Continuous Skyline Queries for Moving Objects

Zhiyong Huang HualLu Beng Chin Ooi Anthony K.H. Tung

School of Computing, National University of Singapore
{huangzy, luhua, ooibc, atuh@comp.nus.edu.sg

Abstract

The literature on skyline algorithms has so far dealt mainly with queries of static query points over
static datasets. With the increasing number of mobile service applications and users, however, the need
for continuous skyline query processing has become more pressing. A continuous skyline query involves
not only static dimensions but also the dynamic one. In this paper, we examine the spatiotemporal
coherence of the problem and propose a continuous skyline query processing strategy for moving query
points. First, we distinguish the data points that are permanently in the skyline and use them to derive
a search bound. Second, we investigate the connection between the spatial positions of data points
and their dominance relationship, which provides an indication of where to find changes in the skyline
and how to maintain the skyline continuously. Based on the analysis, we propose a kinetic-based data
structure and an efficient skyline query processing algorithm. We concisely analyze the space and time
costs of the proposed method and conduct an extensive experiment to evaluate the method. To the be:s
of our knowledge, this is the first work on continuous skyline query processing.

Keywords: Skyline, continuous query processing, moving object databases.

Regular submission to IEEE TKDE (submitted in July 2005, first revised in December 2005,
revised again in July 2006)
Original log number: TKDE-0272-0705

Contact Author:

Hua Lu

School of Computing

National University of Singapore

3 Science Drive 2, Singapore 117543

Phone: (65)-6874-4774

1 Introduction

With rapid advances in electronics miniaturization, wireless communication and positioning tech-
nologies, the acquisition and transmission of spatiotemporal data using mobile devices are becoming
pervasive. This fuels the demand for location-based services (LBS) [23, 4, 29, 28]. A skyline query
retrieves from a given dataset a subset of interesting points that are not dominated by any other points
[6]. Skyline queries are an important operator of LBS. For example, mobile users could be interested in
restaurants that are near, reasonable in pricing, and provide good food, service and view. Skyline query
results are based on the current location of the user, which changes continuously as the user moves.

The existing work on skyline queries assumes a static setting, where the distances from the query
point to the data points do not change. Using the common example in the literature shown in Figure
1, assume there is a set of hotels, and for each hotel, we have its distance to thextzeaghafd its
price (y axig. The interesting hotels are all the points not worse than any other point in both the distance
to the beach and the price. Hotels 2, 4 and 6 are interesting and can be derived by a skyline query, for
their distances to the beach and their prices are preferable to those of any other hotels. Note that a point
with minimum value in any dimension is a skyline point — hotels 2 and 6 for example. Also, skyline is
different from convex hull in that it is not necessarily convex. In this example, hotel 4 makes the skyline

not convex.

room price
skyline
o1

®3

distance to beach

Figure 1. An example of skyline in a static scenario

In the above query, the skyline is obtained with respect to a static query point; in this case, it is the
origin of both axes. Now, let us change the example to the scenario of a tourist walking about to choose

a restaurant for dinner. We consider three factors in the skyline operation, namely the distance to the

2

restaurant, the average price of the food and the restaurant rank. Different from the previous example,
the distance now is not fixed since the tourist is a moving object. Figure 2 shows the changes in the
skyline due to the movement. In the figure, the positions of the restaurants are drawn in the X-Y plane
while the table shows their prices and ranks. Lower values are preferred for all three dimensions. A
tourist as the query point moves as the arrow indicates from#jrt@t,. The skyline — which refers to

the interesting restaurants — changes with respect to the tourist’s position. Skylines at different times are
indicated by different line chains. The situation becomes more complex when all data points can move,
which is frequent in real-time applications like e-games and digital war systems. For instance, one player
in a field fighting game wants to keep track of those enemies who are close and most dangerous in terms

of multiple aspects like energy, weapon, strategy and etc.

y Restaurant | Price Rank

1 6 4

. /0 2 58 | 4

query pointat ty 3 4 1

ty /,@-\skyline att, 4 28 3
sw” 5

skyline at ty ° 2

.6 6 4

Figure 2. Skylines in mobile environment

In this paper, we address the problem of continuous skyline query processing, where the skyline query
point is a moving object and the skyline changes continuously due to the query point's movement. We
solve the problem by exploiting its spatiotemporal coherence. Coherence refers to properties that change
in a relevant way from one part to other parts within a scene in computer graphics [8], which is used
to build efficient incremental processing for operations such as area filling and face detection. We use
spatiotemporal coherence to refer to those spatial properties that do not change abruptly between con-
tinuous temporal scenes. The positions and velocities of moving points do not change by leaps between
continuous temporal scenes, which enables us to maintain the changing skyline incrementally. First, we
distinguish the data points that are permanently in the skyline and use them to derive a search bound

to constrain the processing of the continuous skyline query. Second, we investigate the connection be-

tween the spatial locations of data points and their dominance relationship, which provides an indication
of where to find changes in the skyline and update it. Third, to efficiently support the processing of
continuous skyline queries, we propose a kinetic-based data structure and the associated efficient query
processing algorithm. We present concise space and time cost analysis of the proposed method. We alst
report on an extensive experimental study, which includes a comparison of our proposed method with
an existing method adapted for the application. The results show that our proposed method is efficient
in terms of storage space, and is especially suited for continuous skyline queries. To the best of our
knowledge, this is the first work on continuous skyline queries in the mobile environment.

The rest of this paper is organized as follows. In Section 2, we present the preliminaries including our
problem statement and a brief review of related work. In Section 3, we present a detailed analysis of the
problem. In Section 4, we propose our solution which continuously maintains the skyline for moving
query points through efficient update. The experimental results are presented in Section 5. Section 6

concludes the paper.

2 Preliminaries

2.1 Problem Statement

In LBS, most queries are continuous queries [28]. Unlike snapshot queries that are evaluated only
once, continuous queries require continuous evaluation as the query results vary with the change of
location and time. Continuous skyline query processing has to re-compute the skyline when the query
location and objects move. Due to the spatiotemporal coherence of the movement, the skyline changes
in a smooth manner. Notwithstanding this, updating the skyline of the previous moment is more efficient
than conducting a snapshot query at each moment.

For intuitive illustration, we limit the data and the moving query points to a two-dimensional (2D)
space. Our statement is however sufficiently general for high-dimensional space too. We have a set of
n data points in the formatz;, y;, vy, Vyis Pity s Pijs - Pim> (¢ = 1,...,n), wherex; andy; are

positional coordinate values in the spacg andv,,; are respectively velocity in the X and Y dimensions

while p;;'s (j = 1, ..., m) are static non-spatial attributes, which will not change with time.

