
Making the Pyramid Technique Robust to Query Types and Workloads

Rui Zhang Beng Chin Ooi Kian-Lee Tan
Department of Computer Science

National University of Singapore, Singapore 117543
{zhangru1, ooibc, tankl}@comp.nus.edu.sg

Abstract

The effectiveness of many existing high-dimensional in-
dexing structures is limited to specific types of queries and
workloads. For example, while the Pyramid technique and
the iMinMax are efficient for window queries, the iDistance
is superior for kNN queries. In this paper, we present a
new structure, called the P+-tree, that supports both win-
dow queries and kNN queries under different workloads ef-
ficiently. In the P+-tree, a B+-tree is employed to index
the data points as follows. The data space is partitioned
into subspaces based on clustering, and points in each sub-
space are mapped onto a single dimensional space using the
Pyramid technique, and stored in the B+-tree. The crux of
the scheme lies in the transformation of the data which has
two crucial properties. First, it maps each subspace into
a hypercube so that the Pyramid technique can be applied.
Second, it shifts the cluster center to the top of the pyra-
mid, which is the case that the Pyramid technique works
very efficiently. We present window and kNN query pro-
cessing algorithms for the P+-tree. Through an extensive
performance study, we show that the P+-tree has consider-
able speedup over the Pyramid technique and the iMinMax
for window queries and outperforms the iDistance for kNN
queries.

1. Introduction

Multidimensional data are common in many applica-
tions. These applications have a wide range of needs. Win-
dow queries1 are common in CAD, medical image [3] and
GIS systems. For example, theForest CoverTypedata set
[1] has 54 attributes, out of which 10 are quantitative. To
analyze the data, (partial) window queries that specify some

1In the literature, the term “range query” has been used to mean win-
dow query (hyperrectangle shaped) and similarity range query (hyper-
sphere shaped). To avoid ambiguity, we use the term “window query”
instead of “range query” throughout this paper. The “range query” in [7]
and [15], in fact, means window query.

ranges of elevation, aspect, slope, cover type, etc are typi-
cal. KNN queries are common in content-based retrieval
systems [10, 12].

While a large number of indexing techniques have been
proposed to improve performance, most of these techniques
are not sufficiently robust for a wide range of queries. For
example, the Pyramid technique [7] and iMinMax [15] are
efficient for window queries, but perform less satisfactorily
for kNN queries. On the other hand, metric-based schemes
such as the iDistance [21] are usually superior for kNN
queries, but may not be usable for window queries. More-
over, these schemes typically perform well for certain work-
loads (data set size, dimensionality, data distribution, etc)
and become inferior to sequential scan in other cases.

In this paper, we propose an index structure, called the
P+-tree, that supports both window and kNN queries un-
der different workloads (different data set size and dimen-
sionality, different data distribution, queries with different
selectivities and different shapes) efficiently. Our scheme
is based on the Pyramid technique, which is primarily de-
signed for hypercube-shaped window queries (where the
query rectangle has equal sides in all dimensions). While
the Pyramid technique is shown to be much better than the
Hilbert R-tree [13] and the X-tree [16] for data sets of di-
mensionality larger than 8, it has three deficiencies: its per-
formance is sensitive to the positions of the query hyper-
cube; it is less effective for clustered data sets; and it is infe-
rior for partial window queries. In these cases, a sequential
scan over the data set may be more effective.

The basic structure of the P+-tree is essentially a B+-
tree that indexes subspaces of points under a new trans-
formation method. The data space is first partitioned into
subspaces based on clustering. Next, points in each sub-
space are mapped onto a single dimensional space using the
Pyramid technique, and stored in the B+-tree. To discrimi-
nate the points within each cluster, they are transformed into
non-overlapping regions in the single dimensional space.
The crux of the scheme lies in the choice of the transfor-
mation that has two crucial properties. First, it maps each
subspace into a hypercube so that the Pyramid scheme can



be applied. Second, it shifts the cluster center to the top of
the pyramid, which is the case that the Pyramid technique
works very efficiently.

The rest of the paper is organized as follows: Section
2 reviews some related work. In section 3, we examine
the Pyramid technique, identify its deficiencies, and discuss
how to overcome them. Then we present the P+-tree in sec-
tion 4 and query processing schemes in section 5. In section
6, we present the results of a performance study of the P+-
tree. Section 7 concludes this paper.

2 Related Work

The R-tree [11] and its variations such as the R*-tree [4]
and the X-tree [16] were first proposed to manage multi-
dimensional data. They work well with low-dimensional
data. But their performance deteriorates as the dimensional-
ity increases, and become unacceptable in high-dimensional
space due to large amount of overlap. This phenomenon is
called thecurse of dimensionality.

Indexing methods based on transformation were pro-
posed to make window query processing in medium- and
high-dimensional space more efficient. Among them, the
Pyramid technique [7] is notable. In the Pyramid technique,
the high-dimensional data points are transformed into one-
dimensional values and the transformed values are indexed
by the classic B+-tree. Experiments show that the Pyra-
mid technique outperforms the Hilbert R-tree [13] and the
X-tree [16]. However, the Pyramid technique is primarily
designed for hypercube shaped queries over uniform data.
The poorer performance to handle other cases limits its use-
fulness in real applications.

The iMinMax [15] is another indexing scheme intended
for high-dimensional window query based on a different
transformation method.θ in the iMinMax is a tuning pa-
rameter which makes it adaptive to data distributions. As
such, it performs better than the Pyramid technique when
the data is skewed. Sinceθ is a global parameter, the iM-
inMax works well when the number of natural clusters is
small.

