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ABSTRACT
While much work has been done in finding linear correlation
among subsets of features in high-dimensional data, work
on detecting nonlinear correlation has been left largely un-
touched. In this paper, we present an algorithm for finding
and visualizing nonlinear correlation clusters in the subspace
of high-dimensional databases.

Unlike the detection of linear correlation in which clus-
ters are of unique orientations, finding nonlinear correla-
tion clusters of varying orientations requires merging clus-
ters of possibly very different orientations. Combined with
the fact that spatial proximity must be judged based on a
subset of features that are not originally known, deciding
which clusters to be merged during the clustering process
becomes a challenge. To avoid this problem, we propose a
novel concept called co-sharing level which captures both
spatial proximity and cluster orientation when judging sim-
ilarity between clusters. Based on this concept, we develop
an algorithm which not only detects nonlinear correlation
clusters but also provides a way to visualize them. Exper-
iments on both synthetic and real-life datasets are done to
show the effectiveness of our method.

1. INTRODUCTION
In recent years, large amounts of high-dimensional data,

such as images, handwriting and gene expression profiles
have been generated. Analyzing and handling such kinds of
data have become an issue of keen interest. Elucidating the
patterns hidden in high-dimensional data imposes an even
greater challenge on cluster analysis.

Data objects of high dimensionality are NOT globally cor-
related in all the features because of the inherent sparsity of
the data. Instead, a cluster of data objects may be strongly
correlated only in a subset of features. Furthermore, the na-
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Figure 1: Global vs Local Orientation

ture of such correlation is usually local to a subset of the data
objects, and it is possible for another subset of the objects
to be correlated in a different subset of features. Traditional
methods of detecting correlations like GDR [20] and PCA
[16] are not applicable in this case since they can detect only
global correlations in whole databases.

To handle the above problem, several subspace cluster-
ing algorithms such as ORCLUS [3] and 4C [7] have been
proposed to identify local correlation clusters with arbitrary
orientations, assuming each cluster has a fixed orientation.
They identify clusters of data objects which are linearly cor-
related in some subset of the features.

In real-life datasets, correlation between features could
however be nonlinear, depending on how the dimensions are
normalized and scaled [14]. For example, physical studies
have shown that the pressure, volume and temperature of
an ideal gas exhibit nonlinear relationships. In biology, it
is also known that the co-expression patterns of genes in a
gene network can be nonlinear [12]. Without any detailed
domain knowledge of a dataset, it is difficult to scale and
normalize the dataset such that all nonlinear relationships
become linear. It is even possible that the scaling and nor-
malization themselves cause linear relationships to become
nonlinear in some subset of the features.

Detecting nonlinear correlation clusters is challenging be-
cause the clusters can have both local and global orien-
tations, depending on the size of the neighborhood being
considered. As an example, consider Figure 1, which shows
a 2D sinusoidal curve oriented at 45 degrees to the two axes.



Assuming the objects cluster around the curve, we will be
able to detect the global orientation of this cluster if we con-
sider a large neighborhood which is represented by the large
circle centered at point p. However, if we take a smaller
neighborhood at point q, we will only find the local ori-
entation which can be very different from the global one.
Furthermore, the local orientations of two points that are
spatially close may not be similar at the same time, as can
be seen from the small neighborhoods around q and r.

We next look at how the presence of local and global orien-
tations may pose problems for existing correlation clustering
algorithms like ORCLUS [3] and 4C [7]. These algorithms
usually work in two steps. First, small clusters called mi-

croclusters [21, 22] are formed by grouping small number
of objects that are near each other. Second, microclusters
that are close both in proximity and orientation are merged
in a bottom-up fashion to form bigger clusters. With non-
linear correlation clusters, such approaches will encounter
two problems:

1) Determination of Neighborhood

Given that the orientation of a microcluster is sensitive to
the size of the neighborhood from which its members are
drawn, it is difficult to determine a neighborhood size in
advance such that both the local and global orientations of
the clusters are captured. Combined with the fact that spa-
tial proximity must be judged based on a subset of the fea-
tures that are not originally known, forming microclusters
that capture the orientation of their neighborhood becomes
a major challenge.

2) Judging Similarity between Microclusters

Since the orientations of two microclusters in close proxim-
ity can be very different, judging the similarity between two
microclusters becomes non-trivial. Given a pair of micro-
clusters which have high proximity 1 but very different ori-
entations and another pair with similar orientations but low
proximity, the order of merging for these two pairs cannot
be easily determined. This in turn affects the final clustering
result. One way to avoid this problem is to assign different
weights to the importance of proximity and orientations, and
then compute a combined similarity measure. However, it
is not guaranteed that there will always be a unique weight
assignment that gives a good global clustering result.

In this paper, we aim to overcome the above problems in
finding nonlinear correlation clusters. Our contributions are
as follows:

1. We highlight the existence of local and global orien-
tations in nonlinear correlation clusters and explain
how they pose problems for existing subspace cluster-
ing algorithms like ORCLUS [3] and 4C [7], which are
designed to find linear correlation clusters.

2. We design an algorithm called CURLER 2, for find-
ing and visualizing complex nonlinear correlation clus-
ters. Unlike many existing algorithms which use a
bottom-up approach, CURLER adopts an interactive

1Note that as mentioned earlier, judging proximity by itself
is a difficult task since the two microclusters could lie in
different subspaces. We assume that the problem is solved
here for ease of discussion.
2CURLER stands for CURve cLustERs detection.

top-down approach for finding nonlinear correlation
clusters so that both global and local orientations can
be detected. A fuzzy clustering algorithm based on Ex-
pectation Maximization (EM) [15] is adopted to form
the microclusters so that neighborhoods can be de-
termined naturally and correctly. The algorithm also
provides a similarity measure called co-sharing level

that avoids the need to judge the importance of prox-
imity and orientation when merging microclusters.

