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ABSTRACT
Most data analytics applications are industry/domain specific, e.g.,
predicting patients at high risk of being admitted to intensive care
unit in the healthcare sector or predicting malicious SMSs in the
telecommunication sector. Existing solutions are based on “best
practices”, i.e., the systems’ decisions are knowledge-driven
and/or data-driven. However, there are rules and exceptional cases
that can only be precisely formulated and identified by
subject-matter experts (SMEs) who have accumulated many years
of experience. This paper envisions a more intelligent database
management system (DBMS) that captures such knowledge to
effectively address the industry/domain specific applications. At
the core, the system is a hybrid human-machine database engine
where the machine interacts with the SMEs as part of a feedback
loop to gather, infer, ascertain and enhance the database
knowledge and processing. We discuss the challenges towards
building such a system through examples in healthcare predictive
analysis – a popular area for big data analytics.

1. INTRODUCTION
Most data analytics applications are industry or domain specific.
For example, many prediction tasks in healthcare require prior
medical knowledge, such as, identifying patients at high risk of
being admitted to the intensive care unit, or predicting the
probability of the patients being readmitted into the hospital
within 30 days after discharge. Another example from the
telecommunication sector is the identification of malicious SMSs
requiring inputs from security experts. Building competent tools
to effectively address these problems are important, as industrial
organizations face increasing pressures to improve outcomes while
reducing costs [3].
Existing solutions to industry or domain specific tasks are based
on “best practices”. These solutions are knowledge-driven (i.e.,
utilizing general guidelines such existing clinical guidelines or
literature from medical journals) and/or data-driven (i.e., deriving
rules from observational data) [31]. Let us consider the task of
identifying the risk factors related to heart failure. The
knowledge-driven solution uses risk factors identified from
existing clinical knowledge or literature, such as, age,
hypertension and diabetes status. However, it may miss out other
unknown risk factors specific to the population of interest. The
reason is that the guidelines are generic and based on existing
knowledge, which results in models that may not adequately
represent the underlying complex disease processes in the
population with a comprehensive list of risk factors [31]. The

data-driven solution employs machine learning algorithms to
derive risk factors solely from observational data. An alternative
approach combines the knowledge-driven and data-driven
approaches in the data analytics applications [31]. However, there
are exceptional situations where it is not easy to capture or
formalize, and where neither general guidelines are available nor
rules can be derived from data (e.g., in rare conditions). Instead, it
is only through many years of experience can subject-matter
experts (SMEs) formulate and identify these situations. The
challenge then is to be able to capture and utilize such knowledge
to effectively support industry/domain specific applications, e.g.,
improving the accuracy of the prediction tasks.
This paper proposes building the next generation of intelligent
database management systems (DBMSs) that exploit contextual
crowd intelligence. The crowd intelligence here refers to the
knowledge and experience of subject-matter experts (SMEs).
Although such knowledge is an important component in
transforming data into information, it is currently not captured by
a structured system. The participants in an intelligent crowd are
domain experts rather than “unknown” lay-persons in existing
systems that use crowdsourcing as part of database query
processing (e.g., CrowdDB [13], Deco [24], Qurk [23],
CDAS [12; 22]) and information extraction or knowledge
acquisition (e.g., HIGGINS [21] and CASTLE [28]). For
applications where data confidentiality and privacy are important
(e.g., healthcare analytics), the intelligent crowd may consist of
only experts from within the organization, since the tasks cannot
be outsourced to external parties. Given that the crowd is known
apriori, there is an assurance of user accountability, which
translates to an assurance in the quality of the answers. A recent
system, called Data Tamer [30], also proposed to leverage on
expert crowdsourcing system to enhance machine computation but
in the context of data curation. Our proposition differs from Data
Tamer in several aspects. First, the target applications of our work
(i.e., data analytics) are different from those in Data Tamer (i.e.,
data curation). Thus, each system needs to address a unique,
different set of challenges. Second, the domain experts in our
context are also users/reviewers of the system. Thus, the experts
are likely to take ownership and hence are motivated to improve
the accuracy of the analytics and the usability of the applications.
This would reduce the need to localize/customize the system since
the experts/users are continuously interacting with the system;
these experts define the “best practices” for the system. For
example, doctors in a particular department may use a different
convention or notation from another department, e.g., when
doctors write “PID” in the orthopedic department, the acronym
refers to the “Prolapsed Intervertebral Disc” only and not the
“Pelvic Inflammatory Disease”. Clearly, such knowledge can only



