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ABSTRACT
In this paper, we present a novel index structure, called ∆-
tree, to speed up processing of high-dimensional K-nearest
neighbor (KNN) queries in main memory environment. The
∆-tree is a multi-level structure where each level represents
the data space at different dimensionalities: the number of
dimensions increases towards the leaf level which contains
the data at their full dimensions. The remaining dimensions
are obtained using Principal Component Analysis, which has
the desirable property that the first few dimensions capture
most of the information in the dataset. Each level of the tree
serves to prune the search space more efficiently as the re-
duced dimensions can better exploit the small cache line size.
Moreover, the distance computation on lower dimensionality
is less expensive. We also propose an extension, called ∆+-
tree, that globally clusters the data space and then further
partitions clusters into small regions to reduce the search
space. We conducted extensive experiments to evaluate the
proposed structures against existing techniques on different
kinds of datasets. Our results show that the ∆+-tree is su-
perior in most cases.

1. INTRODUCTION
Many emerging database applications such as image, time

series and scientific databases, manipulate high-dimensional
data. In these applications, one of the most frequently
used and yet expensive operations is to find objects in the
database that are similar to a given query object. Nearest
neighbor search is a central requirement in such cases.

There is a long stream of research on solving the near-
est neighbor search problem, and many multidimensional
indexes have been proposed [3, 4, 7, 8, 14, 16, 17, 18]. How-
ever, these index structures have largely been studied in the
context of disk-based systems where it is assumed that the
databases are too large to fit into the main memory. This
assumption is increasingly being challenged as RAM gets
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cheaper and larger. This has prompted renewed interest in
research in main memory databases [2, 6, 13, 15].

In main memory systems, distance computations and L2
cache misses contribute significantly to the overall cost. Sev-
eral main memory indexing schemes have been designed to
be cache conscious [13, 15]. However, these schemes are
targeted at single or low dimensional data. Moreover, for
high-dimensional data, distance calculations are computa-
tionally expensive [4]. Therefore an efficient main memory
index should exploit the L2 cache effectively and minimize
the distance computation to improve the performance.

In this paper, we propose a novel multi-tier index struc-
ture, called ∆-tree1, that can facilitate efficient KNN search
in main memory environment. Each tier in the ∆-tree rep-
resents the data space as clusters in different number of
dimensions and tiers closer to the root partition the data
space using fewer number of dimensions. The numbers of
tiers and dimensions are obtained using the Principal Com-
ponent Analysis (PCA) technique [12]. After PCA trans-
formation, the first few dimensions of the new data space
generally capture most of the information, and in partic-
ular two points that are distance di apart in i dimensions
have the property that di ≤ dj if i ≤ j. More importantly,
by hierarchical clustering and reducing the number of di-
mensions, we can decrease the distance computation and
better utilize the L2 cache. We present the KNN search al-
gorithm as well as the update algorithm for the ∆-tree. An
extension of the ∆-tree, called ∆+-tree, is also proposed to
further reduce the search space. The ∆+-tree globally clus-
ters the data space and then partitions clusters into small
regions before building the tree. We compare the proposed
schemes against other known schemes including the M-tree
[8], TV-tree [14], CR-tree [13], VA-file [16], iDistance [18]
and Sequential Scan. Our study shows that the ∆+-tree is
superior in most cases.

An indirect contribution of this paper is the comparative
study of the various indexing structures. To our knowl-
edge, this is the first comprehensive performance study that
involves so many high-dimensional structures. The results
provide insight into the strengths and limitations of these
schemes that will help researchers/practitioners to pick an
appropriate scheme to adopt.

The remainder of this paper is organized as follows. In the

1∆ reflects the structure of the tree where nodes closer to the
root index keys with lower dimensions, while those towards
the leaf index keys with higher dimensions.



next section, we review some related work. Section 3 pro-
vides some background on the Principal Component Anal-
ysis. In Section 4, we introduce our newly proposed ∆-tree
and ∆+-tree. We also present the search and update oper-
ations on the structures. Section 5 reports the findings of
an extensive experimental study conducted to evaluate the
proposed schemes, and finally, we conclude in Section 6.

2. RELATED WORK
Many multi-dimensional structures have been proposed in

the literature [3]. Here, we shall just review five of them that
are used for comparison in our experimental study.
CR-tree. In [13], the authors proposed a cache-conscious
version of the R-tree called the CR-tree. To pack more
entries in a node, the CR-tree compresses MBR keys. It
first represents the coordinates of an MBR key relatively to
the lower left corner of its parent MBR. Then, it quantizes
the relative coordinates to further cut off the less signifi-
cant trailing bits. Consequently, the CR-tree becomes sig-
nificantly wider and smaller than the ordinary R-tree. The
experimental and analytical studies on the CR-tree showed
that it performs faster than the R-tree. Since the CR-tree
is based on the R-tree, it inherits its problem of not be-
ing scalable (in terms of number of dimensions). Moreover,
quantization of MBRs incurs additional computational cost
compared to the R-tree.
TV-tree. In [14], the authors proposed a tree-structure
that avoids the dimensionality problem. The idea is to use
a variable number of dimensions for indexing, adapting to
the number of objects to be indexed, and to the current
level of the tree. The TV-tree defines two kinds of dimen-
sions, inactive dimensions and active dimensions. Since the
TV-tree indexes the active dimensions and the number of
active dimensions is usually small, the method saves space
and leads to a larger fan-out. As a result, the tree is more
compact and performs better than the R∗-tree. Although
our proposed approaches also employ fewer dimensions in
the internal node, they differ from the TV-tree in several
ways. First, the TV-tree uses the same number of active
dimensions at every level of the tree, while our schemes use
different number of dimensions at different levels of the tree.
Second, even though the TV-tree’s internal nodes have fewer
dimensions, the algorithm is the same as the R-tree based
algorithm. On the other hand, our proposed schemes exploit
clustering to construct the tree and take advantage of PCA
to prune the search space more effectively. Third, the num-
ber of active dimensions of the TV-tree can be large, which
means that it still suffers from the dimensional scalability
problem, while our structures always employ few dimensions
in the upper levels.
M-tree. In [8], the authors proposed the height-balanced
M-tree to organize and search large datasets from a generic
metric space, where object proximity is defined by a dis-
tance function. In an M-tree, leaf nodes store all indexed
objects, whereas internal nodes store the routing objects.
For each routing object Or, there is an associated pointer,
denoted ptr(T(Or)), that references the root of a sub-tree,
T(Or), called the covering tree of Or. All objects in T(Or)
are within the distance r(Or) from Or, r(Or) > 0. Finally,
a routing object Or is associated with a distance to P(Or),
its parent object, that is the routing object which references
the node where the Or entry is stored. This distance is not
defined for entries in the root of the M-tree. An entry for a

