
SecuDB: An In-enclave Privacy-preserving and Tamper-resistant
Relational Database

Xinying Yang
ByteDance Inc

xinying.yang@bytedance.com

Cong Yue
National University of Singapore

yuecong@comp.nus.edu.sg

Wenhui Zhang
ByteDance Inc

wenhui.zhang@bytedance.com

Yang Liu
ByteDance Inc

liuyang.007@bytedance.com

Beng Chin Ooi
National University of Singapore

ooibc@comp.nus.edu.sg

Jianjun Chen
ByteDance Inc

jianjun.chen@bytedance.com

ABSTRACT
With the escalation in the demand for privacy-preserving and
tamper-resistant data management and processing on the pub-
lic cloud, an increasing number of mainstream databases start to
provide always-encrypted and blockchain-like features, including
Microsoft SQL Server, MongoDB, and Alibaba PolarDB. The recent
progress in Trusted Execution Environment (TEE) technology has
enabled the deployment of the complete database engine within
TEE. This implementation ensures that data stored in memory,
cache, and registers is encrypted, thereby maintaining the con-
fidentiality of information. In this paper, we present SecuDB, a
multi-granularity privacy-preserving and tamper-resistant rela-
tional database by placing the entire RDBMS in Intel TDX. We
propose a novel visibility control mechanism incorporating column
masking, log masking, and statistics masking to realize fine-grained
privacy preservation and devise an isolated TEE-endorsed tempo-
ral table method to support efficient data and query verifiability,
without affecting insertion and selection performance. We evaluate
SecuDB using Sysbench, TPC-C and TikTok copyright workloads.
The results show that compared with a system without an enclave,
SecuDB hits 84.7% and 94.7% of the performance when providing
coarse-grained and fine-grained privacy preservation, respectively.
While the overhead for tamper-resistance is less than 22.6%.

PVLDB Reference Format:
Xinying Yang, Cong Yue, Wenhui Zhang, Yang Liu, Beng Chin Ooi,
and Jianjun Chen. SecuDB: An In-enclave Privacy-preserving and
Tamper-resistant Relational Database. PVLDB, 17(12): 3906-3919, 2024.
doi:10.14778/3685800.3685815

1 INTRODUCTION
With the migration of sensitive data to the cloud, businesses, in-
stitutions, and individuals have endured higher risks associated
with data breaches, unauthorized access, and other security threats.
Consequently, the focus on both data security and privacy in the
cloud has become paramount. For example, enterprises are digitiz-
ing their business documents using a database system. It is essential
to ensure the contents of confidential business documents are kept

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685815

secret and cannot be revealed to unauthorized users, attackers, and
database administrators. Moreover, the system must ensure the
documents are authentic and stored correctly.

Many database systems have been developed by mainstream
database service providers with the primary goal of safeguarding
data security and preserving data privacy. On the one hand, verifi-
able databases [3, 7, 75, 77–79] are built to ensure the integrity of the
data content. These systems often leverage cryptographic functions
and authenticated data structures to summarize database states into
a digest. The users can perform client-side verification with the
digest and proofs generated by the server to verify that the data
has not been tampered with. Moreover, systems can support server-
side verification with secure hardware to eliminate the network
transmission of proofs and relieve the burden of clients [5, 9, 65, 76].
However, these systems do not protect data privacy. On the other
hand, encrypted databases are developed to ensure data privacy
[2, 17, 43, 53]. In these systems, the clients employ encryption algo-
rithms such as the Advanced Encryption Standard (AES) [22] to en-
crypt data before transmitting it to the server and decrypting it upon
retrieval. The cryptographic algorithm ensures data privacy and
security, but the notable challenge limits its utilization in encrypted
databases due to its performance bottleneck and deficient func-
tionality for ubiquitous cipher data-based computation; examples
include fully homomorphic encryption (FHE) techniques [16, 28],
partially homomorphic encryption [46], and property-preserving
encryption methods [10, 54]. Furthermore, systems [2, 4, 56, 71]
employ secure hardware to support more operations on encrypted
data within the enclave. Once a ciphertext is delivered to the en-
clave, it first decrypts the data, computes on the plaintext, and then
encrypts the data before replying to DBMS. We call this architec-
ture as partially hardware encrypted (P-HE). These systems are
designed with the assumption of a limited Enclave Page Cache
(EPC) size, making it impractical to run the entire DBMS within
the enclave. Consequently, they suffer from significant I/O costs
between the enclave and the DBMS. Besides, the DBMS run out-
side the enclave can be compromised, and therefore, data security
cannot be guaranteed.

To address the limitations of existing designs and inspired by
recent advancements in trusted execution environment technolo-
gies [15, 26, 27, 36, 38, 63, 66, 80], such as Intel TDX, AMD SEV-SNP,
and ARM CCA, we have conceived and implemented SecuDB. It
stands as an in-enclave relational database utilizing full hardware
encryption (F-HE), to enable privacy-preserving and verifiable func-
tionalities. This endeavor involves migrating the entire database

https://doi.org/10.14778/3685800.3685815
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685815

management system (DBMS) into TEE, thus reshaping the prevail-
ing paradigm of partial hardware encryption (P-HE). We invent
a column mask-enabled visibility control method for select lists,
predicates, logs, and statistics, to realize fine-grained privacy preser-
vation, thereby eliminating the need for conventional client-side
encryption and decryption solutions. We isolate TEE endorsement
from general queries such as insertion and selection, which signifi-
cantly outperforms conventional P-HE, and support both data and
query-oriented verification using a native temporal table.

SecuDB deploys the entire VeDB [73, 76] engine into TDX with
efficient attestation and optimized system tuning. It is deployed
in TikTok [13] and Lark [12] to support privacy-preserving and
tamper-resistant management of the copyright and grounding, re-
spectively (detailed in Section 3.1). We conduct detailed perfor-
mance evaluation on SecuDB using two synthesis workloads, Sys-
bench and TPC-C, and a real-world workload consists of TikTok
copyright. We summarize our main contributions as follows:

• We design and develop SecuDB, which, to the best of our
knowledge, is the first in-enclave DMBS that serves both
multi-granularity privacy-preserving and tamper-resistant
functionalities.

• We comprehensively analyze the threat model and database
kernel design principle for in-enclave privacy-preserving
and tamper-resistant databases.

• We design a novel framework using column mask-enabled
visibility control to realize efficient fine-grained privacy
preservation in the F-HE system, which reforms client-side
encryption in conventional P-HE systems.

• We enhance security and accountability within the isolated
environment by extending the attestation and trust chain
establishment processes between the Trust Domain (TD)
and the operating software components.

• We devise TEE-endorsed advanced temporal tables to sup-
port efficient data and query verifiability, significantly en-
hancing the serviceability of conventional verifiable databases.

• We conduct experiments to evaluate the performance of Se-
cuDB. The experimental results show that SecuDB achieves
84.7% and 94.7% of the baseline throughput when provid-
ing coarse-grained and fine-grained privacy preservation,
respectively, and incurs 22.6% for tamper-resistance func-
tionalities.

The rest of this paper is organized as follows. Section 2 introduces
the background of TEE and databases in TEE. Section 3 outlines
system architecture with table and SQL enhancement of SecuDB.
Section 4 presents our design of attestation and trust chain in TDX.
Section 5 discusses fine-grained privacy-preserving in SecuDB real-
ized by visibility control. Section 6 describes the tamper-resistant
framework in our system. We then provide our experimental evalu-
ation in Section 7 before we conclude in Section 8.

2 BACKGROUND
In this section, we first introduce the general principles of Trusted
Execution Environment (TEE) and functions in Intel Trust Domain
Extensions (TDX) and then present privacy-preserving and tamper-
resistant database-related works.

2.1 Trusted Execution Environment
A Trusted Execution Environment (TEE) offers an isolated envi-
ronment (i.e., secure enclave) for protecting data-in-use. TEE safe-
guards data and computations against threats, including from a
malicious host kernel or hypervisor. TEE has been a prominent fo-
cus of academic and industrial research for the past two decades [24,
33, 37, 56, 64, 69, 71, 74], based on various TEE hardware platforms,
such as Intel Software Guard Extensions (Intel® SGX) [26, 40], Intel
Trust Domain Extensions (Intel TDX) [15, 27], ARM Trustzone [52],
Arm Confidential Compute Architecture (ARM CCA) [80], AMD
Secure Encrypted Virtualization (SEV) [34], AMD Secure Encrypted
Virtualization and Secure Nested Paging (AMD SEV-SNP) [63] and
RISC-V Keystone [37].

In general, different hardware supports different levels of isola-
tion. For example, Intel SGX [26, 40, 69] and ARM Trustzone [52]
provide application code and data isolation through Enclaves and
Secure World, respectively. Intel TDX [15, 27], ARM CCA [80],
AMD SEV [34] and AMD SEV-SNP [63] provides secure execution
environments that are completely opaque to privileged, untrusted
system software such as host OSes and hypervisors.

SecuDB relies on Intel Trusted Domain Extension to provide
a TEE-based virtual machine (VM) environment, which provides
execution domain isolation by encryption of memory and regis-
ters, integrity measurement, and remote attestation to ensure data
confidentiality. Intel TDX VM instances, unlike Intel SGX, do not re-
quire additional development of a library OS to support application
workloads, thereby conserving engineering resources. Moreover,
Intel TDX VMs have the ability to fully utilize all CPU and memory
resources available on a physical node. This advantage facilitates
the management of large-memory workloads entirely within se-
cure memory, minimizing I/O operations and boosting performance
significantly [15, 27, 59].