On kNN queries, the SS-tree [20], SR-tree [14] and X-
tree were designed to reduce the effects of high dimension-
ality by using different page regions or bigger node size.
The M-tree [8] was proposed for the generic metric space.
The IQ-tree [6] compresses the leaf nodes and the A-tree
[17] uses virtual bounding rectangles to approximate data
objects. However, according to the analysis in [19], sequen-
tial scan may be the best method especially for uniform data
in very high-dimensional space. And the VA-file was pro-
posed to accelerate sequential scan by vector approxima-
tion. More recently, the iDistance [21] adopts the transfor-
mation strategy on kNN search and BOND [9] uses vertical
fragmentation to reduce the I/O cost of frequently observed
query patterns.

3 A Closer Look at the Pyramid Technique

The Pyramid technique divides thed-dimensional data
space into2d pyramids that share the center point of the
space as their top, and the (d-1)-dimensional surfaces of the
space are their bases (Figure 1). Each pyramid has a pyra-
mid numberi according to some rule. The distance between
a pointv and the center in dimensioni (or i − d if i ≥ d)
is defined as the height of the point,hv. Then, the pyramid
value ofv is defined as the sum of its pyramid numberi and
its heighthv.

pvv = (i + hv)

1d

0d

P3

P0

P2

P1

h

v
v

Figure 1. The Pyramid technique

This pyramid value is the key indexed by a B+-tree.
A query rectangle corresponds to a height range in an in-
tersected pyramid. Those data points of height within the
height range are accessed.

Query rectangle Region accessed
+

(a) (b)

Figure 2. (a) Query rectangle near the center
(b) Query rectangle near the corner

Figure 2(a) and (b) show the region accessed when the
query rectangle is located near the center and corner of the
data space, respectively (the dark region is the query rect-
angle; the lighter shaded region plus the dark region is the
region accessed by the query rectangle). For uniform data,
the area (or volume) of the region accessed is proportional
to the number of data accessed. When the query rectangle
is near the space center, most data accessed is in the answer
set, so the index is efficient. However, when the query rect-
angle is near the space corner or edge, the data accessed is
many times those in the answer set, which makes the index



quite inefficient. In other words, the effectiveness of the
Pyramid technique is sensitive to the positions of the query
rectangle. The space center is a “good position”, while the
space corner and edge are “bad positions”. The difference
in the access cost of these two cases is even larger in high-
dimensional space. A query at a bad position will cause
significant portion of the data to be accessed. The response
time for processing such a query using the Pyramid tech-
nique may be longer than that of a sequential scan since se-
quential scan is much faster than random access of the data
pages.

The performance of the Pyramid technique is also de-
pendent on the distribution of the data set. If the data is
clustered near the space corner, most queries would also
be there since the distribution of queries often follows the
distribution of data. This is the reason why the Pyramid
technique may be worse than sequential scan for clustered
data.

Region accessed
+

Query rectangle

a b

Figure 3. Non-hypercube-shaped query

Finally, the Pyramid technique is not efficient for non-
hypercube-shaped queries. Figure 3 shows the region ac-
cessed by non-hypercube-shaped queries. If the query rect-
angle is in positiona, the cost is still acceptable. But if the
query rectangle is in positionb, the area of the region ac-
cessed is many times the area of the query rectangle. This
also makes the Pyramid technique inefficient.

Our proposed P+-tree attempts to address these deficien-
cies. Moreover, due to its highly optimized space division
and data transformation strategies, the P+-tree is also effi-
cient for kNN queries.

4 The P+-tree

The basic idea of the P+-tree is to divide the space into
subspaces and then apply the Pyramid technique in each
subspace. To realize this, we first divide the space into clus-
ters which are essentially hyperrectangles. We then trans-
form each subspace into a hypercube so that we can apply
the Pyramid technique on it. At the same time, the transfor-
mation makes the top of the pyramids located at the cluster
center. Assuming that real queries follow the same distri-
bution as data, most of the queries would be located around
the top of the pyramids, that is, the “good position”. Even
if some queries may be located at the corner or edge of the

cluster and therefore causes a large region to be accessed,
the data points accessed are not prohibitively large because
most of the data points are gathered at the cluster center. In
addition, the region accessed by a query is significantly re-
duced by space division. Thus, the P+-tree can alleviate the
inefficiencies of the Pyramid technique.

We note that although we cluster the space into sub-
spaces, our scheme also works for uniform data since uni-
form data is a special case of clustered data. While uniform
data does not benefit from the transformation, dividing the
space into subspaces is still an effective mechanism for per-
formance improvement.

To facilitate building the P+-tree and query processing,
we need an auxiliary structure called thespace-tree, which
is built during the space division process. The leaf nodes of
the space-tree store information about the transformation.
We will first introduce the data transformation, so that read-
ers know what information is stored. Then, we present the
space division process. At last, we show how the P+-tree is
constructed.

4.1 Data Transformation

Our transformation is motivated by the extended Pyra-
mid technique [7], but ours is more general. As mentioned
above, we have two goals: 1) transform a subspace into a
unit hypercube, so that the Pyramid technique can be ap-
plied; 2) move the cluster center to the top of the pyramids,
that is, the center of the unit hypercube.

A subspace is a hyperrectangle. Formally, a subspaceS
in ad-dimensional space is ad-dimensional interval:

[s0min , s0max ], [s1min , s1max ], ..., [sd−1min , sd−1max ].

A window queryQ is also ad-dimensional interval:

[q0min , q0max ], [q1min , q1max ], ..., [qd−1min , qd−1max ].