database object Oj in a leaf node is quite similar to that of a
routing object. The strength of the M-tree lies in maintain-
ing the pre-computed distance in the index structure. Thus,
the number of distance computation can be low, making it
a good candidate for main memory environment.
iDistance. In [18], the authors presented an efficient
method for KNN search in a multi-dimensional space, called
iDistance. iDistance partitions the data and selects a refer-
ence point for each partition. The data points in each clus-
ter are transformed into a single dimensional space based
on their similarity with respect to a reference point. It then
index the distance of each data point to the reference point
of its partition. Since this distance is a simple scalar, with a
small mapping effort to keep partitions distinct, it is possi-
ble to used a standard B+-tree structure to index the data
and KNN search be performed using one-dimensional range
search. Since cache conscious B+-tree has been studied [15],
and distance is a single dimensional attribute (that fits into
the cache line), iDistance is expected to be a promising can-
didate for main memory systems.
VA-file. In [16], the authors described a simple vector
approximation scheme, call VA-file. The VA-file divides the
data space into a 2b rectangular cells. The scheme allocates a
unique bit-string of length b for each cell, and approximates
data points that fall into a cell by that bit-string. The VA-
file itself is simply an array of these approximations. KNN
searches are performed by scanning the entire approxima-
tion file, and by excluding the vast majority of vectors from
the search (filtering step) based on these approximations.
After the filtering step, a small set of candidates are then
visited and the actual distances to the query point Q are
determined. The VA-file has been shown to perform well
for disk-based systems as it reduces the number of random
I/Os. However, it incurs higher computational cost making
it less attractive for main memory databases: besides com-
puting the actual distances of candidate points, it has to
decode the bit-string and compute all the lower and some
upper bounds on the distance to the query point.

3. PRINCIPAL COMPONENT ANALYSIS
The Principal Component Analysis (PCA) [12] is a widely

used method for transforming points in the original (high-
dimensional) space into another (usually lower dimensional)
space [5, 11]. It examines the variance structure in the
dataset and determines the directions along which the data
exhibits high variance. The first principal component (or di-
mension) accounts for as much of the variability in the data
as possible, and each succeeding component accounts for as
much of the remaining variability as possible. Using PCA,
most of the information in the original space is condensed
into a few dimensions along which the variances in the data
distribution are the largest.

We shall briefly review how the principal components are
computed. Let the dataset contains N D-dimensional points.
Let A be the N×D data matrix where each row corresponds
to a point in the dataset. We first compute the mean and
covariance matrix of the dataset to get the eigenmatrix, V ,
which is a D × D matrix. The first principal component
is the eigenvector corresponding to the largest eigenvalue
of the variance-covariance matrix of A, the second compo-
nent corresponds to the eigenmatrix with the second largest
eigenvalue and so on.

The second step is to transform the data points into the



new space. This is achieved by multiplying the vectors
of each data point with the eigenmatrix. More formally,
a point P(x1, x2, . . . , xD) is transformed into V × P =
(y1, y2, . . . , yD). To reduce the dimensionality of a dataset
to k, 0 < k < D, we only need to project out the first
k dimensions of the transformed points. The mapping (to
reduced dimensionality) corresponds to the well known Sin-
gular Value Decomposition (SVD) of data matrix A and can
be done in O(N · D2) time [10].

Suppose we have two points, P and Q, in the dataset in
the original D-dimensional space. Let Pk1 and Pk2 denote
the transformed points of P projected on k1 and k2 dimen-
sions respectively (after applying PCA), 0 < k1 < k2 ≤ D.
Qk1 and Qk2 are similarly defined. The PCA method has
several nice properties:

1. dist(Pk1, Qk1) ≤ dist(Pk2, Qk2) 0 < k1 < k2 ≤
D, where dist(p, q) denotes the distance between two
points p and q (See [5] for a proof).

2. Because the first few dimensions of the projection are
the most important, dist(Pk, Qk) can be very near to
the actual distance between P and Q for k � D [5].

3. The above properties also hold for new points that are
added into the dataset (despite the fact that they do
not contribute to the derivation of the eigenmatrix)
[5]. Thus, when a new point is added to the dataset,
we can simply apply the eigenmatrix and map the new
data from the original space into the new PCA space.

In [5], PCA is employed to organise the data into clusters
and find the optimal number of dimensions for each cluster.
Our work applies PCA differently. We use it to facilitate the
design of an index structure that allows pruning at different
levels with different number of dimensions. This can reduce
the computational overhead and L2 cache misses.

4. THE ∆-TREE
Handling high-dimensional data has always been a chal-

lenge to the database research community because of the
dimensionality curse. In main memory databases, the curse
has taken a new twist: a high-dimensional point may not fit
into the L2 cache line. As such, existing indexing schemes
are not adequate in handling high-dimensional data. In this
section, we present a new index structure, called ∆-tree, to
facilitate fast KNN search in main memory databases. For
the rest of this paper, we assume that the dataset consists
of D-dimensional points and use the Euclidean distance as
the metric distance function.