2.2 Intel Trust Domain Extensions
Intel’s TDX [15, 27] provides isolation, confidentiality, and integrity
at the VM level. It fortifies the confidentiality of guest VMs against
the host system and physical security threats. This is achieved
through the isolation of guest register states and the encryption of
guest memory via secure page management. TDX module operates
in a privileged mode, acting as an intermediary between the host
and guest environments to oversee the separation between the two.

Intel TDX delivers two major functionalities. First, it ensures
the confidentiality and integrity of memory and CPU states, safe-
guarding sensitive intellectual property and workload data against
threats from the host OS. Secondly, it enables remote attestation,
allowing a verifying entity, be it the workload’s proprietor or a user
of the workload’s services, to ascertain that the workload is opera-
tional on an Intel-TDX-enabled platform within a trusted domain
(TD) before sharing any workload-related data.

Memory Encryption by TDX. TDX introduces a new CPU
operating mode and utilizes memory encryption techniques to en-
sure isolation between two VMs. These VMs are encrypted using
different keys, directly managed by the TDX Module [15]. TDX
employs two complementary technical mechanisms: the Secure Ar-
bitrationMode (SEAM) CPUmode and theMulti-key Total-Memory
Encryption (MKTME) [58].

The SEAM mode employs a set of new instructions such as
SEAMCALL, SEAMRET, SEAMOPS, and TDCALL to facilitate in-
teraction between the Trust Domain operating system and the
host/VMM [57]. Simultaneously, TDX offers protected physical
memory regions for safeguarding the code of the Intel TDX module.
Multi-key Total-Memory Encryption (MKTME) [58] engine em-
ploys the PCONFIG instruction to allocate and configure memory
encryption keys for individual Trust Domain VMs. TDX divides
memory into private and shared segments. Despite external hard-
ening being necessary under TDX, shared memory remains used
during this process. This shared memory is externally readable,
as certain virtualized or semi-virtualized devices require external
communication, necessitating the host operating system’s ability
to access this memory to provide services such as networking.

Attestation of TDX. The attestation process in TDX is designed
to provide remote parties with verifiable proof of the TD Guest’s se-
curity and trustworthiness. By leveraging cryptographic techniques,
measurements, and secure hardware, TDX attestation enhances the
overall security of virtual environments [15, 57, 58]. The attesta-
tion process encompasses two fundamental phases: TDREPORT
generation and Quote generation.

The initial step within the TDX guest environment entails invok-
ing TDCALL[TDG.MR.REPORT] to procure the TDREPORT from
the TDX module. The TDREPORT represents a predetermined data
structure, a product of the TDX module, containing guest-specific
information encompassing build and boot measurements, platform
security version, and a Message Authentication Code (MAC) de-
signed to safeguard the TDREPORT’s integrity. A user-provided
64-Byte REPORTDATA [58] is incorporated into the TDREPORT,
typically serving as a nonce supplied by the attestation service to
enable unique verification of the TDREPORT.

Upon obtaining the TDREPORT, the second phase of the at-
testation process involves transmitting it to the Quoting Enclave
(QE) to generate the Quote. To facilitate remote verification of the
TDREPORT, TDX leverages the Intel SGX Quoting Enclave, which
verifies the TDREPORT locally and transforms it into a Quote. Sub-
sequently, the Quote is dispatched for remote attestation, where
the remote attestation entity parses the Quote and verifies whether
the integrity of the boot chain has been compromised.

SecuDB resides within a Trust Domain VM to guarantee the
confidentiality of its code and data, and employs integrity measure-
ment and remote attestation mechanisms to verify the integrity of
its code and execution environment.

2.3 Trusted and Privacy-preserving Databases
Existing trusted and privacy-preserving databases can be classified
into four categories, namely, hardware-enabled encrypted database
(H-EDB), software-oriented encrypted database (S-EDB), hardware-
enabled verifiable database (H-VDB), and software-oriented verifi-
able database(S-VDB).

S-EDB systems. Software-enabled algorithms leveraging Prop-
erty preserving encryption (PPE) to realize fundamental privacy-
preserving functionality in database systems [29, 48, 53, 70]. They
utilize ciphertext operations to offer ciphertext-based computation.
AWS Aurora [62], Microsoft SQL Server [55], MongoDB [43], Al-
ibaba PolarDB [17] all support S-EDB features by client-side column

data encryption in their systems. However, besides the high CPU
cost of the ciphertext operation complexity, the operations only
support a limited scope of DBMS operations.

H-EDB systems.Most hardware-enabled encrypted databases
[4, 8, 71] utilize TEE to support secured privacy-preserving fea-
tures. Microsoft SQL Server [2] and StealthDB [71] are typical
P-HE databases that put some supported SQL ciphertext predicates
into enclaves. Current commercialized H-EDB systems [2, 17] only
support simple operations such as equal, join, like operations [18],
which are still far from general and broad SQL operations and func-
tions. Furthermore, P-HE databases cannot support coarse-grained
encrypted applications. EnclaveDB [56] puts the entire SQL kernel
into the TEE to support stronger security functionality, but it still
faces the discussed problems in P-HE database systems.

S-VDB systems. Software-oriented verifiable databases often
adopt verifiable computing or authenticated data structures(ADS)
to verify the integrity of data. Ledger databases have emerged in re-
cent years [25, 39, 61], to offer blockchain-like tamper-resistant and
non-repudiation functionalities in a centralized paradigm. QLDB
[7] implements a tamper-evident feature by utilizing ADS on the im-
mutable table composed of current and historical tables. LedgerDB
[77] devises a TSA-involved two-way peg protocol to support ex-
ternal auditability. Microsoft SQL Ledger [3] and Oracle blockchain
table [47] develop tamper-resistant features on their relational data-
base products.

H-VDB systems.Hardware-enabled verifiable database systems
often incorporate the verification of the proof inside the TEE, and
therefore, enable server-side verification to relieve the burden of
clients and reduce communication costs. Concerto [5] stores in-
cremental hashes of readset and writeset in Intel SGX to verify
the integrity of data using a verified memory approach. VeritasDB
[65] protects the data with a Merkle B-tree, and uses Intel SGX to
perform the integrity checks based on the Merkle B-tree. VeDB [76]
utilizes a TEE-native monotonic counter and trusted timestamp as
a verifiable endorsement. TrustedDB [9] uses TEE to perform op-
erations, whose trusted zone involves large portions of the DBMS
engine. Corda [30] and Hyperledger Fabric [1] implement TEE-
assisted oracles as tamper-proofs in a decentralized permissioned
blockchain framework.

3 OVERVIEW
In this section, we present an overview of SecuDB, an in-enclave
relational database that supports coarse-grained and fine-grained
privacy-preserving and tamper-resistant features. We first discuss
the use cases, threat model, and design methodology of SecuDB,
followed by presenting the system architecture and data model
enhancements.

3.1 Use Cases
SecuDB is designed to efficiently support the data privacy and
integrity requirements in the increasingly prevalent outsourced
collaboration and cloud services. The preservation of privacy can
be fine-grained or coarse-grained based on the granularity of pro-
tection. While data integrity can be further categorized into data-
oriented and query-oriented based on the target of protection.

Coarse-grained Privacy-
preserving Application

Fine-grained Privacy-
preserving Application

Tamper-resistant
Application

 Encrypted Private Memory (Intel TDX)

 SecuDB

Visibility Control

SQL Engine

Temporal Table
Processing

Audit Table
Processing

Encrypted Channel (TEE-IO TLS)

Secured Network (TLS, RA-TLS)

Statistics Mask

Logical Log Mask

Predicates

Select List

Frequency Mask

Histogram Mask

Shared Memory (DMA buffers/SWIOTLB buffer)

Secured decryption and encryption

Storage

Figure 1: System Architecture of SecuDB. Coarse-grained
privacy-preserving is realized by the native in-enclave ar-
chitecture. Fine-grained privacy-preserving is designed by
visibility control and data masking of columns, logs, and sta-
tistics. Tamper-resistance leverages an advanced temporal
table paired with an audit table practically.

Coarse-grained privacy-preserving.The coarse-grained priva-
cy-preserving method protects all data from unauthorized access. A
typical customer requirement for coarse-grained privacy-preserving
is the Volcengine [11, 73] (ByteDance public cloud platform) data-
base product. An in-enclave database natively supports the coarse-
grained privacy-preserving use case.

Fine-grained privacy-preserving. To fulfill flexible data pri-
vacy demands in collaboration, the fined-grained approach is uti-
lized to protect privacy at the column level. An example of fine-
grained privacy-preserving customer cases is the employee data
table containing sensitive information such as salary that is stored
in Lark [12]. The DBMS has to guarantee that no users other than
human resource roles, including database administrators, can view
the contents. Another customer case is Bytedance information sys-
tem platform, which builds regulation-compliance infrastructure
to support multi-level sensitive column data that is realized by
SecuDB fine-grained privacy-preserving feature.

Data-oriented tamper-resistance. Data verifiability is another
requirement of database customers. It is useful for a database ser-
vice provider to prove a certain piece of data is never tampered
with (blockchain-like) to its user or an external auditor, especially
for mission-critical cases. For example, TikTok [13] leverages the
tamper-resistant techniques in SecuDB to notarize the copyright au-
thorship and royalty trail of the artworks on its platform. Another
use case is Bytedance digital signature service, which can adopt
SecuDB to realize the tamper-resistant functionality with easier

deployment and better performance compared to their previous
permissioned blockchain solution.

Query-oriented tamper-resistance. Query-oriented tamper-
resistance refers to a verifiable query result set. Tamper-proof is
expected to verify the result set generated by the database engine
has never been tampered with. For example, Volcengine [11] users
may not trust the results retrieved from a third-party outsourced
database. To facilitate trust, the cloud database service provider
needs to prove its integrity.