Let (c0, c1, ..., cd−1) be the cluster center of the subspace.
Let T be a transformation on a subspaceS. T consists of
d functions,t0, t1, ..., td−1. Eachti is a function on dimen-
sion i of S. To achieve the two goals mentioned in the last
paragraph,T should satisfy the following conditions:

CD1. ti is a bijection from[simin , simax ] to [0,1], that is,
domain ofti is [simin , simax ]; range ofti is [0,1]; andti is
a one-to-one mapping.

CD2. ∀x1, x2 ∈ [simin , simax ], if x1 < x2, then
ti(x1) < ti(x2).

CD3. ti(ci) = 0.5

Theorem 1 Let Q be a window query on subspaceS, and
T be a transformation onS that satisfies CD1 and CD2. Let
v(v0, v1, ..., vd−1) be a point inS. If v ∈ Q, thenT (v) ∈
T (Q) and vice versa.

Proof See Appendix A.



Theorem 1 essentially says that the answer, sayA, to a
window queryQ in the original spaceS can be obtained by
operating in the transformed spaceT (S). In other words,
let the answer of the transformed queryT (Q) in T (S) be
A′. Then,A = T−1(A′).

In fact, we do not need to find the data points inA′. We
only need to identify which points in the original space that
points inA′ correspond to. So we store points in the orig-
inal data space with the pyramid values of the transformed
points as keys in the leaf nodes of a B+-tree. This is basi-
cally the P+-tree.

Now we need to find a transformationT that satisfies
CD1, CD2 and CD3. We construct the function set as fol-
lows:

ti(x) = (ai · x− bi)ei 0 ≤ i < d (1)

From CD1 and CD2, we can easily derive that

ti(simin) = 0

ti(simax
) = 1

Plus CD3,

ti(ci) = 0.5
By solving the above three equations we will obtain:

ai =
1

simax − simin

(2)

bi =
simin

simax − simin

(3)

ei = − 1
log2(ai · ci − bi)

(4)

As we shall see shortly, in our space division scheme, we
will guarantee thatsimax > ci > simin , so none of the di-
visors is 0. In order to process the query on the transformed
spaceT (S), we need to record the transformation functions,
that is,ai, bi, ei. This information is stored in the leaf nodes
of the space-tree.

Note that any functions that satify CD1, CD2 and CD3
can be used asT .

4.2 Space Division

As mentioned, we divide the space into clusters, but we
want to keep the shape of the subspace as hyperrectangle.
This is because it would be computationally expensive to
determine whether a window query (which is also a hyper-
rectangle) intersects a subspace if the subspace is a sphere
or other polygon. To achieve this, we first use a clustering
method to divide all the data into two clusters. Second, we
divide the space into two subspaces along the dimension
in which the two cluster centers differ greatest. We apply
the above two steps to subspaces recursively. Moreover, for
simplicity, whenever we split a subspace further, we divide

all the subspaces. So the number of subspaces is always
an integral power of 2. TheOrder of divisionis defined as
the times that we divide the space and we useOd to denote
it. That is, the number of subspaces is2Od. Od is a user-
defined parameter when dividing the space. We study the
effects ofOd in Section 6.

Since a subspace is divided into two in each division op-
eration, we can use a binary tree, which we call thespace-
tree, to record the information of the division process. And
later, we can employ it to determine whether a subspace and
a query intersects.

The space-tree is similar to the k-d tree [5], but we store
the transformation information instead of data points in the
leaf nodes. In the space-tree, a nonleaf node contains 4
items:DD, DV, PL, PR. DD is an integer denoting the
dimension in which the space is divided.DV is a real num-
ber denoting the value the space is divided.PL andPR
are pointers pointing to the two subspaces. A leaf node of
the space-tree also contains 4 items:SNo, a[d], b[d], e[d].
SNo is an integer ranging from 0 to2Od − 1, which iden-
tifies a subspace.SNo is assigned to each subspace when
dividing the space.a[d], b[d] ande[d] are three arrays which
store the transformation information of subspaceSNo; they
are calculated according to Equations (2), (3) and (4). Fig-
ure 4 shows a 2-dimensional example. Here,Od = 2. Fig-
ure 5 is the space-tree for the space division in Figure 4.

The space-tree file is very small, typically ten to several
hundred KiloBytes. Thus, it can be kept in memory to ac-
celerate searching.

0 0.46 1

1

0.417

0.613

d

d0

1

Figure 4. Space division and data transforma-
tion

0.417 0.6131 1

0 0.46

Leaf nodes

Figure 5. Space-tree



The space division algorithm is outlined below.

Algorithm Space Division
SD1 space 0 = the original data space.
SD2 for (cdt = 0; cdt < Od; cdt + +)
SD3 for (n = 0; n < 2cdt;n + +)
SD4 Divide all data inspace n into two clusters,

the cluster centers areCL andCR
SD5 The dividing dimensionDD = m,

where|CLm − CRm| =
Max(|CLj − CRj |, 0 ≤ j < d).

SD6 Dividing valueDV = CLDD+CRDD

2 .
SD7 Dividespace n into two subspaces

SL andSR according to DD and DV,
that is, for eachv ∈ spacen, if vDD < DV ,
thenv ∈ SL; elsev ∈ SR.

SD8 Assign space numbers to the subspaces.
SNo of SL is 2n; SNo of SR is 2n + 1.

SD9 RecordSimin andSimax of SL andSR.
SD10 Insert a nonleaf node to space-tree.
//Now we have divided the spaceOd times and have
//2Od subspaces withSNo from 0 to2Od − 1.
SD11for (n = 0; n < 2Od; n + +)
SD12 Calculate center of all points in spacen, so we

getci, 0 ≤ i < d.
SD13 Calculateai,bi,ei according to Equation (2)

(3) and (4),0 ≤ i < d.
SD14 Insert a leaf node to space-tree.
End Space Division

In the algorithm,cdt means current dividing time. There
are a plethora of clustering algorithms, any one can be used
in SD4. In our study, we used the Bisecting K-means algo-
rithm as described in [18]. In SD8, we use a flag to make the
SNos of the subspaces effective aftercdt increases so that
they would not affect other subspaces in the current round
of space division.