3. We present extensive experiments to show the effi-
ciency and effectiveness of CURLER.

The rest of the paper is organized as follows. Related
work is reviewed and discussed in Section 2. We formally
present our algorithm in detail in Section 3. We discuss our
experimental analysis in Section 4. We conclude in Section
5.

2. RELATED WORK
Clustering algorithms can be grouped into two large cate-

gories: full space clustering, to which most traditional clus-
tering algorithms belong, and subspace clustering.

The clustering strategies utilized by full space cluster-
ing algorithms mainly include partitioning based clustering,
which favors spherical clusters such as the k-medoid [17]
family and EM algorithms [15]; and density-based clustering,
represented by DBSCAN [11], DBCLASD [23], DENCLUE
[2] and the more recent OPTICS [5]. EM clustering algo-
rithms such as [19] compute probabilities of cluster member-
ships for each data object according to certain probability
distribution; the aim is to maximize the overall probabil-
ity of the data. For density-based algorithms, OPTICS is
the algorithm most related to our work. OPTICS creates
an augmented ordering of the database, thereby represent-
ing the density-based clustering structure based on ‘core-
distance’ and ‘reachability-distance’. However, OPTICS has
little concern for the subspace where clusters exist or the
correlation among a subset of features.

As large amounts of high-dimensional data have resulted
from various application domains, researchers argue that it
is more meaningful to find clusters in a subset of the fea-
tures. Several algorithms for subspace clustering have been
proposed in recent years.

Some subspace clustering algorithms like CLIQUE [4],
OptiGrid [1], ENCLUS [10], PROCLUS [9], and DOC [18]
only find axis-parallel clusters. More recent algorithms such
as ORCLUS [3] and 4C [7] can find clusters with arbitrarily
oriented principle axes. However, none of them addresses
our issue of finding nonlinear correlation clusters.

3. THE CURLER ALGORITHM
Our algorithm, CURLER, works in an interactive and top-

down manner. It consists of the following main components.

1. EM Clustering: A modified expectation-maximization
subroutine EMCluster is applied to convert the orig-
inal dataset into a sufficiently large number of refined
microclusters with varying orientations. Each micro-
cluster Mi is represented by its mean value µi and
covariance matrix Σi. At the same time, a similarity
measure called co-sharing level between each pair of
microclusters is computed.



2. Cluster Expansion: Based on the co-sharing level be-
tween the microclusters, a traversal through the micro-
clusters is carried out by repeatedly choosing the near-
est microcluster in the co-shared ε−neighborhood of a
currently processed cluster. We denote this subroutine
as ExpandCluster.

3. NNCO plot (Nearest Neighbor Co-sharing Level & Ori-
entation plot): In this step, nearest neighbor co-sharing
levels and orientations of the microclusters are visual-
ized in cluster expansion order. This allows us to vi-
sually observe the nonlinear correlation cluster struc-
ture and the orientations of the microclusters from the
NNCO plot.

4. According to the NNCO plot, users may specify clus-
ters that they are interested in and further explore the
local orientations of the clusters with regard to their
global orientation.

In the next sections, we will explain the algorithm in detail
and the reasoning behind it.

3.1 EM-Clustering
Like k-means, the EM-clustering algorithm is an iterative

k-partitioning algorithm which improves the conformability
of the data to the cluster model in each iteration and typi-
cally converges in a few iterations. It has various attractive
characteristics that make it suitable for our purpose. This
includes the clustering model it uses, the fact that it is
a fuzzy clustering method, and its iterative refinement ap-
proach.

3.1.1 Clustering Model
In EM-clustering, we adopt a Gaussian mixture model

where each microcluster Mi is represented by a probability
distribution with density parameters, θi={µi,

P

i
}, µi and

P

i
being the mean vector and covariance matrix of the data

objects in Mi respectively. Such a representation is sufficient
for any arbitrary oriented clusters. Furthermore, the orien-
tation of the represented cluster can be easily computed.

Banfield and Raftery [15] proposed a general framework
for representing the covariance matrix in terms of its eigen-
value decomposition:

Σi = λiDiAiD
T
i , (1)

where Di is the orthogonal matrix of eigenvectors, Ai is
a diagonal matrix whose elements are proportional to the
eigenvalues of Σi, and λi is a scalar. Di, Ai and λi together
determine the geometric features (shape, volume, and ori-
entation respectively) of component θi.

3.1.2 Fuzzy Clustering
Unlike ORCLUS and 4C in which each data object either

belongs or not belongs to a microcluster, EM-clustering is
a fuzzy clustering method in which each data object has a
certain probability of belonging to each microcluster.