3.2 Threat Model
In this paper, we assume a powerful adversary who possesses con-
trol over the entire software stack on the database server, except
for the code encapsulated within secure enclaves. This adversary
encompasses various potential threats, including untrusted system
administrators, database administrators, and external attackers who
may access and tamper with server-side data residing in memory,
on disk, and during network transmissions. In this context, the sys-
tem must guarantee that the transactions and queries issued by the
clients are executed correctly. In the meanwhile, sensitive data and
information cannot be revealed or deduced by any unauthorized
operation whenever the data is in use or at rest. In addition, any au-
thorized modification to the data should be non-repudiated. In case
of a malicious action conducted by authorized users or database
administrators, the system can always identify the malicious user.
In this way, the system protects the data against insider threats.
However, denial-of-service and side-channel attacks are outside of
the scope of the paper.

3.3 Design Methodology
3.3.1 Privacy-preserving is simplified to visibility control. Conven-
tional H-EDB and S-EDB systems utilized an end-to-end encryption
methodology to realize database column privacy. In particular, a
P-HE database attested supported operations, e.g., equal predicate,
in the enclave, while most DBMS engines run outside the Trusted
Computing Base (TCB). Thus, the end-to-end encryption method
is unavoidable to keep the data as secrets. However, we discover
that in a F-HE architecture, the client-side encryption is no more a
constraint since TCB covers the entire DBMS. An attacker can not
obtain the data in any memory, CPU, or I/O phase as in our threat
model analysis. Hence, column-level privacy preservation is simpli-
fied as preventing unauthorized users from viewing the data. We
present a new catalog table to store secret data ownership and visi-
bility. In addition, we implement access control for all appearances
of data that can be observed from a client, e.g., through the select
list, predicates, logical logs, statistics, etc (Section 5). Unlike con-
ventional database column-level privilege controls [32, 42, 50, 60]
which allow highly privileged roles such as DBA to access user
data, SecuDB introduces an additional visibility control method for
secret columns, to disallow any retrieval by a highly privileged user
who has access right.

3.3.2 Verifiability is simplified to TEE-endorsed temporal table. S-
VDB systems utilize temporal or immutable tables [23, 41, 49],
whose records are computed into a representative digest and built
with provable ADS, for verifying an entity indeed exists in a set.
H-VDB, however, does not need to build such entangled verifiable

Table 1: SQL Enhancement in SecuDB, where sn is the serial number in temporal table, ? is the parameter passed to the SQL
statement [44], c1 and c2 are user defined columns, and user1 is the ID of the user.

Features Support Data Operations SQL and Procedures
Fine-grained privacy-preserving Define a fine-grained privacy-preserving column CREATE TABLE T(c1 INT SECRET, c2 VARCHAR);
Fine-grained privacy-preserving Control column visibility to another user GRANT/DENY/REVOKE VIEWER ON schema.table.column TO user1;
Fine-grained privacy-preserving Transfer visibility ownership to another user GRANT OWNER schema.table.column TO user1;
Fine-grained privacy-preserving Undo unexpected ownership transfers REVOKE OWNER schema.table.column;
Data-oriented tamper-resistance Define data-oriented tamper-resistant table CREATE TABLE T(c1 INT) IMMUTABLE YES WITH TYPE TEE;
Data and query tamper-resistance Verify temporal data or query resultset SELECT FROM T WITH SIGNATURE;
Data-oriented tamper-resistance Erase obsolete data in advanced temporal table DELETE FROM T WHERE sn <= ?;
Data-oriented tamper-resistance Hide violated data in advanced temporal table DELETE FROM T WHERE sn = ?;

data structures. In conventional H-VDB systems with a P-HE archi-
tecture [76], auxiliary TEE parameters have to be involved such as
monotonic counter, trusted timestamp [19] to support auditability,
and TEE-endorsed data has also to be recorded into DBMS. Nev-
ertheless, we find that no auxiliary TEE parameters are needed
in a F-HE database, even the TEE-endorsed signature recording,
due to the F-HE TCB. Therefore, the verification of data integrity
is simplified by providing verification API, which executes select
statements on the temporal table and returns the TEE-endorsed
signature with the resultset (detailed in Section 6). It supports both
data- and query-oriented verification, which none of the existing
database systems support.

3.4 SQL Enhancement
Weenhance SQL syntax for privacy-preserving and tamper-resistant
functionalities of in-enclave databases, including DDL, DCL, and
DML as presented in Table 1.

3.4.1 Privacy-preserving SQL Syntax. When creating or altering a
table, a privacy-preserving column is defined with an additional
keyword SECRET. It will grant the user who can see the plaintext as
the owner of the secret column. All other users cannot observe the
plaintext in any way, such as data retrieval, predicate handling, log
probing, or statistic viewing. The owner can grant column visibility
by GRANT VIEWER DCL to another user, explicitly block secret col-
umn visibility by DENY VIWER, and remove the visibility by REVOKE
VIWER to a previously granted user. All the above DCL operations
can be only executed by the secret column owner, to prevent un-
expected operations from high-privileged roles such as DBA. An
owner can transfer the ownership to another user. This statement
will downgrade the original user as a viewer automatically. Note
that there is only one user holding the owner role at one time of
fine-grained column-level privacy. If the owner transfers ownership
to another user by mistake. It can be reverted by highly privileged
users using REVOKE OWNER DCL relied on a system-maintained
historical ownership chain that records all historical ownership
transfers. This statement provides a safe mechanism to undo un-
expected ownership transfers. To prevent secret data leaking by
spoofing attacks, we deactivate secret owner or viewer password
reset by high-privileged roles such as DBA.

3.4.2 Tamper-resistant SQL Statement. A TEE-assisted tamper-
resistant table in SecuDB can be defined using IMMUTABLE keyword
with TEE specified. It creates an advanced temporal table containing
implicit column SN discussed in Section 3.6.2. The table data and

query resultset can be verified by specifying an additional suffix
WITH SIGNATURE in the selection. To achieve practical regulatory
compliant and overcome storage overhead (detailed in Section 6),
we offer a constraint predicate on implicit column SN to locate
the target data. The equal predicate is used to hide the violated
information, while the no greater than predicate is used to erase
consecutively historical data to save storage. Note that only high-
privileged roles can execute this predicate on a delete statement.

3.5 System Architecture
SecuDB deploys the entire VeDB [76] engine, a relational database
with trusted features on ByteDance public cloud platform called
Volcano Engine [11, 14], into Intel TDX by provable attestation. All
database internal computations are securely protected within the
enclave, and data storage is protected by TEE encryption before
any disk write as depicted in Figure 1. This provides coarse-grained
privacy-preserving capability which is transparent to an end user.

To support fine-grained privacy-preserving, SecuDB creates a
visibility control catalog table to process related DML predicate
and select list. Logical logs and statistics on the secret columns
will be masked when retrieved by an end user who does not have
permission to view the column, while the log and statistics database
engine processing and data all remain unchanged. Verifiability in
SecuDB covers both data-oriented tamper-resistance and query re-
sultset authentication, which can be verified with a TEE-endorsed
signature. A tamper-resistant table is realized by an advanced tem-
poral table with a related audit table.

3.6 Table Enhancement
3.6.1 Catalog Table. We introduce a new catalog table named sec-
cat, to support fine-grained privacy-preserving functionality on
a secret column. sec-cat does not change existing SQL privileges,
but introduces an additional visibility control method for secret
columns to bar privileged users from viewing the data. sec-cat has
three columns: ColID (the unique ID of the column), Owner (the
owner of the table), and Viewer (users who can see the column data).
When a column is defined as a secret column (detailed in Section
3.4.1), a row with the creator as the owner will be inserted into
sec-cat. An owner transferring or a viewer granting SQL statement
will update the Owner and Viewer column correspondingly. sec-
cat is used by SQL parser and runtime when executing related DML
statements (detailed in Section 5.2).

Step 3: KBS gets the
key from KMS.

TDX VM

Attest SecuDB
Image (with KBS)

Run
Attestation

Decrypt Disk

UEFI

ESP (EFI System Partition)
ACM

TDX
Loader

TDX
Module

TDX
Loader

TDX
Module

SGX TDX KVM

DCAP Libvirt-
TDX

Quote Generation
Service

TDX Host Kernel

TDVF/OVMF

Attest SecuDB
Service

Customer Verification
Workflow

Grub2 RTMR

Integrity Measurement
Architecture (IMA)/dev/secudb (/mnt/secudb)

Key Broker Service Attestation Agent

SecuDB
Binaries

SecuDB Configuration
SecuDB Dependencies

Cloud Service Provider
Provisioning Workflow

Install BIOS

Install Host OS

Deploy TDX Host
Stack and Register

Platform for
Attestation

Deploy TDVF and
Register SecuDB VM

Register SecuDB
Disk Encryption Key

Boot up SecuDB
Service

/dev/mapper/encrypted

Attest
Hardware

Step 1: Pre-boot stage,
VMM inits a TDVF w/
an attestation agent and
a Key Broker Service.

Step 2: Communication
Stage, attestation agent setup
RA-TLS communication btw.
KBS and KMS.

Step 4: TDVF uses
the keys to decrypt
the TDVM image.

Step 5: Attestation
of loader, OS, and
SecuDB service.

Guest Kernel

Figure 2: Provisioning and Verification Workflow of SecuDB. Three stages of provisioning and verification, attestation of
hardware, attestation of SecuDB VM image and secondary drives, and attestation of SecuDB.

3.6.2 Temporal Table. To realize the tamper-resistant feature in Se-
cuDB, we present an advanced temporal table (aTT) that meets
the regulation-compliant requirement and resolves the storage
overhead of immutable tables (detailed in Section 6.2). An orig-
inal temporal table [23] is a kind of immutable table composed
of a current table that stores current data, and a historical table
containing all the obsolete data. In an in-enclave architecture, a
TEE-endorsed temporal table is natively tamper-resistant in the dis-
cussed threat model. In addition, we create a new implicit column
called SN, whose contents are filled with serial numbers. The serial
numbers are used to locate data to be erased or hidden for audit
and verification (detailed in Section 3.4.2).

