
Piers: An Efficient Model for Similarity Search
in DNA Sequence Databases

Xia Cao Shuai Cheng Li Beng Chin Ooi Anthony K.H. Tung

Department of Computer Science, National University of Singapore, Singapore, 117543
Email: {caoxia,lisc,ooibc,atung}@comp.nus.edu.sg

ABSTRACT
Growing interest in genomic research has resulted in the cre-
ation of huge biological sequence databases. In this paper,
we present a hash-based pier model for efficient homology
search in large DNA sequence databases. In our model, only
certain segments in the databases called ‘piers’ need to be ac-
cessed during searches as opposite to other approaches which
require a full scan on the biological sequence database. To
further improve the search efficiency, the piers are stored in
a specially designed hash table which helps to avoid expen-
sive alignment operation. The hash table is small enough
to reside in main memory, hence avoiding I/O in the search
steps. We show theoretically and empirically that the pro-
posed approach can efficiently detect biological sequences
that are similar to a query sequence with very high sensitiv-
ity.

1. INTRODUCTION
DNA is the basic blueprint of life, and its structure can be
viewed as a simple but very long sequence over the four-
letter alphabet of ‘A’, ‘C’, ‘G’ and ‘T’. Homology search
in DNA databases is an important function as it is useful
for discovering the location of functional sites, searching the
existence of novel repeats and conducting the comparative
analysis of different DNA sequences. To cater for the evo-
lutionary mutations of genomic sequences and noise in the
data, approximate sequence matching is preferred to exact
matching in genomic databases.

Many algorithms have been developed for this task, with
the most fundamental one being the Smith-Waterman align-
ment algorithm [14], which is a dynamic programming ap-
proach for finding an optimal alignment between a query and
its target sequence. Such an approach takes Θ(mn) time,
m and n being the length of the two sequences respectively.
This is obviously too slow for searching large, external mem-
ory sequence databases. In view of this, various alternative
approaches have been proposed.

A most common approach to improve efficiency revolves
around the idea of filtering and refinement [13, 1]. In such
approaches, the sequences database is first broken into short
segments and matched against the query sequences. Seg-
ments with low similarity are first filtered off while more
complex computations are done on the remaining high sim-
ilarity segments to form the final result. The efficiency and
sensitivity of such approaches are highly dependant on the
choice for the length of the segments and how regular the
segments are being sampled from the database sequences.
For example, in the case of BLAST [1], a segment length
of 11 characters is usually used and segments are obtained
from every position in the database sequence.

In this paper, we propose to use the hash based pier model
for efficient and sensitive sequence search. Our technique
focuses on effective filtering in the first phase of the search
since the performance in the second phase is typically similar
across most of such approaches. The pier p in our model is
defined as a segment with length `p and located at position
pos in a data sequence. 1

During pre-processing, the piers are randomly picked from
a data sequence S based on the principle that at least one
pier is contained within any subsequence of S having a min-
imum length. These piers are then stored in a hash table
for efficient access. Such an approach gives us a much lower
pre-processing time compared to BLAST and index building
approaches.

During query time, by picking each seed generated from the
query sequences and enumerating its neighbors (i.e. seg-
ments of the same length that are with a small edit dis-
tance from it), candidate buckets can be located in the hash
table very efficiently. With the algorithm, we can enumer-
ate all the neighbors which are potential candidates without
searching through the whole hash space. All subsequences
which contain at least one matched pier will be be compared
against the relevant portion of the query sequence to verify
their similarity. Both the efficiency and sensitivity of our
search method will be studied in the paper.

The rest of the paper is organized as follows. We briefly re-
view related work in Section 2. In Section 3, we will provide
some definitions and formally give a problem statement. In
Section 4, the pier model is proposed for DNA sequence
search and the sensitivity of the proposed model is also ana-
lyzed. In Section 5, a hash-based pier model is presented for
efficient sequence search. Section 6 shows how sequence sim-
ilarity search can be efficiently processed using the proposed
pier model with analysis on the space and time complexity
of the method. Experiments are presented in Section 7. Sec-
tion 8 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we review some work related to sequence
similarity search for DNA sequence databases.