Given a microcluster with density parameters θk, we com-
pute the probability of x’s occurrence given θk as follows:

PR(x|θi) =
1

p

(2π)d|
P

i
|
exp[−

1

2
(x − µi)

T (Σi)
−1(x − µi)],

(2)
where x and mean vector µi are column vectors, |Σi| is the
determinant of Σi, and (Σi)

−1 is its inverse matrix.
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Figure 2: Co-sharing between Two Microclusters

Assuming the number of microclusters is set at k0, the
probability of x occurrence given the k0 density distributions
will be:

PR(x) =

k0
X

i=1

WiPR(x|θi), (3)

The coefficient Wi (matrix weights) denotes the fraction
of the database given microcluster Mi. The probability of
a data object x belonging to a microcluster with density
parameters θi can then be computed as:

PR(θi|x) =
WiPR(x|θi)

PR(x)
. (4)

There are two reasons for adopting fuzzy clustering to
form microclusters. First, fuzzy clustering allows an object
to belong to multiple correlation clusters when the micro-
clusters are eventually merged. This is entirely possible in
real life datasets. For example, a hospital patient may suffer
from two types of disease A and B, and thus his/her clini-
cal data will be similar to other patients of disease A in one
subset of features and also similar to patients of disease B in
another subset of features. Second, fuzzy clustering allows
us to indirectly judge the similarity of two microclusters by
looking at the number of objects that are co-shared between
them. More specifically, we define the following similarity
measure:

Definition 3.1. Co-sharing Level
The co-sharing level between clusters Mi and Mj is:

coshare(Mi, Mj) =
X

x∈D

[PR(Mi|x) ∗ PR(Mj |x)], (5)

where x is a data object in the dataset D, PR(Mj |x) and
PR(Mi|x) are the probability of object x belonging to micro-
cluster Mi and microcluster Mj respectively. PR(Mj |x) and
PR(Mi|x) are calculated according to Equations 4 and 2. 2

Given each data object in the database, we compute the
probability of the object belonging to both Mi and Mj at
the same time and sum up these probabilities over all the
data objects. In this way, the co-sharing level takes both the
orientation and spatial distance of two microclusters into ac-
count without needing to explicitly determine their impor-
tance in computing the similarity. A high co-sharing value



between two microclusters indicates that they are very sim-
ilar while a low co-sharing value indicates otherwise. As
an example, consider Figure 2 where two microclusters, M1

and M2 are used to capture the bend in a cubic curve. Since
M1 and M2 are neighboring microclusters, points that over-
lapped both of them will belong to both the Gaussian dis-
tributions and thus these points will increase the co-sharing
level between them.

Note that this similarity measure is important here sim-
ply because we are handling nonlinear correlation clusters 3.
For linear correlation algorithms like ORCLUS and 4C, this
measure is unnecessary as they can simply not merge two
microclusters which are either too far apart or very dissim-
ilar in orientation.

On the basis of our new co-sharing level, we will define the
co-shared ε−neighborhood and nearest neighbor co-sharing
level (NNC) for microclusters.

Definition 3.2. Co-shared ε − neighborhood
For a microcluster Mc, its co-shared ε−neighborhood refers
to all the microclusters whose co-sharing level from Mc is
no smaller than some non-negative real number ε: {∀Mi|
coshare(Mc, Mi) ≥ ε}. 2

We will explain how these definitions will be useful in the
section on cluster expansion later.

3.1.3 Iterative Refinement
Like the well-known k-means algorithm, EM-clustering is

an iterative refinement algorithm which improves the quality
of clustering iteratively towards a local optimal. In our case,
the quality of clustering is measured by the log likelihood for
the Gaussian mixture model as follows:

E(θ1, . . . , θk0
|D) =

X

x∈D

log[

k0
X

i=1

Wi · PR(Mi|x)] (6)

The EM-clustering algorithm can be divided into two steps:
E-Step and M-Step. In E-Step, the memberships of each
data object in the microclusters are computed. The density
parameters for the microclusters are then updated in M-
Step. The algorithm iterates between these two steps until
the change in the log likelihood is smaller than a certain
threshold between one iteration and another. Such iterative
change of memberships and parameters is necessary in order
to break the catch-22 cycle described below:

1. Without knowing the relevant correlated dimensions, it
is not possible to determine the actual neighborhood of the
microclusters.

2. Without knowing the neighborhood of the microclusters,
it is not possible to estimate their density parameters i.e.,
the mean vector and the covariance matrix of the microclus-
ters.

3As an analogy, consider how soft metals like iron, copper,
etc., can be easily bended because of their stretchable bond
structures. Correspondingly, we can now ‘stretch’ data ob-
jects across microclusters because of fuzzy clustering so that
the merged microclusters can conform to the shape of the
nonlinear correlation clusters.

EMCluster(D, MCS, εlikelihood, MaxLoopNum)
1. Set the initial iteration Num. j = 0,

initialize the mixture model parameters,
Wi, µ0

i and Σ0
i , for each microcluster Mi ∈ MCS.

2. (E-Step) For each data object x ∈ D:

PRj(x) =
X

Mi∈MCS

WiPRj(x|Mi),

PRj(Mi|x) = Wi∗PRj(x|Mi)

PRj(x)
, Mi ∈ MCS,

W ′
i =

P

x∈D PRj(Mi|x).
3. (M-Step) Update mixture model parameters for ∀Mi ∈
MCS:

µj+1
i =

X

x∈D

(x · PR(Mi|x))

X

x∈D

PR(Mi|x)
,

Σj+1
i =

X

x∈D

PR(Mi|x)(x − µj+1
i )(x − µj+1

i )T

X

x∈D

PR(Mi|x)

Wi = W ′
i

4. If|Ej − Ej+1| ≤ εlikelihood or j > MaxLoopNum
Decompose Σi for ∀Mi ∈ MCS and return

Else set j = j + 1 and go to 2.

Note:
Ej : the log likelihood of the mix-
ture model at iteration j, PRj(x|Mi) =

1
q

(2π)d|
Pj

i
|
exp[− 1

2
(x − µj

i )
T (Σj

i )
−1(x − µj

i )].