3.6.3 Audit Table. An audit table is pairwise with aTT, and records
the metadata for all the erased or hidden data trails in aTT, to keep
aTT auditable. It stores the executor of the operation, the operation
type, the specified value of SN, the number of rows affected, and
the timestamp. The audit table is only created after an erasing or
hiding operation is executed to an aTT.

4 ATTESTATION OF SECUDB SERVICE
In this section, we introduce the trust model for SecuDB attestation,
and then present attestation of SecuDB.

4.1 Trust Model for SecuDB Attestation
Attestation evaluates the trustworthiness of the TDX guest when
it comes to external entities seeking access to sensitive informa-
tion. In the case of SecuDB, the key server initiates an attestation
process before granting authorization to release encryption keys,
which is required for mounting the encrypted rootfs and secondary
drives in full disk encryption mode. Once the encrypted rootfs or
secondary drive is successfully mounted, a further step is taken
to guarantee that SecuDB functions within a memory-encrypted
environment by incorporating its runtime and dependencies into

the attestation chain. Within this trust chain, several key objectives
are accomplished:

• Verification of the secure container’s environment to ensure
it runs on genuine Hardware-based TEE.

• Validation that the disk partition is trusted and no data
leakages happen.

• Validation that the virtual machine operates with third-
party programs as expected, ensuring expected behavior.

• Confirmation that the runtime of SecuDB remains unal-
tered, preserving its integrity.

This trust chain establishes a robust and secure foundation for
deploying and running SecuDB, assuring customers of the integrity
and authenticity of their computing environment.

4.2 Attestation of SecuDB
SecuDB aims to safeguard data confidentiality at rest and at runtime.
Confidentiality of data at rest is accomplished by encrypting the
SecuDB runtime and its dependencies, including virtual machine
(VM) disk image, SecuDB binary, SecuDB configuration files, and
dependencies. Meanwhile, the confidentiality of data at runtime is
achieved throughmemory encryption within the Trusted Execution
Environment (i.e., a Trusted Domain Instance). We also preserve the
confidentiality of data at rest capability through storage encryption
using a trusted Key Broker Service (KBS), shown in Figure 2. Two
agents accomplish attestation of SecuDB: the Attestation Agent
and the Key Broker Service (KBS).

The attestation process comprises two steps: the generation of
TDREPORT and the subsequent generation of a Quote.

Attestation Agent. In the early OS boot attestation phase, the
attestation agent is located in the initrd (initial RAM disk), as part of
the TDVF. During the OS runtime attestation phase, the attestation
agent functions as an application within the operating system in its
userspace. Its main tasks include obtaining the storage volume key

from a remote key server and passing it to the KBS, triggering the
generation of TDREPORT, and getting the Quote for attestation.

Key Broker Service. The KBS resides within trusted TDVF. The
primary role of KBS is to receive the storage volume keys from the
attestation agent and utilize them to decrypt the storage volume, en-
suring that both rootfs and disk partitions are accessible and secure.
During the rootfs loading phase, KBS undertakes the decryption
of the disk image. The TDVF can load and initiate the operating
system’s launch from the decrypted partition. In instances involv-
ing encrypted secondary volumes encountered in scenarios like
data partition or container image encryption, the KBS decrypts the
storage volumes after the system has been successfully booted.

SecuDB adheres to Intel’s official guidelines on attestation to
conduct hardware attestation [20], followed by performing full disk
encryption [21] for attestation of secondary storage volumes. VM
attestation and the attestation of SecuDB are detailed as follows.

Attestation of Virtual Machine. Attestation of Virtual Machine
ensures guest OS’s confidentiality by measuring and attesting the
rootfs. The TDX KMS manages the key for disk encryption to
ensure key security. We encrypt the disk image containing the
SecuDB binaries and its dependencies. This ensures that even if an
unauthorized entity gains access to the physical storage, it cannot
disclose the data in a disk image without the decryption key.

The process begins with the VMM receiving the customer’s en-
crypted disk image and consists of 5 major steps. In step 1, in the
pre-boot stage of TDVM instances, the VMM inits a TDVF con-
taining an attestation agent and a KBS. In step 2, within TDVF,
an attestation agent is launched to facilitate communication with
a remote key server. The attestation agent, operating under the
TDVF’s secure environment, establishes a trusted and authenti-
cated connection with the remote key server using the protocols
of Remote Attestation with Transport Layer Security (RA-TLS). In
step 3, once the secure session is established, the attestation agent
communities with KMS and gets the keys. The attestation agent
acquires the essential disk encryption key from the remote key
server and then efficiently passes this key to the KBS. In step 4, the
TDVF uses the keys to decrypt the TDVM image. In step 5, after
successful decryption, TDVF locates the Operating System (OS)
loader and initiates the boot process, ensuring the system boots
into the intended OS. The OS loader loads the OS kernel and kernel-
required data, such as boot parameters, into private memory. The
OS loader measures the kernel and required data, including the
boot parameter, before passing the control to the OS kernel. During
this step, the Integrity Measurement Architecture (IMA) module is
measured for its integrity as part of the guest operating system.

Attestation of SecuDB. As depicted in TDVM attestation, the
integrity of the IMA module is an integral part of the attestation
chain for the rootfs disk. Thus, IMA is trusted. We employ the IMA
to gauge the integrity of files within the SecuDB engine, accessed
through system calls like execve(), mmap(), and open, all guided by
customized policies. These files undergo a thorough assessment,
covering both binary and configuration dependencies. We use IMA
appraisal to control access to SecuDB and its dependencies by com-
paring the reference value of file integrity measurements with their
standard reference values stored as security extension attributes,
where security.ima contains the hash value of file content and secu-
rity.evm holds the hash value signature of extended file attributes.

To minimize the TCB in the attestation chain, we utilize Linux’s
List Dynamic Dependencies (e.g., ‘ldd’) to identify the shared library
requisites of executable files at runtime. We establish a comprehen-
sive set of IMA policies for attestation to safeguard the integrity
and security of both SecuDB and its associated components. These
policies encompass the use of ‘ima_hash’ utilizing the SHA384 al-
gorithm [6], ‘ima_appraise’ configured to log events, ‘ima_policy’
tailored to address critical data, and the implementation of the
‘BPRM_CHECK’ measurement function, which takes into account
the effective user ID (‘euid’) specific to the SecuDB engine. This
multifaceted approach to security and integrity ensures robust pro-
tection for the SecuDB binary, its configurations, and the requisite
dependency libraries.

5 PRIVACY-PRESERVING IN SECUDB
In this section, we first describe the visibility definition in an in-
enclave architecture, and then present our design of visibility con-
trol on predicates, select lists, logs, and statistics.

5.1 Visibility Definition
In a F-HE database architecture, the mechanism protects all mem-
ory, CPU, and I/O security from data leaks in our threat model
as discussed in Section 3.2. Thus, any DBMS internally used data
structures that do not have explicit retrieval interfaces, cannot be
viewed by adversaries, such as system and physical logs. To better
understand the description, we take the redo log as an example. As
a physical log, it stores all changes made to a database in log files.
Redo log can be loaded into memory and participated in CPU com-
putation, accessed by disk I/O, and transmitted between replicas
through network I/O. None of these operations will leak data in a
F-HE paradigm because enclave memory and CPU are protected;
data will be encrypted by TEE before written to disk, and network
transmission is secured by RA-TLS protocol [35]. Therefore, we
define the visibility in the context of in-enclave databases as follows.

Definition 5.1. In the context of in-enclave databases, visibility
is to protect the secret information from being observed by any
exposed DBMS data retrieval interface.

By comprehensively analyzing all exposed interfaces in rela-
tional databases, we identify several components that have poten-
tial data leaks, namely DML predicates, select lists, regular views,
logical logs, frequency and histogram statistics, plan explaining,
and therefore must be redesigned.

5.2 DML Visibility Control
We propose a non-encryption involved framework to realize effi-
cient fine-grained privacy-preserving F-HE database as depicted
in Figure 3. Both host variables in the privacy-preserving column
involved predicates and privacy-preserving columns on the select
list avoid encryption and decryption computation in our method,
due to the Trusted Computing Base (TCB) in F-HE system. A user
defines a secret column via DDL as the owner, which is recorded
into a catalog table sec-cat discussed in Section 3.6.

When a privacy-preserving column involved SELECT statement
is executed, the procedure in SQL bindtime executes as follows:

4. select t3.c1 from t1,t3 where t3.c1=t1.c1;

 DBMS in TDX

Viewer
user2

Owner
user1

ColID
uid1User1

1. create t1, define a secret column c1

2. grant user2 as plain text viewer of t1.c1

User2

Secret Column Catalog

SQL Parser
3. select t2.c1 from t1,t2 where t2.c1=t1.c1;

SQL Runtime

3.b, 5.b query processing

3.a, 4.a, 5.a check visibility

User3

User4
5. select * fro

m t1,t4 where t4.c1=t1.c2;

4.b error

5.d t1.c1: 'xxxxxxxx',t1.c2, t4.c1

3.c t2.c1

Column Mask
5.c RT module

Figure 3: Fine-grained privacy-preserving workflow in Se-
cuDB. A secret column catalog table stores information about
who can see column plain text. SQL parser and runtime han-
dle predicates and select list accordingly.

• Parser checks the user’s visibility of secret columns in pred-
icates. Any invisible predicate will trigger the early out
phase, and return SQL error.

• Parser checks the user’s visibility for secret columns in
the select list. The invisible column will be marked to use
column mask data for query runtime processing.