The most commonly known approach for DNA sequence
search is that of a filter and refinement. In such approach,
the database sequence is first scanned for short “seed” matches
which are then extended into longer alignments. This method

1The name “pier” is selected since we believe that these
small set of selected segments should be enough to “support”
highly sensitive similarity search for the whose database se-
quence.

is used in programs like FASTA [13] and BLAST [1]. BLAST
is a heuristic method for finding similar regions between two
genomic sequences. It regards the exact match of w contigu-
ous bases as candidates which are then extended along the
left side and the right side to obtain the final alignments.
But BLAST faces the dilemma of DNA homology search,
which is that increasing seed size w decreases sensitivity
whereas decreasing the seed size leads to too many random
results. PatternHunter [8] is an improvement on BLAST
both in speed and sensitivity. Essentially, PatternHunter’s
basic principles are similar to those of BLAST.

Other approaches use indexing structures like the suffix trees
[9, 16]. The suffix tree and suffix array are popular data
structures for exact sequence matching, as seen in algo-
rithms like QUASAR [2]. Suffix trees, however, are good
mostly for precise matches but are very awkward in han-
dling mismatches [6, 11, 2]. Also they devour very large
amounts of memory and disk usage. Oasis [10] is a novel
search algorithm which uses a dynamic programming A*-
search driven by a suffix tree index. Though it is faster, it
also suffers the weakness of suffix tree.

There also exist some other index structures for biological
sequence databases [4, 7, 17, 15, 12]. In [7, 12], some at-
tempts have been made to transform DNA sequences into
numerical vector space in conjunction with various multi-
dimensional indexing approaches or other tree-structured
index to do sequence similarity search. Though the false
dismissal is avoided and the filtering processing is very fast,
the drawback is that the approximation of the edit distance
is not sufficiently tight, which increases the cost of refining
the results to produce the final outcome. Williams et al. [17]
proposed a search algorithm in a research prototype system,
CAFE, which uses an inverted index to select a subset of se-
quences that display broad similarity to the query sequence.
CAFE is faster, although less sensitive than BLAST when
searching for very similar sequences. In [15], a new index for
DNA sequences, called the ed-tree, is proposed to support
probe-based homology search in DNA sequence databases.

A common problem among methods that use indexing struc-
tures is that they typically take up more pre-processing
time to build the indexes. Furthermore, additional space is
needed to store the indexes which can have the sizes ranging
from 1 to 10 times the indexed sequences.

3. NOTATIONS AND PROBLEM STATEMENT
In this section, we will give some definitions and provide a
formal problem statement.

3.1 Notations and Definitions
The most commonly used distance measurement for two se-
quences is referred as edit distance. It is a simple but fairly
accurate measure for the evolutionary proximity of two DNA
sequences [5]. The definition of edit distance is as follow:

Definition 1. Edit Distance
The edit distance between two sequences is the minimum
number of edit operations(i.e., insertions, deletions, and sub-
stitutions) of single characters needed to transform the first
sequence into the second.

Notation Description
|D| the size of the DNA sequence database D
`p the length of a pier
pi the ith pier sequence along D
`s the length of a span
θ edit distance threshold allowed for pier candidate
S the data sequence in D
|S| the length of sequence S
S[i, j] the subsequence of S from i to j
s ⊂ S s is the subsequence of sequence S
Q the query sequence
|Q| the length of query sequence Q
qi the ith query pattern in Q with length `p

`min the minimum length of of the high similarity region
edit(S, Q) the edit distance between two sequences S and Q

Table 1: The Parameters

In this paper, small segments from a sequence database are
referred to as piers. Formally, a pier is defined as a tuple
〈p, pos〉, where pier sequence p is a segment of length `p ex-
tracted from a DNA sequence, and pos is the list of positions
for the pier sequence p occurring in the data sequence.