For a moving objecty; andy; are updated using,; andv,,. When itis stationary,,; andv,,; are zero.
We useT'uple(i) to represent thé-th data tuple in the database. Users move in the 2D plane. Each of
them moves in velocityv,,, v,), Starting from positior{z,, y,). They pose continuous skyline queries
while moving, and the queries involve both distance and all other static dimensions. Such queries are
dynamic due to the change in spatial variables. In our solution, we only compute the skyling, i
at the start timé. Subsequently, continuously query processing is conducted for each user by updating
the skyline instead of computing a new one from scratch each time. Moving points are allowed to
change their velocities, which will be addressed in Section 4.2.1. Without loss of generality, we restrict
our discussion to what follows the MIN skyline annotation [6], in which smaller values of distance or

attributep;; are preferred in comparison to determine dominance between two points.
2.2 Time Parameterized Distance Function

In our problem, the distance between a moving query point and a data point is involved in the skyline
operator. For a moving data poipt; starting from(z;, ;) with velocity (v;,, v;;,), and a query point
starting from(z,, y,) moving with (v, v,,), the Euclidean distance between them can be expressed as
a function of timet: dist(q(t), pt;(t)) = Vat? + bt + ¢, wherea, b andc are constants determined by
their starting positions and velocities: = (vi; — vg)? + (Viy — vgy)% b = 2[(z; — 24) (Viz — Vgu) +
(Yi — yg) (Viy — vgy)]; ¢ = (2 — 29)* + (y; — y,)?. For simplicity, we use functiotf;(t) = at® + bt + ¢
to denote the square of the distance. Whperns static,a, b andc are still determined by the formulas
above withv;, = v;, = 0. This time parameterized distance function has been used in literature to help

processing queries in moving object databases [27, 10, 21].
2.3 Terminologies

For two pointspt; andpts, if dist(pty,q) < dist(pts,q) andpt,.pr < pte.pr, Vk, and at least one
holds, i.e. 3k, such thapt;.p, < pts.pi, We saypt,; dominatesit,. We saypt; andpt, areincomparable

if pt; does not dominatgt,, andpt; is not dominated byt,. We usept; < pts, to represent thatt,

5

dominateit,, andpt; < pt, to represent thait; dominatet, for all static non-spatial dimensions.

In kinetic data structures, @ertificateis a conjunction of algebraic conditions, which guarantees the
correctness of some relationship to be maintained between mobile data objects. Readers are referrec
to [3] for the formal and detailed description of kinetic data structures (KDS). In this paper, we use a
certificate to ensure the status of a data point is valid within a period ofttiff@r example, a certificate
of a point can guarantee it staying in the skyline for a period of tinigeyondt, its certificate is invalid

and an event will trigger a process to update the certificate, which may result in a change in the skyline.

2.4 Related Work

One area with related work concerns skyline queries. Inspired by work on contour problem [15],
maximum vectors [14], convex hull [20] and multi-objective optimization [25], Borzonyi, Kossmann
and Stocker [6] introduced the skyline operator into relational database context and proposed two pro-
cessing algorithmsBlock Nested LoofBNL) and Divide-and-Conquef(D&C). D&C approach parti-
tions the dataset into several parts, processes each part in memory and finally merges all partial skylines
together. BNL scans the dataset sequentially and compares each new point to all skyline candidates
kept in memory. Chomicki, Godfrey, Gryz and Liang [7] proposed a variant of BNL by pre-sorting the
dataset according to some monotone scoring function. Tan, Eng and Ooi [26] proposed two progressive
processing algorithms. IBitmapapproach, each data point is encoded in a bit string and skyline is
computed by some efficient operations on bit matrix of all data pointéndaxapproach, data points
are transformed into a single dimensional space and then indexed-ne®which facilitates skyline
computation. Kossmann, Ramsak and Rost [13] proposed another progressive processing algorithm
Nearest Neighbo(NN) based on the depth-first nearest neighbor search [22] viagle. Papadias and
Tao [18, 19] proposed an improved algorithm namigdnch-and- Bound Skyline (BBS) based on the
best-first nearest neighbor search [9]. By accessing only nodes that contain skyline points, BBS incurs
optimal node access and so far is the most efficient skyline algorithm in static settings. In a slightly
different context, Balke, Guntzer and Zheng [2] addressed skyline operation over web databases where

different dimensions are stored in different data sites.

Another area with related work is that of kinetic data structures (KDS). Basch, Guibas and Hersh-
berger [3] proposed a conceptual framework for KDS as a means to maintain continuously evolving
attributes of mobile data. KDS keeps the relationship of interest between data in some specific struc-
tures, and the contents do not change unless the relationship has changed. In this way, data retrieva
results based on the relationship of interest can be maintained when the data points move continuously.
KDS and its underlying ideas have inspired some unique query processing techniques for moving ob-
jects database (MOD). Mokhtar, Su and Ibarra [16] proposed an event-driven approach to maintain the
results ofk-NN queries on moving objects while time elapses. All moving objects are sorted by their
distance to the query point, while events are computed and stored to indicate when and how the order
will change. To reduce the points sorted in the KDS, Iwerks, Samet and Smith [10] proposed the Con-
tinuous Windowing (CW)-NN algorithm, which limits search to a smaller region and accesses other

points only as needed.

3 The Change of Skyline in Moving Context

In this section, we analyze the change in skyline in continuous query processing. We first point out
the search bound that can be used to filter out unqualified data points in determining the skyline for a
moving query point. Then we carry out an analysis of the skyline change due to the movement, which

reveals some insights for the algorithms in the next section.
3.1 Search Bound

Although in our problem the skyline operator involves both dynamic and static dimensions, some
data points could be always in the skyline no matter how the data points and query points move. This
is because they have dominating static non-spatial values, which guarantee that no other objects car
dominate them. We denote this subset of skyline pointSigs, and the whole set of skyline points as
SK,;. We call SK,,, thestatic partial skylineandS K ,; thecomplete skyline.

We call points inS K,,; permanent skyline pointsn this way, we distinguish those points always in

the complete skyline from the rest of the dataset. The benefit of this discrimination is threefold:

7

(1) It extracts the unchanging part of a continuous skyline query result from the complete skyline
S K,y This allows efforts in query processing to be concentrated on the changing part on$ii,g +
SK,s. We name that pa§ K ;,,, and call those points in Wtolatile skyline pointsin continuous skyline
query processing, only K., needs tracking for each query. In this manner, we can reduce overall
processing cost.

(2) The discrimination can reduce the amount of data to be sent to clients. Sif)ges always in the
final skyline result, we need to send it only once from server to client. This benefits mobile applications
where clients and servers are usually connected via limited bandwidth.

(3) Static partial skyliné& K, also provides an indication of the search bound for processing a contin-
uous skyline query. SincgK,, is always contained I8 K ;, for any point not inS K, to enterS K,
it must be incomparable to any item #¥,,,. More specifically, it must have advantage in distance to
the query point since it is dominated in all static dimensions by at least one pdiaf,jn This leads to

Lemma 3.1.1.

Lemma 3.1.1 At any timet, if sp; is the farthest point irb K, to the query point, then any poipt not

nearer to the query point thasp, is not in the complete skyline.

Proof. Obviouslypt ¢ SK,, thusdsp € SK,, s.t. Vk,sp.pr < pt.pr and at least one inequality
holds. Fromdist(q, sp) < dist(q, spy) anddist(q, spy) < dist(q,pt), we getdist(q, sp) < dist(q, pt)
by transitivity. Because of its disadvantage in both spatial and non-spatial dimensgisdpminated

by sp at timet so that it is not in the complete skyline.

Lemma 3.1.1 indicates a search bound for the complete skyline. This can be used to filter out unqual-
ified points in query processing: those farther away than all point&ip, cannot be in the complete
skyline. Refer to the example in Figure2K,,; = {3,5}. Attimet,, SK.,, = {1} and restaurants 2, 4
and 6 are not in the skyline as they are farther to the query point than restaurant 5, which is the farthest

permanent skyline point to the query point.