• SQL runtime structure generator identifies invisible columns
based on parser data structures, and marks related variables
for probing sec-cat during execution time.

The relevant query execution goes as follows:
• SQL runtime identifies secret column visibility on select

list based on runtime structure during query runtime.
– If visible, then retrieve data from data manager.
– If invisible, then fill the column value buffer with the

system default masking value for the related data type.
• SQL runtime identifies visibility of secret column in predi-

cates based on runtime structure during query runtime.
– If visible, then retrieve data from data manager.
– If invisible, then return SQL error.

Note we do not allow users to alter a general column to a secret
column and vice versa. Owner role can be granted and transferred
between users by DCL. An owner can grant column visibility to
other users as viewers. The DML visibility control does not only
control SELECT statements, but also all the querying interfaces and
objectives such as regular view querying and plan explaining.

5.3 Logical Log Visibility Control
SecuDB uses a logical log called Auditlog to record all changes made
to the database. Auditlogs are created by the SecuDB server and
contain a record of all SQL statements that modify data. It serves as
an audit trail of changes and can be used for various purposes, such
as data recovery, replication, and database monitoring. The content
stored in Auditlog can be viewed in a human-friendly format using
DML retrieval.

The logical log file in SecuDB is unstructured, the content re-
trieval can not be parsed and decoded into column-level by DBMS
utility. Hence, there is a challenge to build a schemaless encoding
to locate the value of a secret column in log statements. To tackle
this problem, we assemble the secret column ID, length, and value
with a predefined constant as a prefix, which is depicted in Figure 4.

Plaintext data Secret column identifier Length of secret Secret data

Secret data

Masked data

Plaintext data

Plaintext data

Logical log of a secret columnLog

Retrieval from owner and viewer

Retrieval from invisible users

ColID

Figure 4: Logical log store for a secret column in SecuDB. Ker-
nel log replay and data retrieval from granted users obtain
plaintext after database kernel decryption, while invisible
users get data mask values.

The constant is a 256-bit value that cannot be collided and is used
as an identifier for data of a secret column.

When an end user tries to retrieve Auditlog, DBMS engine will
search for the predefined identifier during log file parsing. The
procedure goes as follows:

• If the identifier is located, then DBMS marks the beginning
offset of the identifier as 𝐿1 and reads the next 16 bytes to
probe the secret column ID in sec-cat catalog table.
– If the column is visible to the user, log manager reads

the next two bytes to get the length of the secret data,
gets the secret data, and marks the end of the secret
data as 𝐿2. The log manager will locate the secret data
buffer, i.e., from 𝐿1 + 32 + 16 + 2 to 𝐿2, and bind it out.

– If the column is invisible to the user, the log manager
uses the same logic above to locate 𝐿2. The related data
between 𝐿1 and 𝐿2 will be masked before binding out
as depicted in Figure 4.

• If none of the secret columns are identified, the log file
processing remains the same as before.

Take an example from Figure 4, assuming the value of the iden-
tifier is 0xfffc, the ColID is 0x8001, the secret data is 0x1234. Its
recorded data in the log file will be 0xfffc800100021234. Our algo-
rithm locates the secret column when searching identifier. It reads
ColID 0x8001 and probe sec-cat. It then reads the next two bytes
and finds length 0x0002, followed by another two bytes to locate
0x1234. If the user has the privilege to view the data of the secret
column, we then get 0x1234 and return its value. Otherwise, we
will return masked data.

5.4 Statistics Visibility Control
Statistic information in SecuDB catalog tables is used for SQL op-
timizer to choose the most efficient access path when executing a
query. The statistics include frequency, histogram, cardinality, etc,
which can be retrieved by an end user.

Frequency catalog data records several top frequent values in
a specific column with the percentage of their occurrence. If a
user, who is unauthorized to see a secret column data, tries to
retrieve its frequency statistics, SecuDB will mask the column value
before replying. Histogram statistics containing data distribution
information will also be masked by DBMS kernel before returning
to a user who is not permitted to see a secret column. The statistics

SN

Implicit Column

C1 C2 SN

Current Table

Implicit Column

C1 C2 SN

456 data4 00000005

Historical Table

123 data1 00000001

Audit Table

USER TRANTYPE ROWS TIMESTAMP

sysadm00000003 erase 2 timestamp2

sysadm00000006 hide 1 timestamp1

Explicit Columns

Explicit Column

789 data5 00000006

123 data3 00000004

789 data2 00000003

456 data6 00000008

Figure 5: Advanced temporal and audit tables in SecuDB. All
erased and hided trails are recorded in the audit table. Note
that the serial numbers are not monotonically constrained.

stores range value information of a specific column with the range
frequency, and is used for access path optimization. Note that the
column value masking only affects statistical data retrieval from
invisible users. DBMS optimizer always uses the plaintext of all
statistics for query planning.

6 TAMPER-RESISTANCE IN SECUDB
In this section, we present tamper-resistance in SecuDB using an ad-
vanced temporal table, and discuss its efficient verification endorsed
by TEE, which does not affect insert performance.

6.1 Tamper-resistance in General
Tamper-resistance refers to a mechanism to prevent objective tam-
pering and provide verifiable methods to detect any tampering at-
tack. We categorize database tamper-resistance into data-oriented
and query-oriented, as discussed in Section 1 when introducing
S-VDB systems. Data-oriented tamper-resistance aims to keep an
entire data trail withstanding any future update and deletion of
historical data. Ledger databases [3, 7, 76, 77] are typical data-
oriented tamper-resistant systems, which realize blockchain-like
tamper-evidence in a centralized paradigm. Query-oriented tamper-
resistance focuses on providing an endorsed and verifiable result
set of a query from being tampered with, such as a verifiable re-
sult set retrieved from an outsourced database. We realize both
data-oriented and query-oriented tamper-resistance in SecuDB.

6.2 Advanced Temporal Table
Advanced temporal table (aTT) is our practical design in the in-
enclave database systems, to support the data-oriented (blockchain-
like) tamper-resistant feature as discussed in Section 3.6.2.

A conventional temporal table [23] is designed as an immutable
table containing timestamp information. The table is generally di-
vided into a current table and a historical table, and data can be
retrieved by timestamp filters. All historical data, i.e., old data of an
update or delete statement, are stored in the historical table. Thus,
the table is immutable. However, there are two strong requests to
enhance the conventional temporal table design. First, the customer
requests to delete data before a certain timestamp, to reduce the

storage overhead of the immutable table. Second, real-world ap-
plications request violated data to be hidden to meet regulatory
compliance such as GDPR [45, 72] and CCPA [51].

We present a new implicit column SN whose data type is serial
number to resolve the two requirements above and keep the entire
table auditable. The SN column is designed to be a unique searching
key, so it does not have to be monotonic, which would involve sig-
nificant overhead of transaction processing. To resolve the storage
overhead problem, the data can be deleted before a certain times-
tamp using DELETE statement by specifying the target SN with a
no greater than predicate described in Table 1. To be regulatory
compliant, the violated data can be erased by the DELETE statement
with an equal predicate. All these operations will be recorded in an
audit table as depicted in Figure 5.

6.3 Native TEE-endorsed Verification
In an in-enclave architecture, the design of tamper-resistance is
entirely different from conventional P-HE systems. Unlike a P-
HE tamper-resistant database system, the insertion operation is
entirely transparent, meaning any digest computation, TEE trusted
parameter combination, and TEE signing is no longer needed, which
is more efficient and practical.

Verification is conducted by adding WITH SIGNATURE keywords
in a select statement as discussed in Section 3.4.2. The result set will
be signed by TEE (detailed in Section 6.4), and can be verified on
the client side. The endorsement is not only used to verify tamper-
resistant data in aTT, but data retrieved from common queries in
general tables, i.e., the query-oriented result set. It guarantees the
data integrity of the retrieved result set endorsed by TEE. The veri-
fication interface is controlled by the new suffix keywords on the
select statement, so it doesn’t affect general selection performance.
Note the query-oriented result set verification is a one-time verifi-
cation, meaning the raw data returned can be only verified within
the query. The same query in different or the same transaction can
retrieve a different number of records. Even if the contents of the
result sets are the same, the content ranking can be different, which
makes a previous tamper-proof not reusable.

6.4 Query Result Set Verification
The main challenge of a query result set verification in the archi-
tecture of SecuDB lies in how to efficiently build the tamper-proof,
and how to form efficient client-side decoding to interpret the raw
data encoded at the database kernel (e.g., a server-side schema may
encode small int value 1 0x80000001 in an internal format, while the
client-side schema encodes it 0x00000001), where the tamper-proof
is signed by TEE.

We present a data type assembled serialization method on data-
base data manager (DM) raw data format to resolve these problems.
When a user issues a verification DML using WITH SIGNATURE, the
database kernel will generate and return a data type array com-
posed of all elements of the result set serially, together with the
combined DM format raw data that is the input of digest compu-
tation. The combined raw data is composed of the flattened hex
data by concatenating each row of the result set sequentially. Thus,
the entire result set and all the elements, i.e., each column in each

row can be verified. The element verification is conducted by re-
trieving its data based on matching data type and length from the
first column onwards to find the designated column. For example,
consider a result set with c1 nullable INT (data type 497) and c2
VARCHAR(20) (data type 448), and we want to verify c2. Suppose
the current row data to be verified is ‘1, Ledger’, which is encoded
as 0x00800000010006d38584878599 by EBCDIC CCSID 37 [31]. For
the first column, the cursor moves forward for 5 bytes due to the
nullable INT data type of c1; for the second, since it is a VARCHAR
data type, the length data is read from the raw data (0x0006) to
determine the actual buffer size 8 (length itself added). Thus, the
data to be verified is located as ‘d38584878599’.