For notation simplicity, we shall use p to refer to both the
segment with the corresponding positions, and the segment
itself. Based on the definition of piers, we define span to
be the segment between two adjacent piers in the proposed
pier model. Lastly, we define the set of target piers that we
want to search to be candidate. The notations to be used in
the paper are summarized in Table 1.

3.2 Problem Statement
The approximate sequence match problem can be classified
into two categories: whole sequence matching and subse-
quence matching [3]. Since the subsequence matching prob-
lem is a generalization of the whole matching problem, we
confine our attention to a subsequence match problem in
this paper. The approximate subsequence matching prob-
lem can be described as follows:

Problem 3.1. Given sequence database D = {S1, . . . , Sd}
and query sequence Q, search all the subsequences in Si ∈ D
so that the edit distance between data subsequence and the
query subsequence is small or the alignment score is high.
Normally, the score matrix for DNA sequence alignment is
‘+2’ for match, ‘-1’ for replacement and gap(or mismatch).

We adopt the filter and refinement approach and due to
the limit of space, will only focus on the filtering problem
defined as follow:

Problem 3.2. Given edit distance threshold θ, find all
candidates p, p ⊂ S in data sequence S, S ∈ D for each
query pattern qi ⊂ Q, where edit(p, qi) ≤ θ.

4. THE PROPOSED PIER MODEL
This section describes our pier model for biological sequence
search. The main assumption in the pier model is that users
are only interested in high similarity region that is of length
greater than a minimum length lmin. Based on this as-
sumption, we define piers in a biological sequence database
as some segments in the sequence, which meet Property 4.1
defined below.

Property 4.1. Pier Extraction Principle
The Pier Extraction Principle states that at least k piers
should be contained in any subsequence with length no less
than `min. This means that the following formula must hold:
((k + 1)`p + k`s) ≤ `min.

Intuitively, the pier extraction principle simply ensures that
consecutive piers are selected in the data sequence such that
at least k of them will be contained in any subsequence of
length no less than lmin. In the pier model, the pier se-
quences are extracted randomly from the data sequence as
long as the pier extraction principle is satisfied. As explain
later, this is done to minimize the probability of a high sim-
ilarity region being lost in a worse case scenario.

By using piers, search results can be obtained efficiently and
with acceptable sensitivity, without scanning the entire se-
quence database. The proposed pier model can be used as a
general pre-processing model in sequence similarity search.
This means that the piers are first extracted, then other ex-
isting similarity search methods are applied on the set of
piers. We shall next analyze how our pier model is theoret-
ically effective and sensitive enough for sequence search.

4.1 Sensitivity And Accuracy Analysis of the
Pier Model

In approximate search, if a candidate is similar to the query
sequence, then the edit distance of the corresponding parts
in the alignment between query and candidate is small as
well. Traditional methods are based on a more restrictive
conclusion of this: if the distance between two sequences
is short, then they have at least one length q segment that
is exactly the same. In BLAST, the segment is referred to
as seed, and in others, it may be referred to as q-gram, or
pattern. Approaches based on this constraint cannot have
seeds that are too long, otherwise the index structure will be
large and it will also lead to low sensitivity. The seed length
cannot be small as well, otherwise it makes filtration inef-
fective. In the case of BLAST, the seed length is typically
set to 11. If the edit distance is allowed to be 10% − 20%
of the matched subsequence, then it is possible that BLAST
may miss some of the candidates. Gapped seed is used by
PatternHunter [8] to reduce the missing candidates. The
pier here is in some sense more flexible version of gapped
seeds. Based on the observation that two similar sequences
would have similar subsequences, we arrive at the following
property:

Property 4.2. If two sequences Q and C have edit(Q,
C)≤ ζ, then for each segment s ⊂ C, there exists a segment

s
′ ⊂ Q such that edit(s, s

′
) ≤ ζ.