be provided by internal domain experts. In contrast, experts in
Data Tamer are not the users of the system and hence there is a
need to customize/localize the system for different use-cases.
In order to entrench the crowd intelligence into the DBMS, the
system needs to keep SMEs as part of the feedback loop. The
system can then further utilize feedback provided from the SMEs
to infer, ascertain and enhance its processing, thus continuously
improving the effectiveness of the system. For example, when
predicting the risk of unplanned patient readmissions, the system
asks the doctors to label patients who the system has low
confidence in predicting their readmissions, and the
rules/hypotheses that the doctors used to do the labeling. One
example of such an expert rule is that an elderly patient who lives
alone and have had several severe diseases is likely to be
readmitted into the hospital frequently. The system would then
verify or adjust these rules/hypotheses and revert back to the
doctors with evidence to support or reject their rules/hypotheses.
Such interactions are beneficial to both the system and the doctors.
Eventually, the application system evolves over time. SMEs
become part of this evolving process by sharing their domain
knowledge and rich experience, thereby contributing to the
improvement and development of the system. Hence, the experts
are more willing and comfortable to use the system to alleviate the
burden of their duties.
This work is part of our CIIDAA project on building large scale,
Comprehensive IT Infrastructure for Data-intensive Applications
and Analysis [2]. Our collaborators are clinicians in the National
University Health System (NUHS) [5]. The project aims to harness
the power of cloud computing to solve big data problems in the real
world, with healthcare predictive analytics being a popular area for
big data analytics [26].

Organization. The remainder of this paper is organized as
follows. Section 2 presents motivating examples in healthcare
predictive analytics. Section 3 discusses the architecture of an
intelligent DBMS that aims to embed contextual crowd
intelligence. Section 4 elaborates on research problems that we
need to address in order to build an intelligent DBMS. Section 5
presents our preliminary results on the problem of predicting the
risk of unplanned patient readmissions. Section 6 presents the
related work. Finally, Section 7 concludes our work.

2. MOTIVATING EXAMPLES
Let us consider a hospital that has an integrated view of the medical
care records of patients as shown in Table 1. The table contains two
types of information:

• Structured information, including the case identifier,
patient’s name, age, gender, race, the number of days that
the patient stayed at the hospital during a particular visit
(LengthO f Stay), and the number of days before the patient
was readmitted into the hospital after discharge
(Readmission) ; and

• Unstructured information, i.e., free-text from a doctor’s note
that contains additional and useful information of a patient
healthcare profile such as his past medical history, social
factors, previous medications, complaints of patients based
on a doctor’s investigations, major lab results, issues and
progress, etc.

The tuples in this table are extracted from real cases of patients
admitted to the National University Hospital (NUH) in Singapore.
Healthcare professionals often have queries relating to predicting
the severity of patients’ condition, such as, identifying patients at

high risk of being admitted to intensive care unit, or predicting the
probability of the patients being readmitted into the hospital soon
after discharge. There are also queries that monitor real-time data
of patients in critical conditions for unusual conditions, such as,
whether patients are at high risk of collapsing. With correct
predictions, doctors can intervene early to alleviate the
deterioration of patient’s health outcome. This can potentially
reduce the burden of limited healthcare resources in the primary
and acute care facilities. For instance, if a patient is at high-risk
for unplanned post discharge readmission, he can potentially
benefit from close followed-up after discharge, e.g., the hospital
sends a case manager or nurse to examine him once every three
days. In addition, important queries related to public health
surveillance can be answered in a timely fashion. For example, it
is critical to provide real-time, early information to alert
decision-makers of emerging threats that need to be addressed in a
particular population. The ultimate goal of these predictive queries
is to predict, pre-empt and prevent for better healthcare outcome.

3. AN INTELLIGENT DBMS FOR BIG DA­
TA ANALYTICS

In this section, we discuss the challenges of addressing big data
analytics and present an overview of a hybrid human-machine
system for these tasks.

3.1 Challenges of Big Data Analytics
Essentially, many tasks of big data analytics can be viewed as
conventional data mining problems, such as, classifying patients
into different class labels (high or low risk of being admitted to
intensive care units). There are, however, three important aspects
that differentiate big data analytics from traditional machine
learning problems.