7 EVALUATION
This section presents experimental results of coarse-grained privacy-
preserving, fine-grained privacy-preserving, and tamper-resistant
performance in SecuDB.

7.1 Hardware Configuration
Our experiments are conducted on a ByteDance Volcengine [11, 14]
ecs.ebmg3id.48xlarge node. It is equippedwith the fourth-generation
Intel® Xeon® Scalable Processor (Sapphire Rapids), with a base
frequency of 2.6GHz and an all-core turbo frequency of 3.1GHz.
We install bare-metal ecs.ebmg3id.48xlarge with Ubuntu 22.04 and
Linux version 5.19.0 with a backported TDX patch from Linux ver-
sion 6.3.0. All tests are conducted on the CPUs of NUMA node0,
utilizing vCPU0 through vCPU15, with each VM instance allocated
128GB of RAM and 500GB SSD storage. All VM instances are linked
together through 25Gb Ethernet connectivity. Specifically for the
TDX test, we applied the IMA patch to the guest Linux OS. In the
TDopt test, we applied patches for both IMA and swiotlb.

7.2 Benchmark and Workload
We evaluate SecuDB using two prevalent datasets Sysbench [67]
and TPC-C [68], and one real-world dataset T-bench which consists
of data from the TikTok copyright database.

TikTok [13], being a social media platform, allows users to create,
edit, discover, and share videos. When an artwork is uploaded, a
hash digest is computed as a unique digital DNA, which will be
recorded onto a verifiable SecuDB aTT. Artwork producers can
claim the ownership, and track the full trail of their video/music’s
royalty changes to different creators and holders, by tracing all
the records related to the related artwork ID on aTT, which is
provable by TEE-endorsed signatures. Its database schema contains
attributes such as media type (e.g., music, video) and the user details.
The average size of each row is around 2KB. The T-bench workload
consists of 200 million anonymised video/music records that have
been recently uploaded onto TikTok.

We shall now discuss our testing scenarios as follows.
nonTD. We launch the DBMS server on a guest OS with TDX

disabled. Subsequently, we conduct an assessment of the perfor-
mance under this configuration. This setup is established as the
baseline against which we measure the overheads incurred by
coarse-grained privacy-preserving system performance in TDX.

TDX. In this scenario, we deploy the SecuDB within the TDX
VM to evaluate the end-to-end system performance of the coarse-
grained privacy-preserving feature under all benchmarks. Since
TDX pre-allocates encrypted memory, the NUMA allocation is
more sensitive to TD than in non-TD environments. Additionally,
as TDX’s bottleneck is I/O, we allocated more threads for parallel
I/O processing. We further tune the TDX I/O threads, localities
parameters to optimize the system performance. We also lock CPU
frequency modes for fair comparison. The optimized system is
marked as TDopt.

FP. To test end-to-end performance of fine-grained privacy-
preserving features, we made minor changes to DDL to define
secret columns in Sysbench and T-bench, and grant different col-
umn visibility to other users for execution. More specifically, we
prefix secret columns on select list as FP-SEL. For example, if a
select list contains 4 secret columns, it will be specified as FP-SEL4.

TR. To evaluate the tamper-resistant feature’s end-to-end bench-
mark performance, we create all the tables in all the benchmarks as
aTT, and test system performance in TDopt with and without aTT.
Specifically, we evaluate the insertion overhead of aTT, then test its
selection baseline and verification using selection WITH SIGNATURE
syntax in all queries.

7.3 Privacy-preserving Experiments
7.3.1 Coarse-grained Privacy-preserving. We place SecuDB within
secure enclaves, which enables it with the capabilities of Always-
Encrypted confidential queries. The enclave environment, coupled
with an encrypted 500GB disk, which is encrypted using LUKS (e.g.,
dm-crypt), creates a protected realm within the database system
process, appearing as an impenetrable entity to both the database
system and any other processes running on the hosting machine.
Additionally, it safeguards the stored data on disk and isolates it
from other processes, ensuring comprehensive protection of the
data. According to Intel, TDX environments typically incur over-
heads in both I/O and memory access due to the added security
features. For example, I/O operations can experience an additional
9.3% latency overhead due to encryption/decryption, and memory
access patterns might suffer from up to 5% latency overhead due to
the isolation enforced by TDX [59]. In our actual measurements, we
observed similar trends, with I/O operations experiencing up to 30%
overhead and memory access patterns seeing up to 20% overhead in
some cases. We identified vsock processing as the bottleneck. This
prompted us to raise the I/O thread count from 2 to 8 for efficient
disk I/O workload management.

Figure 6a and 6c show coarse-grained privacy-preserving Sys-
bench throughput testing results by varying client threads and
transaction modes using 60 tables with one million rows in each,
normalized to the baseline performed in the same database launched
without TEE. We observe the increasing throughput with more
threads until they peak at twice the vCPU number, after which the
throughput declines. Figure6b illustrates a decline in the through-
put performance of nonTD with an increase in the number of tables
using 64 client threads. In Sysbench tests, TDX achieves a range of
58.5% to 67.4%. After optimizing by adding more I/O threads, its
throughput increases to 81.6%-88.1%.

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(a) Sysbench Client Threads

0
0.2
0.4
0.6
0.8
1

1.2

20 40 60 80 100

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Tables

(b) Sysbench Tables

0
0.2
0.4
0.6
0.8
1

1.2

read-only write-only write-read point-select

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Transactions

(c) Sysbench Transactions

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(d) TPC-C Client Threads

0
0.2
0.4
0.6
0.8
1

1.2

64 128 256 512 1024

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Warehouses

(e) TPC-C Warehouses

0
0.2
0.4
0.6
0.8
1

1.2

NewOrder Payment OrderStatus Delivery StockLevel

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Transactions

(f) TPC-C Transactions

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(g) T-bench Client Threads

0
0.2
0.4
0.6
0.8
1

1.2

25 50 100 200 400

nonTD TDX TDopt

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Data Size (GB)

(h) T-bench Data Size

Figure 6: Normalized Sysbench and TPC-C benchmark transaction evaluation and system comparison for coarse-grained
privacy-preserving without enclave, with in-enclave architecture, and with in-enclave after adding 4 more I/O threads. The
optimized coarse-grained SQL maintains an average 84.7% of the throughput performance consistently across all benchmarks.

Figure 6d-6f compare the TPC-C performance of the different
environments. The stability of throughput performance in nonTD is
depicted in Figure 6e, showcasing consistency as the number of
warehouses (W) rises from 64 to 512. However, I/O saturation occurs
when W escalates from 512 to 1024. The decrease in performance
primarily resulted from slower speed due to the limitation in I/O
processing for encryption/decryption threads. To address this, we
augmented the I/O processing threads from 2 to 8, resulting in an
improvement. The TDopt throughput remains relatively stable, fluc-
tuating between 85.4% and 89.8% in Figure 6d with thread numbers
ranging from 16 to 128 when W=256. Figure 6f evaluates the perfor-
mance of TPC-C transactions, the 5 transactions in TDopt perform
87.8%, 85.9%, 84.6%, 89.0%, 86.4% throughput of that in TDX after
adding 4 more threads for I/O processing.

Figure 6g-6h evaluate the T-bench performance in enclave. The
results are normalized to the baseline run in the same database
launched without enclave. We vary client concurrency by using
a fixed 50 million rows as shown in Figure 6g. We observe that
the performance of TDX achieved 68.4% of the throughput com-
pared to nonTD, revealing a significant discrepancy when across
NUMA nodes, with the bottleneck being I/O. Consequently, we set
up TDX instances to be located within a single NUMA node and
progressively added more I/O threads until there was no further
improvement in performance, indicating that the bottleneck was no
longer related to I/O. After TDX tuning, it hits 84.4% throughput of
the baseline on average. We then vary the data size in T-bench by
using 64 client threads, as shown in Figure 6h. After TDX tuning,
TDopt performs around 83.5% throughput of nonTD.

7.3.2 Fine-grained Privacy-preserving. We evaluate comprehensive
scenarios in our fine-grained privacy-preserving DB design, with
both granted and ungranted secret columns on select list and pred-
icate. In the Sysbench experiments, we defined the select list and
predicate columns of Sysbench read-only SQL statements as secret
columns, and removed the two queries containing only aggregation

function on the select list from the read-only benchmark. In the
T-bench experiments, we conducted artwork point read query and
video range read by period.

Figure 7a and 7b compare the normalized (relative) performance
without and with defining fine-grained privacy-preserving secret
columns in different scenarios using Sysbench transactions. Since
all FP experiments contain granted secret columns, the cost of data
retrieval is inevitable. FP-SEL4 retrieves all the granted columns
by the table owner on the select list with one granted predicate.
FP-SEL2 fetches the granted column and padded default mask value
for the ungranted columns with one granted predicate. We can
see the overheads of fine-grained privacy-preserving features for
FP-SEL4 and FP-SEL2 are lower than 3.1% and 2.6% respectively.

Figure 7c and 7d show the normalized throughput of the systems
with T-bench by using 6 granted secret columns in point and range
retrieval, compared to the same column privacy protection realized
by the software-encrypted method, which is conducted by utilizing
AES-128 algorithm to encrypt and decrypt the 6 secret column
data. We observe the overheads of fine-grained privacy-preserving
features in SecuDB for point and range read are lower than 9.8%
and 5.7% compared to the baseline, respectively. SecuDB performs
1.3× faster than the software-encrypted method. In range read,
SecuDB outperforms the software-encrypted method nearly 2.1×,
due to the significant cost of encryption and decryption tasks in
the software-encrypted method.

7.4 Tamper-resistant Experiments
We use the write-only and read-only transaction modes in Sys-
bench to test the insertion overhead of aTT, and then evaluate the
verification performance of aTT with read-only mode by adding
WITH SIGNATURE in each select statement. We then evaluate Sys-
bench, TPC-C, and T-bench performance of tamper-resistant func-
tionality by defining each table as aTT.