4.1 The index structure
The proposed structure is based on three key observations.

First, dimensionality reduction is an important technique to
deal with the dimensionality curse. In particular, by reduc-
ing the dimensionality of a high-dimensional point, it is pos-
sible to “squeeze” it into the cache line. Second, ascertaining
the number of dimensions to reduce to is a non-trivial task.
In addition, even if we can decide on the number of dimen-
sions, it is almost impossible to identify the dimensions to
be retained for optimal performance. Third, PCA offers a
very good solution: the first component captures the most
dominant information of points, the second the next most
dominant, and so on. Moreover, as discussed in Section 3,
it has several very nice properties.

4.1.1 The structure of ∆-tree
Consider a dataset of D-dimensional points. Suppose we

apply PCA on the dataset to transform the points into a
new space that is also D-dimensional. We shall refer to the
transformed space as PCA-Space. Consider a data point P
in the PCA-Space, say (x1, . . . , xD). We define

�
(P, m) to

be an operator that projects point P on its first m dimensions
(2 ≤ m ≤ D):�

((x1, . . . , xD), m) = (x1, . . . , xm).

Figure 1 shows a ∆-tree, which is essentially a multi-tier
tree. The data space is split into clusters and the tree di-
rects the search to the relevant clusters. However, the in-
dexing keys at each level of the tree is different — nodes
closer to the root have keys with fewer dimensions, and the
keys at the leaves are in the full dimensions of the data.
We shall discuss how the number of levels of the tree and
the number of dimensions to be used at each level can be
determined shortly. For the moment, we shall assume that
the tree has L levels and the number of dimensions at level
k is mk, 1 ≤ k ≤ L, mi < mj for i < j. Moreover, we
note that the mi dimensions selected for level i are given by�

((x1, . . . , xD), mi).

Internal node

Leaf

Rootl=1 :

l=2:

l=3:

Figure 1: The ∆-tree

In the ∆-tree, the data is recursively split into smaller
clusters at each level. This is done as follows. At level 1
(root), the data is partitioned into n clusters C1, C2, . . . Cn.
We employ a clustering algorithm for this purpose, and in
our implementation we use the K-means scheme. The clus-
tering is, however, performed using the m1 dimensions in
the PCA-Space of the transformed data. In other words,
C1 contains points that are clustered together in m1 dimen-
sions in the PCA-Space. At level 2, Ci is partitioned into
Ci1, Ci2, . . . , Cin sub-clusters using the m2 dimensions of the
points in Ci in the PCA-Space. This process is repeated for
each sub-cluster at each subsequent level l where each sub-
sequent clustering process operates on the ml dimensions of
the points in the sub-cluster in the PCA-Space. At the leaf
level (level L), the full dimensions in the original space are
used as the indexing key, i.e., the leaf nodes correspond to
clusters of the actual data points.

Figure 2 shows an example of an internal node of ∆-tree
with three sub-clusters. An internal node at level l con-
tains information of the cluster it covers at ml dimensions,
and each entry corresponds to information of a sub-cluster.
Each entry is a 4-tuple (cl, r, num, ptr), where cl is the
center of the sub-cluster obtained at level l, r is the radius
of the sub-cluster, num is the number of points in the sub-
cluster, and ptr is a pointer to the next level node. The
root node has the same structure as an internal node ex-



Radius R1 Radius R2 Radius R3

Center1[m ]l Center2[m ] Center3[m ]l l

Number1 Number2 Number3

Pointer1 Pointer2 Pointer3

Radius of cluster

Number of points in cluster

pointer to next level

Cluster center (m   dimensions)l

Figure 2: The structure of internal node

cept that it has to maintain additional information on the
dataset. This is captured as a triple (L, m, eigenmatrix)
header, where L represents the number of projection levels,
m = (m1, m2, . . . , mL−1) is a vector of size L − 1 repre-
senting the number of dimensions in each projection level
(excluding the last level which stores the full dimensions of
points), and eigenmatrix is the eigenmatrix of dataset after
PCA processing.

We note that the ∆-tree can be used to prune the search
space effectively. Recall (in property 1) that the distance
between two points in a low dimensionality in the PCA-
Space is always smaller than the distance between the two
points in a higher dimensionality. Thus, we can use the
distance at low dimensionality to prune away points that
are far away (i.e., if the distance between a database point
and the query point at low dimensionality is larger than the
real distance of the current K-th NN, then it can be pruned
away). More importantly, the lower dimensionality at upper
levels of the tree decreases the distance computational cost,
and also allows us to exploit the L2 cache more effectively
to minimize cache misses.

For the ∆-tree to be effective, we need to be able to de-
termine the optimal number of levels and the number of
dimensions to be used at each level. In our presentation,
we fix the fan-out of the tree. For the number of levels, we
adopt a simple strategy: we estimate the number of levels
based on the fan-out of a node, e.g., given a set of N points,
and a fan-out of f , the number of levels is L = �logf N�.

To determine the number of dimensions ml to be used at
level l, our criterion is to select a cumulative percentage of
the total variation that these dimensions should contribute
[12]. Let the variance of the j-th dimension be vj . Then,
the percentage of variation accounted for by the first k di-
mensions is given by

Vk =

�k
j=1 vj�D
j=1 vj

With this definition, we can choose a cut-off V ∗
l for each

level. Suppose there are L projection levels, we have

V ∗
l =

l

L
, 1 ≤ l ≤ L

Hence we can retain ml dimensions in level l, where ml is the
smallest k, for which Vk ≥ V ∗

l . In practice, we always retain
the first ml dimensions which preserve as much information
as possible.

