) has no influence on

the skyline if one of the following conditions holds beforetx:

(1) pt1 ∈ SKns andpt2 ∈ SKns

(2) pt1 ∈ SKns andpt2 ∈ SKchg

(3) pt1 6∈ SKall andpt2 ∈ SKns

(4) pt1 6∈ SKall andpt2 ∈ SKchg

(5) pt1 6∈ SKall andpt2 6∈ SKall

Proof. (1) This is obvious according to the definition of permanent skyline points.

(2) Obviouslypt1 does not leave the skyline. Assuming thatpt2 leaves the skyline aftertx, there must

be another skyline points dominating it, i.e.,dist(q, s) < dist(q, pt2) for t > tx and∀k, s.pk ≤ pt2.pk.

Since intersection<pt1, pt2, tx> does not change the distance inequality relationship betweens and

pt2, dist(q, s) < dist(q, pt2) also holds fort < tx. Thuss dominatespt2 beforetx, which contradicts

pt2 ∈ SKchg beforetx. Thereforept2 does not leave the skyline either, and there is no influence on the

skyline.

(3) Sincept1 /∈ SKall beforetx, there must be at least one skyline points ∈ SKall dominating it.

Becausedist(q, s) < dist(q, pt1) does not change after the intersection,s still dominatespt1 and thus

pt1 will not enter the skyline. Sincept2 is a permanent skyline point, it will not leave the skyline.

(4) Due to the same reasoning as in (3),pt1 will not enter the skyline aftertx. Due to the same reasoning

in (2), pt2 itself will not leave the skyline aftertx.

(5) Due to the same reasoning as in (3), neitherpt1 norpt2 will enter the skyline aftertx. ¦

Lemma 3.2.2 An intersection<pt1, pt2, tx> (dist(q, pt1) < dist(q, pt2) beforetx) may have influence

on the skyline if one of the following conditions holds beforetx:

(1) pt1 ∈ SKns andpt2 6∈ SKall

(2) pt1 ∈ SKchg andpt2 ∈ SKns
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Table 1. Intersections and possible skyline changes

pt1 \ pt2 SKns SKchg SKall

SKns — —
√

SKchg
√ √ √

SKall — — —

(3) pt1 ∈ SKchg andpt2 ∈ SKchg

(4) pt1 ∈ SKchg andpt2 6∈ SKall

Proof. (1) Obviouslypt1 will not leave the skyline aftertx. Sincept2 /∈ SKall beforetx there must be

at least one skyline point inSKall dominating it. Ifpt1 is the only dominatingpt2 beforetx, aftertx, pt1

will stop dominatingpt2 and no other skyline points will dominate it. Consequently,pt2 will enter the

skyline aftertx.

(2) Obviouslypt2 will not leave the skyline aftertx. But if ∀k, pt2.pk ≤ pt1.pk holds,pt2 will dominate

pt1 and causept1 to leave the skyline sincedist(q, pt2) < dist(q, pt1) holds aftertx.

(3) If ∀k, pt2.pk ≤ pt1.pk holds, pt2 will dominate pt1 and causept1 to leave the skyline because

dist(q, pt2) < dist(q, pt1) holds aftertx. Due to the same reasoning as in (2) of Lemma 3.2.1,pt2

itself will not leave the skyline since no other points will dominate it aftertx.

(4) Due to the same reasoning as in (1),pt2 may enter the skyline aftertx. ¦
Table 1 lists all possibilities attached to an intersection. For (4) in Lemma 3.2.2, an interesting issue

is whetherpt2 can dominatept1 after timetx.

Lemma 3.2.3 For an intersection<pt1, pt2, tx> (dist(q, pt1) < dist(q, pt2) beforetx) in whichpt1 ∈
SKchg andpt2 6∈ SKall beforetx, pt1 will not be dominated bypt2 and leave the skyline aftertx, if no

other intersection happens at the same time and the static non-spatial values ofpt1 andpt2 are not the

same for all dimensions.

Proof. Assume thatpt1 will be dominated bypt2 and leave the skyline aftertx, we havept2 ¹ pt1.

Becausept2 is not in SKall beforetx, in SKall there must exist at least onept3 dominatingpt2, i.e.

pt3 ≺ pt2. For simplicity of presentation, we assume thatpt3 is the only one skyline point of such kind.

By transitivity, we havept3 ¹ pt1. But becausept1 is in SKchg, the distance frompt3 to the query
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point must be larger than that frompt1 beforetx; otherwisept3 ≺ pt1 meanspt1’s absence fromSKchg.

Thus forpt2 to dominatept1 after tx, it must first become incomparable topt3, which requires that an

intersection betweenpt1 andpt3 must happen no later thantx. If the time of intersection is earlier than

tx, however,pt2 will be in SKchg beforetx. Thus that time must only betx. Therefore, their three

distance function curves must intersect at the same point, and<pt1, pt2, tx> is not the only intersection

at timetx.