3.2 Change in the Skyline

When the query poing and data points move, their distance relationships may change. This causes
the skyline to change as well. As discussed in Section 3.1, such changes only hapjyén toi.e.
SK.aq — SK,. Itis also mentioned in Section 2.2 that the square of the distance from each point to the
guery point can be described as a function of ttmigure 3 illustrates an example of such functions of

several points with respect to the moving query point.

pts, distance?
pts

Pty

Plo~ T
pty——— <Pty Pty &>

0 ty time

Figure 3. An example of distance function curves

Intuitively, a skyline points; in SK,, before timet, may leave the skyline after,. On the other
hand, a non-skyline pointsp at time ¢, may enter the skyline and become part%k ., aftert,.
For the former, after time,, s; must be dominated by a skyline poist in SK,;. For the latter,
whennsp enters the skyline after time,, those points that used to dominaiep beforet, will stop
dominating it. That moment, is indicated by an intersection of two distance function curves. We use
<pty, pty, t,> to represent an intersection shown in Figure 3, where at#tjrpeint pt, is getting closer
to the query than pointt,, opposite to the situation befotg. From the figure, we can see that such an
intersection only alterst; andpt,’s presence in or absence fro$ik ., if it does cause change. This is
because before and after the intersection, the only change of comparigen(ispt,) < dist(q, pts)
to dist(q, pts) < dist(q,pt1). If no intersections happen, the skyline does not change at all because
the inequality relationship between the distances of all points to the query point remains unchanged.
Nevertheless, not every intersection necessarily causes the skyline to change. Whether an intersectior
<pti, pta, t,> causes change is relevant to which ggt and pt, belong to just before time,, i.e.,

SKys, SKeng o SKqy (neither of the former two, i.e., not ifK,;). We have following lemmas to

9

clearly describe these possibilities.

Lemma 3.2.1 An intersection<pt,, pts, t,> (dist(q, pt1) < dist(q, pt2) beforet,) has no influence on
the skyline if one of the following conditions holds befgre

Q) pt; € SK,,s andpt, € SK,4

(2) pt1 € SK,,s andpty € SK pg

() pt1 & SKyy andpts € SK,4

(4) pt1 & SKay andpty € SKeg

(5)pt1 & SKay andpty & SKay

Proof. (1) This is obvious according to the definition of permanent skyline points.

(2) Obviouslypt; does not leave the skyline. Assuming thaf leaves the skyline after,, there must
be another skyline pointdominating it, i.e.dist(q, s) < dist(q, pts) for t > t, andVk, s.pr < pta.pg.

Since intersection<pty, pto, t,> does not change the distance inequality relationship betwesrd

pta, dist(q, s) < dist(q, pty) also holds fort < t,. Thuss dominategt, beforet,, which contradicts

pta € SK.p, beforet,. Thereforept, does not leave the skyline either, and there is no influence on the

skyline.

(3) Sincept; ¢ SK,, beforet,, there must be at least one skyline paint SK,; dominating it.
Becauselist(q, s) < dist(q, pt;) does not change after the intersectierstill dominatespt; and thus
pt1 will not enter the skyline. Sincgt, is a permanent skyline point, it will not leave the skyline.

(4) Due to the same reasoning as in ¢3),will not enter the skyline aftet,. Due to the same reasoning
in (2), pt, itself will not leave the skyline after,.

(5) Due to the same reasoning as in (3), neitltemor pt, will enter the skyline aftet,. ¢

Lemma 3.2.2 An intersection<pt, pts, t,.> (dist(q, pt1) < dist(q, pty) beforet,) may have influence
on the skyline if one of the following conditions holds betfgre

(1) pt; € SK,,, andpty, & SK

(2) pt1 € SKepg andpty € SKs

10

Table 1. Intersections and possible skyline changes

43! \ pta SKns SKchg SKall
SKns - - \/
SKeng v Vv v
SKau — — —

(3) pty € SKchg andpt, € SKchg

(4) pt1 € SKeng andpty & SKay

Proof. (1) Obviouslypt; will not leave the skyline aftet,. Sincept, ¢ SK,; beforet, there must be
at least one skyline point ifK,; dominating it. Ifpt; is the only dominatingt, beforet,, aftert,, pt;
will stop dominatingpt, and no other skyline points will dominate it. Consequentty,will enter the
skyline aftert,.
(2) Obviouslypt, will not leave the skyline aftet,. But if Vi, pte.pr. < pti.p, holds,pt, will dominate
pt; and causet, to leave the skyline sinaést(q, pto) < dist(q, pt1) holds aftert,.
(3) If VE,pta.pr < pty.pr holds, pty will dominate pt; and causept; to leave the skyline because
dist(q,pts) < dist(q,pt1) holds aftert,. Due to the same reasoning as in (2) of Lemma 3.2:4,
itself will not leave the skyline since no other points will dominate it after
(4) Due to the same reasoning as in (&), may enter the skyline after.

Table 1 lists all possibilities attached to an intersection. For (4) in Lemma 3.2.2, an interesting issue

is whethemt, can dominateyt; after timet,.

Lemma 3.2.3 For an intersection<pty, pto, t,> (dist(q, pt1) < dist(q, pts) beforet,) in whichpt;, €
SK.ng andpty & SK,y beforet,, pt; will not be dominated byt, and leave the skyline aftey, if no
other intersection happens at the same time and the static non-spatial valpgsaoi pt, are not the

same for all dimensions.

Proof. Assume thapt; will be dominated bypt, and leave the skyline after, we havepty < pt;.
Becausent, is not in SK,; beforet,, in SK,; there must exist at least op¢; dominatingpts, i.e.
pts < pto. For simplicity of presentation, we assume thatis the only one skyline point of such kind.

By transitivity, we havept; < pt;. But becauset,; is in SK.,, the distance frompt; to the query

11

point must be larger than that fropn, beforet,; otherwisept; < pt; meangt,’s absence frony K ..
Thus forpt, to dominatept; aftert,, it must first become incomparable p6;, which requires that an
intersection betweent; andpts must happen no later thap. If the time of intersection is earlier than
t., however,pt, will be in SK,.,, beforet,. Thus that time must only be,. Therefore, their three
distance function curves must intersect at the same point<and pt,, t,> is not the only intersection
at timet,,.

Note thatpt; cannot bept; in the above proof. Otherwise, befate we havept; < pt,. Thus,3k such
thatpt,.pr < pto.pr because their static non-spatial attribute values are not the same for all dimensions.

This meangt, cannot dominatet; even after time,. o

distance?
<pty, pty, &>
<pty, Pt3, &>

Pt
tpin S|
913&p 2
<ptg, ptz, ;>

0 t-Dt time

Figure 4. An example of multiplex intersection

Figure 4 shows such a scenario indicated by Lemma 3.2.3, and we call such an intersedtijgex
intersection One feasible processing strategy for this situation is to only consigertifas the chance to
enterSK.,,. We need to check jft; is the only one that used to dominatg. We ignore the possibility
thatpt, might enter the skyline and start dominatipig at the same time. That possibility is indicated
by other intersections at the same time, each of which is to be processed in isolation.