Figure 3 shows the effect of cumulative variation of a
dataset after applying PCA. Two 64-dimensional datasets
are used: a real dataset containing color histograms ex-
tracted from the Corel Database [1] and a synthetic dataset
that is uniformly distributed. It is clear that for the real
dataset (where the data is skewed), the first few dimensions
in the PCA-Space is sufficient to capture the variation , e.g.,
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Figure 3: The proportion of cumulative variation

the first 8 dimensions already capture the 60% of variation
in the data. On the other hand, for uniformly distributed
data, all the dimensions have similar variance. Suppose we
have 5 projection levels, the resultant ml for each level is
shown in Table 1.

Dataset l = 1 l = 2 l = 3 l = 4 l = 5
Real data 2 4 8 17 64

Uniform data 12 24 37 50 64

Table 1: ml for different level

We note that for efficiency reason, we do not require the
∆-tree to be height-balanced. Since the data may be skewed,
it is possible that some clusters may be large, while others
contain fewer points. If the points in a sub-cluster at a level
l (< L) fit into a leaf node, we will not partition it further.
In this case, the height of this branch may be shorter than L.
On the other hand, for a large cluster, if the number of points
at level L is too large to fit into a leaf node, we further split
it into sub-clusters using the full dimensions of the data. We
have ml = D for l > L. However, in practice, we find that
the difference in height between different subtrees is very
small. Moreover, if we should bound the size of a cluster,
we can control the height differences.

4.1.2 The ∆-tree construction
Figure 4 shows the algorithm for constructing a ∆-tree for

a given dataset. We have adopted a top down approach. At
first, routine PCA() transforms the dataset into the PCA
space (line 1). We treat the whole dataset as a cluster and
refer to these new points as pC. In line 2, the function Init()
initiates parameters of root node according to the informa-
tion of PCA, such as the eigenmatrix, the value of L and
the vector m. The default value of ml = D for l > L, and
we do not save this value in the root node explicitly. In line
3, we call the recursive routine R insert(node, pC, lev)
that essentially determines the content of the entries of the
node at level lev - one entry per subcluster. Note that we
are dealing with points in the transformed space (i.e., pC),
and that lev determines the number of dimensions that this
node is handling.

In line 1 of R insert(node, pC, lev), we partition the
data of the cluster pC into K sub-clusters (by K-means).



Algorithm Buildtree(dataset, tree)
Input: the high-dimensional dataset
Output: ∆-tree

1. pC = PCA(dataset);
2. Init(root);
3. R insert(root, pC, 1);

R insert(node, pC, lev)
1. pClusters = LevCluster(pC, K, mlev);
2. for each pCj ∈ pClusters
3. node.center[j] = pCenterj ;
4. node.radius[j] = pRadiusj ;
5. if (sizeof(pCj) < leafsize)
6. New (leaf);
7. Insert leaf(pCj);
8. node.children[j]=leaf;
9. else
10. New (inter node);
11. node.children[j]=inter node;
12. R insert(inter node, pCj , lev+1);

Figure 4: The algorithm of building a ∆-tree

However, this partitioning is performed only on the mlev

dimensions of the cluster. For each sub-cluster, in lines 3-
4, we fill the information on the center and radius into the
corresponding entry in node. If the number of points in a
sub-cluster fit into the leaf node (lines 5-8), we insert the
points into the leaf node directly. Otherwise (lines 9-12),
we recursively invoke routine R insert() to build the next
level of the tree.

4.1.3 KNN search algorithm
To facilitate KNN search, we employ two separate data

structures. The first is a priority queue that maintains en-
tries in non-descending order of distance. Each item in the
queue is an internal node of the ∆-tree. The second is the
list of KNN candidates. The distance between the K-th NN
and the query point is used to prune away points that are
further away.

We summarize the algorithm in Figure 5. In the first
stage, we initialize the priority queue, KNN list and the
pruning distance (lines 1-3). After that we transform the
query point from the original space to the PCA-based space
using the eigenmatrix in the root (line 4). In line 5, we in-
sert the root node into the priority queue as a start. After
that, we repeat the operations in lines 7-16 until the queue
is empty. We get the first item of the queue which must
be an internal node (line 7). For each child of the node,
we calculate the distance from Q’ to the sub-cluster in PCA
space (distance is computed with mchild.lev dimensions us-
ing P dist()). If the distance is shorter than the pruning
distance, we do as follows. If the child node is an inter-
nal node, it means that there is a further partitioning of
the space into sub-clusters, and we insert the node into the
queue(lines 10-11). Otherwise, the child must be a leaf node,
we access the real data points in the node and compute their
distances to the query point; points that are nearer to the
query point are then used to update the current KNN list
(lines 12-15). The function Adjust() in line 16 updates the
value of pruning distance when necessary, which is always

Algorithm KNNSearch(QueryPoint, tree, K)
Input: ∆-tree, query point Q, K
Output: K nearest neighbors

1. Queue = NewPriorityQueue();
2. KNN = NewKNN();
3. prune dist = ∞;
4. Q’ = GetPCA(eigenmatrix, Q);
5. Enqueue(Queue, root);
6. while (Queue is not empty)
7. node = RemoveFirst(Queue);
8. for( each child of node)
9. if ( P dist(child, Q’, mchild.lev)<prune dist )
10. if ( child is an internal node )
11. Enqueue(Queue, child);
12. else
13. for ( each point in leaf )
14. if(dist(point, Q)<prune dist)
15. Insert (point, KNN);
16. Adjust(prune dist);

Figure 5: KNN search algorithm for ∆-tree

equal to the distance between the query point and the K-th
nearest neighbor candidate.