• First, many valuable features for the analytics tasks are
stored in unstructured data, for example, doctor’s notes [25].
We cannot simply treat these notes as traditional
“bag-of-words” documents. Instead, we need powerful tools
to extract from these documents the right entities (such as,
diseases, medications, laboratory tests) and domain-specific
relationships (such as, the relationship between a disease
and a laboratory test). The text in unstructured data has to
be contextualized to each organization’s practice, e.g.,
doctors in a particular department may use a different
convention or notation from another department.

• Second, there is usually a lack of training samples with
well-defined class labels. For instance, when predicting the
risk of committing suicide for each patient, the total number
patients known to have committed suicide (i.e., class 1) is
very small. However, it does not mean that all the remaining
patients did not commit suicide (i.e., class 0). Hence we
need to infer the correct class labels for these patients. This
problem also occurs in other domains such as home security
and banking. For example, one important task that many
national security agencies need to perform is identifying
persons or groups of people who will likely commit a
crime [4]. In this setting, the agency maintains a very small
set of people who have committed crime. However, we
cannot simply assume that the remaining people are not
likely to commit crime. As before, we need to infer the
correct class labels for these people. Another example is in
telecommunication, where a service provider wants to
predict whether an SMS is malicious. In this case, we do not



CaseID Name Age Gender Race LengthOfStay Readmission Doctor’s note

Case 1 Patient 1 71 Female Chinese 5 20

PMH:
1 IHD
- on GTN 0.5mg prn
2 DM
- on Metformin 750mg
- HbA1c 7.5% 09/12
3 HL
Stays with son · · ·

Case 2 Patient 2 60 Male Malaysian 10 20

Social issues: Single, no child
Used to live with friend in a shophouse
Now at sheltered home since Sept 2011.
No next-of-skin or visitor.
· · ·

Table 1: Medical care table

have any predefined class labels and might need to ask
security experts to provide the class labels for some sample
cases.

• Lastly, data in different domains (e.g., healthcare,
telecommunication, home security) is expected to grow
dramatically in the years ahead [26]. For instance, patients
in intensive care units are constantly being monitored, and
their historical records have to be retained. This can easily
result in hundreds of millions of (historical) records of
patients. As another example, during a mass casualty
disaster (e.g., SARS, H5N1), there is an overwhelming
number of patients who have to be monitored and tracked,
and information about each patient is huge by itself.
Furthermore, streaming data arrive continuously, e.g., new
data from the real-time data feed are constantly being
inserted. Hence, the system in healthcare setting must
provide the real-time predictions, e.g., predicting the
survival of patients in the next 6 hours.

The three above mentioned aspects call for a new generation of
intelligent DBMSs that can provide effective solutions for big data
analytics. Our proposition of exploiting contextual crowd
intelligence is, we believe, a big step towards this goal.

3.2 Contextual Data Management
The central theme of crowd intelligence is to get domain experts
engaged as both the participants to fine tune the system and the
end-users of the system. Figure 1 presents an intelligent system
that exploits contextual crowd intelligence for big data analytics.
The system first builds a knowledge base that will be subsequently
used for the analytics tasks based on historical data, domain
knowledge from SMEs (e.g., doctors), and other sources such as
general clinical guidelines. Each source contributes to build some
“weak classifiers”. The system needs to combine these classifiers
to derive a final classifier that achieves a high level of accuracy for
prediction purposes. The system also needs to go through several
iterations of interaction with the experts to refine, for example, the
final classifier. As such, the experts participate in the entire
process in fine tuning the system and decide on the “best
practices”. When real-time data or feed arrives, the system
performs the prediction on-the-fly and alerts the experts
immediately. Hence, the experts become the end-users of the
system.
We have developed the epiC system [1; 10; 19] to support large
scale data processing, and are extending it to support healthcare
analytics. Figure 2 shows the software stack of epiC. At the
bottom, the storage layer supports different storage systems (e.g.,

Hadoop Distributed File System (HDFS) and a key-value storage
system, ES2 [8]) for both unstructured and structured data. The
next layer (which is the security layer) enables users to protect
data privacy by encryption. The third layer (which is the
distributed processing layer) provides a distributed processing
infrastructure called E3 [9] that supports different parallel
processing logics such as MapReduce [11], Directed Acyclic
Graph (DAG) and SQL. The top layer (which is the analytics
layer) exploits the contextual crowd intelligence for big data
analytics. The details of this layer are shown in Figure 1. In
Figure 2, KB is the knowledge base and iCrowd is the component
that interacts with the domain experts. Different components of
the analytics layer (e.g., scalable machine learning algorithms) can
process their data with the most appropriate data processing model
and their computations will be automatically executed in parallel
by the lower layers.
In the remaining of this paper, we focus only on the analytics layer.
For more details of the other layers of the epiC system, please refer
to [1; 10; 19].