Note thatpt3 cannot bept1 in the above proof. Otherwise, beforetx, we havept1 ≺ pt2. Thus,∃k such

thatpt1.pk < pt2.pk because their static non-spatial attribute values are not the same for all dimensions.

This meanspt2 cannot dominatept1 even after timetx. ¦
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Figure 4. An example of multiplex intersection

Figure 4 shows such a scenario indicated by Lemma 3.2.3, and we call such an intersectionmultiplex

intersection. One feasible processing strategy for this situation is to only consider ifpt2 has the chance to

enterSKchg. We need to check ifpt1 is the only one that used to dominatept2. We ignore the possibility

thatpt2 might enter the skyline and start dominatingpt1 at the same time. That possibility is indicated

by other intersections at the same time, each of which is to be processed in isolation.

Accordingly, the intersection<pt1, pt2, tx> in Figure 4 will be ignored. After timetx, both pt2

andpt3 are inSKall but pt1 is not. This result can be achieved as long as the three intersections are

correctly processed one by one according to our discussion above, regardless of the order in which they

are processed. Now, let us look at the processing of the intersections in the order listed in the figure.

First, <pt1, pt2, tx> does not change the skyline becausept1 does not dominatept2 and thuspt2 will

not enterSKchg though it is getting closer to the query point thanpt1. Second,<pt1, pt3, tx> will
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causept1 to leaveSKchg becausept1 starts dominating it. Finally,<pt3, pt2, tx> will causept2 to enter

SKchg becausept3 is the only one that used to dominatept2 and now it stops dominating the point as its

distance to the query point becomes larger. The procedures of other processing orders are similar and

thus omitted due to space constraint.

An extreme situation is that many distance function curves are involved in the same multiplex inter-

section. Our processing strategy can also ensure the correct change as long as each legal intersection is

processed correctly in isolation. In fact, this situation is rather special and seldom happens because it

requires that all the points involved to be on the same circle centered at the query point. This situation

usually happens to minority data points only, and it becomes more infrequent in the moving context.

To summarize the above analysis, we only need to take into account two primitive cases in which the

skyline may change.

Case 1 Just before timetx, si ∈ SKchg and ∃sj ∈ SKall s.t. sj ¹ si. At time tx, an intersection

<si, sj, tx> between their distance function curves happens. Then from timetx on, si /∈ SKchg and

leaves the skyline becausesj ≺ si, andsj ∈ SKall still.

Case 2 Just before timetx, nsp /∈ SKall and∃si ∈ SKall s.t. si ≺ nsp. At timetx, an intersection

<si, nsp, tx> between their distance function curves happens. Then from timetx on, nsp ∈ SKchg

because6 ∃sj ∈ SKall s.t. sj ≺ nsp.

Case 1 determines a skyline change, whereas Case 2 suggests a possibility of change which requires

further checking. For a period of time before the change in Case 1,sj must be out of the circle determined

by the query pointq and si. We useCir(q, si) to denote the circle whose center isq and radius is

dist(q, si). In Case 2, the possible non-skyline pointnsp is also out of circleCir(q, si) for a period of

time before the change. Namely, the distance from each current skyline point (permanent or volatile)

provides indication of future change in the skyline.
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3.3 Continuous Skyline Query Processing

We now address the issues of continuous skyline query processing. A naive way is to pre-compute

and store all possible intersections of any pair of distance function curves, and then process each one

when its time comes according to the discussion in Section 3.2. This method produces many false hits

which actually do not cause skyline to change as we have shown in Table 1.

Based on those observations, we compute and store intersections in an evolving way. We only keep

those intersections with possibility to change the skyline according to Table 1. Specifically, first, we

get the initial skyline and compute some intersections of the distance curves in terms of the current

skyline points. Then, when some intersections happen and the skyline is changed, we further compute

intersections in terms of the updated skyline. By looking into the near future, we ensure that the skyline

query result is kept updated, and more information will be obtained later for updating the skyline further

into the future.

Besides, we keep all the current skyline points sorted based on their distance to the query point.

At each evolving step, we only compute those possible intersections that involve points between two

adjacent skyline pointssi andsi+1, and will happen beforesi andsi+1 stop being adjacent. Therefore,

we need to keep track of any intersection between two skyline points that are adjacent to each other in

sorted order.
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Figure 5. An example of evolving intersections

Figure 5 shows the distance curves of the restaurant example in Figure 2. At timet1, restaurantsr1, r3

andr5 are three adjacent skyline points, and only those two dotted intersections are computed and stored

for future processing. Then at timet1,3, r1 will leave the skyline asr3 becomes to dominate it. Next at
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time t5,4, r4 will enter the skyline as its only dominatorr5 stops dominating it. Not all intersections are

stored for processing, e.g., the intersection betweenr2 andr4, and that betweenr4 andr1.