By Property 4.2, we can simply index a partial set of seg-
ments of the database and when given each query segment
s′, search only for segments s in the index structure that

has edit(s, s
′
) ≤ ζ. Further, in above property, edit(s, s

′
) is

rarely near to ζ when the segment length or pier length is
much smaller than the length of S or Q. We may then state
the property as follows:

Property 4.3. If query Q and candidate subsequence C
have edit(Q, C)≤ ζ, then for each s ⊂ C, there exists a

segment s
′ ⊂ Q with high probability such that edit(s, s

′
) ≤

ζ
′
for some ζ

′ ≤ ζ.

For two subsequences with length |S| = |Q| = L and edit(Q,
C)≤ ζ, if the edit distance between the pier randomly picked
in S and the corresponding segment of Q of the alignment

is ζ
′
, the probability P (`p, L, ζ

′
, ζ) for S to be found can be

computed as following:

P (`p, L, ζ
′
, ζ) =

∑ζ
′

i=0

(
`p

i

) (
L− `p

ζ − i

)

(
L
ζ

) (1)

To illustrate the typical effectiveness of this argument for
the experiment setting in this paper, we shall search for
the candidate subsequence with length L = 60 and edit
distance ζ = 6 from the query subsequence. The length

of pier, `p is set at 15, and ζ
′
= 3. According to the above

equation, a candidate will be found with the probability
P (15, 60, 3, 6) = 98.8%.

In Figure 1, the sensitivity with parameters ζ
′
= 3, `p = 15,

ζ = 6, which each query pattern covered at least two piers
has been plotted. It is clearly that our proposed approach
has high sensitivity. Note that in our case, we allow spans
between piers. We can also slide the sequence to generate
the piers. In a more intuitive manner, if two sequences C
and Q have very few differences between them, then the
probability of these differences being clustered in the same
region should be low. Instead, the differences are expected
to be scattered in most cases. By losing some of the rare
cases, the computation cost can be reduced dramatically.

0.88

0.9

0.92

0.94

0.96

0.98

1

45 50 55 60 65 70 75

Se
ns

iti
vi

ty

lmin

Sensitivity

Pier Model
Blast11

Figure 1: Sensitivity Analysis

5. THE HASH-BASED PIER MODEL
After the piers are extracted from data sequences, they are
stored in a hash table HTable to ensure efficient access.
Given the query patterns, only buckets that have a high
probability of holding similar segments are accessed. We
called such buckets, candidate buckets.

In order to hash the piers to the pre-constructed hash table,
it is necessary to encode the prefix of the pier with length
λ, λ ≤ `p into a 2λ bit integer. Each of the four possible
nucleotides in a DNA sequence is encoded as two binary
digits as follows:

f(a) =

00 a = ‘A’
01 a = ‘C’
10 a = ‘G’
11 a = ‘T ’

Using the encoding function f , any λ-tuples of DNA se-
quence s = b1, b2, ..., bλ can be mapped uniquely to a 2λ bit
integer by the encode function:

encode(s) =
λ∑

i=1

4
i−1

f(bi)

The encode function is compact and efficient to process, but
there is no way to encode any characters apart from the
four valid letters. In our implementation, invalid characters
are transformed into one of the four valid ones randomly in
order to keep the positions of the matches found exactly as
the positions in the original data sequence.

5.1 Construction of The Hash Table
After all buckets in the hash table are initialized as empty,
each pier pi will be inserted into the corresponding bucket in
the hash table with the use of the hash function encode(pi[0, λ−
1]) which maps the first λ-tuple of pi into a 2λ bit integer.
The hash table has a total of 4λ buckets for DNA sequences.

A
A
T

T
T
G

C
G
A

T
T

T
G
A

CAA

G

ACC

G
T
G

C
A
T

C
C
C

T
G
A

C
A
A

CAG

p p
754 10 151412311862 913

p

TTC TTT

Hash Key:

p
1

p p p p p p p p p p p

ACAAAA

G
T
C

C
T
T

A
T
G

G
A
T

C
C
G

0 636261... ...19181716... ...54321

Figure 2: The Hash Table for Piers

The piers in the same bucket will share the hashed prefix,
i.e., the same first λ-tuple. In average, there are |P |/4λ

piers in each bucket for DNA sequences, where P is the set
of piers.