4. RESEARCH PROBLEMS
In this section, we elaborate on the research problems that we need
to address in order to build an intelligent system for big data
analytics.

4.1 Asking Experts The Right Questions
Given a large volume of data and a limited amount of time that
domain experts can participate in building the systems, we need
to ask the experts the right questions. In the context of healthcare
analytics, we plan to ask the following domain knowledge from
doctors.

• Labelings. The system asks doctors to label tuples that the
system has low confidence in performing the prediction
task. There are two important issues here. First, doctors
have different levels of confidence when answering different
questions, i.e., doctors are reluctant to assess patient profiles
that they do not have specialties. Second, since there is so
much information about patients, selecting the relevant
feature of each patient to present to the doctors in order not
to overwhelm them is also a major issue.

In essence, what we need is a diverse set of labeled patients
that covers the whole data space as much as possible. One
possible solution is to group similar patient profiles together
and show these groups to doctors. The purpose is to let the
doctors select the groups of patients that they are
comfortable in providing the labels. In addition, for each
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Figure 1: Contextual crowd intelligence for big data analytics. Figure 2: The software stack of epiC for big data analyt-
ics.

group, we present only the features which the patients in the
group have similar values. In this way, we can avoid
overwhelming the doctors with information. Note that, in
some cases, we need to perform hierarchical clustering to
reduce the number of patients shown to the doctors each
time. Selecting the right clustering algorithms and
developing effective visualization tools to present patient’s
profiles are important here.

• Rules/Hypotheses. The system collects expert
rules/hypotheses that the doctors used to do the labeling.
For example, to predict the risk of unplanned patient
readmissions, the doctors suggested a hypothesis that social
factors and the status of the diseases are important risk
indicators for readmission. The system would then verify or
adjust these hypotheses and revert back to the doctors with
evidence to support or reject their hypotheses. Such
interactions are beneficial to both the system and the
doctors.

• Inferred implicit knowledge. The system can also infer
implicit and valuable knowledge based on the
answers/reactions of the domain experts. For instance, if the
doctors label two patients who belong to a given cluster
differently, then the system can adjust the distance function
used to compute the similarity between two patients, and
thus infer which features are more important. Such
knowledge is implicit as the doctors themselves may not be
aware of.

We can also ask the same kind of questions for the analytics tasks
in other domains. For instance, to predict malicious SMSs, we
need to select a small set of messages (by utilizing some clustering
algorithms) and ask the experts to provide labels for these
samples. We also collect rules and heuristics that the experts
utilize to label the SMSs.

4.2 Extracting Domain Entities From
Unstructured Data

Feature selection is very important for any machine learning task
and can greatly affect the algorithm’s quality. Processing doctor’s
notes for extracting important features is an inevitably important
step for healthcare analytics problems. There are several
state-of-the-art Natural Language Processing (NLP) engines for
processing clinical documents, such as, MedLEE [14] and
cTAKES [27]. These engines process clinical notes, identifying
types of clinical entities (e.g., medications, diseases, procedures,

lab tests) from various medical dictionaries (a.k.a. knowledge
base), such as, the Unified Medical Language System (UMLS) [6].
We now discuss several problems raised due to the nature of the
unstructured data and the incompleteness of the knowledge base,
and subsequently discuss a hybrid human-machine approach to
solve these problems. The discussion uses the following running
example. We run cTAKES on the doctor’s note of patient 1 (in
Table 1), and obtain the following clinical entities: (1) diseases:
IHD (Ischemic Heart Disease) and DM; (2) medications: GTN
and Metformin; and (3) laboratory test: HbA1c.