4.3 Construction of the P+-tree

A P+-tree is basically a B+-tree where the data records
with their keys are stored in the leaf nodes of the P+-tree.
In the P+-tree, we apply the Pyramid technique in each sub-
space. Under the Pyramid technique, pyramid values of
points in pyramidi cover the interval[i, i + 0.5]. There are
2d pyramids from pyramid0 to pyramid2d−1, so pyramid
values of all points are within the interval[0, 2d). To dis-
criminate points from different subspaces, we addSNo ·2d
to the pyramid value of a point in subspaceSNo and the
result is the key for the point.

Algorithm Build P+-tree
BP1 for (n = 0; n < 2Od; n + +)
BP2 Read the leaf node for spacen from space-tree

BP3 for each pointv in spacen
BP4 for (i = 0; i < d; i + +)
BP5 v′i = (ai · vi − bi)ei

BP6 key=n · 2d+pv(v′)
BP7 BtreeInsert(v, key);
End Build P+-tree

In the algorithm,pv( ) is the function to calculate pyra-
mid value as defined in Section 3.

The above algorithm builds a P+-tree after the space has
been split, so we know which subspace a point belongs to.
If we insert a point or delete a point after the P+-tree is built,
we need to traverse the space tree to decide which subspace
a point belongs to by the following algorithm.

Algorithm DetermineSubspace(node)
DS1 if node is nonleaf node
DS2 ReadDD,DV ,PL,PR from node.
DS3 if qDD < DV DetermineSubspace(PL);
DS4 if qDD ≥ DV DetermineSubspace(PR);
DS5 if node is leaf node
DS6 returnnode
End DetermineSubspace

The leaf node returned by the DetermineSubspace algo-
rithm contains theSNo, ai, bi, ei of the subspace. Then we
can calculate the key of the pointv(v0, v1, ..., vd−1).

key = SNo · 2d+pv(v′)

where v′i = (ai · vi − bi)ei , 0 ≤ i < d

5 Query Processing

In this section, we shall look at how the P+-tree can be
used to support window and kNN queries.

5.1 Window Queries

In the P+-tree, window queries are processed in two log-
ical phases. LetQ be a window query. In the first phase,
we determine the clusters that are intersected byQ. In this
way, other clusters can be pruned. This can be easily done
by traversing the space-tree. As the space-tree is traversed
from the root, we check which cluster is intersected byQ
based on the split dimension and split value, and if one is
intersected, we examine its child nodes recursively.

The second phase operates on an intersected subspaceS.
First, we need to transform the query toT (Q). Then we pro-
cess queryT (Q) on the transformed subspaceT (S) using
the Pyramid technique. Specifically, the portion ofT (Q)
within each subspace is mapped to intervals of the form
[hlow, hhigh]; if pyramid i is intersected by the query, a B+-
tree range query function is invoked to find those candidate



points for T (Q). Because these candidate points are the
transformed points, they correspond to the original points
which are candidates forQ according to Theorem 1. So we
only need to check whether the original candidate points are
within Q to get our final answers.

We note that given a subspaceS, some part ofQ may
be outside ofS. In this case,T (Q) is outside of the unit
hypercube accordingly. We can just cut off the range of
T (Q) that is greater than 1 or less than 0 and then we get
the part within the unit hypercube, which corresponds to
the part ofQ within S. The window search algorithm is
presented below.

Algorithm Window Search
WS1:TraverseSpaceTreeWindow(space-tree root);
End Window Search

Algorithm TraverseSpaceTreeWindow(node)
TW1 if node is nonleaf node
TW2 ReadDD,DV ,PL,PR from node.
TW3 if qDD < DV TraverseSpaceTreeWindow(PL);
TW4 if qDD ≥ DV TraverseSpaceTreeWindow(PR);
TW5 if node is leaf node
TW6 ReadSNo and transformation informationT
TW7 Q′ = T (Q);
TW8 Cut off the part ofQ′ that is outside unit hypercube
TW9 for each pyramid in spaceSNo
TW10 if intersect(pi, Q′)
TW11 determin range(pi, Q′,hlow, hhigh)
TW12 candidates=BtreeRangeSearch(

SNo · 2d + i + hlow,
SNo · 2d + i + hhigh)

TW13 for each pointv in candidates
TW14 Check ifv is within Q, if yes, add it to the

answer set.
End TraverseSpaceTreeWindow

In the algorithm,intersect() is the function to determine
whether a pyramid is intersected by a query rectangle. As
we mentioned in Section 3, a query rectangle corresponds to
a height range in an intersected pyramid.determin range()
is the function to determine the height range[hlow, hhigh]
according to the pyramid and query.BtreeRangeSearch()
is a standard B+-tree range search function to retrieve all
the records with the keys in the given range.

5.2 KNN Queries

To find the kNN of a pointx, we initiate a hypercube-
shaped window query centered atx with an initial side
length, which is typically small. Then we increase the side
length gradually until we are sure that the kNNs are found.
Here we also traverse the space-tree, but the processing of

each intersected subspace is different from that of an win-
dow query. When we enlarge the query rectangle, the center
part of it has been searched the last time. In order to avoid
searching it again, we use three arrays,flag[], lp[], rp[], to
record whether a pyramid has been searched; and if so, the
leaf nodes we should start from.