Accordingly, the intersectiorpt,, pto, t,> in Figure 4 will be ignored. After time,, both pt,
andpts are inSK,; butpt; is not. This result can be achieved as long as the three intersections are
correctly processed one by one according to our discussion above, regardless of the order in which they
are processed. Now, let us look at the processing of the intersections in the order listed in the figure.
First, <pt, pts, t,> does not change the skyline becapsedoes not dominatet, and thuspt, will

not enterSK.,, though it is getting closer to the query point thaty. Second,<pt,, pts,t,> will

12

causept; to leaveS K, becauset, starts dominating it. Finally<pts, pts, t,> will causept, to enter

SK., becausets is the only one that used to dominaig and now it stops dominating the point as its
distance to the query point becomes larger. The procedures of other processing orders are similar and
thus omitted due to space constraint.

An extreme situation is that many distance function curves are involved in the same multiplex inter-
section. Our processing strategy can also ensure the correct change as long as each legal intersection |
processed correctly in isolation. In fact, this situation is rather special and seldom happens because it
requires that all the points involved to be on the same circle centered at the query point. This situation
usually happens to minority data points only, and it becomes more infrequent in the moving context.

To summarize the above analysis, we only need to take into account two primitive cases in which the

skyline may change.

Case 1Just before time,, s, € SKq, and3ds; € SKy; s.t. s; < s;,. Attimet,, an intersection
<si, sj,t,> between their distance function curves happens. Then fromttiram, s, ¢ SK.;, and

leaves the skyline becausg< s;, ands; € SK,y; still.

Case 2 Just before time,, nsp ¢ SK,; and3ds;, € SK,; S.t. s; < nsp. Attimet,, an intersection
<s;,nsp, t,> between their distance function curves happens. Then fromttiroa, nsp € SK,

becauseAs; € SKy S.t.s; < nsp.

Case 1 determines a skyline change, whereas Case 2 suggests a possibility of change which require
further checking. For a period of time before the change in Casenust be out of the circle determined
by the query poingy ands;. We useC'ir(q, s;) to denote the circle whose centergiand radius is
dist(q, s;). In Case 2, the possible non-skyline poinp is also out of circleCir(q, s;) for a period of
time before the change. Namely, the distance from each current skyline point (permanent or volatile)

provides indication of future change in the skyline.

13

3.3 Continuous Skyline Query Processing

We now address the issues of continuous skyline query processing. A naive way is to pre-compute
and store all possible intersections of any pair of distance function curves, and then process each one
when its time comes according to the discussion in Section 3.2. This method produces many false hits
which actually do not cause skyline to change as we have shown in Table 1.

Based on those observations, we compute and store intersections in an evolving way. We only keep
those intersections with possibility to change the skyline according to Table 1. Specifically, first, we
get the initial skyline and compute some intersections of the distance curves in terms of the current
skyline points. Then, when some intersections happen and the skyline is changed, we further compute
intersections in terms of the updated skyline. By looking into the near future, we ensure that the skyline
query result is kept updated, and more information will be obtained later for updating the skyline further
into the future.

Besides, we keep all the current skyline points sorted based on their distance to the query point.
At each evolving step, we only compute those possible intersections that involve points between two
adjacent skyline points; ands;;, and will happen before; ands; ; stop being adjacent. Therefore,
we need to keep track of any intersection between two skyline points that are adjacent to each other in

sorted order.

distance?

Otyty g tsg time
Figure 5. An example of evolving intersections
Figure 5 shows the distance curves of the restaurant example in Figure 2. Af tiestaurants,, r3

andr; are three adjacent skyline points, and only those two dotted intersections are computed and stored

for future processing. Then at tintes, 7 will leave the skyline ag; becomes to dominate it. Next at

14

time¢s 4, 74 Will enter the skyline as its only dominatog stops dominating it. Not all intersections are
stored for processing, e.g., the intersection betwgemdr,, and that between, andr;.

Note our method is a kind of sweeping algorithm but with two distinctive features. We have a search
bound which renders the search limited in some specific regions instead of the whole data space. The
case study in Section 3.2 helps identify result changes and reduce processing in the maintenance. The

next section addresses the data structure and relevant algorithms in detail.

4 Data Structure and Algorithms
4.1 Data Structure

We use a bidirectional linked list, naméd,, to store all current skyline points, which are sorted in
ascending order of their distances to the query point. For each current skylinespoird keep an
entry of form(flag, tuple_id, a,b, c, t,,tsip). flag is a boolean variable indicating i is in SK,,;.
tuple_id is the tuple identifier of; which can be used to access the recard, ¢ are coefficients of the
distance function between and query poing, introduced in Section 2.2, is only available to each
changing skyline point, indicating its validity time,;,, is the time whers; will exchange its position
with its successor ih;,. Besides.,,, a global priority queué). is used to hold all events derived from
certificates to represent future skyline changes, with preference being given to earlier events.

Based on the analysis in Section 3, we define three kinds of certificates used in the KDS, which are
listed in Table 2. The first column is the name of a certificate, the second is what the certificate to
guarantee, and the third lists the data points involved in the certificate.

An event occurs when any certificate fails due to the distance change resulting from movement. Each
event is in the form oftype, time, sel f, peer), wheretype represents the kind of its certificateéme
is a future time instance when the event will happen; &g andpeer respectively represent skyline
point and relevant data point involved in the event.

Certificates;s; ensures for an existent volatile skyline poigtthat any other skyline point; with

the potential to dominate; (s, < s;) keeps being farther to query poigthans;, therefores, is not

15

Table 2. Certificates
Cert. | Objective Data Points

5isj | Vs; € SKcng, 55 € SKqu, St self = s;
s; = s; — dist(q, s;) < dist(q,s;) | peer = s;
nsp;j | Ynsp; & SKau,Vs; € SKyy, St self = s;

$; < nsp; — peer = nsp;
dist(q, si) < dist(q, nsp;)

ord;j | Vs; € SKqy, S.t. self = si
ds; € SKay N sj 2 si peer = §;

Ns; = s;.nextin Lg,
— dist(q, s;) < dist(q, s;)

dominated by any of them and stays in the skyline. Hef¢ andpeer respectively point te;’s and
5;'s entries inLy),.

Certificatensp;; ensures for a non-skyline pointp that all those skyline points currently dominating
it keeps being closer to query poigthannsp, thereforenps is prevented from entering the skyline.
When a certificate of this kind fails &tme, nsp will get closer to query poing than one skyline point
s;, but whether it will enter the skyline or not depends on whetherthe only one that used to dominate
it. This will be checked when an event of this kind is being processed. stéfeoints tos;’s entry in
L,,, whereageer is the tuple identifier of data poimtsp.

Certificateord;; ensures for an existent skyline poithat its successay; in L, keeps being farther
to query pointy than it. Thiss; does not have the potential to dominateotherwise ary;s; certificate
will be used instead. Here:l f points to the entry of the predecessor skyline point in the pairpand
to the successor. Certificated;; not only keeps the order of all skyline pointsin,, but also implies a
way to simplify event computation and evolvement. For Case 1 described in Section 3.2, it also involves
a position exchange if,, i.e., just befores; dominatings;, s; must be its successor. And we need to
determine if an exchange ib;, really results ins;s; event. In this sense, we only need to checksfor
its successor to compute a possible; or ord,; event. Ifs; does have as;s; or ord;; event, the event'’s
time value is exactlys;’s validity time,. If s; has no such event, its validity time is set to infinity. An
event of certificateusp;; with self = s; is supposed to have a time stamp no later thar, and those

events with a later time are not considered.