Ambiguous mentions. In many cases, a mention in the free text
may refer to different domain entities. For instance, in the running
example, “DM” refers to two different diseases “Dystrophy
Myotonic” and “Diabetes Mellitus”. We note that this problem is
not uncommon as doctors tend to use abbreviations in their notes.
For example, “CCF” refers to either “Congestive heart failure” or
“Carotid-Cavernous Fistula” diseases; “PID” refers to either
“Prolapsed Intervertebral Disc” or “Pelvic Inflammatory Disease”.
There are also cases where only human but not the machine can
understand the meaning of some mentions in the text. For
example, assuming that we are extracting the social factor of
patients in Table 1. It is rather easy to extract the social factor for
patient 1, since the text contains the phraze “stays with son”.
However, it is challenging, if not possible, for the machine to
extract the social factor for patient 2. The reason is that the
paragraph contains several different keywords relating to the
social factor such as “single”, “no child”, “live with friend”,
“sheltered home”, “next-of-kin”.

Incomplete knowledge base. The knowledge base is incomplete
for the following reasons. First, the terms used in the doctor’s
notes could be specific within a country or a particular hospital,
whereas the existing knowledge bases may only cover the
universal ones. Thus, these terms do not exist in the dictionary.
One example is the term “HL” in our running example, which
refers to the “Hyperlipidemia” disease but is not captured in
UMLS. Second, the relationships between entities covered in
existing medical knowledge bases (like ULMS) are far from
complete. In the running example, the fact that the medication
Metformin is used to treat Diabetes Mellitus (DM) is also missing
in UMLS. The relationships that exist between domain entities can
be used to derive implicit and useful information. For instance,
from the laboratory result of the lab test HbA1c, we can infer
whether the DM condition is well-controlled (i.e., the relationship
between a disease and a lab test).



A hybrid human-machine approach. To infer the correct
entities from unstructured data, a hybrid human-machine solution
should be employed. The system can leverage the information
from the knowledge base (e.g., UMLS) together with the implicit
information (signals) inherent in the unstructured data (e.g.,
doctor’s notes) to improve the accuracy of its inference process
and enhance the knowledge base as well. The system will pose
questions to the healthcare professionals for verification. Based on
the answers from the experts, the system adjusts its inference
results. The inference process gets more accurate and complete as
the system runs more iterations. Meanwhile, the knowledge base
becomes more comprehensive and customized to each
organization’s practice. More specifically, in our running example:

• Since “DM” is attached with the laboratory test “HbA1c”
in the paragraph, the machine conjectures that “DM” would
refer to the “Diabetes Mellitus” disease only. The reason is
that HbA1c is a laboratory test that monitors the control of
diabetes and HbA1c does not have any relationship with the
other disease related to “DM” (i.e., “Dystrophy Myotonic”).

• To correctly infer the disease “Hyperlipidemia” for “HL”,
the machine infers a pattern of “num d” where num is a
fraction annotation and d is a disease. (“1 IHD” and “2
DM” are two examples.) The machine then infers that “HL”
may refer to a disease since the phrase “3 HL” follows the
pattern. The machine then poses a question to a doctor:
which disease “HL” represents for? In this case, the doctor
confirms that “HL” represents for the “Hyperlipidemia”
disease. Based on the answer, the machine adds the
mapping between the mention “HL” and the disease
“Hyperlipidemia” to the knowledge base. Hence, the
knowledge base becomes more comprehensive and
customized to NUH’s practice.

• To identify the missing relationship between the medication
Metformin and the disease DM, the machine infers a pattern
of “d on med”, where d is a disease, med is a medication
and med is used to treat d. (“IHD on GTN” is an example.)
The machine conjectures that there should have a
relationship between DM and Metformin, since the phraze
“DM on Metformin” follows the pattern. The machine then
verifies this inference with the doctors. The doctors confirm
that they typically write the medications that are used to
treat a disease right next to the disease, and connect these
relationships by the preposition “on”. Clearly, such rule is
very useful – the machine will then infer other missing
relationships using this expert rule with fewer questions
being posed to the doctors.

• To derive the social factor for patient 2, the machine can first
attempt to derive the information using a simple strategy
such as analyzing the NLP structure of sentences containing
patterns like “stay with”, “live with”. For complicated cases
when the machine cannot find out the information, we need
to tap on the knowledge of the experts.