Algorithm KNN Search
KS1 sl = sl0, A = ∅; /*initialize side length of the query

and answer set*/
KS2 initializeflag[], lp[], rp[];
KS3 vfarthest = farthest(A, x);
KS4 whiledistance(vfarthest, x) > sl/2 or |A| < k;
KS5 sl = sl + dl;
KS6 TraverseSpaceTreeKNN(space-tree root);
End KNN Search

Algorithm TraverseSpaceTreeKNN(node)
TK1 if node is nonleaf node
TK2 ReadDD,DV ,PL,PR from node.
TK3 if qDD < DV TraverseSpaceTreeKNN(PL);
TK4 if qDD ≥ DV TraverseSpaceTreeKNN(PR);
TK5 if node is leaf node
TK6 ReadSNo and transformation information

T from node
TK7 Q′ = T (Q);
TK8 Cut off the part ofQ′ that is outside unit

hypercube.
TK9 for each pyramid in spaceSNo
TK10 if intersect(pi, Q′)
TK11 determin range(pi, Q′,hlow, hhigh)
TK12 if not flag[SNo · 2d + i] /*If this pyramid

has not been searched before*/
TK13 lnode =LocateLeaf(SNo · 2d + i + hlow)
TK14 lp[SNo · 2d + i] = lnode
TK15 rp[SNo · 2d + i] =SearchUp(

lnode, SNo · 2d + i + hhigh)
TK16 flag[SNo · 2d + i] =TRUE
TK17 else
TK18 if lp[SNo · 2d + i] not NULL
TK19 lp[SNo · 2d + i] =SearchDown(

lp[SNo · 2d + i] → leftnode,
SNo · 2d + i + hlow)

TK20 if rp[SNo · 2d + i] not NULL
TK21 rp[SNo · 2d + i] =SearchUp(

rp[SNo · 2d + i] → rightnode,
SNo · 2d + i + hhigh)

End TraverseSpaceTreeKNN

Algorithm SearchUp(node, limit)
SU1 for each pointv in node
SU2 if |A| == k
SU3 vfarthest = farthest(A, x)
SU4 if distance(v, x) <distance(vfarthest, x)



SU5 A = A− vfarthest

SU6 A = A ∪ v
SU7 else
SU8 A = A ∪ v
SU9 if key of the last point innode < limit
SU10 node =SearchUp(node → rightnode, limit)
SU11 if end of this pyramid is reached
SU12 node=NULL
SU13else

node=NULL
SU14returnnode
End SearchUp

Among all the points inA, farthest(A, x) returns the far-
thest one tox. distance() returns the distance between
two points. LocateLeaf(key) returns the address of the
leaf page which contains thekey. SearchUp(lnode, limit)
starts searching fromlnode and search its right sibling leaf
node recursively until the key in the node reaches thelimit.
At the same time, the last node accessed is returned and
stored inrp[]. SearchDown() is similar toSearchUp(), so
we only present the algorithm ofSearchUp().

6 Performance Study

In this section, we present results from an extensive per-
formance study to evaluate the P+-tree for window queries
and kNN queries under a wide range of workloads. We have
generated synthetic clustered and uniform data sets of dif-
ferent sizes varying from 100,000 to 2,000,000 points and
of different dimensionality. We also used two real data sets.
Besides, we varied the selectivity and shape of queries. For
each experiment setting, we run 200 queries and use the
average number of page accesses or average total response
time as the performance metric. The distribution of the
queries are the same as the data. All experiments are run
on a computer with Pentium(R) 1.6GHz CPU and 256MB
RAM. The page size is 4096 Bytes.

6.1 Window queries

For window queries, the Pyramid technique has been
shown to outperform the X-tree and the Hilbert-R-tree [7]
and the iMinMax has been shown to be superior over the
Pyramid technique for skewed data [15]. Thus, as refer-
ences, we compare the P+-tree with these two methods and
sequential scan.

6.1.1 Synthetic Clustered Data

In this set of experiments, we study the P+-tree for window
queries on clustered data. We have done experiments on
data sets with different dimensionality and sizes. As default,
we use the data set with 24-dimensions and 1,000,000 data

points. The data we use have 4 natural clusters. Figure 6
shows a 2-dimensional image of the data distribution. For
every series of experiments, the iMinMax is tuned and the
optimalθ is used.

Figure 6. Data distribution of clustered data

Effects of Order of Division In the first experiment, we
would like to tune the P+-tree to determine the optimal or-
der to use for division. Intuitively, the larger the number of
subspaces, the smaller will the subspaces be. On the one
hand, this means that we can prune a larger portion of the
data space that does not intersect the query. On the other
hand, the overhead of accessing the subspaces increases –
for each accessed subspace, we need to access at least 1
leaf node, but each page may only contain a few points in
the answer set.

Figure 7 shows the effects of differentOd as we vary the
selectivities of queries. We note that a largeOd is superior
over a smallOd at low selectivities but a smallOd outper-
forms a largeOd at high selectivities. While there is an
optimalOd for different selectivities, the relative difference
between them is not big, so a moderate one is fine.

In view of these results, we used 6 as the defaultOd of
the P+-tree.