16

Initially, L, contains the current skyline points, afjd contains events that will happen in the nearest
future. As time elapses, every due event is dequeued and processed basegpen\isile processing
due events and updating the skyline accordingly, our method also creates new events for future. Thus,
Q. evolves with due events being dequeued and new events being enqueued, providing information for
correctly maintaining the skyline. At any timeafter all due events are processédg, is the correct

skyline with respect to the query poigis current position.
4.2 Algorithms

For a given dataset, itSK,,; is pre-computed and stored as a system constant. Before maintaining
skyline continuously, an initialization is invoked to compute the inifidl.,, and the earliest events.
To computeS K, over static dataset for the query point’s starting position, in order to use the search
bound determined by K., and reduce intermediate steps to access data tuples when computing events,
we use the grid file to index all data points. Grid file provides a regular partition of space and at most
two-disk-access feature for any single record [17]. In our solution for the static dataset, we use a simple
uniform 2D grid file dividing the data space intox v cells to indexD’, and the data points within each
cell are stored in one disk page.

For the similar reasons we use a hash based method [24] to index moving data pdmtsTihe
data space is also divided into regular cells, with each representing a bucket to hold all those moving
data points within its extent. Data points can move across adjacent cells with the velocities in its tuple,
which is monitored by a pre-processing layer and declared in an explicit update request to the database.
An update request can also change a data point’'s speed. How to deal with the updates of moving data
points to maintain the correct skyline will be addressed in Section 4.2.1. Except for the difference on
underlying indexing schemas, the initializations for static and moving datasets share the same framework
and events creation algorithm.

The initialization framework is presented in Figure 6. First all permanent skyline poist&jn are
inserted intal, according to their distance to query poirg starting position. The farthest distance is

recorded in variabléd,,, as the search bound. Then starting from eéll,,, whereg’s starting position

17

Algorithm initialization(q)
Input: ¢ is the query point
Output: the skyline forg’s starting position
the event queue to be used in maintenance

/l'load S K, into skyline list

for eachs; in Sk,

Computes, b, ¢ in terms ofg;

3. Insert an entryl, s;, a, b, ¢, 00, 00) iNto Lyy;
/I search bound determined BYK,,;

dyna = dist(Lgp.last, q);
/I compute initial skyline
5. Search the grid cetkll,,, in whichg lies;
6. while there still exist grid cells unsearched
7. for eachcell cell; on next outer surrounding circle
8
9
1

e

B

if (mindist(q, cell;) > dpna)
break;
0. elseSearcheell;;
/l compute events
11. for eachs; from Ly,.last.prev 10 Lg,. first
12. createEventsy, q);
13. handleBound{ t...);

Figure 6. Initialization framework

lies, all grid cells are searched in a spiral manner that those on an inner surrounding circle are searched
before those on an outer one. Cells beydpg are pruned, wherevindist is computed as in [22] by
regarding a cell as an MBR. Points in a cell not pruned are sequentially compared to the current skyline
points in L,,, which is adjusted with deletion or insertion if necessary. After all cells are searched or
pruned, algorithm createEvents is invoked for each skyline pgifftom outermost to innermost, to
compute all events for all skyline points except the last gpg. Finally, algorithm handleBound is

called to compute a possibteyp;; event for those points farther thap,;.

Algorithm handleBound is presented in Figure 7. It does not involve all outer non-skyline points of
S1st'S, INstead it is limited to an estimated region. This rediois the difference between the two circles
determined by, and query poing at two different times, the current time and the earliest event time
thext IN the future. Only those non-skyline pointsdhhave chance to enter the skyline before;.

Algorithm createEvents is presented in Figure 8. For a given skyline ppintL,,, the algorithm

first computes the timé whens; and the next skyline point; in L, will exchange their position in

18

Algorithm handleBoundy, t..,)

Input: ¢ is the query point

Output: upcoming events fof,.last

thest = Qe. first.time;

Slast = Lsp.last,

C= CiT(Q(tnext)v Slast) - CiT(Q(tcur)p Slast)

for each pointnsp in C

for each s; from s;q 10 L), first
t = timensp will get closer tog thans;;
if ((t > s;.ty)or (t > s;.tskip)) CONtinue;
if (Vk,s;j.pr < nsp.pi)
Enqueued;,t, nsp, nsp;;) t0 Qe;
0. break;

=

PO®NDUA®WN

Figure 7. Handle bound

the list, i.e. whers; will get closer tog thans;. If ¢ is later thans,’s skip time ors;’s validity time, it
is ignored. Otherwise, it means ays; event depending og;’s validity time if s; € SK.,, oritis a
simple order change event. Then for each non-skyline poipntbetweenC'ir(q, s;) andC'ir(q, s;), the
algorithm computessp;; event by looping on all skyline points in the inner:efp. Once amsp event
is derived, the loop on all inner skyline points breaks.

In maintaining the skyline, the due events are dequeued and processed according to its type, and new
events are computed based on new positions. As in the initialization, the event of points out of the last
skyline point is computed in a special way with an estimated search region by calling handleBound.
The actions to process each kind of events are described as follows. Egt; @vent,s; is removed
from the skyline and new events are computedsf@s predecessor because its successor skyline point
in L, has been changed. For asp;; event, the non-skyline pointsp will be checked against all those
skyline points closer to the query point, to see if they will enter the skyline. If not, a possible sew
event is computed. Otherwise it will be added into the skyline and events will be computed for itself and
its predecessor. For amd;; event theL,, is correctly adjusted by switching ands;, and events are

computed for themselves and their predecessor.

19

Algorithm createEvents(, q)
Input: s; is a skyline pointinLg,
q is the query point
Output: upcoming events fas;
1. peer = null;
/Il compute events with next skyline pointin,
§5 = s;.next;
t =times; ands; will exchange position;
if ((t< Sj-tskip) and (t < Sj.tv))
if (Is;.flag)
if ((t < s;.ty) and (Vk, sj.pr < 8;.01))
8;.ty = t; peer = s;;
elses;.tspip = t,
I/l enqueue relevant events
9. if (peer # null)
10. Enqueues, s;.t,, rep, 5i55) 10 Qe;
11. if (Si'tskip < Si.tv)
12. EnqueuesQ, Si.ts]ﬂ'p, Sj, O’I“dij) to Qe;
/l compute events involving non-skyline points
13. for eachpointnsp betweerCir(q, s;) andCir(q, s;)
14. for each s, froms; to L. first

©ONOOA~WN

15. t = timensp will get closer tog thans;
16. if ((t > sg.ty) Or (t > sp.tskip)) CONtiNUE,
17. if (Vk, sk.pr < nsp.pk)

18. Enqueues(, t, nsp, nsp;;) t0 Qe;

19. break;

Figure 8. Create events
4.2.1 Updating the Moving Plan

A moving data pointnpt;’s distance function does not change unless its moving plan changes. When
this happens, the intersections of its distance function and other points’ will also be changed as a conse-
guence, which invalidates those events computed baseghtis old distance function. Figure 9 shows
how a data point’s velocity change causes the intersections of the function curves to change. Thus, it
may cause the skyline to change in the future.