Example 5.1. For example in Figure 2, `p = 6, λ = 3,
P = {p1, p2, . . . , p15} and the hash table has 4λ = 64 buckets.
In this example, all the 15 piers are inserted into the hash
table one by one. The piers p1 : AAAGTC, p4 : AAACTT
and p5 : AAAATG are inserted into the first bucket since
the hash keys of these three piers are all encode(AAA) =
000000.

5.2 Collision Handling
To handle collision caused by the insertion of piers into the
same bucket of a hash table, the trivial solution is simply to
store the piers in a bucket into a link list, named collision
list, or consolidate them into an array to save space and
increase accessing efficiency since the hash table structure
is relatively stable once it is constructed. If the piers in the
same bucket are stored as a list, each pier in the bucket will
be retrieved and compared with the query pattern using
dynamic programming. This will be inefficient when the
number of piers in the candidate bucket is large. In our
implementation, we choose λ to be 10, and thus it means
that there are over 106 buckets in the hash table. Given
109 piers, each bucket contains 1000 piers on average. To
minimize the computation cost of obtaining candidates for
sequence similarity search, we propose to use global penalty
matrix to handle the collision list of a hash table.

A 42ω global penalty matrix (GPM), where ω = `p − λ, is
built beforehand. All the possible segments in a DNA se-
quence with length ω are mapped into 2ω bit integers with
the use of the encoded function described. We compute the
edit distance for each pair of 〈i, j〉, where 0 ≤ i, j < 4ω, and
store the computed value into the cell 〈i, j〉 in the GPM.
Note that by carefully and systematically eliminating sym-
metric cases, we can reduce the size of the table dramatically.

When the piers in a candidate bucket need to be retrieved
and checked during query processing, the edit distance of a
pier and the query pattern does not have to be computed
through dynamic programming. Instead, only the GPM is
looked up to see whether the pier suffix segments and query
pattern suffix is within a small edit distance ε. If it holds,
we will say that the current pier pi may be a candidate of
the query pattern qj since we know that the current pier
and the query pattern share the similar prefix with length
`p. By using the pre-computed GPM, the computation cost
of verification can be reduced from O(`2p) to O(1).

6. QUERY PROCESSING
In this section, we will show how the hash-based pier model
can be used to achieve efficient and effective similarity search
in a biological sequence database. The space and time com-
plexity are also discussed and analyzed. In our approach,
the algorithm of sequence similarity search based on the
hash-based pier model consists of three steps: generating
the query pattern with size of `p from Q; searching for pier
candidates among the hashed piers; and post-processing the
candidates to concatenate adjacent candidates to form final
alignments with a high alignment score. We focus our dis-
cussion on the second step since it is the main part of query
processing.

6.1 Neighborhood Enumeration
Our search technique partitions the given query sequence Q
into |Q| − `p + 1 query patterns q1, q2, ..., q|Q|−`p+1. In the
second step, the pier prefix segment with length λ, qi[0, λ−1]
is encoded to a hash key hi, which is a 2λ bit integer. Then
all the encoded neighbors ngbr of this hash key hi are enu-
merated, and the neighbors are those 2λ bit integers which
are within a small edit distance from hi. In our algorithm,
for simplicity, λ is set as 10 or 12, and the edit distance
allowed for neighbors is set as 2. Our method for enumerat-
ing all neighbors within an edit distance of 2 from the given
encoded query pattern is supported by Theorem 6.1. Note
that each neighbor of the hash key can be enumerated in
O(1) amortized cost.

Theorem 6.1. Let S and Q be two sequences of length λ
from the alphabet set Σ. If edit(S, Q) ≤ 2, then one of the
following cases is true:

• Case 1: edit(S, Q) = 0, i.e. the two sequences are
exactly the same;

• Case 2: edit(S, Q) = 1, i.e. one replacement operation
is needed in S to transform S to Q;

• Case 3: edit(S, Q) = 2, there will be three subcases to
explain it:

– Case 3.1 two replacement operations in S are needed
to transform S to Q;

– Case 3.2 one insertion and one deletion in S with
order are needed to transform S to Q;

– Case 3.3 one deletion and one insertion in S with
order are required to transform S to Q.