Effects of SelectivityFigures 8 and 9 show the perfor-
mance comparison for queries of different selectivities. The
number of page accesses of the P+-tree is 20% to 40% that
of the Pyramid Technique. The iMinMax performs as well
as the Pyramid technique when the selectivity is low, but
better than the Pyramid technique for high selectivity. In
terms of total response time, the Pyramid technique and
the iMinMax are better than sequential scan at low selec-
tivities but worse at high selectivities. The P+-tree is al-
ways the best and achieves a speedup factor of 2.4 to 2.8
over the Pyramid Technique and iMinMax, and 1.7 to 4.9
over sequential scan. It is reasonable that as selectivity in-
creases, the number of page accesses becomes larger. When
the number of page accesses of these indexing schemes in-
crease to some point, the total response time exceeds that of
the sequential scan, because sequential access of the disk is
much faster than random accesses using the indexing struc-
tures. In the P+-tree, the space division effectively prune
the subspace not intersected by the query rectangle and false
positives in the intersected subspaces are greatly reduced by



the data transformation. Therefore, the number of page ac-
cesses are kept at a very low level even in the case of a high
selectivity.

Due to space limitations, for all subsequent experiments,
we shall only present the total response time results since
it reflects more accurately the relative performance of the
various schemes. However, we note that the relative per-
formance of the schemes in term of the number of page ac-
cesses are largely the same.

Effects of Data set sizeIn these experiments, we vary
the data set sizes from 100,000 to 2,000,000 points. As
shown in Figure 10, the Pyramid Technique and the iMin-
Max outperform sequential scan for small data sets. How-
ever, as the data set size increases, their performance dete-
riorate quickly to the extent that they were outperformed by
sequential scan. The P+-tree has a speedup factor of 3.8
to 5.1 over the Pyramid Technique and the iMinMax, and
3.7 to 6.1 over sequential scan. The results show that the
P+-tree scales well with data set sizes.

Effects of DimensionalityTo see the effects of dimen-
sionality on the P+-tree, we also experimented with 8, 16,
24, 32, 64 and 128 dimensional data. In these experiments,
we fixed the selectivities of the queries to 2%. The results
in Figure 12 clearly show that the P+-tree does not suffer
from the curse of dimensionality. It has a speedup factor of
3.2 over the Pyramid Technique and iMinMax, and always
outperforms sequential scan.

Effects of Number of clusters All the above experi-
ments are tested on data that have 4 natural clusters. To see
how the number of clusters affects the performance of the
techniques, we also did experiments on data having 2 and 3
natural clusters, which follow the distribution as shown in
Figure 11. Figures 13 and 14 show the results.

The P+-tree still performs best, but we found that the
performance improvement increases as the number of clus-
ters increases. Comparing the speedup factor of the P+-
tree over the Pyramid Technique for the queries of selectiv-
ity 2%, the speedup factor for 2-, 3- and 4- cluster data is
2.2, 2.7 and 2.8 respectively. On the other hand, the iMin-
Max performs better compared to the Pyramid Technique as
the number of clusters decreases. This is becauseθ in the
iMinMax is a global parameter, and the tuning ofθ would
be more effective for data with fewer clusters and are very
skewed. As shown, even after tuning, the P+-tree outper-
forms the iMinMax by a wide margin.

6.1.2 Synthetic Uniform Data

Figure 15 shows the performance comparison for queries
with the selectivity of about 0.05% on data of different di-
mensionality. As shown, the P+-tree is slightly better than
the Pyramid technique and the iMinMax, with a smaller
speedup factor over them than in the clustered data case.

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Selectivity (%)

Od=6

Od=7

Od=9

Od=10

Od=11

Seq. scan

Figure 7. Effects of Order of Division

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12 14 16

P
ag

e 
ac

ce
ss

es

Selectivity (%)

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 8. Page accesses vs. Selectivity

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Selectivity (%)

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 9. Total response time vs. Selectivity

0

200

400

600

800

1000

10
00

00

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Database size

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 10. Effects of Data set size



(a) 2 Clusters (b) 3 Clusters

Figure 11. Data distribution of different num-
ber of clusters

This is because the Pyramid technique is already good for
uniform data.

Figure 16 shows the performance comparison over vary-
ing query side length. The speedup factor of the P+-tree
over the Pyramid technique and the iMinMax is large at
very small or very large side lengths while they are very
close at medium side length. This is because the Pyramid
technique is primarily designed and optimized for queries of
medium side length on uniform data, but it does not work
well with very small or very big sized queries. The P+-
tree overcomes the deficiencies and performs better than se-
quential scan even for very large query rectangles.

6.1.3 Partial Window Queries

All the queries tested so far are hypercube shaped. Now
we test non-hypercube-shaped queries. Partial window
queries are the worst case of non-hypercube-shaped queries
but frequently used in real applications. So we use them
in our experiments as representatives of non-hypercube-
shaped queries. In this experiment we use 24-dimensional
data and only set range limits in 6 dimensions, that is, the
other 18 dimensions of the queries are full domains. Fig-
ures 17 and 18 show the performance on clustered data and
uniform data respectively.

For clustered data, the P+-tree has a speedup factor of
3 over the Pyramid technique and 2 to 4.6 over sequential
scan. The iMinMax is better than the Pyramid technique
when selectivity is low but deteriorate rapidly and outper-
formed by the other techniques at a higher selectivity. The
Pyramid technique is always worse than sequential scan.

For uniform data, the total response time of the Pyramid
technique and the iMinMax is far more than that of sequen-
tial scan. The P+-tree has a speedup factor of 2.4 to 4.5
over the Pyramid technique and the iMinMax. The P+-tree
also outperforms the sequential scan. Its performance ap-
proaches sequential scan as selectivity increases.

The Pyramid technique and the iMinMax are ineffi-
cient for partial window queries because by their indexing
schemes, they can hardly prune data if there are full do-

mains in the winodw query. But the P+-tree can still prune
subspaces because of the space division.