Q

Q’

R’

R

Dist(C’,Q’)

C/C’

Search Radius

P’

.
P

.
Dist(C,Q)

Figure 6: Prune with projection distance

We illustrate the effect of pruning a cluster in Figure 6.
In the figure, Q represents the query point, and the solid
circle represents the search space bounded by its distance to
the current K-th NN. Q′ represents the transformed point in
a lower dimensional space. Note that the search radius re-
mains the same, and the search region is denoted by the dot-
ted circle. Consider a cluster centered on C (region bounded
by solid circle). Since we only consider distance here, sup-
pose the cluster on the transformed low-dimensional space
is also centered at C (denoted C ′) but the region is smaller
(bounded by dotted line). Suppose a point P in the for-
mer is transformed to a point P ′ in the latter. We have the
following equation:

dist(P, Q) ≥ dist(P ′, Q′) ≥ dist(C ′, Q′) − R′.

If dist(C ′, Q′)−R′ is larger than the search radius, then all
the points in this cluster cannot be nearer than the current
K-th NN (since dist(P,Q) must be larger than search ra-
dius also). Thus, we can prune away the cluster. As the



values of C ′ and R′ are already maintained in the ∆-tree,
the computational cost is low, making the proposed scheme
efficient.

4.1.4 Updating the ∆-tree
So far, we have seen the ∆-tree as a structure for static

databases. However, the ∆-tree can also be used for dy-
namic databases. This is based on the properties of PCA.
When a new point is inserted, we simply apply eigenmatrix
on the new point to transform it into PCA space and insert
it into the appropriate sub-cluster. To reduce the complex-
ity of the algorithm, we only update the radius and keep
the original center of the affected cluster. This may re-
sult in a larger cluster space and degrade the precision of
eigenmatrix gradually, but as our study shows, the ∆-tree
is still effective.

Algorithm Update(newpoint, tree)
Input: the ∆-tree, newpoint P

1. P’ = GetPCA(eigenmatrix, P);
2. node = root;
3. while ( node is not leaf )
4. NearSubCluster = FindBestCluster(node, P);
5. Adjust( node radius[NearSubCluster]);
6. if (node child[NearSubCluster] is internal node)
7. node = node child[NearSubCluster];
8. else
9. leaf = node child[NearSubCluster];
10. if (leaf is not full)
11. Insert(leaf, P);
12. else
13. Split(leaf, newleaf)
14. if (leaf.parent is not full )
15. InsertLeaf(leaf.parent, leaf, newleaf)
16. else
17. New(inter node)
18. InsertNode(leaf.parent, inter node)
19. InsertLeaf(inter node, leaf, newleaf)

Figure 7: Update algorithm for ∆-tree

The algorithmic description of the update operation is
shown in Figure 7. We first transform the newly inserted
point into the PCA space using the eigenmatrix in the root
node (line 1). We then traverse down the tree (beginning
from the root node (line 2)) for the leaf node to insert the
point by always selecting the nearest sub-cluster along the
path (lines 3-10). If the leaf node has free space, we insert
the new point into the leaf (line 12). Otherwise, we must
split the leaf node before insertion. To split the leaf, we
generate two clusters. If the parent node is not full, the
routine InsertLeaf() (line 15) inserts two new clusters into
the parent. Otherwise, we generate a new internal node
and insert the leaf nodes (lines 17-19). In this case, a new
internal node level is introduced.

We note that our algorithm does not change the cluster
eigenmatrix as new points are added. As such, it may not
reflect the real feature of a cluster as more points are added,
since the optimal eigenmatrix is derived from all known
points. On the other hand, once we change the eigenmatrix,
we have to update the keys of the original data points as
well. As a result, insertion may make it necessary to rebuild

the tree. Two mechanisms to decide when to rebuild the
tree are as follows:

1. Insertion threshold: In this naive method, once the
newly inserted points exceed a pre-determined thresh-
old, say 50% of the original data size, we rebuild the
tree regardless of the precision of original eigenmatrix.

2. Distance variance threshold: Given a set of N points,
we form a cluster with center c. After PCA trans-
formation, we have another center c′ in the projected
lower dimensional space. Originally we have the aver-
age distance variance Va:

Va =

�N
i=1 |dist(Pi, C) − dist(P ′

i , c
′)|

N
.

Once we insert a point P , we get a new average dis-
tance variance, called V ′

a:

V ′
a =

Va ∗ N + |dist(P,C) − dist(P ′, c′)|
N + 1

.

V ′
a may change after every insertion. Once

V ′
a−Va

Va
is

larger than a pre-defined threshold, we rebuild the
tree. The decision factor of this method is related to
the distribution of newly inserted points.

4.2 The ∆+-tree: A partition-based enhance-
ment of the ∆-tree

While the proposed ∆-tree can efficiently prune the search
space, it has several limitations. First, its effectiveness de-
pends on how well a dataset is globally correlated, i.e., most
of the variations can be captured by a few principle compo-
nents in the transformed space. For real datasets that are
typically not globally correlated, more clusters may have to
be searched. Second, the complete dataspace has to be ex-
amined for each query. Third, there is a need to periodically
rebuild the whole tree for optimal performance.

In this section, we propose an extension called ∆+-tree
that addresses the above three limitations. To deal with the
first limitation, we globally partition the dataspace into mul-
tiple clusters, and manage the points in each cluster with a
∆-tree. For simplicity, we also employ the K-means cluster-
ing scheme to generate the global clusters and apply PCA
for clusters individually. We use a directory to save the in-
formation of global clusters. Each entry of the directory
represents a global cluster, and has its own eigenmatrix, L,
m, cluster center, radius and a pointer to the corresponding
∆-tree that manages its points.

Even with the proposed enhancement, the second limi-
tation remains: each global cluster space has to be exam-
ined completely. Our solution is to partition the cluster into
smaller regions so that only certain regions need to be ex-
amined. We made the following observations of a cluster:

1. Points close to each other have similar distance to a
given reference point. The distance value is single di-
mensional and it can be easily divided into different
intervals.