We populate 60 tables with 1 million records in each to evaluate
Sysbench performance of aTT. Figure 8a compares the normalized

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt FP-SEL2

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(a) Sysbench Read

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt FP-SEL4

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(b) Sysbench Read

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt FP-SEL6 AES-SEL6

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(c) T-bench Point Read

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt FP-SEL6 AES-SEL6

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(d) T-bench Range Read

Figure 7: Normalized Sysbench and T-bench performance evaluation and comparison for fine-grained privacy-preserving
techniques with different scenarios of secret columns on select list and predicates. Fine-grained privacy-preserving features
experiments perform nearly 97.2% and 92.2% throughput of that in the Sysbench and T-bench baseline, respectively.

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(a) Sysbench Insert

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(b) Sysbench Select

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(c) Sysbench Verify

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(d) Sysbench Read and Write

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(e) TPC-C Client Threads

0
0.2
0.4
0.6
0.8
1

1.2

64 128 256 512 1024

TDopt TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Warehouses

(f) TPC-C Warehouses

0
0.2
0.4
0.6
0.8
1

1.2

16 32 64 128 256

TDopt TR
N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Threads

(g) T-bench Client Threads

0
0.2
0.4
0.6
0.8
1

1.2

25 50 100 200 400

TDopt TR

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Data Size (GB)

(h) T-bench Data Size

Figure 8: Normalized system performance evaluation and comparison for the tamper-resistant feature across all benchmarks.
Tamper-resistant experiments with aTT defined reach an average 77%, 68%, and 78% throughput of that in the Sysbench, TPC-C,
and T-bench baseline, respectively.

(relative) insertion performance between aTT and the baseline by
varying the concurrent client threads. We can see that aTT insertion
achieves 85% to 91% throughput of the baseline. Figure 8b shows that
aTT selection reaches 87% to 91% throughput of the baseline. Figure
8c shows aTT verification performance by adding WITH SIGNATURE
syntax in all Sysbench queries. We observe the data verification
throughput is steady when the concurrent threads exceed 64, due
to the performance bottleneck of the signature algorithm. Figure
8d shows that aTT reaches around 76.8% of the baseline throughput
on average in Sysbench read-write workload.

Figure 8e and 8f show the normalized TPC-C benchmark perfor-
mance of the two configurations. We observe the trend of through-
put difference between aTT version and the baseline in Figure 8e
is slight, from 68% to 71 %, when we vary the concurrent threads
from 16 to 256 using 256 warehouses. We then fix the client threads
to 64 and vary the warehouse number (W) to compare the TPC-C
benchmark performance between the original and aTT versions.
We see the aTT version performs from 74% to 58% TpmC of that
in the baseline when W grows from 64 to 1024, respectively. This
suggests the performance dropping trend is caused by heavier I/O
cost in aTT when data volume gets larger, due to the bigger size
compared to general table.

Figure 8g and 8h compares the T-bench performance with and
without aTT defined. The results are normalized to the baseline
performed in the same database launched without TEE. We observe
T-bench with aTT version achieves 80.2% performance of that in
the baseline when using 50 million records in Figure 8g, while the
aTT version reaches 75.7% throughput of that in the original version
defined without aTT shown in Figure 8h, meaning the overhead of
the tamper-resistant feature is insignificant in practice.

8 CONCLUSION
In this paper, we present SecuDB, a secured relational database with
privacy-preserving and tamper-resistant functionalities by residing
the entire database engine into TEE enclave, i.e., Intel TDX. We
devise a novel fine-grained privacy-preserving framework by col-
umn mask-enabled visibility control in an in-enclave architecture,
and propose TEE-endorsed advanced temporal tables to support
efficient tamper-resistance. The experimental results show that the
multi-granularity privacy-preserving and tamper-resistance fea-
tures are efficient and practical in both standard OLTP benchmarks
and real-world use cases.

REFERENCES
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the thirteenth EuroSys
conference. 1–15.

[2] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish Gupta,
Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann, Nikolas Ogg,
et al. 2020. Azure SQL database always encrypted. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 1511–1525.

[3] Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Ros-
ales Aceves, Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021. SQL
Ledger: Cryptographically Verifiable Data in Azure SQL Database. In Proceedings
of the 2021 International Conference on Management of Data. 2437–2449.

[4] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,
Ravishankar Ramamurthy, and Ramarathnam Venkatesan. 2013. Orthogonal
Security with Cipherbase. In CIDR.

[5] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng,
Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A High Concurrency
Key-Value Store with Integrity. In SIGMOD. 251–266.

[6] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan.
2008. Sha-3 proposal blake. Submission to NIST 92 (2008), 1–79.

[7] AWS. 2018. Amazon quantum ledger database (qldb). https://aws.amazon.com/
qldb

[8] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based database
with privacy and data confidentiality. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. 205–216.

[9] Sumeet Bajaj and Radu Sion. 2013. TrustedDB: A trusted hardware-based data-
base with privacy and data confidentiality. IEEE Transactions on Knowledge and
Data Engineering 26, 3 (2013), 752–765.

[10] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-
preserving encryption revisited: Improved security analysis and alternative
solutions. In Annual Cryptology Conference. Springer, 578–595.

[11] ByteDance. 2022. Volcano Engine. https://www.volcengine.com
[12] ByteDance. 2023. Make everything a breeze. https://www.larksuite.com/
[13] ByteDance. 2023. Make Your Day - TikTok. https://www.tiktok.com/
[14] ByteDance. 2023. Volcengine. https://github.com/volcengine
[15] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu

Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2023. Intel TDX
Demystified: A Top-Down Approach. arXiv preprint arXiv:2303.15540 (2023).

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In International
conference on the theory and application of cryptology and information security.
Springer, 409–437.

[17] Alibaba Cloud. 2023. Enable PolarDB Always Encrypted. https:
//www.alibabacloud.com/help/polardb/polardb-for-mysql/user-guide/enable-
confidential-engine

[18] Alibaba Cloud. 2023. Operator supported in always encrypted database. https:
//help.aliyun.com/rds/apsaradb-rds-for-postgresql/supported-features

[19] Intel Corp. 2020. Software guard extensions sdk developer reference for linux*
os. https://www.intel.com/content/www/us/en/developer/tools/software-guard-
extensions/linux-overview.html

[20] Intel Corp. 2024. Intel® Trust Domain Extensions (Intel® TDX).
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-
extensions/overview.html

[21] Intel Corp and Bytedance Inc. 2024. Full disk encryption solution in the confidential
computing environment. https://github.com/cc-api/full-disk-encryption

[22] Joan Daemen and Vincent Rijmen. 1999. AES proposal: Rijndael. (1999).
[23] Christopher John Date, Hugh Darwen, and Nikos Lorentzos. 2014. Time and

relational theory: temporal databases in the relational model and SQL. Morgan
Kaufmann.

[24] Jan-Erik Ekberg, Kari Kostiainen, and Nadarajah Asokan. 2013. Trusted execu-
tion environments on mobile devices. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 1497–1498.

[25] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. 2019. BlockchainDB: A shared database on blockchains.
Proceedings of the VLDB Endowment 12, 11 (2019), 1597–1609.

[26] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch,
Zheguang Zhao, and Carsten Binnig. 2022. Benchmarking the second gen-
eration of intel sgx hardware. In Proceedings of the 18th International Workshop
on Data Management on New Hardware. 1–8.

[27] Intel Trust Domain Extension. 2023. Intel TDX Connect Architecture Specifica-
tion. https://www.intel.com/content/www/us/en/content-details/773614/intel-
tdx-connect-architecture-specification.html

[28] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of computing.
169–178.

[29] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing SQL
over encrypted data in the database-service-provider model. In Proceedings of the
2002 ACM SIGMOD international conference on Management of data. 216–227.

[30] Mike Hearn and Richard Gendal Brown. 2016. Corda: A distributed ledger.
Corda Technical White Paper 2016 (2016). https://www.corda.net/content/corda-
technical-whitepaper.pdf

[31] IBM. 2021. CODEPAGE option syntax. https://www.ibm.com/docs/en/cobol-
zos/6.3?topic=options-codepage

[32] IBM. 2023. Column-level privileges. https://www.ibm.com/docs/en/informix-
servers/14.10?topic=privileges-column-level

[33] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2020. Trusted
execution environments: properties, applications, and challenges. IEEE Security
& Privacy 18, 2 (2020), 56–60.

[34] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryp-
tion. https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/memory-encryption-white-paper.pdf

[35] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating remote attestation with transport layer security.
arXiv preprint arXiv:1801.05863 (2018).

[36] Kevin Kollenda. 2023. General overview of AMD SEV-SNP and Intel TDX. (2023).
https://sys.cs.fau.de/extern/lehre/ws22/akss/material/amd-sev-intel-tdx.pdf

[37] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[38] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and Verification of the Arm Confidential
Compute Architecture. In OSDI. 465–484.

[39] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy
McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto
Granzotto. 2016. Bigchaindb: a scalable blockchain database. white paper,
BigChainDB (2016).

[40] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® software guard extensions
(intel® sgx) support for dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016. 1–9.

[41] Microsoft. 2023. Temporal tables. https://learn.microsoft.com/en-us/sql/
relational-databases/tables/temporal-tables

[42] Microsoft. 2024. GRANT (Transact-SQL). https://learn.microsoft.com/en-us/sql/t-
sql/statements/grant-transact-sql

[43] MongoDB. 2022. Queryable Encryption: Protect your confidential workloads. https:
//www.mongodb.com/products/queryable-encryption

[44] MySQL. 2023. Prepared Statements. https://dev.mysql.com/doc/refman/8.4/en/
sql-prepared-statements.html#prepared-statements-in-applications

[45] The Horizon 2020 Framework Programme of the European Union. 2020. Every-
thing you need to know about the Right to be forgotten. https://gdpr.eu/right-to-
be-forgotten

[46] Monique Ogburn, Claude Turner, and Pushkar Dahal. 2013. Homomorphic
encryption. Procedia Computer Science 20 (2013), 502–509.