6.1.4 Real Data

We have tested the techniques on the following two real data
sets:

1) Forest CoverType (10 dimensions)
The forest cover type data set for 30 x 30 meter cells is
obtained from the US Forest Service (USFS) Region 2 Re-
source Information System (RIS) data. The original data set
has 54 attributes, among which 10 are quantitative such as
Elevation, AspectandSlope. We extracted these 10 quanti-
tative attributes and normalized the values to the range [0,1].
The number of records is 581,012. The original data set is
available online at [1].

2) Color Histogram (32 dimensions)
This data set contains image features extracted from a Corel
image collection. HSV color space is divided into 32 sub-
spaces (32 colors: 8 ranges of H and 4 ranges of S). And the
value in each dimension in a ColorHistogram of an image
is the density of each color in the entire image. The number
of records is 68,040. This data set is available online at [2].

These two data sets are of medium- and high- dimen-
sionality respectively. We setOd as 3 for these two data
sets because of their smaller sizes. Figures 19 and 20 show
the comparison on total response time. Horizontal axes of
the figures represent the number of attributes specified in the
partial window queries. The larger the number of attributes
specified in the window queries, the fewer the data points
in the answer set and therefore the shorter the time needed
for processing the queries. In most cases, the P+-tree has
a speedup factor of 2 to 5 over the other techniques. These
figures further confirm the practical impact of the P+-tree.

6.2 KNN Queries

Experiments in [17] show that the A-tree outperforms the
SR-tree and the VA-file, while [21] shows that the iDistance
outperforms the A-tree. So we compared the P+-tree with
the iDistance. Moreover, for kNN queries, sequential scan
is shown to be more efficient for uniform data [19]. Thus,
we shall only consider synthetic clustered data and real data.
Two synthetic data sets are used: 16-dimensional and 32-
dimensional, data set size 500,000, 4 natural clusters. The
real data set is the 32-dimensional Color Histogram data set.

Figure 21 shows the result for 16-dimensional clustered
data set. The P+-tree has a speedup factor of up to 1.6 over
the iDistance and both of them are much better than sequen-
tial scan. Although kNN search of the P+-tree is based on
window search, it benefits from the highly efficient space
division and data transformation strategies. The iDistance
uses hypersphere-like clusters. A problem is that in high-
dimensional space, the radius of each cluster becomes very



0

50

100

150

200

250

300

350

400

450

8 16 24 32

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Dimensionality

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 12. Effects of Dimensionality

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Selectivity (%)

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 13. Effects of Number of clusters, 2
clusters

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Selectivity (%)

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 14. Effects of Number of clusters, 3
clusters

0
50

100
150
200
250
300
350
400
450
500

8 16 24 32

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Dimensionality

Pyramid Tech
iMinMax

P+tree
Seq. scan

Figure 15. Effects of Dimensionality, Uniform
data

0
50

100
150
200
250
300
350
400
450
500

0.1 0.3 0.5 0.7 0.9

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Side length of query hypercube

Pyramid Tech
iMinMax

P+tree
Seq. scan

Figure 16. Total response time vs. Side length
of query hypercube, Uniform data

0

100

200

300

400

500

600

0.001 0.01 0.1 1
T

ot
al

 r
es

po
ns

e 
tim

e 
(m

ill
is

ec
)

Selectivity (%)

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 17. Partial window queries on clus-
tered data

100

200

300

400

500

600

700

800

900

0.001 0.01 0.1 1

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

Selectivity (%)

Pyramid Tech

iMinMax

P+tree

Seq. scan

Figure 18. Partial window queries on uniform
data

0

20

40

60

80

100

120

140

160

180

4 6 8 10

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

No. of Attributes Specified

Pyramid Tech
iMinMax

P+tree
Seq. scan

Figure 19. Forest CoverType data, Window
queries



0

10

20

30

40

50

60

70

8 16 24 32

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

No. of Attributes Specified

Pyramid Tech
iMinMax

P+tree
Seq. scan

Figure 20. Color Histogram data, Window
queries

0

100

200

300

400

500

600

700

2 4 6 8 10

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

k

iDistance
P+tree

Seq. scan

Figure 21. Synthetic 16-dimensional clus-
tered data, kNN queries

950

1000

1050

1100

1150

1200

1250

2 4 6 8 10

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

k

iDistance
P+tree

Seq. scan

Figure 22. Synthetic 32-dimensional clus-
tered data, kNN queries

0

50

100

150

200

250

300

2 3 4 5

T
ot

al
 r

es
po

ns
e 

tim
e 

(m
ill

is
ec

)

k

iDistance
P+tree

Seq. scan

Figure 23. Color Histogram data, kNN queries

large. This results in almost every cluster being intersected
by a kNN query sphere, so the effect of pruning may not
be good. In this case, a simple division in the space may
prune unnecessary access more effectively. Figures 22 and
23 show the results for 32-dimensional clustered data set
and the color histogram data set. The results show similar
trend, but the speedup of the iDistance and the P+-tree over
sequential scan is smaller. The reason is that for higher di-
mensionality, indexing schemes generally become less effi-
cient compared to their performance in lower dimensional-
ity. In the experiments shown in Figure 23, we used smaller
values ofk because the color histogram data set is relatively
small.