Note our method is a kind of sweeping algorithm but with two distinctive features. We have a search

bound which renders the search limited in some specific regions instead of the whole data space. The

case study in Section 3.2 helps identify result changes and reduce processing in the maintenance. The

next section addresses the data structure and relevant algorithms in detail.

4 Data Structure and Algorithms

4.1 Data Structure

We use a bidirectional linked list, namedLsp to store all current skyline points, which are sorted in

ascending order of their distances to the query point. For each current skyline pointsi, we keep an

entry of form (flag, tuple id, a, b, c, tv, tskip). flag is a boolean variable indicating ifsi is in SKns.

tuple id is the tuple identifier ofsi which can be used to access the record.a, b, c are coefficients of the

distance function betweensi and query pointq, introduced in Section 2.2.tv is only available to each

changing skyline point, indicating its validity time.tskip is the time whensi will exchange its position

with its successor inLsp. BesidesLsp, a global priority queueQe is used to hold all events derived from

certificates to represent future skyline changes, with preference being given to earlier events.

Based on the analysis in Section 3, we define three kinds of certificates used in the KDS, which are

listed in Table 2. The first column is the name of a certificate, the second is what the certificate to

guarantee, and the third lists the data points involved in the certificate.

An event occurs when any certificate fails due to the distance change resulting from movement. Each

event is in the form of(type, time, self, peer), wheretype represents the kind of its certificate;time

is a future time instance when the event will happen; andself andpeer respectively represent skyline

point and relevant data point involved in the event.

Certificatesisj ensures for an existent volatile skyline pointsi that any other skyline pointsj with

the potential to dominatesi (sj ¹ si) keeps being farther to query pointq thansi, thereforesi is not
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Table 2. Certificates
Cert. Objective Data Points

sisj ∀si ∈ SKchg, sj ∈ SKall, s.t. self = si

sj ¹ si → dist(q, si) < dist(q, sj) peer = sj

nspij ∀nspj 6∈ SKall,∀si ∈ SKall, s.t. self = si

si ≺ nspj → peer = nspj

dist(q, si) ≤ dist(q, nspj)
ordij ∀si ∈ SKall, s.t. self = si

∃sj ∈ SKall ∧ sj 6¹ si peer = sj

∧sj = si.next in Lsp

→ dist(q, si) < dist(q, sj)

dominated by any of them and stays in the skyline. Hereself andpeer respectively point tosi’s and

sj ’s entries inLsp.

Certificatenspij ensures for a non-skyline pointnsp that all those skyline points currently dominating

it keeps being closer to query pointq thannsp, thereforenps is prevented from entering the skyline.

When a certificate of this kind fails attime, nsp will get closer to query pointq than one skyline point

si, but whether it will enter the skyline or not depends on whethersi is the only one that used to dominate

it. This will be checked when an event of this kind is being processed. Hereself points tosi’s entry in

Lsp, whereaspeer is the tuple identifier of data pointnsp.

Certificateordij ensures for an existent skyline pointsi that its successorsj in Lsp keeps being farther

to query pointq than it. Thissj does not have the potential to dominatesi, otherwise ansisj certificate

will be used instead. Hereself points to the entry of the predecessor skyline point in the pair, andpeer

to the successor. Certificateordij not only keeps the order of all skyline points inLsp, but also implies a

way to simplify event computation and evolvement. For Case 1 described in Section 3.2, it also involves

a position exchange inLsp, i.e., just beforesj dominatingsi, sj must be its successor. And we need to

determine if an exchange inLsp really results insisj event. In this sense, we only need to check forsi

its successor to compute a possiblesisj or ordij event. Ifsi does have ansisj or ordij event, the event’s

time value is exactlysi’s validity time tv. If si has no such event, its validity time is set to infinity. An

event of certificatenspij with self = si is supposed to have a time stamp no later thansi.tv, and those

events with a later time are not considered.
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Initially, Lsp contains the current skyline points, andQe contains events that will happen in the nearest

future. As time elapses, every due event is dequeued and processed based on itstype. While processing

due events and updating the skyline accordingly, our method also creates new events for future. Thus,

Qe evolves with due events being dequeued and new events being enqueued, providing information for

correctly maintaining the skyline. At any timet after all due events are processed,Lsp is the correct

skyline with respect to the query pointq’s current position.

4.2 Algorithms

For a given dataset, itsSKns is pre-computed and stored as a system constant. Before maintaining

skyline continuously, an initialization is invoked to compute the initialSKchg and the earliest events.