Based on Theorem 6.1, the encoded neighboring 2λ bit in-
tegers are enumerated. We shall show in detail how the
neighbors of the given encoded sequence q of length λ are
generated.

Case 1 means that the neighbor of q is q itself. In Case 2,
the neighbor of q is enumerated with the replacement of the
letter x in position i, 0 ≤ i < λ with other letters in Σ.
Each neighbor ngbr enumerated in terms of Case 2 meets
edit(q, ngbr)=1. In Case 3.1, the neighbor is generated with
the replacement of the letter x in position i, 0 ≤ i < (λ− 1)
with other letters except x, followed by the replacement of
the letter y in position j, (i + 1) ≤ j < λ with other letters
except y. In Case 3.2, the neighbors are enumerated with
the insertion of any letter in Σ in position 0 ≤ i < (λ−1) of
q and the deletion of the letter in position j, (i+1) ≤ j < λ
of q. Similarly, in Case 3.3, the neighbors are generated with
the deletion of a letter in 0 ≤ i < λ and the insertion of any
letter in Σ in position j, (i+1) ≤ j < λ of q. Each neighbor
ngbr enumerated in terms of Case 3.1, Case 3.2 and Case
3.3 meets edit(q, ngbr)=2.

There may exist several kinds of redundancy in neighbor
enumeration, which means that the same neighbor may pos-
sibly be enumerated several times across the different cases
in Theorem 6.1, or the neighbor generated may be the se-
quence itself.

Most of the redundancy can be avoided easily with little
additional cost. For those redundancy that cannot be de-
tected easily, we will exempt it by labeling those neighbors
that have been enumerated already.

6.2 Sequence Similarity Search
The algorithm of sequence similarity search using the pro-
posed hash-based pier model is presented in Algorithm 1.
Once an encoded neighbor ngbr of the hash key of qi is
enumerated, the piers in the bucket of the hash structure
HTable[ngbr] will be retrieved and checked to see if they
are candidates, i.e., whether they are similar to the query
pattern qi by the verify function. The verify function
is implemented using the global penalty matrix (GPM) we
mentioned in earlier section.

For a pier candidate, the edit distance is allowed twice,
once when enumerating neighbors, and once when using the
GPM. The two edit distances can not be simply added up
as the edit distance between pier p and query pattern qi.
In order to ensure a high sensitivity, suppose that the edit
distance for enumerating neighbors is β and the one for the
GPM is ε. By careful setting of β and ε, we can capture
most cases of edit(p, qi) ≤ θ. Due to the space limitation,
we will ignore the theoretical analysis here.

Algorithm 1: Hash-based Similarity Search Algorithm
Input: Hash table HTable, Query sequence Q, `p, λ
Output: Candidate
Method:
begin

Candidate ← ∅;
for each query pattern qj in Q do

do enumerate the next neighbor ngbr of encode(qj [0, λ]);
for each pier p in the bucket HTable[ngbr] do

verify(p, qj);
if p and qj are similar then

Candidate ← Candidate ∪ {〈p, qj〉};
until all the neighbors of qj are enumerated;

end

6.3 Time and Space Complexity

Parameter Values in Case I Values in Case II
`p 15 18
`s 7 9
λ 10 12
θ 3 3

Table 2: The Parameters in the Experiment

We next look at the time and space complexity for our al-
gorithm. First, for pier set P construction, we need to scan
the database once; the time complexity for this is O(|D|).
A more effective way is to simply read the piers that we
need since we can obtain the start position of each pier on
the fly. To build a hash table for the piers, each pier can
be inserted with time complexity O(1) if the global penalty
matrix is used. So the total time complexity for the con-
struction of the hash table will be O(|P |). For the space
complexity of the hash table, we need O(4λ) for the table
head. For the bucket of the table, each pier will contribute
space Θ(ω). Thus, the total size of the buckets will require
space O(ω|P |). Also, we need space Θ(42ω) for the global
penalty matrix. Thus, the total space complexity for the
hash structure will be O(4λ + 42ω + ω|P |). Typically, if we
set λ = 10 and ω = 5, for a sequence with 3 × 109 letters,
with span length `s = 7, then the hash table size will be less
than 200 mega-bytes. The structure is small enough to keep
in the main memory to aid faster computation.