2. A cluster can be split into regions (“concentric circle”)
as follows. First, each point is mapped into a single-
dimensional space based on the distance to the cluster
center. Second, the cluster is partitioned. Let Distmin

and Distmax be the minimum and maximum distance



of points within the cluster to the center. Let there
be k regions (k is a predetermined parameter). The
points in region i must satisfy the following equations:�

Distmin + i ∗ f ≤ Disti ≤ Distmin + (i + 1) ∗ f i = 0

Distmin + i ∗ f < Disti ≤ Distmin + (i + 1) ∗ f 1 ≤ i < k

where f = (Distmax −Distmin)/k. Figure 8 shows an
example of a cluster with six regions.

C
max

min

Q

0

1

2

3

4

5

Dist

Dist .

Figure 8: Cluster partitioning and searching

3. Given a query point, we can order the regions in non-
descending order of their minimum distance to the
query point. The regions are then searched in this or-
der. This step can be efficiently performed by checking
against the partitioning vectors (i.e., Distmin, Distmin+
f , . . ., Distmin + (k − 1)f) of the region. For exam-
ple, consider the query point Q in Figure 8. Q falls
in region 4. As such, region 4 will be examined first,
followed by regions 5, 3, 2, 1 and 0.

4. We note that this partitioning scheme can potentially
minimize the search space by pruning away some re-
gions. Using the same example as before, if the current
KNN points after searching say region 5 are already
nearer than the minimum distance between the query
point and region 3, then regions 3, 2, 1 and 0 need not
be examined.

Based on these observations, we can introduce a new level
immediately after the directory. In other words, instead
of building a ∆-tree for each global cluster, we partition
it as described above. For each region, we build a ∆-tree.
We shall refer to this new structure as the ∆+-tree. Fig-
ure 9(b) shows a ∆+-tree structure. The whole dataset has
two global clusters and we partition the cluster into 3 re-
gions. For comparison purpose, we also show the ∆-tree
(Figure 9(a)).

As described above, the operations on the ∆+-tree are
quite similar to those on the ∆-tree. For all the operations,
we start from the nearest global cluster and region, and
then traverse the subtree. This process continues with other
clusters, while cluster or regions containing points further
than the K-th NN are not traversed.

Region 0 Region 1 Region 2Region 2

Global Global

Region 1Region 0

Cluster 0 Cluster 1

∆+−(b) tree∆−(a) tree

Figure 9: The structure of ∆-tree variants

The proposed ∆+-tree is also more update efficient - while
it cannot avoid a complete rebuild, it can defer a complete
rebuild to a longer period (compared to ∆-tree). Recall
that the structure partitions the data space into global clus-
ters before PCA transformation. As such, it localizes the
rebuilding to only clusters whose eigenmatrix is no longer
optimal as a result of insertions, while other clusters are
not affected at all. A complete rebuild would eventually
be needed if the global clusters are no longer optimal. As
we shall see in our experimental study, the index remains
effective for a high percentage of newly added points.

5. A PERFORMANCE STUDY
In this section, we present an experimental study to eval-

uate the ∆-tree and ∆+-tree. The performance is measured
by the average execution time, cache misses 2 and distance
computation for KNN search over 100 different queries. All
the experiments are conducted on SUN E450 machine with
450 MHz CPU, 4 GB RAM and 2 MB L2 cache. The ma-
chine is running SUN OS 5.7. The whole trees are loaded
into the main memory before each experiment begins.

For the ∆+-tree, it has two extra parameters: the number
of global clusters and regions. When both these parameters
are set to 1, the ∆+-tree becomes the ∆-tree. The optimal
values of the parameters may vary with different datasets.
We observed that the performance of ∆+-tree improves with
a larger number of clusters. This is expected as the search
space can be efficiently reduced as we have explained in the
previous section. For simplicity, we set the default number of
clusters and regions to be 10 and 5 respectively throughout
the performance study.

5.1 Comparing ∆-tree and ∆+-tree
We conducted an extensive performance study to tune

the two proposed schemes for optimality. Due to space con-
straint, we shall only present one representative set that
studies the effect of node size. We used a real-life dataset
consisting of 64 dimensional color histograms extracted from
70,000 color images obtained from the Corel Database [1].
We note that we do not know the number of clusters in the
dataset, i.e., the number of clusters may not exactly match
the apriori number of clusters used in the ∆+-tree (which is
10).

In this experiment, we vary the node size from 1 KB to
8 KB. Although the optimal node size for single-dimensional

2We use the Perfmon tool [9] to count L2 cache misses.
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Figure 10: NN search for different node size

datasets has been shown to be the cache line size [15], this
choice of node size is not optimal in high-dimensional cases –
the L2 cache line size on a typical modern machine is usually
64 bytes, which is not sufficient to store a high-dimensional
data point (256 bytes for 64 dimensions) in a single cache
block. [13] shows that even for 2-dimensional data, the op-
timal node size can be up to 256-512 bytes, and increases as
the dimensionality increases. The minimum cache misses is
a compromise of node size and tree height. High-dimensional
indexes require more space per entry, and therefore the op-
timal node size is larger than cache line size.

Figure 10 shows the NN search performance of our new
structures for different node sizes. The node size here rep-
resents the size of leaf node. Since we fix the fan-out of
tree in our implementation, we have varied internal node
size depending on the remaining dimensions in each level.
As shown in the figure, there is an optimal node size that
should be used. When the node size is small (< 2K), the
fan-out of the tree is also small. As a result, more nodes will
have to be accessed. At the same time, more TLB misses3

will be incurred when we traverse the tree. There is the case
that even if the node size is smaller than that of a memory
page, each node access incurs one TLB miss if the address
mapping is not in TLB. We observe that as the node size
increases, the number of accessed nodes decreases. The per-
formance becomes optimal when node size is around 2-3K.
However, as the node size reaches beyond a certain point
(> 3K), the performance starts to degenerate again. This
is because too large a node size results in more cache misses
per node. Therefore, the total cache misses increase. The
optimal node size (2-3K) is a compromise of these factors.