To computeSKchg over static dataset for the query point’s starting position, in order to use the search

bound determined bySKns and reduce intermediate steps to access data tuples when computing events,

we use the grid file to index all data points. Grid file provides a regular partition of space and at most

two-disk-access feature for any single record [17]. In our solution for the static dataset, we use a simple

uniform 2D grid file dividing the data space intoh× v cells to indexD′, and the data points within each

cell are stored in one disk page.

For the similar reasons we use a hash based method [24] to index moving data points inD′. The

data space is also divided into regular cells, with each representing a bucket to hold all those moving

data points within its extent. Data points can move across adjacent cells with the velocities in its tuple,

which is monitored by a pre-processing layer and declared in an explicit update request to the database.

An update request can also change a data point’s speed. How to deal with the updates of moving data

points to maintain the correct skyline will be addressed in Section 4.2.1. Except for the difference on

underlying indexing schemas, the initializations for static and moving datasets share the same framework

and events creation algorithm.

The initialization framework is presented in Figure 6. First all permanent skyline points inSKns are

inserted intoLsp according to their distance to query pointq’s starting position. The farthest distance is

recorded in variabledbnd as the search bound. Then starting from cellcellorg whereq’s starting position

17



Algorithm initialization(q)
Input : q is the query point
Output : the skyline forq’s starting position

the event queue to be used in maintenance
// loadSKns into skyline list

1. for eachsi in Skns

2. Computea, b, c in terms ofq;
3. Insert an entry(1, si, a, b, c,∞,∞) into Lsp;

// search bound determined bySKns

4. dbnd = dist(Lsp.last, q);
// compute initial skyline

5. Search the grid cellcellorg in which q lies;
6. while there still exist grid cells unsearched
7. for eachcell celli on next outer surrounding circle
8. if (mindist(q, celli) ≥ dbnd)
9. break;
10. elseSearchcelli;

// compute events
11. for eachsi from Lsp.last.prev to Lsp.first
12. createEvents(si, q);
13. handleBound(q, tcur);

Figure 6. Initialization framework

lies, all grid cells are searched in a spiral manner that those on an inner surrounding circle are searched

before those on an outer one. Cells beyonddbnd are pruned, wheremindist is computed as in [22] by

regarding a cell as an MBR. Points in a cell not pruned are sequentially compared to the current skyline

points inLsp, which is adjusted with deletion or insertion if necessary. After all cells are searched or

pruned, algorithm createEvents is invoked for each skyline pointsi from outermost to innermost, to

compute all events for all skyline points except the last oneslast. Finally, algorithm handleBound is

called to compute a possiblenspij event for those points farther thanslast.

Algorithm handleBound is presented in Figure 7. It does not involve all outer non-skyline points of

slast’s, instead it is limited to an estimated region. This regionC is the difference between the two circles

determined byslast and query pointq at two different times, the current time and the earliest event time

tnext in the future. Only those non-skyline points inC have chance to enter the skyline beforetnext.

Algorithm createEvents is presented in Figure 8. For a given skyline pointsi in Lsp, the algorithm

first computes the timet whensi and the next skyline pointsj in Lsp will exchange their position in
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Algorithm handleBound(q, tcur)
Input : q is the query point
Output : upcoming events forLsp.last
1. tnext = Qe.first.time;
2. slast = Lsp.last;
3. C = Cir(q(tnext), slast)− Cir(q(tcur), slast)
4. for eachpointnsp in C
5. for eachsj from slast to Lsp.first
6. t = timensp will get closer toq thansj ;
7. if ((t ≥ sj .tv) or (t ≥ sj .tskip)) continue;
8. if (∀k, sj .pk ≤ nsp.pk)
9. Enqueue (sj , t, nsp, nspij) to Qe;
10. break;

Figure 7. Handle bound

the list, i.e. whensj will get closer toq thansi. If t is later thansj ’s skip time orsi’s validity time, it

is ignored. Otherwise, it means ansisj event depending onsj ’s validity time if si ∈ SKchg, or it is a

simple order change event. Then for each non-skyline pointnsp betweenCir(q, si) andCir(q, sj), the

algorithm computesnspij event by looping on all skyline points in the inner ofnsp. Once annsp event

is derived, the loop on all inner skyline points breaks.

In maintaining the skyline, the due events are dequeued and processed according to its type, and new

events are computed based on new positions. As in the initialization, the event of points out of the last

skyline point is computed in a special way with an estimated search region by calling handleBound.