4.3 Combining Multiple Weak Classifiers
We can obtain different classifiers from multiple sources such as
classifiers built based on the observational data, rules used by the
doctors and general clinical guidelines. Each source of knowledge
can be considered as a “weak classifier” and the task is to combine
these classifiers to derive a final classifier that achieves a very high
accuracy in prediction.
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Figure 3: An example of several rounds of learning for healthcare
predictive analytics

There are many ways to achieve the goal. Figure 3 shows an
example of a process consisting of three rounds of learning for the
task of predicting the severity of patients. In the first round, the
system computes four classifiers: C1 and C2 are the classifiers
derived from rules provided by SMEs (i.e., doctors); C3 is the
classifier derived from historical data; and C4 is the classifier
derived from clinical guidelines. It is essential to resolve
disagreeing opinions from various sources. There are several ways
to combine different classifiers, such as, using majority-voting for
the outputs of different rules/classifiers or combining features
being used in different input classifiers.
It is likely that all the classifiers built after the first round do not
agree with each other for the prediction tasks. Thus, in this
example, the system performs two additional rounds of learning to
improve the accuracy of the classifier. It is also possible that there
is no way to reconcile the classifiers, i.e., there will be multiple
different classifiers. In such situations, it may be necessary to
“rank” the results of the different classifiers, and pick the answer
that is ranked highest. How to do this is an open question.

4.4 Scalable Processing
Big data analytics is characterized by the so-called 3V features:
Volume - a huge amount of data, Velocity - a high data ingestion
rate, and Variety - a mixed of structured, semi-structured and
unstructured data. These requirements force us to rethink the
whole software stack to address big data analytics efficiently and
effectively, ranging from the storage layer that should manipulate
both structured and unstructured data to application layer that
should support scalable machine learning algorithms. To illustrate
the points, let us reconsider the problem of predicting the
malicious SMSs. The collection of SMSs is huge, e.g., in the order
of hundreds of tera-bytes. As discussed in Section 4.1, we need to
pick a set of SMSs for domain experts to label. Conventional
clustering algorithms may not work well here as we need to
handle such a large amount of data. The problem is even more
challenging in our context, as we need to frequently get the
domain experts involved in building the system. The delay from
human beings’ reaction may be a large factor affecting the low
latency of the system.
The scalability of the problems is also in terms of
high-dimensional data space. Our data set inherently contains a
large number of features. For instance, there are different
information about patients such as thousands of different diseases
and lab tests. One solution to reduce the dimensions is to group
these attributes semantically, e.g., grouping together different
diseases that share a same “root”. For instance, the Hypertension
disease, Hypotension disease and Ischaemic Heart disease can be
grouped together under the category of Cardiovascular disease.



Clearly, to perform such tasks, we need to consult the domain
experts as different hospitals/doctors may have different
opinions/reasoning in performing this task. This is, again, an
example of getting the domain experts involved in building the
systems.

4.5 Engaging Expert Users
As the system needs to interact with SMEs frequently, it is
important to engage the experts along the process of building and
using the system. The system should provide several
functionalities for this purpose:

• A user-friendly interface for the experts to provide their
inputs such as rules, hypothesis, labels, etc.

• The system should provide not only the final outcome (e.g.,
whether the patient is at high/low risk of being sent to ICU)
but also the reasons that drive its decision. Therefore,
keeping track of the provenance of the knowledge is
important. For instance, when the system makes a decision
that differs from experts’ opinions, the system should be
able to trace back whether the mismatch is mainly due to the
use of some general guidelines, or due to other experts’
opinions.

• Presenting feedback to the experts. For instance, the system
can explain how well an expert performs compared to other
colleagues. As another example, the system can reveal
comments and annotations by other experts to see whether
an expert would change her decision. It is also interesting to
present new patterns of knowledge that an expert may lack
and potentially educate her.

5. PRELIMINARY RESULTS
We are studying the problem of predicting the probability of
patients being readmitted into the hospital within 30 days after
discharge. We refer to the task as readmission prediction for short.
We use the clinical data drawn from the National University
Hospital’s Computerized Clinical Data Repository (CCDR) and
focus only on the elderly patients (i.e., patients with age older than
60) admitted to the hospital in 2012. The table used for the
prediction task is the medical care table1 that has similar schema
as the one presented in Table 1. There are in total 29049 elderly
patients admitted to NUH in 2012, where 5658 patients readmitted
within 30 days, i.e., the proportion of patients who were
readmitted (i.e. class label 1) is 0.188.