Figure 3: EMCluster Subroutine

By sampling the mean vectors from the data objects and
setting the covariance matrix to the identity matrix ini-
tially, the iterative nature of EM-clustering conforms the
microclusters to their neighborhood through the iterations.
Again, we note that our approach here is different from
that of ORCLUS and 4C. ORCLUS does not recompute
the microcluster center until two microclusters are merged,
while 4C fixes its microclusters by gathering objects that
are within a distance of ε of an object in full feature space.
Our approach is necessary as we are finding more complex
correlations. Incidentally, both ORCLUS and 4C should
encounter the same catch-22 problem as us, but they are
relatively unaffected by their approximation of the neigh-
borhood.

The EMCluster subroutine is illustrated in Figure 3.
First, the parameters of each microcluster Mi (Mi ∈ MCS)
are initialized as follows: Wi = 1/k0, Σ0

Mi
is the identity

matrix, and the microcluster centers are randomly sampled
from the dataset. The membership probabilities of each data
object x (x ∈ D), PR(Mi|x), are computed for each micro-
cluster Mi. Then the mixture model parameters are updated
based on the calculated membership probabilities of the data
objects. The membership probability computation and den-
sity parameters updating iterate until the log likelihood of
the mixture model converges, or if the maximum number of
iterations, MaxLoopNum, is reached. The output of the
EM clustering is the means and covariance matrices of the
microclusters, and also the membership probabilities of each
data object in the microclusters. These results are passed
on to the ExpandCluster subroutine.



ExpandCluster(MCS, ε, OutputFile)
1. Calculate the co-sharing level matrix;
2. Mc=MCS.NextUnprocessedMicroCluster

C ={Mc} ;
3. NC = neighbors(Mc, ε, MCS);

Mc.processed = True;
Output Mc to OutputFile;
While |NC | > 0 Do

From NC , remove nearest microcluster to C,
and set it as Mc;
Mc.processed = True;
Output Mc and coshare(Mc,C) to OutputFile;
Merge C and Mc to form new Cnew;
Update the co-sharing level matrix;
C=Cnew;
NC=NC + neighbors(Mc, ε, MCS);

4. If there exist unprocessed microclusters goto 2;
End.

Figure 4: ExpandCluster Subroutine

3.2 Cluster Expansion
Having formed the microclusters, our next step is to merge

the microclusters in a certain order so that the final nonlin-
ear correlation clusters can be found and visualized.

Definition 3.3. Co-sharing Level Matrix
The co-sharing level matrix is a k0×k0 matrix with its entry
(i, j) representing the co-sharing level between microclusters
Mi and Mj (coshare(Mi, Mj)). 2

We calculate the co-sharing level matrix at the beginning
of the cluster expansion procedure based on the membership
probabilities PR(Mi|x) for each data object x and each mi-
crocluster Mi. To avoid the complexity of computing k0×k0

entries for each data object x, we instead maintain for each
x, a list of ltop microclusters that x is most likely to belong
to. This reduces the number of entries update to l2top. We
argue that x has 0 or near 0 probability of belonging to most
of the microclusters and thus our approximation should be
accurate.

As shown in Figure 4, the ExpandCluster subroutine first
initializes the current cluster C as {Mc}, where Mc is the
first unprocessed microcluster in the set of microclusters
MCS. It then merges all other microclusters that are in
the co-shared ε-neighborhood of Mc into NC through the
function call to neighbors(Mc, ε, MCS). Mc is then output
together with its co-sharing level value with C. From among
the unprocessed microclusters in NC , the next Mc with the
highest co-sharing level is found. Cnew is then formed by
merging Mc and C. We then update the co-sharing level
matrix according to Equation 7.

coshare(C, Mk) = Max(coshare(C, Mk), coshare(Mc, Mk)),
(7)

where Mk is any of the remaining unprocessed microclusters.
C is then updated to become Cnew and unprocessed mi-

croclusters in the co-shared ε-neighborhood of MC are added
to NC . This process continues until NC is empty and then
a C is re-initialized to another unprocessed microcluster by
going to Step 2.

3.3 NNCO Plot
In the NNCO (Nearest Neighbor Co-sharing Level & Ori-

entation) plot, we visualize the nearest neighbor co-sharing

levels together with the orientations of the microclusters in
cluster expansion order. The NNCO plot consists of a NNC
plot above and an orientation plot below, both sharing the
same horizontal axis.

3.3.1 NNC Plot
The NNC plot is inspired by the reachability plot of OP-

TICS [5]. The horizontal axis denotes the microcluster order
in the cluster expansion, and the vertical axis above denotes
the co-sharing level between the microcluster Mc and the
cluster being processed C when Mc is added to C. We call
this value the NNC (Nearest Neighbor Co-sharing) value of
MC. Intuitively, the NNC plot represents a local hill climb-
ing algorithm which moves towards the local region with
the highest similarity at every step. As such, in the NNC
plot, a cluster will be represented with a hill shape with the
up-slope representing the movement towards the local high
similarity region and the down-slope representing the move-
ment away from the high similarity region after it has been
visited. Note that an NNC level of 0 represents a complete
separation between two clusters, i.e., the two clusters are
formed from two sets of microclusters that do not co-share
any data objects.

3.3.2 Orientation Plot
Below the NNC plot is the orientation plot, a bar consist-

ing of vertical black-and-white lines. For each microcluster,
there is a vertical line of d segments where d is the dimen-
sionality of the data space, and each provides one dimension
value of the microcluster’s orientation vector, as defined be-
low.