The actions to process each kind of events are described as follows. For ansisj event,si is removed

from the skyline and new events are computed forsi’s predecessor because its successor skyline point

in Lsp has been changed. For annspij event, the non-skyline pointnsp will be checked against all those

skyline points closer to the query point, to see if they will enter the skyline. If not, a possible newnsp

event is computed. Otherwise it will be added into the skyline and events will be computed for itself and

its predecessor. For anordij event theLsp is correctly adjusted by switchingsi andsj, and events are

computed for themselves and their predecessor.
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Algorithm createEvents(si, q)
Input : si is a skyline point inLsp

q is the query point
Output : upcoming events forsi

1. peer = null;
// compute events with next skyline point inLsp

2. sj = si.next;
3. t = timesi andsj will exchange position;
4. if ((t < sj .tskip) and (t < sj .tv))
5. if (!si.f lag)
6. if ((t < si.tv) and (∀k, sj .pk ≤ si.pk))
7. si.tv = t; peer = sj ;
8. elsesi.tskip = t;

// enqueue relevant events
9. if (peer 6= null)
10. Enqueue (si, si.tv, rep, sisj) to Qe;
11. if (si.tskip < si.tv)
12. Enqueue (si, si.tskip, sj , ordij) to Qe;

// compute events involving non-skyline points
13. for eachpointnsp betweenCir(q, si) andCir(q, sj)
14. for eachsk from si to Lsp.first
15. t = timensp will get closer toq thansk;
16. if ((t ≥ sk.tv) or (t ≥ sk.tskip)) continue;
17. if (∀k, sk.pk ≤ nsp.pk)
18. Enqueue (sk, t, nsp, nspij) to Qe;
19. break;

Figure 8. Create events

4.2.1 Updating the Moving Plan

A moving data pointmpti’s distance function does not change unless its moving plan changes. When

this happens, the intersections of its distance function and other points’ will also be changed as a conse-

quence, which invalidates those events computed based onmpti’s old distance function. Figure 9 shows

how a data point’s velocity change causes the intersections of the function curves to change. Thus, it

may cause the skyline to change in the future.

To ensure correct process with updates, we need to add for each moving object’s tuple a fieldtupt

indicating its last update time. We define an update request for any moving data pointmpti in the form

update(id, x, y, vx, vy). id is mpti’s identifier which can be used to locate its tuple directly.x andy

represent its current position.vx andvy represent its current speed. The algorithm updateMotion in
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Figure 9. An example of the change of moving plan

Figure 10 is used to process such updates. When an update request comes in, it is first checked ifmpti

has moved to a new cell and if its speed has been changed since the last update. Ifx andy indicate

thatmpti has moved to a different cell, we need to remove it from the old one and insert it into the new

one (line 1-5), which incurs 2 IOs. Ifvx andvy indicate thatmpti’s speed is not changed, the algorithm

stops (line 6-7). Otherwise, we need to update the speed record formpti (line 8-10), and adjust relevant

events starting from the first skyline points till the first one out ofmpti (line 17). If mpti is a skyline

point, then its events will be re-computed and the algorithm stops (line 12-15). Otherwise, the algorithm

continues to computenspi events formpti (line 19-24). With the independent distribution assumption,

(|SKall| + 1)/2 skyline points are expected to be accessed. To facilitate location of events involving a

data point efficiently, the priority event queue is implemented using a B+-tree, and each current skyline

pointsi has a list of pointers to all those events whoseself is si.

It also can be seen in Figure 9 that right at the momenttupt when an update request comes in, the

skyline does not change abruptly. To keep the skyline correct, the update request is only processed

after all due events are processed, i.e., updateMotion(req) at timetupt executes after updateSkyline(tupt)

completes.

4.3 Cost Analysis and Discussion

The space cost incurred by our method consists of two components: the space used to keep the skyline

and that used to store events. For ad-dimensional dataset withN points subject to independent distri-

bution, the expected size of its skyline isnsky = O((ln N)d−1) [5]. Since there arem static dimensions
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Algorithm updateMotion(req)
Input : req is an update request
Output : updated hash index, tuple andQe

1. cell1 = Tuple(req.id).cell;
2. cell2 = Hash(req.x, req.y);
3. if (cell1 6= cell2)
4. Tuple(req.id).cell = cell2;
5. removereq.id from cell1 and insert it tocell2;
6. if ((req.vx == Tuple(req.id).vx) and (req.vy == Tuple(req.id).vy))
7. return ;
8. Tuple(req.id).vx = req.vx

9. Tuple(req.id).vy = req.vy

10. Tuple(req.id).tupt = tcur

// Adjust relevant events
11. for eachsi in Lsp from Lsp.first
12. if (si.tuple id == req.id)
13. Delete allsi’s events;
14. createEvents(si, q);
15. return ;
16. Delete allsi’s events withpeer == req.id;
17. if (dist(q, Tuple(req.id)) ≤ dist(q, si)) break;
18. nsp = req.id;
19. for eachsj from si to Lsp.first
20. t = timensp will get closer toq thansj ;
21. if ((t ≥ sj .tv) or (t ≥ sj .tskip)) continue;
22. if (∀k, sj .pk ≤ nsp.pk)
23. Enqueue (sj , t, nsp, nspij) to Qe;
24. break;

Figure 10. Handle the change of moving plan

involved in skyline operator in our assumption in Section 2.1, the size of skyline on static dimensions

is |SKns| = O((ln N)m−1), and the size of skyline on all dimensions is|SKall| = O((ln N)m) at any

time. Thus the size of changing part is|SKchg| = |SKall| − |SKns| = O((ln N)m − (ln N)m−1) at any

time.