To ensure correct process with updates, we need to add for each moving object’s tuplet g field
indicating its last update time. We define an update request for any moving datarpojnh the form
update(id, x,y, v, vy). id iS mpt;’s identifier which can be used to locate its tuple directtyandy

represent its current position:, andwv, represent its current speed. The algorithm updateMotion in

20

distance?
Pty

new curve

Py~ > . --oldcurve

0 tupt time

Figure 9. An example of the change of moving plan

Figure 10 is used to process such updates. When an update request comes in, it is first cheeked if
has moved to a new cell and if its speed has been changed since the last updasad If indicate
thatmpt; has moved to a different cell, we need to remove it from the old one and insert it into the new
one (line 1-5), which incurs 2 10s. i, andv, indicate thatnpt;'s speed is not changed, the algorithm
stops (line 6-7). Otherwise, we need to update the speed recarghfp(line 8-10), and adjust relevant
events starting from the first skyline points till the first one outgft; (line 17). If mpt; is a skyline
point, then its events will be re-computed and the algorithm stops (line 12-15). Otherwise, the algorithm
continues to computesp; events formpt; (line 19-24). With the independent distribution assumption,
(|SKau| + 1)/2 skyline points are expected to be accessed. To facilitate location of events involving a
data point efficiently, the priority event queue is implemented using-#&e, and each current skyline
point s; has a list of pointers to all those events whesk is s;.

It also can be seen in Figure 9 that right at the montgptwhen an update request comes in, the
skyline does not change abruptly. To keep the skyline correct, the update request is only processed
after all due events are processed, i.e., updateMotghéat timet,,,, executes after updateSkylingy)

completes.
4.3 Cost Analysis and Discussion

The space cost incurred by our method consists of two components: the space used to keep the skyline
and that used to store events. Faf-dimensional dataset withv points subject to independent distri-

bution, the expected size of its skylineris,, = O((In N)¢~1) [5]. Since there aren static dimensions

21

Algorithm updateMotionfeq)
Input: req is an update request
Output: updated hash index, tuple agd
1. celly = Tuple(req.id).cell;
celly = Hash(req.xz,req.y);
if (celly # celly)
Tuple(req.id).cell = celly;
removereq.id from cell; and insert it tacells;
if (req.v, == Tuple(req.id).v,) and (req.v, == Tuple(req.id).v,))
return;
Tuple(req.id).v, = req.v,
Tuple(req.id).vy = req.vy
0. Tuple(req.id).typr = teur
// Adjust relevant events
11. foreachs; in Ly, from Ly,. first
12. if (s;.tuple_id == req.id)

PO®ND TR ®WN

13. Delete alls;’s events;

14. createEvents(, q);

15. return;

16. Delete alls;'s events withpeer == req.id;

17. if (dist(q, Tuple(req.id)) < dist(q, s;)) break;
18. nsp = req.id;

19. for eachs; froms; to L. first

20. t = timensp will get closer tog thans;;

21. if (t > s;.ty)or (t > sj.tskip)) CONtinue;

22. if (Vk,s;.pr < nsp.pg)

23. Enqueues(;, t, nsp, nsp;;) t0 Qe;

24, break;

Figure 10. Handle the change of moving plan

involved in skyline operator in our assumption in Section 2.1, the size of skyline on static dimensions
is |SK,s| = O((In N)™~1), and the size of skyline on all dimensiong &K ;| = O((In N)™) at any

time. Thus the size of changing parf &K ..,| = |SKu| — |SKyus| = O((In N)™ — (In N)™ 1) at any

time.

Now we consider the worst-case number of events, i.e., failure of certificates, at any time. In our
method, any; s, event orord,; event is determined by an underlying intersection between two adjacent
skyline points’ distance function curves. They asternal eventbecause they affect the skyline result
we maintain [3]. Therefore, the maximum number of events of these two kindsig;|,.../2, since

we reduce multiplex intersections into simple ones and store only one at a time. In corspgstyents

22

areinternal eventdecause they are used to adjust internal data structure. As we at most kegpgne
event for a non-skyline point at any time, the worst case is that every non-skyline point is involved in
such an event, which means the number gf;; events is not more thaN — | S K| ma.. By summing

up all events, the total number of events in the worst caseé is |SK.;|ma:/2. Hence, the ratio of

total events to external events2d//|S Ky |mae — 1. In the worst case whet& Ky |mq. iS 1, the upper
bound of this ratio i N — 1 which is linear with the number of all points involved. This worst case
ratio verifies that our KDS is efficient.

As we store datasets in hard-disk, our method needs to do 10 when accessing data points. The main
IO cost is incurred by createEvents, which accesses all non-skyline points between the circles of two
adjacent skyline points ii;,. This access can be regarded as a special region query over the dataset
indexed by grid file, asking for points between two circles with same center but different radiuses. The
IO cost of such a query can be estimated with a simple probabilistic model. Let the data space be a
2D unit space (as we use a 2D grid file to index all data points), and the outer and inner circles have
radii R; andr; respectively when we create events for thie skyline in L,,. Then the area of the
query circle isS = w(R? — r?), and the query will accesSP = =(R? — r?)P grid cells (pages),
whereP is the total number of grid cells. Next we estimdtg the distance fromg to thei+1th skyline
point in Ly,. Suppose we do an incrementdN search forg, if we have met+1 permanent skyline
points, then we must have met the thd.th skyline point already. With the assumption of independent
distribution, (i + 1)N/|SK,s| points are met before theg-1th permanent skyline point. Then in the
2D unit space, we haveR? = ((i + 1)N/|SK,s|)/N, which leads to an upper bound Bf satisfying
R? = (i+1)/(n|SK,s|). Forr;, which is the distance from query pointo theith skyline point, we use
a lower boundnin(,/i/(r|SK,s|),i/(v/N — 1)) to approximate it. In this way, we get an upper bound
of SP.

Let us compare the time cost of continuous skyline query to that of snapshot skyline queries. Assume
N snapshot queries are triggered within a time pefipd,], and the cost of each ;. Then the total
and average cost of that method ﬁrﬁl C; andzﬁ\i1 C;/N respectively. More snapshot queries incur

higher total processing cost, while each single snapshot query’s cost is expected to vary little from the

23

average cost because of the static processing fashion. For the same time period, our method computes
the initial skyline and events at timg, and then updates the skyline only when some certificate fails
beforet,. Suppose the number of certificate failures duftngt,] is A/’ (including the initialization), and

the cost of each 6", the total and average cost of our method@afe, ! andy"Y', C!/N’ respectively.

The number of certificate failure§” is a constant in a fixed time period, therefore the averageist
determined by the total cost only. It makes little sense to compare the total costs of these two methods.
If too many snapshot queries are triggered the total cost will be very high, while few snapshot queries
deteriorate the result accuracy. To ensure a fair comparison of average costs,Me=séf’ in our
experiment. In other words, we trigger snapshot queries by assuming when the skyline changes is
known, which is gained from our method. The experimental study results in next section show that our
method even outperforms the privileged snapshot query method.