The results, shown in Figure 10, clearly demonstrate the
superiority of the ∆+-tree over the ∆-tree: it is about 15%
better than ∆-tree. This is because the ∆+-tree only need
to search less data space compared to the ∆-tree. First, the
∆+-tree globally partitions the dataset into clusters before
PCA transformation, thus the eigenmatrix is more efficient

3The translation lookahead buffer (TLB) is an essential part
of modern processors, which keeps the mapping from logical
memory address to a physical memory address. The cost of
TLB miss is about 100 cycles.

than that of the ∆-tree. Second, the ∆+-tree may only need
to search a few clusters and exclude the other clusters that
are far to the query point. Third, partitioning the cluster
into regions can further reduce the search space compared
to the ∆-tree that examines the whole data space. Hence,
the total cost of cache misses and computation is reduced
by the ∆+-tree.

We found that the actual cache miss cost is only around
10% of the overall time cost. This is the case in our studies
as we did not perform any cache flushing between queries.
Since we have run many queries on a single index structure,
the cache hits are high, because some highly accessed cache
lines can always reside in the L2 cache. Our investigation
shows that the number of cache misses for an independent
query can be twice as much, i.e., 20%.

Since ∆+-tree performs better than ∆-tree, in the fol-
lowing experiments, we shall restrict our discussion to the
∆+-tree, and use the optimal node size determined above.

5.2 Comparison with other structures
In this section, we compare the ∆+-tree with some exist-

ing methods on different datasets, such as the CR-tree, TV-
tree, M-tree, VA-file, iDistance and Sequential Scan. To en-
sure a fair comparison, we optimize these methods for main
memory indexing purposes such as tuning the node size4.
We shall only present the optimal result of each structure.

5.2.1 On uniformly distributed dataset
In this experiment, we first generate a uniformly distributed

dataset with up to 64 dimensions. The data size is 1,000,000
points. We shall present the results for NN queries only, as
KNN queries show similar performance for uniformly dis-
tributed datasets. The results are summarized in Figure 11.

From the figure, we can see that Sequential Scan is the
best scheme for high-dimensional data space (D > 30). This
is expected for uniformly distributed dataset as the distance
to the NN is too large, and we must scan all the data even if
we have an index. Since we need to access all the data when

4One parameter of TV-tree is the number of active dimen-
sions α, e.g. optimal α is around 20 for real dataset.
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Figure 11: The comparisons of NN search time

the number of dimensions is high, the tree structures cause
more TLB misses and cache misses – accessing the internal
nodes is the overhead. Not surprisingly, the VA-file is worse
than Sequential Scan. As mentioned, the VA-file needs three
cost overhead: decoding cost, computational cost and ac-
tual data access. In disk-based environments, disk I/O cost
is dominant, so the cost overhead does not affect the per-
formance of the VA-file much. But, in main memory sys-
tems, the search cost is bounded by CPU cost. Although
the VA-file can reduce the cache misses compared to Se-
quential Scan, the cost overhead overwhelms the gain. The
performances of the ∆+-tree, M-tree and iDistance are quite
similar, because they are all distance-based trees. When the
data are uniformly distributed, PCA has no value, because
all the dimensions have the same weight. When the dimen-
sion is low (2 or 4), the CR-tree is efficient and performs
as well as the ∆+-tree. However, since the R-tree is not
scalable to high-dimensionality, the CR-tree’s performance
starts to degrade as the number of dimensions increases;
additionally it incurs higher computational cost (to uncom-
press the MBRs). The performance of the TV-tree is only
better than the CR-tree when the dimensionality is high,
because although the TV-tree uses reduced dimensions, its
structure is similar to the R-tree and dimensionality reduc-
tion is not efficient for uniformly distributed dataset.

For the rest of this paper, we shall only focus on the TV-
tree, M-tree, iDistance, Sequential Scan and the ∆+-tree.
The VA-file is worse than Sequential Scan, and is expected
to perform worse when the dataset is skew because of bit
conflict. The CR-tree performs poorly for high-dimensional
datasets, so we also excluded it.

5.2.2 On clustered dataset
In many applications, data points are often correlated in

some ways. In this set of experiments, we evaluate the M-
tree, TV-tree, iDistance, Sequential Scan and ∆+-tree on
clustered datasets. We generate the data for different dimen-
sional spaces ranging from 8 to 64 dimensions, each having
10 clusters. We use a method similar to that of [5] to gen-
erate the clusters in subspaces of different orientations and
dimensionalities. All datasets have 1,000,000 points.

Figure 12 shows the results of KNN search as we vary the
number of dimensions from 8 to 64; and the details of per-
formance of Nearest Neighbor search, such as distance com-

putation and cache misses are shown in Figure 13. Because
Sequential Scan performs poorly and all these tree struc-
tures achieve a speedup by a factor of around 15 over the
Sequential Scan, we remove Sequential Scan from the figures
to clearly show the differences between the other schemes.
The reason is clear: for Sequential Scan, we must scan the
whole dataset to get the nearest neighbors, and the cost is
proportional to the size and dimension of the dataset. When
the dataset is clustered, the nearest neighbors are (almost)
always located in the same cluster with the query point.
Thus, the tree structures can prune most of the data when
traversing the trees.