Now we consider the worst-case number of events, i.e., failure of certificates, at any time. In our

method, anysisj event orordij event is determined by an underlying intersection between two adjacent

skyline points’ distance function curves. They areexternal eventsbecause they affect the skyline result

we maintain [3]. Therefore, the maximum number of events of these two kinds is|SKall|max/2, since

we reduce multiplex intersections into simple ones and store only one at a time. In contrast,nspij events
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areinternal eventsbecause they are used to adjust internal data structure. As we at most keep onenspij

event for a non-skyline point at any time, the worst case is that every non-skyline point is involved in

such an event, which means the number ofnspij events is not more thanN − |SKall|max. By summing

up all events, the total number of events in the worst case isN − |SKall|max/2. Hence, the ratio of

total events to external events is2N/|SKall|max − 1. In the worst case where|SKall|max is 1, the upper

bound of this ratio is2N − 1 which is linear with the number of all points involved. This worst case

ratio verifies that our KDS is efficient.

As we store datasets in hard-disk, our method needs to do IO when accessing data points. The main

IO cost is incurred by createEvents, which accesses all non-skyline points between the circles of two

adjacent skyline points inLsp. This access can be regarded as a special region query over the dataset

indexed by grid file, asking for points between two circles with same center but different radiuses. The

IO cost of such a query can be estimated with a simple probabilistic model. Let the data space be a

2D unit space (as we use a 2D grid file to index all data points), and the outer and inner circles have

radii Ri and ri respectively when we create events for theith skyline in Lsp. Then the area of the

query circle isS = π(R2
i − r2

i ), and the query will accessSP = π(R2
i − r2

i )P grid cells (pages),

whereP is the total number of grid cells. Next we estimateRi, the distance fromq to thei+1th skyline

point in Lsp. Suppose we do an incrementalkNN search forq, if we have meti+1 permanent skyline

points, then we must have met the thei+1th skyline point already. With the assumption of independent

distribution, (i + 1)N/|SKns| points are met before thei+1th permanent skyline point. Then in the

2D unit space, we haveπR2
i = ((i + 1)N/|SKns|)/N , which leads to an upper bound ofRi satisfying

R2
i = (i+1)/(π|SKns|). Forri, which is the distance from query pointq to theith skyline point, we use

a lower boundmin(
√

i/(π|SKns|), i/(
√

N − 1)) to approximate it. In this way, we get an upper bound

of SP .

Let us compare the time cost of continuous skyline query to that of snapshot skyline queries. Assume

N snapshot queries are triggered within a time period[t1, t2], and the cost of each isCi. Then the total

and average cost of that method are
∑N

i=1 Ci and
∑N

i=1 Ci/N respectively. More snapshot queries incur

higher total processing cost, while each single snapshot query’s cost is expected to vary little from the
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average costC because of the static processing fashion. For the same time period, our method computes

the initial skyline and events at timet1, and then updates the skyline only when some certificate fails

beforet2. Suppose the number of certificate failures during[t1, t2] isN ′ (including the initialization), and

the cost of each isC ′
i, the total and average cost of our method are

∑N ′
i=1 C ′

i and
∑N ′

i=1 C ′
i/N ′ respectively.

The number of certificate failuresN ′ is a constant in a fixed time period, therefore the average costC ′ is

determined by the total cost only. It makes little sense to compare the total costs of these two methods.

If too many snapshot queries are triggered the total cost will be very high, while few snapshot queries

deteriorate the result accuracy. To ensure a fair comparison of average costs, we setN = N ′ in our

experiment. In other words, we trigger snapshot queries by assuming when the skyline changes is

known, which is gained from our method. The experimental study results in next section show that our

method even outperforms the privileged snapshot query method.

Our problem formulation assumes a linear movement model for both query point and data points (if

they are moving), which is justified by the fact that linear movement model has so far been the most

popular one in the literature of moving objects research [1, 12, 16]. This model itself assumes that

moving objects hold their current velocities for a period of time, which is also usually considered as a

system parameter in typical indexing structures such as TPR-tree [23] and Bx-tree [11]. In most cases,

on the other hand, a user can change the speed but seldom changes it every time stamp while still issuing

a continuous query. As long as the velocity keeps for a period of time, our method pays off because it

saves much computation cost in the result maintenance for future, and it always reports result changes

in time, which renders our method beneficial.