Our problem formulation assumes a linear movement model for both query point and data points (if
they are moving), which is justified by the fact that linear movement model has so far been the most
popular one in the literature of moving objects research [1, 12, 16]. This model itself assumes that
moving objects hold their current velocities for a period of time, which is also usually considered as a
system parameter in typical indexing structures such as TPR-tree [23]*amdeB[11]. In most cases,
on the other hand, a user can change the speed but seldom changes it every time stamp while still issuing
a continuous query. As long as the velocity keeps for a period of time, our method pays off because it
saves much computation cost in the result maintenance for future, and it always reports result changes

in time, which renders our method beneficial.
4.4 Possible Extensions

It is true that users may issue continuous skyline queries with constraints in SQL WHERE clauses.
Our current solution can be adapted to deal with such constraints with some modifications of the kinetic
data structures (the certificate) to tender the WHERE clauses. In brief, we first apply the given constraints
to S K, so that an update$iK’ . are gained for further use. Then, in the use of the kinetic data structures,

only those data points satisfying the specified constraints will be considered and processed. Thus, our

24

method is still effective to support the WHERE clauses.

Our current method is focused on processing single continuous skyline query efficiently, whereas
it still provides helpful indications for concurrent continuous skyline querjg#(,| obviously is the
common part for all concurrent queries, which means computation savings can be achiey&dsyyith
Besides, concurrent queries still can share volatile skyline points in some way. These indicate that with

proper adaptations our current method can be used to handle this more complex case.

5 Experimental Evaluation

We conducted our experiments on a desktop PC running on MS Windows XP professional. The PC
has a Pentium IV 2.6GHz CPU and 1GB memory. All experiments were coded in ANSI C++. The
parameters used in the experiments are listed in Table 3. We used both static datasets and moving
datasets. For the former, we explored into the effects of cardinality and non-spatial dimensionality on
the performance. For the latter, we investigated into the effect of points speed distribution and moving

plan update.

Table 3. Parameters used in experiments

| Parameter | Setting \
Dataset cardinality 100K, 200K, ..., 1000K
Dimensionality of non-spatial attributes2, 3,4, 5
Distribution of non-spatial attributes | Independent, Anti-Correlated
Spatial range 10000x 10000
Non-spatial attribute range [0, 10000]
Point speed range [10, 30]
Speed Zipf factor 0,05,1.0,1.5,2.0
Update interval 30, 60, 90, 120
Update ratio 4%, 6%, 8%, 10%

5.1 Effect of Cardinality

In this set of experiments, we used synthetic datasets of data points with spatial attributes (x and
y) and two non-spatial attributes. For each dataset, all data points are distributed randomly within the

spatial space domain @f), 000 x 10, 000, and their non-spatial attribute values range from 1 to 100,000

25

according to either independent or anti-correlated distribution. The cardinality of datasets ranges from
100K to 1M. For each set of data we executed 100 continuous queries moving in random directions. For
each query, we randomly generated a point within the data space as the starting position of the moving
query point. The speed of each moving query point is also randomly determined and ranges from 10
to 30. Each query ends as soon as the query point moves out of the data space extent. The minimum,
maximum and average validity time for all these queries are 1, 475 and 149 units respectively. The
experimental results to be reported are the average values on those 100 queries.

Since BBS algorithm is the most efficient method for computing skyline in static settings (both dataset
and query point are static) [18], we adapted it for comparison in our experiments. At each time instance,
the BBS algorithm is invoked to re-compute the skyline in terms of the query point’s new position.
Besides, we extended BBS algorithm to exploit the pre-computed static partial skyline paiptsor
pruning, i.e.,SK, is used in every call of BBS algorithm to prune more unqualified tree nodes and data
points. In the result reports that follows, we use “BBS-Ex” to denote this method, in contrast to the pure
BBS method. It is worth noting that both BBS based methods cannot correctly tell when the skyline
changes as our method does.

The comparison was carried out on a fair basis. The same set of randomly generated queries are usec
by all methods on the same series of datasets. Processing costs, 10 count and CPU time, in all methods
are amortized over the same number of time units when the skyline changes. For both kinds of indices,

R*-tree and grid file, we set the data page size to 1K bytes.

5.1.1 Datasets of Independent Non-spatial Attribute Values

Figure 11(a) shows that as cardinality increases the logarithm of 10 count of our maintenance method
grows steadily, and nearly 2 orders of magnitude less than that of BBS. Figure 11(b) shows that as
cardinality increases the CPU time cost of our maintenance solution grows steadily, in a rate much
less than that of BBS. At each time instance, our maintenance solution does not need to search the
whole dataset again to re-compute the skyline from scratch, instead it mainly involves event processing

which consists less computation of distance and comparison of attribute values than BBS based methods

26

10 count
CPU time (s)

2

. . . . 0.0 n n

100K 300K 500K 700K 900K 100K 300K 500K 700K 900K
Caid(isality Cardinality

(b) CPU time

160000

120

Maximum —&—

|SK| —m—
Average -4 S

[J——

ns|
100 Due events

80
60 g

40

120000

80000

Queue size

40000

Event count and skyline size

20t o,

,,,,,,,,,,,,,,,,,,,,,,,,,,,

100K 300K 500K 700K 900K 100K 300K 500K 700K 900K

Cardinalit . . Cardinalit
(c) Event auéuye size (d) Skyline size and due events

Figure 11. Effect of cardinality of independent datasets

which do a totally new search via‘Rree. This processing behavior difference leads to the difference on
processing costs. The improvement gained by BBS-Ex compared to pure BBS indicates thdbes
help pruning, nevertheless BBS-Ex cannot tell the skyline changes either.

Figure 11(c) shows the effect of cardinality on event queue size at any time unit. The maximum size
is gained throughout all 100 queries. It can be seen that the queue event size increases as the cardinalit
increases, the average queue size is much smaller compared to the maximum size, and it does not excee
6% of the cardinality.

Figure 11(d) shows the effect of cardinality on skyline size and the number of events being processed
at any time unit. It can be seen that complete skyline size roughly increases as cardinality increases, but
the average number of due events at any time unit of skyline change never exceeds 4, which indicates
the efficiency of our maintenance strategy.

By comparing Figure 11(c) and 11(d) we can see that some events are not processed before the quer)
ends. In a real application, we can take advantage of this observation to further reduce the queue size.
The lifetime of a query can be estimated in a specific scenario, e.g., in 2 hours or this afternoon, and any

event whose due time later than it will be prevented from being enqueued.

27

5.1.2 Datasets of Anti-Correlated Non-spatial Attribute Values

We also carried out experiments on datasets whose two non-spatial attributes are anti-correlated. We
used the method in [6] to generate such datasets. Figure 12 shows our continuous skyline query pro-
cessing still outperforms both BBS based methods. The higher cost than that on uniform datasets is
attributed to the increase of skyline size of anti-correlated datasets. The anti-correlation between non-
spatial attributes also makes the events number increases less unsteadily, as the dominance relationshi

of data points is more irregular compared to the independent datasets.