5.1 Interacting with Domain Experts
We have been getting the doctors involved in the following tasks.

Hypothesis/Rules. Our clinician collaborators have suggested a
hypothesis that the following features (indicators) might be
important for the readmission prediction:

• Social-economic factors, e.g., who are the care-givers and
the patient’s economic status.

• Lab findings. We should extract the lab findings that the
doctors mentioned in their notes instead of using the labs
recorded in the structured data in CCDR. The reason is that
patients typically have hundreds of lab tests but only a small

1To derive the medical care table, we joined information from var-
ious relations in CCDR, including: Discharge Summary, Patient
Demographics, Visit and Encounter, Lab Results and Emergency
Department.

# actual class 1 # actual class 0
#predicted class 1 1071 1321
#predicted class 0 4587 22070

(a) Using only structured features

# actual class 1 # actual class 0
#predicted class 1 2679 4250
#predicted class 0 2979 19141

(b) Using both structured and derived features

Table 2: The accuracy of our classifier.

number of them is important and is captured in the doctor’s
notes. As a result, selecting lab findings mentioned by
doctors naturally reduces the dimensions of the data set.

• Comorbidity influence, i.e., we should take into account the
past medical history of the patient together with the disease
status (whether the disease has been well-controlled).

Participants in a crowd-sourcing system. We adopted a hybrid
human-machine approach to extract the social factors and lab
findings from doctor’s free-text notes.
To extract the social factors, we use an NLP technique to analyze
sentences containing phrases related to the social factor such as
“live (with)”, “stay (with)”, “main care-giver” to pinpoint some
keywords such as “daughter”, “family”, “spouse”, etc. The system
then asks the doctors to handpick a set of predefined categories of
social factors. For instance, living with family and taking care by
professional helpers (e.g., maid, domestic helpers) are in a same
group. As another example, living alone and living in a
community nursing home are in a same group. The system also
performs a postprocessing step to pull out cases that can be
assigned more than one category of social factors. The system
then asks the doctors to label these cases manually. (There are
about 200 cases that need to be manually labeled.)
To extract the lab findings, the system first uses a simple pattern
matching technique to extract all possible lab tests mentioned in
the note. For instance, if the note contains a pattern of the form
“word num” where word is some word and num is a number, then
word is a candidate lab test. A word is a correct lab test if it exists
in the medical dictionary with the category of lab tests. For the
“false” lab tests that are currently not present in the dictionary and
appear frequently in the notes, the system asks the doctors to verify
them. As a result, there are some actual lab tests that are missing
in the dictionary such as “TW”, which is a local convention used
inside NUH.

Extracting medical concepts. We run the cTAKES NLP engine
over the UMLS dictionary to extract the past medical history of a
patient. We are in the process of developing algorithms to improve
the accuracy of extraction (to resolve problems mentioned in
Section 4.2). Thus, we use the number of diseases that the patient
has as an indicator instead of the actual diseases.

5.2 Results
After interacting with the doctors to extract relevant features, we
obtained two sets of features for the prediction task:

• Structured features: patients’ demographics (age, gender,
race), the number of days that the patient stayed at the
hospital, the number of previous hospitalizations, and the



number of prior emergency visits in the last six month
before admission.

• Derived features from free-texts (We refer to these features
as derived features for short): social factors, lab findings, and
past medical history (i.e., diseases).

We used WEKA [15] to run a 10-fold cross-validation and the
Bayesian Network classifier to construct a readmission classifier2.
Table 2 reports the accuracy of the prediction across all the 10
validation data. If only structured features are used to build the
classifier (Table 2(a)), the resulting classifier can correctly predict
1071 cases that are readmitted (within 30 days). The precision and
recall in this case are 0.448 and 0.189, respectively. Meanwhile, if
both structured and derived features are used to build the classifier
(Table 2(b)), the resulting classifier can correctly predict 2679
cases that are readmitted. The precision and recall are 0.387 and
0.473 respectively. Clearly, the recall has been improved
significantly with the usage of the derived features from the
free-text doctor’s notes. The result is also very promising when we
compared it to the result handled manually by domain experts
such as physicians, case managers, and nurses [7]. The recall
reported in [7] is in the range [0.149, 0.306]. The conclusion in [7]
is that care-providers were not able to accurately predict which
patients were at highest risk of readmission. However, we believe
that a hybrid machine-human solution would greatly alleviate the
problem.
We would like to emphasize that there are many rooms to further
improve the accuracy of the prediction such as enhancing the
feature extraction process, employing additional features, such as,
disease status, specific diagnoses, medications, and using special
classifiers for highly-imbalanced data set.