4.4 Possible Extensions

It is true that users may issue continuous skyline queries with constraints in SQL WHERE clauses.

Our current solution can be adapted to deal with such constraints with some modifications of the kinetic

data structures (the certificate) to tender the WHERE clauses. In brief, we first apply the given constraints

toSKns so that an updatedSK ′
ns are gained for further use. Then, in the use of the kinetic data structures,

only those data points satisfying the specified constraints will be considered and processed. Thus, our
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method is still effective to support the WHERE clauses.

Our current method is focused on processing single continuous skyline query efficiently, whereas

it still provides helpful indications for concurrent continuous skyline queries.|SKns| obviously is the

common part for all concurrent queries, which means computation savings can be achieved with|SKns|.
Besides, concurrent queries still can share volatile skyline points in some way. These indicate that with

proper adaptations our current method can be used to handle this more complex case.

5 Experimental Evaluation

We conducted our experiments on a desktop PC running on MS Windows XP professional. The PC

has a Pentium IV 2.6GHz CPU and 1GB memory. All experiments were coded in ANSI C++. The

parameters used in the experiments are listed in Table 3. We used both static datasets and moving

datasets. For the former, we explored into the effects of cardinality and non-spatial dimensionality on

the performance. For the latter, we investigated into the effect of points speed distribution and moving

plan update.

Table 3. Parameters used in experiments
Parameter Setting

Dataset cardinality 100K, 200K, . . . , 1000K
Dimensionality of non-spatial attributes2, 3, 4, 5
Distribution of non-spatial attributes Independent, Anti-Correlated
Spatial range 10000× 10000
Non-spatial attribute range [0, 10000]
Point speed range [10, 30]
Speed Zipf factor 0, 0.5, 1.0, 1.5, 2.0
Update interval 30, 60, 90, 120
Update ratio 4%, 6%, 8%, 10%

5.1 Effect of Cardinality

In this set of experiments, we used synthetic datasets of data points with spatial attributes (x and

y) and two non-spatial attributes. For each dataset, all data points are distributed randomly within the

spatial space domain of10, 000× 10, 000, and their non-spatial attribute values range from 1 to 100,000
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according to either independent or anti-correlated distribution. The cardinality of datasets ranges from

100K to 1M. For each set of data we executed 100 continuous queries moving in random directions. For

each query, we randomly generated a point within the data space as the starting position of the moving

query point. The speed of each moving query point is also randomly determined and ranges from 10

to 30. Each query ends as soon as the query point moves out of the data space extent. The minimum,

maximum and average validity time for all these queries are 1, 475 and 149 units respectively. The

experimental results to be reported are the average values on those 100 queries.

Since BBS algorithm is the most efficient method for computing skyline in static settings (both dataset

and query point are static) [18], we adapted it for comparison in our experiments. At each time instance,

the BBS algorithm is invoked to re-compute the skyline in terms of the query point’s new position.

Besides, we extended BBS algorithm to exploit the pre-computed static partial skyline pointsSKns for

pruning, i.e.,SKns is used in every call of BBS algorithm to prune more unqualified tree nodes and data

points. In the result reports that follows, we use “BBS-Ex” to denote this method, in contrast to the pure

BBS method. It is worth noting that both BBS based methods cannot correctly tell when the skyline

changes as our method does.

The comparison was carried out on a fair basis. The same set of randomly generated queries are used

by all methods on the same series of datasets. Processing costs, IO count and CPU time, in all methods

are amortized over the same number of time units when the skyline changes. For both kinds of indices,

R∗-tree and grid file, we set the data page size to 1K bytes.

5.1.1 Datasets of Independent Non-spatial Attribute Values

Figure 11(a) shows that as cardinality increases the logarithm of IO count of our maintenance method

grows steadily, and nearly 2 orders of magnitude less than that of BBS. Figure 11(b) shows that as

cardinality increases the CPU time cost of our maintenance solution grows steadily, in a rate much

less than that of BBS. At each time instance, our maintenance solution does not need to search the

whole dataset again to re-compute the skyline from scratch, instead it mainly involves event processing

which consists less computation of distance and comparison of attribute values than BBS based methods,
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Figure 11. Effect of cardinality of independent datasets

which do a totally new search via R∗-tree. This processing behavior difference leads to the difference on

processing costs. The improvement gained by BBS-Ex compared to pure BBS indicates thatSKns does

help pruning, nevertheless BBS-Ex cannot tell the skyline changes either.

Figure 11(c) shows the effect of cardinality on event queue size at any time unit. The maximum size

is gained throughout all 100 queries. It can be seen that the queue event size increases as the cardinality

increases, the average queue size is much smaller compared to the maximum size, and it does not exceed

6% of the cardinality.