Definition 3.4. Cluster Orientation
The cluster’s orientation is a vector along which the cluster
obtains maximum variation, that is, the eigenvector with the
largest eigenvalue. 2

Each dimension value y of the microcluster orientation
vector is normalized to the range of [-127.5, 127.5] and mapped
to a color ranging from black to white according to Equation
8.

Color(y) = [R(y + 127.5),G(y + 127.5), B(y + 127.5)] (8)

Therefore, the darkest color ([R(0), G(0), B(0)], when y =
−127.5) indicates the orientation parallel but opposite the
corresponding dimension axis while the brightest color ([R(255),
G(255), B(255)], when y = +127.5) indicates the orienta-
tion parallel and along the dimension axis. Gray ([R(127.5),
G(127.5), B(127.5)], when y = 0) suggests no variation at all
in the dimension. Obviously, similarly oriented microclus-
ters tend to have similar patterns in the orientation plot.
In this way, the clusters’ specific subspaces can be observed
graphically.

3.3.3 Examples
Figure 5 shows a quadratic cluster and a cubic cluster.

The nonlinear cluster structures are detected successfully,
as shown in the NNCO plots in Figure 6. According to Def-
inition 3.1, the more similar in orientation the microclusters
are, the larger the co-sharing level value they have. As our
microclusters are assumed to be evenly distributed, the mi-
croclusters which are similar in orientations and close to
each other have larger NNC values and tend to be grouped
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Figure 5: Quadratic and Cubic Clusters
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together. Here, the microcluster orientations are approxi-
mately the tangents along the curves. There are two humps,
indicating two large subclusters of similar orientations in the
quadratic NNC plot (Figure 6(a)). Likewise, there are three
humps, indicating three large subclusters of similar orienta-
tions in the cubic NNC plot (Figure 6(b)).

Generally, the tangent projection along the quadratic curve
in X2 dimension increases from negative to positive while
the tangent projection on the X1 dimension increases and
decreases symmetrically. The simple mathematic reasoning
behind this is that, given the 2D quadratic curve

x2 = a ∗ (x1 − b)2 + c,

where a > 0, the changing ratio of the tangent slop, x
′′

2 = 2∗
a, is a positive constant. The maximum tangent projection
on the X1 dimension is achieved when the tangent slope
is 0. That is why we see in the orientation plot that as a
whole, the bar color in dimension X2 brightens continuously
(tangent slope changes from negative to positive) while the
bar color in dimension X1 brightens first and darkens mid-
way.

For the cubic curve

x2 = a ∗ (x1 − b)3 + c,

the tangent slope changes from positive to zero, then back
to positive again. Again, as the tangent projection on di-
mension X1 increases and decreases symmetrically while the
tangent projection on dimension X2 decreases and increases
symmetrically. For this reason, the bar color in dimension
X1 brightens and darkens symmetrically while the bar color
of dimension X2 darkens and brightens symmetrically in the

CURLER(D, k0, ltop, ε, εlikelihood, MaxLoopNum)
1.Randomly Sample k0 number of seeds from D

as MCS;
2.EMCluster(D, MCS, εlikelihood, MaxLoopNum);
3.Select one microcluster in MCS as c;
4.ExpandCluster(MCS, ε, OutputF ile);
5. For any interesting cluster Ci

Transform DCi into Dnew in the subspace εCi

l ;
CURLER(Dnew, k′

0, ltop, ε, εlikelihood, MaxLoopNum)
End.

Figure 7: CURLER

orientation plot.

3.4 Top-down Clustering
Having identified interesting clusters from the orientation

plot, it is possible to perform another round of clustering by
focusing on each individual cluster. The reason for doing so
is the observation that the orientation captured by the initial
orientation plot could only represent the global orientation
of the clusters.

As we know, each data object is assumed to have mem-
bership probabilities for several microclusters in CURLER.
We define the data members represented by a discovered
cluster C which consists of microcluster set MCS as the
set of data objects whose highest membership probabili-
ties are achieved in the microcluster among MCS, {∀x|x ∈
D and ∃Mc ∈ MCS such that Max1≤i≤k0

{PR(Mi|x)} =
PR(Mc|x)}. Based on the data members of cluster C, we
can further compute the cluster existance space of C.

Definition 3.5. Transformed Clustering Space
Given the specified cluster C and l, we define the trans-

formed clustering space as a space spanned by l vectors,
denoted as εC

l , in which the sum of the variances along the
l vectors is the least among all possible transformations. In
other words, the l vectors of the transformed clustering space
εC

l , are the l eigenvectors with the minimum eigenvalues,
computed from the covariance matrix of the data members
of C. We denote the l vectors as e1, e2, ..., and el, where l
may be much smaller than the dimensionality of the original
data space d. 2

Given the dimensionality of the original data space, d, a
correlation cluster Ci, and l, we can further project data
members of Ci, DCi , to the subspace εCi

l of l vectors (εCi

l =
{ei1, ei2, ..., eil}) by transforming each data member x ∈
DCi to (x � ei1, x � ei2, ... x � eil), where x and eij (1 ≤ j ≤ l)
are d-dimensional vectors. In this way, we obtain a new l−D
dataset and can carry on another level of clustering. Figure
7 shows the overview of our algorithm.