For each query pattern q of the query Q, the set of piers
N of the neighbors for q will be enumerated. As we have
explained, each neighboring pier can be generated with time
amortized complexity O(1). For each collision list we access,
each item of the collision list will require time O(1) when the
global penalty matrix is used. Thus, the time complexity for
the query is O(α|Q||N |), with the loading factor α = |P |/4λ.
We can take the repeating computation into consideration,
such as in symmetric cases, the letter repetition in a se-
quence and the neighboring of the serval query patterns, so
as to reduce time complexity.

7. EXPERIMENTS
In this section, we present experimental results on the per-
formance of homology search in DNA sequence databases
to evaluate the efficiency of our proposed method for pre-
processing and query processing in comparison to the latest
version of BLAST (NCBI BLAST2).

7.1 Data sets
All the DNA sequence databases used in the experiment
are downloaded from NCBI website. We use two sets of
parameters shown in Table 2 for our method and set the
seed length w=11 for BLAST. The DNA databases used in
the experiments are the following: human genomic: 3.1G,
other genomic: 1.06G, Patnt: 702.1M, month.gss: 286.2M,
yeast.nt: 12.3M and ecoli.nt: 4.68M. We have collected a
query set from a variety of sources to evaluate the responses
from the hash-based pier approach and BLAST. The re-
ported performance results are the average over 10 queries.
The experiments are implemented in c programming lan-
guage, and are executed on a Sunfire 4800 machine with 12
Ultrasparc3 CPU of 750MHz, 16GB free memory and 70GB
free harddisk.

0
100
200
300
400
500
600
700
800
900

1000

0 1000 2000 3000

T
im

e(
se

c)

Database Size(Mb)

Preprocessing Time

hash-based, lp=15
hash-based, lp=18

blastn

(a) Pre-processing Time

0

5

10

15

20

0 500 1000 1500 2000

T
im

e(
se

c)

Query Length

DB:Patnt

hash-based, lp=15
hash-based, lp=18

Blastn

(b) Query Time(DB:patnt)

0

5

10

15

20

25

30

200 400 600 800 1000

T
im

e(
se

c)

Database Size(Mb)

Query length=500

hash-based, lp=15
hash-based, lp=18

Blastn

(c) Query Time(|Q| = 500)

0

5

10

15

20

25

30

35

200 400 600 800 1000

T
im

e(
se

c)

Database Size(Mb)

Query Length=1500

hash-based, lp=15
hash-based, lp=18

Blastn

(d) Query Time(|Q| = 1500)

Figure 3: Experimental Results for Efficiency

7.2 Performance Analysis
We perform several experiments to evaluate query process-
ing in our hash-based pier model. Since sensitivity analysis
has been done in our paper, we shall focus on showing the
efficiency of query processing.

7.2.1 Efficiency in Pre-processing
We first perform an experiment that evaluates efficiency in
data sequence pre-processing before performing sequence
similarity search. Figure 3(a) shows that pre-processing
with our method is much faster than with BLAST. This
is because our hash-based pier model simply extracts piers
and hashes them rather than processes each segment in the
sequence database as BLAST and other methods do. Also
the query pre-processing using the parameter values in set I
is faster than using the ones in set II due to the features of
hash tables for different parameter values.

7.2.2 Performance in Query Processing
An experiment is carried out to investigate how the length of
the query sequence affects the performance of our method in
comparison with BLAST. To do this, we perform similarity
search for query lengths of 100, 300, 500, 800, 1000, 1500 and
2000 on database patnt. Figure 3(b) shows our search speed
is 2-15 times faster than BLAST when the query length is
varied.