6. RELATED WORK
Related works to our proposition can be broadly classified into the
following three categories.

Existing solutions for industry/domain specific applications.
Existing solutions are currently built based on “best practices”.
One direction is knowledge-driven approach that is based on
general guidelines such as clinical guidelines, e.g., IBM
Watson [3]. Another direction is data-driven approach that is
based on “rules” extracted from the observational data, e.g., [16;
18; 20]. Recently, IBM proposes to combine the strengths of the
two directions [31]. However, these solutions have not explored
the exceptionally complicated rules/patterns that can only be
provided by internal domain experts with years of working
experience. Our research aims to fill this gap: we seek to engage
the experts as users of the system, and tap on their expertise to
enhance the database knowledge and processing. There are several
benefits of employing internal domain experts. First, we do not
need to customize/localize the system for different use-cases; they
themselves define the “best practices” for the system. Second, in
terms of the data used to build the knowledge base, our system
mainly bases on observational data and knowledge provided by
domain experts; whereas others (e.g., IBM Watson) need to
process a much larger amount of inputs such as medical journals,
white papers, medical policies and practices, information in the
web, etc. Third, the system should become more “intelligent” over
times when the expert users continuously enhance the system with
their expert knowledge.
2We also used other classifiers such as decision tree, rule-based
classifier, SVM, etc and observe that the Bayesian Network classi-
fier provides the best result.

Crowdsourcing in database. There has been a lot of recent
interest in the database community in using crowdsourcing as part
of database query processing (e.g., CrowdDB [13], Deco [24],
Qurk [23], CDAS [12; 22]). As discussed, the intelligent crowds
in our context are domain experts (rather than lay-persons in the
existing crowds) who are also users/reviewers of the system.
Furthermore, exploiting intelligent crowd can be much more
collaborative in nature. In typical crowdsourcing, the crowds are
not aware of each other’s answers. But in our context, we can
actually go through several iterations and see whether the experts
will change their decisions when they are provided with comments
and annotations by other experts.
A recent system, called Data Tamer [30], also leveraged expert
crowdsourcing system to enhance machine computation but in the
context of data curation. As discussed in Section 1, the key
difference between our proposition and Data Tamer lies in the fact
that the domain experts in our context are also users/reviewers of
the system. Thus, the experts are likely to take ownership and
hence are motivated to improve the accuracy of the analytics and
the usability of the applications. This would reduce the need to
localize/customize the system. Also, each system needs to address
a different set of challenges, since the targeted applications are
different.

Active learning. In the active learning model, the data come
unlabeled but the goal is to ultimately learn a classifier (e.g., [17;
29; 32]). The idea is to query the labels of just a few points that are
especially informative in order to obtain an accurate classifier. The
labels are obtained from highly-trained experts (e.g., doctors). The
scope of our proposition is much more general than active learning
in the following points. First, we would like to exploit as much
domain knowledge from experts as possible, not restricting to only
the class labels as in active learning. For instance, rules and
hypotheses provided by experts with many years of experience
must be exploited in several cases. Second, active learning focuses
on getting a better classifier so the query points presented to the
crowd are usually those data points that are at the boundary of the
separating plane. However, these are also the data points that the
experts are usually not very clear about. As such, we need to be
able to identify additional information that should be provided for
the experts to be able to make an informed decision. Lastly, we
need to handle a large amount of data whereas existing solutions
on active learning usually deal with small data set.

7. CONCLUSION
Each of us is a subject-matter expert (SME) of our profession, and
we carry with us a vast amount of knowledge and insights not
captured by a structured system. This might have explained the
emergence of Knowledge Management systems. However, there
are many rules and exceptional cases that can only be formulated
by experts with many years of experience. Such rules, when
properly coded, can help in facilitating contextual decision
making. This paper envisions a more intelligent DBMS that
captures such information or knowledge. At the core, the system is
a hybrid human-machine database processing engine where the
machine keeps the SMEs as part of the feedback loop to gather,
infer, ascertain and enhance the database knowledge and
processing. This paper discussed many open challenges that we
need to tackle in order to build such a system.
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