3.5 Time Complexity Analysis
In this section, we analyze the time complexity of CURLER.

We focus our analysis on the EM-clustering algorithm and
the cluster expansion since these two are the most expensive
steps among the four.
• EM Clustering:

In the EM part, the algorithm runs iteratively to refine the
microclusters. The bottleneck is Step 2, where the mem-
bership probabilities of each data object x for each micro-
clusters Mi ∈ MCS is calculated. The time complexity of
matrix inversion, matrix determinant, and matrix decom-



position is O(d3); thus, the time complexity of matrix op-
eration for k0 microclusters is O(k0 · d3). Besides, the time
complexity of computing PRj(x|Mi) is O(d2) for each pair
of x and Mi. For all data objects and all microclusters, the
total time complexity of EM clustering is O(k0 ·n·d

2+k0 ·d
3).

• Cluster Expansion:

The time complexity of computing the initial co-sharing
level matrix is O(n ∗ l2top), as explained in Section 3.2. As
there is no index available for CURLER due to our unique
co-sharing level function, all the unprocessed microclusters
have to be checked to determine the co-shared ε−neighborhood
of the current cluster. So the time complexity of the near-
est neighbor search for one cluster is O(k0) and the time
complexity of the total nearest neighbor search is O(k2

0).
Also, as the time complexity of each co-sharing level ma-
trix update during cluster merging is O(k0), and there is
maximum k0 updates, the time complexity of the entire cor-
relation distance matrix update is O(k2

0). As a result, the
time complexity of the cluster expansion is O(n · l2top + k2

0).

4. EXPERIMENTAL ANALYSIS
We tested CURLER on a 1600 MHz PVI PC with 256M

memory to ascertain its effectiveness and efficiency. We
evaluated CURLER on a 9D synthetic dataset of three he-
lix clusters with different cluster existence spaces, the iris
plant dataset and the image segmentation dataset from the
UCI Repository of Machine Learning Databases and Do-
main Theories [6], and the Iyer time series gene expression
data with 10 well-known linear clusters [13].

4.1 Parameter Setting
As illustrated in Figure 7, CURLER generally requires five

input parameters: MaxLoopNum, log likelihood threshold
εlikelihood, microcluster number k0, ltop and neighborhood
co-sharing level threshold ε.

In all our experiments, we set MaxLoopNum between 5
and 20, and εlikelihood of 0.00001. The experiments show
that it is quite reasonable to trade off a limited amount of
accuracy for efficiency by choosing a smaller MaxLoopNum,
a larger log likelihood threshold εlikelihood and a smaller ltop

ranging from 20 to 40.
The number of microclusters k0 is a core parameter of

CURLER. According to our experiments, there is no signif-
icant difference in performance when varying k0. Of course,
the larger the k0, the more refined the NNCO plots we got.
Unlike [3] where each data object is assigned to only one
cluster, in CURLER, each data object is assumed to have
membership probabilities for ltop microclusters. As a result,
the performance of CURLER is not affected much by k0.

The neighborhood co-sharing level threshold ε implicitly
defines the quality of merged clusters. The larger ε indicates
more strict requirement on microclusters’ similarity in both
orientation and spacial distance when expanding clusters;
hence, the higher cluster quality we obtained. In our exper-
iments, we set ε to 0. To get a rough clustering result for
any positive ε, we simply moved the horizontal axis up along
the vertical axis by a co-sharing level of ε in the NNCO plot.
This is another advantage of our algorithm.

4.2 Efficiency
In this Section, we evaluate the efficiency of our algorithm

with a varying database size (n) and a varying number of mi-
croclusters (k0) on the 9D (d=9) synthetic dataset. In our
experiments, we fixed the maximum number of loop time
MaxLoopNum at 10, the log likelihood threshold εlikelihood

at 0.00001, the neighborhood co-sharing level threshold ε
as 0, and the number of microcluster memberships for each
data object ltop at 300. We varied either n or k0. When n
was varied, we fixed k0 at 300. Likewise, we set n at 3000
when varying k0. For the output results, we averaged the ex-
ecution times of five runs under the same parameter setting.
In general, CURLER performed approximately linearly with
the database size and the number of microclusters, as illus-
trated in Figure 8. The high scalability of our algorithm
shows much promise in clustering high-dimensional data.
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Figure 8: Runtime vs Dataset Size n and # Micro-

clusters k0 on the 9D Synthetic Dataset

4.3 Effectiveness

4.3.1 Synthetic Dataset
Because of the difficulty of getting a public high-dimensional

dataset of well-known nonlinear cluster structures, we com-
pared the effectiveness of CURLER with 4C on a 9D syn-
thetic dataset of three helix clusters. The three helix clusters
existed in dimensions 1−3 (cluster 1), 4−6 (cluster 2), and
7 − 9 (cluster 3) respectively and the remaining six dimen-
sions of each cluster were occupied with large random noise,
approximately five times the data. Each cluster mapped a
different color: red for cluster 1, blue for cluster 2, and yel-
low for cluster 3, as shown in Figure 9. Below is the basic
generation function of helix, where t ∈ [0, 6π],

x1 = c ∗ t,
x2 = r ∗ sin(t),
x3 = r ∗ cos(t).

The top-level NNC plot in Figure 10 shows that all the
three clusters were identified by CURLER in the sequence
of cluster 1, cluster 3 and cluster 2, separated by two NNC-
zero-gaps. The top-level orientation plot further indicates
the cluster existence subspace of each cluster, the gray di-
mensions. The noise dimensions are marked with irregular
dazzling darkening and brightening patterns.