For further evaluation of the efficiency of our method, we
run two groups of queries with length 500 and 1500 on five
data sets. As shown in Figure 3(c) and Figure 3(d), our
method outperforms BLAST 2-10 times when the size of
data sets varies for both groups of queries. This means that
our method is very capable of handling sequence similarity
search in large DNA sequence databases. The results also
show that query processing using the parameter values in set
II is about three times faster than using the ones in set I.
This is reasonable since the number of candidates for `p = 18
is smaller than `p = 15 when θ = 3 in both cases. Fewer
candidates lead to lower computation cost, and therefore
much faster speed.

8. CONCLUSION
In this paper, for efficient similarity search, we have pro-
posed a new model – the hash-based pier model, and demon-
strated its search efficiency and sensitivity. We have also
proposed a method – the GPM-based method – to further
improve search efficiency by reducing the computation cost
of candidate verification. Compared to the most widely
used biological database search tool, BLAST, our method
is faster, yet requiring smaller memory and space.

9. REFERENCES
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.

A basic local alignment search tool. In Journal of
Molecular Biology, 1990.

[2] S. Burkhardt, A. Crauser, P. Ferragina, H. P. Lenhof, and
M. Vingron. q-gram based database searching using a suffix
array (quasar). In Int. Conf. RECOMB, Lyon, April 1999.

[3] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc.
1994 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’94), pages 419–429, Minneapolis, Minnesota,
May 1994.

[4] E. Giladi, M. Walker, J. Wang, and W. Volkmuth. Sst: An
algorithm for searching sequence databases in time
proportional to the logarithm of the database size. In Int.
Conf. RECOMB, Japan, 2000.

[5] D. Gusfield. Algorithms on Strings, Trees and Sequences,
Computer Science and Computation Biology. Cambridge
University Press, New York, 1997.

[6] E. Hunt, M. P. Atkinson, and R. W. Irving. A database
index to large biological sequences. In International Journal
on VLDB, pages 139–148, Roma, Italy, September 2001.

[7] T. Kahveci and A. Singh. An efficient index structure for
string databases. In Int. Conf. VLDB, Roma, Italy, 2001.

[8] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and
more sensitive homology search. Bioinformatics,
18:440–445, 2002.

[9] U. Manber and G. Myers. Suffix arrays: a new method for
on-line string search. SIAM Journal on Computing,
22:935–948, 1993.

[10] C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online and
accurate technique for local-alignment searches on
biological sequences. In Proc. 2003 Int. Conf. Very Large
Data Bases (VLDB’03), pages 910–921, Berlin, Germany,
Sept. 2003.

[11] S. Muthukrishnan and S.C. Sahinalp. Approximate nearest
neighbors and sequence comparison with block operation.
In STOC,Portland, Or, 2000.

[12] O. Ozturk and H. Ferhatosmanoglu. Effective indexing and
filtering for similarity search in large biosequence
datasbases. In Third IEEE Symposium on BioInformatics
and BioEngineering (BIBE’03), Bethesda, Maryland, 2003.

[13] W.R. Pearson and D.J. Lipman. Improved tools for
biological sequence comparison. Proceedings Natl. Acad.
Sci. USA, 85:2444–2448, 1988.

[14] T.F. Smith and M.S. Waterman. Identification of common
molecular subsequences. Molecular Biology, 147:195–197,
1981.

[15] Z. Tan, X. Cao, B.C. Ooi, and A. Tung. The ed-tree: an
index for large dna sequence databases. In In Proc. 15th
Int. Conf. on Scientific and Statistical Database
Management, pages 151–160, 2003.

[16] P. Weiner. Linear pattern matching algorithms. In Proc.
14th IEEE Symp. On Switching and Automata Theory,
pages 1–11, 1973.

[17] H.E. Williams and J.Zobel. Indexing and retrieval for
genomic databases. IEEE Transactions on Knowledge and
Data Engineering, 14:63–78, 2002.