[47] Oracle. 2022. Blockchain Tables in Oracle Database 21c. https://oracle-base.com/
articles/21c/blockchain-tables-21c

[48] Oracle. 2023. Encryption and Compression Functions. https://dev.mysql.com/doc/
refman/8.0/en/encryption-functions.html

[49] Oracle. 2023. Implementing Temporal Validity. https://www.oracle.com/
webfolder/technetwork/tutorials/obe/db/12c/r1/ilm/temporal/temporal.html

[50] Oracle. 2024. Column-level privileges. https://dev.mysql.com/doc/refman/en/
grant.html

[51] Stuart L Pardau. 2018. The California consumer privacy act: Towards a European-
style privacy regime in the United States. J. Tech. L. & Pol’y 23 (2018), 68.

[52] Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A compre-
hensive survey. ACM computing surveys (CSUR) 51, 6 (2019), 1–36.

[53] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2016. Arx: an encrypted
database using semantically secure encryption. Cryptology ePrint Archive (2016).

[54] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted
Database using Semantically Secure Encryption. Proceedings of the VLDB En-
dowment 12, 11 (2019), 1664–1678.

[55] Microsoft SQL Sever 2022 Preview. 2022. Always Encrypted with secure en-
claves. https://learn.microsoft.com/en-us/sql/relational-databases/security/
encryption/always-encrypted-enclaves

[56] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A secure
database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
264–278.

[57] Ravi Sahita, Dror Caspi, Barry Huntley, Vincent Scarlata, Baruch Chaikin, Sid-
dhartha Chhabra, Arie Aharon, and Ido Ouziel. 2021. Security analysis of
confidential-compute instruction set architecture for virtualized workloads. In
2021 International Symposium on Secure and Private Execution Environment Design
(SEED). IEEE, 121–131.

https://aws.amazon.com/qldb
https://aws.amazon.com/qldb
https://www.volcengine.com
https://www.larksuite.com/
https://www.tiktok.com/
https://github.com/volcengine
https://www.alibabacloud.com/help/polardb/polardb-for-mysql/user-guide/enable-confidential-engine
https://www.alibabacloud.com/help/polardb/polardb-for-mysql/user-guide/enable-confidential-engine
https://www.alibabacloud.com/help/polardb/polardb-for-mysql/user-guide/enable-confidential-engine
https://help.aliyun.com/rds/apsaradb-rds-for-postgresql/supported-features
https://help.aliyun.com/rds/apsaradb-rds-for-postgresql/supported-features
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://github.com/cc-api/full-disk-encryption
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=options-codepage
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=options-codepage
https://www.ibm.com/docs/en/informix-servers/14.10?topic=privileges-column-level
https://www.ibm.com/docs/en/informix-servers/14.10?topic=privileges-column-level
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://sys.cs.fau.de/extern/lehre/ws22/akss/material/amd-sev-intel-tdx.pdf
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://learn.microsoft.com/en-us/sql/t-sql/statements/grant-transact-sql
https://learn.microsoft.com/en-us/sql/t-sql/statements/grant-transact-sql
https://www.mongodb.com/products/queryable-encryption
https://www.mongodb.com/products/queryable-encryption
https://dev.mysql.com/doc/refman/8.4/en/sql-prepared-statements.html#prepared-statements-in-applications
https://dev.mysql.com/doc/refman/8.4/en/sql-prepared-statements.html#prepared-statements-in-applications
https://gdpr.eu/right-to-be-forgotten
https://gdpr.eu/right-to-be-forgotten
https://oracle-base.com/articles/21c/blockchain-tables-21c
https://oracle-base.com/articles/21c/blockchain-tables-21c
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/12c/r1/ilm/temporal/temporal.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/12c/r1/ilm/temporal/temporal.html
https://dev.mysql.com/doc/refman/en/grant.html
https://dev.mysql.com/doc/refman/en/grant.html
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves

[58] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. 2021. Demysti-
fying attestation in intel trust domain extensions via formal verification. IEEE
access 9 (2021), 83067–83079.

[59] Shiny Sebastian, Simon P. Johnson, Md Iqbal Hossain, and Chao
Gao. 2023. Performance Considerations of Intel® Trust Domain Ex-
tensions on 4th Generation Intel® Xeon® Scalable Processors. https:
//www.intel.com/content/www/us/en/developer/articles/technical/trust-
domain-extensions-on-4th-gen-xeon-processors.html

[60] Oracle Cloud Security. 2023. Column-level security with Oracle Database’s data
redaction. https://blogs.oracle.com/cloudsecurity/post/columnlevel-security-
oracle-databases-data-redaction

[61] Nathan Senthil, Govindarajan Chander, Saraf Adarsh, et al. 2019. Blockchain
meets database: design and implementation of a blockchain relational database
[J]. In Proceedings of the VLDB Endowment, Vol. 12. 1539–1552.

[62] Amazon Web Services. 2022. Encrypting Amazon Aurora resources.
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.
Encryption.html

[63] AMD Sev-Snp. 2020. Strengthening VM isolation with integrity protection and
more. White Paper, January 53 (2020), 1450–1465.

[64] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 955–970.

[65] Rohit Sinha and Mihai Christodorescu. 2018. VeritasDB: High Throughput
Key-Value Store with Integrity. IACR 2018 (2018), 251.

[66] Intel Developer Site. 2023. Intel Trust Domain Extensions (Intel TDX).
[67] Sysbench. 2023. Scriptable database and system performance benchmark. https:

//github.com/akopytov/sysbench
[68] TPC. 2022. TPC-C Benchmark. https://www.tpc.org/tpcc
[69] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Prac-

tical Library OS for Unmodified Applications on SGX. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). 645–658.

[70] Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai Zeldovich.
2013. Processing analytical queries over encrypted data. (2013).

[71] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
StealthDB: a Scalable Encrypted Database with Full SQL Query Support. Proc.
Priv. Enhancing Technol. 2019, 3 (2019), 370–388.

[72] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[73] ByteDance Volcengine. 2022. Cloud database for veDB. https://www.volcengine.
com/product/vedb-mysql

[74] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
execution environments on {GPUs}. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 681–696.

[75] Xinying Yang, Sheng Wang, Feifei Li, Yuan Zhang, Wenyuan Yan, Fangyu Gai,
Benquan Yu, Likai Feng, Qun Gao, and Yize Li. 2022. Ubiquitous Verification in
Centralized Ledger Database. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 1808–1821.

[76] Xinying Yang, Ruide Zhang, Cong Yue, Yang Liu, Beng Chin Ooi, Qun Gao, Yuan
Zhang, and Hao Yang. 2023. VeDB: A Software and Hardware Enabled Trusted
Relational Database. Proceedings of the ACM on Management of Data 1, 2 (2023),
1–27.

[77] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and
Wenyuan Yan. 2020. LedgerDB: A centralized ledger database for universal audit
and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138–3151.

[78] Cong Yue, Tien Tuan Anh Dinh, Zhongle Xie, Meihui Zhang, Gang Chen,
Beng Chin Ooi, and Xiaokui Xiao. 2023. GlassDB: An Efficient Verifiable Ledger
Database System Through Transparency. PVLDB 16, 6 (2023), 1359–1371.

[79] Cong Yue, Meihui Zhang, Changhao Zhu, Gang Chen, Dumitrel Loghin, and
Beng Chin Ooi. 2023. VeriBench: Analyzing the Performance of Database Systems
with Verifiability. PVLDB 16, 9 (2023), 2145–2157.

[80] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei Zhang, Xiapu Luo, Haoyang
Huang, Shoumeng Yan, and Zhengyu He. 2023. SHELTER: Extending Arm
CCA with Isolation in User Space. In 32nd USENIX Security Symposium (USENIX
Security’23).

https://www.intel.com/content/www/us/en/developer/articles/technical/trust-domain-extensions-on-4th-gen-xeon-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/trust-domain-extensions-on-4th-gen-xeon-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/trust-domain-extensions-on-4th-gen-xeon-processors.html
https://blogs.oracle.com/cloudsecurity/post/columnlevel-security-oracle-databases-data-redaction
https://blogs.oracle.com/cloudsecurity/post/columnlevel-security-oracle-databases-data-redaction
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://www.tpc.org/tpcc
https://www.volcengine.com/product/vedb-mysql
https://www.volcengine.com/product/vedb-mysql

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environment
	2.2 Intel Trust Domain Extensions
	2.3 Trusted and Privacy-preserving Databases

	3 Overview
	3.1 Use Cases
	3.2 Threat Model
	3.3 Design Methodology
	3.4 SQL Enhancement
	3.5 System Architecture
	3.6 Table Enhancement

	4 Attestation of SecuDB Service
	4.1 Trust Model for SecuDB Attestation
	4.2 Attestation of SecuDB

	5 Privacy-preserving in SecuDB
	5.1 Visibility Definition
	5.2 DML Visibility Control
	5.3 Logical Log Visibility Control
	5.4 Statistics Visibility Control

	6 Tamper-resistance in SecuDB
	6.1 Tamper-resistance in General
	6.2 Advanced Temporal Table
	6.3 Native TEE-endorsed Verification
	6.4 Query Result Set Verification

	7 Evaluation
	7.1 Hardware Configuration
	7.2 Benchmark and Workload
	7.3 Privacy-preserving Experiments
	7.4 Tamper-resistant Experiments

	8 Conclusion
	References