For a close look at the nonlinear correlation pattern of
each cluster, we projected the data member into the cor-
responding cluster existence subspace of three vectors and
performed sub-level clustering. Note that the vectors of the
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Figure 9: Projected Views of Synthetic Data in both Original Space and Transformed Clustering Spaces
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Figure 10: Top-level and Sub-level NNCO Plots of Synthetic Data

cluster existence subspace were NOT subsets of the original
vectors. Since |sin(t)| and |cos(t)| had six cycles, when t var-
ied from 0 to 6π, the sub-level NNCO plots show six cycles
of shading and brightening orientation patterns in subspace
dimensions ei1, ei2, and ei3 for each cluster i (i = 1, 2, and
3).

As expected, 4C found no clusters although we set the cor-
relation threshold parameter δ as high as 0.8. The changing
orientation in the dataset does not exhibit the linear correla-

tion which 4C is looking for. In contrast, CURLER not only
detected the three clusters but also captured their cycling
correlation patterns and the subset of correlated features
(Figure 10).

4.3.2 Real Case Studies
To have a rough idea of the potential of CURLER in prac-

tical applications, we applied the algorithm to three real-life
datasets in various domains. Our experiments on the iris



plant dataset, the image segmentation dataset, and the Iyer
time series gene expression dataset show that CURLER is
effective for discovering both nonlinear and linear correlation
clusters on all the datasets above. As the cluster structures
of the first two public datasets have not been described, we
will begin our discussion with the examination of their data
distributions with the projected views. We will only report
the top-level clustering results of CURLER here due to space
constraint.

Based on our definition of the data members represented
by cluster C in Section 3.4, we can infer the class cluster C
mainly belongs to. We denote the inferred class label on the
top of the cluster or subcluster in the NNCO plot.

4.3.2.1 Case 1: Iris Plant.
The iris plant dataset is one of the most popular datasets

in pattern recognition domain. It contains 150 instances
from three classes: Iris-virginica (class 1), Iris-versicolor
(class 2) and Iris-setosa (class 3), 50 instances each. Each
instance has four numeric attributes, denoted as X1, X2, X3

and X4. Figure 11 (a) shows the projected view of this data,
where the blue points, green circle and red squares represent
instances from class 1, 2 and 3 respectively. We can see that
there are two large clusters: one consisting of instances of
class 1 and the other consisting of instances from class 2 and
class 3. The second cluster can further be divided into two
subclusters, one composed of instances from class 2 and the
other from class 3.

The microclusters constructed by the EMCluster subrou-
tine are shown in Figure 12 (a). As can be seen clearly, the
cluster expansion path traverses instances from class 1, class
2 and class 3 in an orderly manner. The NNCO plot of iris
(Figure 13 (a)) visualizes two large clusters: one composed
of 50 microclusters representing instances from class 1 and
the second cluster composed of 100 microclusters represent-
ing instances from the other two classes. It is also noticeable
that the second cluster is further divided into two subclus-
ters (two humps) of 85 and 15 microclusters respectively. As
illustrated in Figure 12 (a), the two subclusters mainly rep-
resent instances from class 2 and class 3 respectively. The
different patterns of the clusters in the orientation plot sug-
gest the corresponding different cluster existence subspaces.
It is interesting that the microclusters in the same cluster
or the same subcluster are very similar in orientation (very
similar color patterns). Thus we can infer that the iris plant
datasets have three approximately linear clusters, among
which two with very similar orientations are close to each
other.

4.3.2.2 Case 2: Image Segmentation.
The image segmentation dataset has 2310 instances from

seven outdoor images: grass (class 1), path (class 2), window
(class 3), cement (class 4), foliage (class 5), sky (class 6),
and brickface (class 7). Each instance corresponds to a 3x3
region with 19 attributes. During dataset processing, we
removed the three redundant attributes (attributes 5, 7, and
9 were reported to be repetitive with attributes 4, 6, and 8
respectively), and normalized the remaining 16 attributes
to the range of [-5, 5]. The 16 attributes contained some
statistical measures of the images, denoted as X1, X2, ...,
X16.

Figure 11 (b) shows the projected views on all dimen-
sions. Figure 12 (b) is the projected view of our constructed

microclusters on dimensions X14, X15 and X16 in cluster
expansion order.

Figure 13 (b) is the NNCO plot of the image dataset,
which reveals the clustering structure accurately. Note that
the image dataset is partitioned into three large clusters
separated by NNC-zero-gaps. This is confirmed in our data
projection views, Figure 11 (b.4) and (b.6), where we can
see one large cluster composed of instances from class 1,
one composed of instances from class 6, and another large
cluster composed of mixed instances from the rest of the
classes. The last cluster is nonlinear (Figures 11 (b.5) and
(b.6)). The NNCO plot indicates that instances from the
seven classes are well separated and fairly clustered.

The orientation plot further indicates that the clusters
have their own subspaces; this is reflected in the different
color patterns. However, some common subspaces also ex-
ist. For instance, we observe that the orientation plot on
dimensions X7, X8, X9, and X10 have synchronous color
patterns, indicating synchronous linear correlations of the
four attributes. As validated in Figures 11 (b.3) and (b.4),
the three clusters approximately reside in the diagonal re-
gions of dimensions X7, X8, X9 and X10. Another interest-
ing phenomenon is that line X1 is strongly highlighted (in-
dicating large variation in X1), line X2 is partly highlighted
(indicating positive orientation) and partly darkened (indi-
cating negative orientation) while line X3 is globally gray
(indicating no variation at all in dimension X3). With a
closer look at Figure 11 (b.1), we see the answer: the three
clusters distribute almost parallel with axis X1 and have
little variation in dimension X3. The approximate gray of
lines X4, X5, and X6 also indicates little variation in the
three dimensions. As a result of the nonlinear patterns in
dimensions X11 to X16 (Figure 11 (b)), there are irregular
color patterns in dimensions X11 to X16.