6.3 On Updates

The space division process is based on clustering the en-
tire data set. If new data points are inserted or deleted from
the data set, the cluster center of the subspace may shift
from the top of the pyramids. While this does not affect the
correctness of the P+-tree, it may affect its efficiency. To
evaluate how updates affect the performance of the P+-tree,
we have done the following experiments. We use a synthetic
24-dimensional clustered data set with 500,000 points. We
first construct the P+-tree using 80% (400,000) of the data.
We run some window queries and record the average total
response time. Then we insert 5% of the data to the database
and re-run the same queries. This process is repeated until
the other 20% of the data are inserted. We keep the query
constant. On the other hand, we run the queries on the P+-
tree built when there are 85%, 90%, ... of data. That is, the
optimal P+-tree with no updates. We compare the total re-
sponse time of the two as shown in Figure 24. As expected,
the difference between them becomes larger as more data
are inserted, but the largest difference is within 20% even in
the case of 20% newly inserted data. Considering that the
P+-tree typically outperforms other techniques by the fac-
tor of 2 to 4, this deterioration is acceptable. Experiments
on kNN queries have similar results.

0

50

100

150

200

80 85 90 95 100

T
ot

al
 r

es
po

ns
e 

tim
e

Percent of data inserted

P+tree with updates
Optimal P+tree

Figure 24. P +-tree performance with updates



Of course, we expect the performance of the P+-tree to
be affected greatly eventually if there are too many updates.
In this case, we need to rebuild the P+-tree. Fortunately, re-
building the P+-tree is not quite expensive since bulk load-
ing of B+-tree still applies. Note that any clustering method
can be used in SD4 of the Space Division Algorithm. This
means that we can use approximate but fast methods to ob-
tain suboptimal clusters to reduce the time for space divi-
sion.

An interesting phenomenon is that building a P+-tree is
much faster than building a Pyramid-tree or an “iDistance-
tree”. The reason is that, space division is in effect a clus-
tering process. Moreover, in the P+-tree, we add a number
SNo·2d to the pyramid values of points in the subspace. So
keys for points from different subspaces are scattered. Data
points in the same subspace have close keys and are inserted
into the tree continuously. A single page I/O is needed for
many continuous insertions. Therefore, many disk accesses
are avoided. In our experiments, the time saved in building
the P+-tree offsets most of the time used in space division.

7. Conclusion

In this paper, we have proposed the P+-tree for process-
ing multi-dimensional queries. First, we divide the space
into subspaces that are subsequently transformed so that the
Pyramid technique can be applied in each subspace. The
transformation function also moves the center of the points
in a subspace to the top of pyramids. A major strength
of the P+-tree is that it works well for various workloads.
Extensive experiments demonstrate that the P+-tree has
considerable speedup over existing indexing methods for
both window queries and kNN queries.

APPENDIX
A. Theorem 1
Let Q be a window query on subspaceS, and T be a
transformation onS that satisfies CD1 and CD2. Let
v(v0, v1, ..., vd−1) be a point inS. If v ∈ Q, thenT (v) ∈
T (Q) and vice versa.
Proof If v ∈ Q, then

qimin < vi < qimax , 0 ≤ i < d
According to CD2,

ti(qimin) < ti(vi) < ti(qimax), 0 ≤ i < d
that is, T (v) ∈ T (Q).

If T (v) ∈ T (Q), then
ti(qimin) < ti(vi) < ti(qimax), 0 ≤ i < d

According to CD1 and CD2,T is a strictly increasing bijec-
tion, therefore

qimin < vi < qimax , 0 ≤ i < d
that is, v ∈ Q. 2

References

[1] http://kdd.ics.uci.edu/databases/covertype/covertype.html.
[2] http://kdd.ics.uci.edu/databases/CorelFeatures/

CorelFeatures.data.html.
[3] M. Arya, W. Cody, C. Faloutsos, J. Richardson, and A. Toga.

Qbism: Extending a dbms to support 3d medical images. In
ICDE, 1994.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The r*-tree: An efficient and robust access method for points
and rectangles. InSIGMOD, 1990.

[5] J. L. Bentley. Multidimensional binary search trees used for
associative searching.CACM, 18(9):509–517, 1975.

[6] S. Berchtold, C. Bohm, H. V. Jagadish, and J. S. Hans-
Peter Kriegel. Independent quantization: An index compres-
sion technique for high-dimensional data spaces. InICDE,
2000.

[7] S. Berchtold, C. Bohm, and H.-P. Kriegel. The pyramid-
technique: Towards breaking the curse of dimensionality. In
SIGMOD, 1998.

[8] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient ac-
cess method for similarity search in metric spaces. InVLDB,
1997.

[9] A. P. de Vries, N. Mamoulis, N. Nes, and M. Kersten. Ef-
ficient knn search on vertically decomposed data. InSIG-
MOD, 2002.

[10] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack,
D. Petkovic, and R. Barber. Efficient and effective querying
by image content.Journal of Intelligent Information Sys-
tems, 1994.

[11] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InSIGMOD, 1984.

[12] H. V. Jagadish. A retrieval technique for similar shapes. In
SIGMOD, 1991.

[13] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-
tree using fractals. InVLDB, 1994.

[14] N. Katayama and S. Satoh. The sr-tree: an index structure
for high-dimensional nearest neighbor queries. InSIGMOD,
1997.

[15] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan. Indexing the
edges – a simple and yet efficient approach to high dimen-
sional indexing. InPODS, 2000.

[16] H.-P. K. S. Berchtold, D. Keim. The x-tree: An index struc-
ture for high-dimensional data. InVLDB, 1996.

[17] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The
a-tree: an index structure for high-dimensional spaces using
relative approximation. InVLDB, 2000.

[18] Savaresi, S.M., Boley, D.L., Bittanti, S., and Gazzaniga.
Cluster selection in divisive clustering algorithms. InProc.
SIAM Int. Conf. on Data Mining, 2002.

[19] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. InVLDB, 1998.

[20] D. A. White and R. Jain. Similarity indexing with the ss-tree.
In ICDE, 1996.

[21] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the
distance: An efficient method to knn processing. InVLDB,
2001.