6.0

50 |
_ @ 4.0 |
5)
=1
8 £ 30}
Qe 2
O 20+t
10% |
10w e
2 0 5 . . .
100K 300K 500K 700K 900K 100K 300K 500K 700K 900K
Cardinality Cardinality
I (b) CPU time
160000 - T T 300 K T
Maximum —s— |SKan| —m—
Average - o SKpgl -t
5 250 - Due events -
120000 o
@ °
% 80000 S 1507
5 €
© 3 100 |
40000 | =
A A §
2 50t aa e * Aa
w
A
I e S S g S SO & *
100K 300K 500K 700K 900K 100K 300K 500K 700K 900K
Cardinality . . _Cardinality
(c) Event queue size (d) Skyline size and due events

Figure 12. Effect of cardinality of anti-correlated datasets

5.2 Effect of Non-spatial Dimensionality

In this set of experiments, we used datasets of 500K points with non-spatial dimensionality ranging
from two to five to evaluate the effect of non-spatial dimensionality on our solution. Values on those non-
spatial dimensions are of independent distribution. Other settings are the same as in Section 5.1. Dataset:
with anti-correlated non-spatial values incur similar performance trends, except that every single cost is

higher than its counterpart on the independent datasets. Hence we omit those figures here. Figure 13(a

28

and 13(b) show the 10 and CPU cost respectively. Again our maintenance method outperforms the BBS
based methods, and BBS-EXx is better than pure BBS.

Figure 13(c) shows that the event queue size decreases as the non-spatial dimensionality increases
The probability that one volatile skyline point will be dominated by others is lower when more dimen-
sions are involved, because all dimensions are independent in our dataset. This reduces the number o
events.

Figure 13(d) shows the effect of non-spatial dimensionality on skyline size and the number of events
being processed at any time unit. It can be seen that both static partial skyline and complete skyline
size increases as non-spatial dimensionality increases, but the average number of due events at any tim
unit is still drastically smaller. This indicates that our continuous query processing method still works

efficiently.

10 count
=
o
N
CPU time (s)

10% 0.0

Cardinality Cardinality
(a) (b) CPU time

70000 4000

Maximum —&—
Average ----a---

[SK| —a—
[SKipg| -

56000 [Due events ¢

3000
42000
2000
28000

Queue size

. 1000 |
14000

Event count and skyline size

[Y s .

Cardinality . . . Cardinality
(c) Event queue size (d) Skyline size and due events

Figure 13. Effect of non-spatial dimensionality

5.3 Effect of Movement Update

In this set of experiments, we used the dataset of 500K data points with spatial attributes (x and y) and

two static non-spatial attributes. Every point in each dataset moves within the 2D extent with a speed

29

ranging from 10 to 30. The hash mechanism is based on the same grid file used for static datasets, with
each cell as a bucket containing moving data points. Periodically, a number of moving data points send
in update requests. Queries are picked up in the same way as in Section 5.1.

In this set of experiments, the initial speeds of all 500K points were uniformly distributed in the range
of 10 to 30. We mainly explore into two aspects of moving data points update: update interval length
and the ratio of points requesting update. We varied the update interval length from 30 to 120 time units
and update ratio from 4% to 10%.

Figure 14(a) shows the 10 count decreases as the update interval increases, and higher ratio of moving
data update incurs more 10 counts. Longer update interval reduces the amortized update cost which
involves changing tuple and recomputing events, and weakens the effects of different update ratios.
While higher update ratio increases update cost at every update time. The similar trend is seen for the

CPU time shown in Figure 14(b).

5

10

10* =
a

10 count

10°

30 60 90 120 30 60 90 120
Updateciinen/al (b) U&iate interval

(@l PU time

Figure 14. Effect of update

5.4 Effect of Speed Distribution

In this set of experiments, we fixed the moving data points update interval to 60, varied the update ratio
from 4% to 10% to see the effect of initial speed distributions. The Zipf fattmirspeed distribution
varies from 0, which is a uniform distribution, to 2, which is a skewed distribution where 80% data
points move slowly and the 20% move fast. Other settings are the same as in Section 5.3.

Figure 15(a) shows that the 10 cost of the proposed method is not too sensitive to skewness on speed.

In Figure 15(b), CPU time increases slowly tagncreases from 0 to 1.5, and then decreases when

30

increases from 1.5 to 2. For the samea higher ratio of mobility data set incurs a higher processing

cost. The experiments show that our method performs well for the different distributions of moving

speed.

10°

10% —— 10% —+—
8% 8%
6% % 6% X
4% o 51 4% —8

10 count
CPU time (s)

10°

102
0 0.5 1 15 2 0 05 1 15 2

Zipf factor of speed distribution (8) Zipf factor of speed distribution (8)
(a) 10 (b) CPU time

Figure 15. Effect of speed distribution

6 Conclusion

In this paper, we have addressed the problem of continuous skyline query processing. The method,
using the kinetic data structure, is based on the analysis that exploits the spatiotemporal coherence of the
problem. Our solution does not need to compute the skyline from scratch at every time instance. Instead,
the possible change from one time to another is predicted and processed accordingly, thus making the
skyline query result updated and available continuously. The experimental studies conducted using
different datasets and parameters demonstrate that the proposed method is robust and efficient. To the

best of our knowledge, this is the first work on skyline queries in the moving context.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving pointsPDDS pages 175-186, 2000.

[2] W.-T. Balke, U. Guentzer, and J. X. Zheng. Efficient distributed skylining for web information systems. In

EDBT, pages 256273, 2004.
[3] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobileAd2th SODA pages 747-756,

1997.

31

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis. Nearest neighbor and reverse nearest neighbor querie
for moving objects. INDEAS pages 44-53, 2002.

J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average number of maxima in a set
of vectors and applicationgournal of ACM 25(4):536-543, 1978.

S. Borzonyi, D. Kossmann, and K. Stocker. The skyline operatdCIDE, pages 421-430, 2001.

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presortindCIBE, pages 717-816, 2003.

D. Hearn and M. P. BakerComputer Graphics C VersionPrentice-Hall International, Inc., New Jersey,
1997.

G. Hjaltason and H. Samet. Distance browsing in spatial datab&yd. TODS 24(2):265-318, 1999.

G. S. lwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for continuously moving
points with updates. INLDB, pages 512-523, 2003.

C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient b+-tree based indexing of moving objects.
In VLDB, pages 768—779, 2004.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objectRABS pages 261-272, 1999.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online algorithm for skyline queries.
In VLDB, pages 275-286, 2002.

H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vedmusnal of ACM
22(4):469-476, 1975.

D. H. McLain. Drawing contours from arbitrary data poin@mputer Journall7(4):318-324, 1974.

H. Mokhtar, J. Su, and O. Ibarra. On moving object querie®@DS pages 188-198, 2002.

J. Nievergelt and H. Hinterberger. The grid file: an adaptable, symmetric multikey file struci@l

TODS 9(1):38-71, 1984.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline queries. In
SIGMOD, pages 467-478, 2003.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database si€ims.
TODS 30(1):41-82, 2005.

F. P. Preparata and M. |. Sham@mputational Geometry: An IntroductioBpringer-Verlag, 1985.

K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos. Fast nearest-neighbor query processing in moving-

object database$seolnformatica7(2):113-137, 2003.

32

[22] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queri&8GMOD, pages 71-79, 1995.

[23] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously moving
objects. INSIGMOD pages 331-342, 2000.

[24] Z. Song and N. Roussopoulos. Hashing moving objectdMiM, pages 161-172, 2001.

[25] R. E. SteuerMultiple criteria optimization Wiley, New York, 1986.

[26] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline computation/LIDB, pages 301-310,
2001.

[27] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databaS&&MI@D, pages
334-345, 2002.

[28] X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Scalable spatio-temporal contin-
uous query processing for location-aware serviceS3DBM pages 317-326, 2004.

[29] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based spatial quei®&MOD Confer-
ence pages 443-454, 2003.

33