Figure 14 depicts three interesting cluster structures dis-
covered in the NNCO plot of the image dataset (Figure 13
(b)). First, the black-and-white cycling color pattern of mi-
croclusters 1-48 in dimensions X11-X15 of the orientation
plot is a vivid visualization of the nonlinear cluster struc-
ture of the corresponding instances of class 3 (Figure 14 (a)).
Second, the synchronous three-vertical-bar pattern of micro-
cluster 397-429 in both the NNC plot and the orientation
plot, especially dimensions X7-X10, reveals three linear cor-
relation clusters with diagonal orientations (Figure 14 (b)).
The NNCO plot also indicates that the instances of class 7
can be partitioned into two big subclusters of consecutive
microclusters, one represented by microclusters 49-82 and
the other represented by microclusters 280-321 respectively.
The plot also indicates that the later subcluster has a larger
variation in dimensions X11, X12, and X13 (microclusters
280-321 have brighter colors in dimensions X11 and X12 of
the orientation plot than microclusters 49-82). Again, this
is verified in Figure 14 (c).

4.3.2.3 Case 3: Human Serum Data.
To verify the effectiveness of our algorithm, we also ap-

plied CURLER to a benchmark time series gene expression
dataset, the Iyer dataset [13]. The Iyer dataset is a set of
temporal gene expression data in response of human fibrob-
lasts to serum, which consists of gene expression patterns
of 517 genes across 18 time slots. [13] describes 10 linear
correlation clusters of genes, denoted as ‘A’, ‘B’, ..., and ‘J’.
CURLER identified nine out of the reported ten clusters
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Figure 13: NNCO Plots
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Figure 14: Cluster Structures Revealed by the NNCO Plots for the Image Dataset

0 50 100 150 200 250 300 350 400

0

0.0797

0.1595

0.2392

0.319

0.3987

Microcluster Order

18
 T

im
e 

S
lo

ts

t1 

t13 

t5 

t9 

t18 

A 
B B D D 

B C 

F E 

J 

A 

A 

H 

F I 

J 

F 

H 
J 

H 
I 

C 

H 

NNCO 

H 

Figure 15: NNCO Plot of Iyer

1 5 10 15 18
−3

−2

−1

0

1

2

3

4

Time Slots

1 5 10 15 18
−3

−2

−1

0

1

2

3

4

Time Slots

1 5 10 15 18
−3

−2

−1

0

1

2

3

4

Time Slots

Reported Genes of Cluster D Genes Represented by mc 63−76 

Genes Represented by mc 77−95 

Figure 16: Discovered Subclusters for Cluster “D”

1 5 10 15 18
−2

−1

0

1

2

3

4

5

Time Slots

1 5 10 15 18
−2

0

2

4

6

Time Slots

1 5 10 15 18
−2

0

2

4

6

Time Slots

1 5 10 15 18
−2

0

2

4

6

Time Slots

Reported Genes of Cluster H Genes Represented by mc 206−232 

Genes Represented by mc 287−307 Genes Represented by mc 317−349 
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successfully among the 517 genes (Figure 15); cluster ‘G’,
consisting of 13 genes, was the exception. As can be seen,
CURLER partitions the reported genes of cluster ‘D’ into
two consecutive subclusters, represented by microclusters
63-76 and 77-95 respectively. Likewise, CURLER partitions
the genes of cluster ‘H’ into three disjointed big subclusters
of consecutive microclusters: 206-232, 287-307 and 317-349.
The latter two big subclusters can be further partitioned at
the sub-level as observed in the NNCO plot.

Figure 16 and 17 illustrate the temporal gene expression
patterns across the 18 time slots of the genes in the above
discovered subclusters. Apparently, the expression patterns
of the genes in each subcluster are quite cohesive. Note
that the expression patterns of genes in the two subclusters
of cluster ‘D’ are different at time slots t2 and t3: those
represented by microclusters 63-76 are negatively expressed
while those represented by microclusters 77-95 are positively
expressed. Besides, their variation at the two time slots are
different, as detected by the NNCO plot. As for genes of
the three subclusters of cluster ‘H’, their expression patterns
are delicately different in time slots t9, t10, t11, and t12, as



shown in Figure 15 and verified in Figure 17.

5. CONCLUSIONS
In this paper, we have presented a novel clustering algo-

rithm for identifying and visualizing nonlinear correlation
clusters together with the specific subspaces of their exis-
tence in high-dimensional space. Almost no work has ad-
dressed the issue of nonlinear correlation clusters, let alone
the visualization of these clusters. Our work is a first at-
tempt, and it combines the advantage of density based al-
gorithms represented by OPTICS [5] for arbitrary cluster
shape and the advantage of subspace clustering algorithms
represented by ORCLUS [3] for subspace detecting.

As shown in our experiments on a wide range of datasets,
CURLER successfully captures the subspaces where the clus-
ters exist and the nonlinear cluster structures, even when a
large number of noise dimensions is introduced. Moreover,
CURLER allows users to interactively select the cluster of
their interest, have a close look at its data members in the
space where the cluster exists, and perform sub-level clus-
tering when necessary.

We plan to consider other variants to further improve the
efficiency of CURLER, i.e., constructing some index struc-
tures to accelerate nearest neighbor queries based on the
mixture model.
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