Figure 11(d) shows the effect of cardinality on skyline size and the number of events being processed

at any time unit. It can be seen that complete skyline size roughly increases as cardinality increases, but

the average number of due events at any time unit of skyline change never exceeds 4, which indicates

the efficiency of our maintenance strategy.

By comparing Figure 11(c) and 11(d) we can see that some events are not processed before the query

ends. In a real application, we can take advantage of this observation to further reduce the queue size.

The lifetime of a query can be estimated in a specific scenario, e.g., in 2 hours or this afternoon, and any

event whose due time later than it will be prevented from being enqueued.
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5.1.2 Datasets of Anti-Correlated Non-spatial Attribute Values

We also carried out experiments on datasets whose two non-spatial attributes are anti-correlated. We

used the method in [6] to generate such datasets. Figure 12 shows our continuous skyline query pro-

cessing still outperforms both BBS based methods. The higher cost than that on uniform datasets is

attributed to the increase of skyline size of anti-correlated datasets. The anti-correlation between non-

spatial attributes also makes the events number increases less unsteadily, as the dominance relationship

of data points is more irregular compared to the independent datasets.
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Figure 12. Effect of cardinality of anti-correlated datasets

5.2 Effect of Non-spatial Dimensionality

In this set of experiments, we used datasets of 500K points with non-spatial dimensionality ranging

from two to five to evaluate the effect of non-spatial dimensionality on our solution. Values on those non-

spatial dimensions are of independent distribution. Other settings are the same as in Section 5.1. Datasets

with anti-correlated non-spatial values incur similar performance trends, except that every single cost is

higher than its counterpart on the independent datasets. Hence we omit those figures here. Figure 13(a)
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and 13(b) show the IO and CPU cost respectively. Again our maintenance method outperforms the BBS

based methods, and BBS-Ex is better than pure BBS.

Figure 13(c) shows that the event queue size decreases as the non-spatial dimensionality increases.

The probability that one volatile skyline point will be dominated by others is lower when more dimen-

sions are involved, because all dimensions are independent in our dataset. This reduces the number of

events.

Figure 13(d) shows the effect of non-spatial dimensionality on skyline size and the number of events

being processed at any time unit. It can be seen that both static partial skyline and complete skyline

size increases as non-spatial dimensionality increases, but the average number of due events at any time

unit is still drastically smaller. This indicates that our continuous query processing method still works

efficiently.
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Figure 13. Effect of non-spatial dimensionality

5.3 Effect of Movement Update

In this set of experiments, we used the dataset of 500K data points with spatial attributes (x and y) and

two static non-spatial attributes. Every point in each dataset moves within the 2D extent with a speed
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ranging from 10 to 30. The hash mechanism is based on the same grid file used for static datasets, with

each cell as a bucket containing moving data points. Periodically, a number of moving data points send

in update requests. Queries are picked up in the same way as in Section 5.1.

In this set of experiments, the initial speeds of all 500K points were uniformly distributed in the range

of 10 to 30. We mainly explore into two aspects of moving data points update: update interval length

and the ratio of points requesting update. We varied the update interval length from 30 to 120 time units

and update ratio from 4% to 10%.

Figure 14(a) shows the IO count decreases as the update interval increases, and higher ratio of moving

data update incurs more IO counts. Longer update interval reduces the amortized update cost which

involves changing tuple and recomputing events, and weakens the effects of different update ratios.

While higher update ratio increases update cost at every update time. The similar trend is seen for the

CPU time shown in Figure 14(b).
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Figure 14. Effect of update

5.4 Effect of Speed Distribution

In this set of experiments, we fixed the moving data points update interval to 60, varied the update ratio

from 4% to 10% to see the effect of initial speed distributions. The Zipf factorθ of speed distribution

varies from 0, which is a uniform distribution, to 2, which is a skewed distribution where 80% data

points move slowly and the 20% move fast. Other settings are the same as in Section 5.3.

Figure 15(a) shows that the IO cost of the proposed method is not too sensitive to skewness on speed.

In Figure 15(b), CPU time increases slowly asθ increases from 0 to 1.5, and then decreases whenθ
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increases from 1.5 to 2. For the sameθ, a higher ratio of mobility data set incurs a higher processing

cost. The experiments show that our method performs well for the different distributions of moving

speed.
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Figure 15. Effect of speed distribution

6 Conclusion

In this paper, we have addressed the problem of continuous skyline query processing. The method,

using the kinetic data structure, is based on the analysis that exploits the spatiotemporal coherence of the

problem. Our solution does not need to compute the skyline from scratch at every time instance. Instead,

the possible change from one time to another is predicted and processed accordingly, thus making the

skyline query result updated and available continuously. The experimental studies conducted using

different datasets and parameters demonstrate that the proposed method is robust and efficient. To the

best of our knowledge, this is the first work on skyline queries in the moving context.
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