Our ∆+-tree can be 60% faster than the other three meth-
ods, especially when the dimensionality is high. The ∆+-
tree has two advantages over the M-tree. First, the ∆+-tree
reduces the cache misses compared to the M-tree. Because
we index different levels of projections of the dataset, the
number of projected dimensions in the upper levels is much
smaller than that of real data. When the original space is
64 dimensions, the dimensions in the first three upper levels
are fewer than 15. The node size of the ∆+-tree in the upper
levels can be much smaller than that of the M-tree; conse-
quently the index size of the ∆+-tree is also smaller. In the
tree operations, upper levels of the tree will probably remain
in the L2 cache as they are accessed with high frequency, so
the ∆+-tree can benefit more from this property. Further-
more, the internal nodes of the ∆+-tree are full and fewer
node accesses are needed because of hierarchical clustering.
The effect is that the ∆+-tree can reduce more cache misses
compared to the M-tree. Second, the computational cost of
∆+-tree is also smaller than the M-tree. The reason is in
the projection level the distance computation is much faster
because of reduced dimensionality. For example, when the
dimension of the projection is 8, it already captures more
than 60% of the information of the point. This means we
can prune the data efficiently in this projection level as the
computational cost is only 12.5% of the actual data distance
computation. Additionally, we build the tree from top down
exploiting the global clustering compared with local parti-
tion of M-tree, so the benefit of the ∆+-tree is also from
the improved data clustering which reduce the search space,
and hence the fewer operations for a query.

Comparing with the iDistance, although the B+-tree struc-
ture of iDistance is more cache conscious, the iDistance in-
curs more distance computation and cache misses than the
∆+-tree, because the search space of iDistance is larger.
Mapping high-dimensional data point to 1-dimensional point
is less efficient in filtering data compared to the ∆+-tree.

Not surprisingly, the TV-tree performs worst among these
index methods, especially when dimensionality is high. There
are several reasons for this behavior. First, the TV-tree is
essentially similar to the R-tree and its effectiveness depends
on α, the number of active dimensions. It turns out that for
the datasets used, the data are not globally correlated. As
a result, the optimal α value for the TV-tree remains rela-
tively large. For example, for 64 dimensions, we found that
α ≈ 20. The reduced number of dimensions is still too large
for an R-tree-based scheme (like the TV-tree) to perform
well. Moreover, searching the reduced dimensions leads to
false admissions which result in more nodes being accessed.

In the next experiment, we test the scalability of perfor-
mance with respect to the data size. We fix the number of
dimensions at 64, and vary the dataset size from 1,000,000
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Figure 12: KNN search for clustered datasets
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Figure 13: Details of NN search performance
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Figure 14: Scalability of index structures

to 5,000,000 points. The result of NN search is shown in Fig-
ure 14. Because the cost of Sequential Scan increases almost
linearly and is more expensive than other tree structures,
we exclude it from the figure. The M-tree, TV-tree, ∆+-
tree and iDistance remain very effective for large datasets,
demonstrating their scalability. In fact, the gap between
these schemes and Sequential Scan widens as the dataset
size increases. The relative performance between the three
schemes remain largely the same as earlier experiments: the
∆+-tree is the best scheme, followed by the iDistance, M-
tree and finally TV-tree.

5.2.3 On real dataset
In this experiment, we evaluate the various schemes on

the same real-life dataset used in section 5.1. First, we test
the performance of KNN search. The performance is quite
similar to the clustered datasets. The tree-based methods
are at least 10 times faster than Sequential Scan because the
real dataset is generally skew. As such, we will not present
the results for Sequential Scan.
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Figure 15: KNN search for real dataset
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Figure 16: Details of NN search performance

The comparisons among the ∆+-tree, M-tree, TV-tree
and iDistance are shown in Figure 15. The ∆+-tree is about
50% faster than other methods for NN search, and the per-
formance of 10-NN search is quite similar to the NN search.
In Figure 16, the comparisons of distance computation and
cache misses also show that the ∆+-tree performs best. These
results clearly show the effectiveness of the ∆+-tree even if
the number of clusters employed may not match that of the
dataset. The M-tree is poor because it incurs more compu-
tation and it uses all the dimensions in the internal nodes
resulting in more cache misses. The iDistance is worse than
the ∆+-tree due to its larger search space and hence more
computation and cache misses. The number of active di-
mensions for the TV-tree remains large, so its performance
is affected by the scalability problem of the R-tree. In the
context of main memory indexing, this translates into higher
computational cost and number of cache misses.

5.3 On effect of updates
In the last experiment, we study the effect of updates on

the ∆+-tree. For the ∆+ tree, we evaluated four versions:
∆+-tree represents the version that is based on the proposed
update algorithm (without rebuilding); ∆+-rebuild repre-
sents the version that always rebuild the tree upon inser-
tion5; ∆+-size represents the version that rebuilds the tree
after a certain size threshold is reached; and ∆+-variance
represents the version that rebuilds the tree after a certain
variance threshold is reached. In our experiment, we set the
threshold as 20% for the latter two schemes.

We used the real dataset for this experiment. We ran-
domly select the data from the image dataset regardless of
the data distribution in advance. We first build the tree
structure with 35,000 data. Subsequently, we insert up to
100% more new data points. We recorded the execution
times of NN search on the new datasets after 20% of newly

5This is ideal and represents the optimal ∆+-tree. In our
experiments, we only rebuild the tree at the point of where
we run the experiments, e.g., after every additional 20% of
newly inserted points.
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inserted data. The results are shown in Figure 17.
First, we observe that all the ∆+-tree versions outperform

the other tree structures. This clearly demonstrate the ef-
fectiveness of the proposed schemes. Second, as expected, as
more points are inserted, the performance of ∆+-tree degen-
erates as the newly inserted data affect the precision of clus-
ter eigenmatrix. However, the degradation of performance
is marginal. More importantly, the accuracy is not affected
- the ∆+-tree may examine more nodes because of the rel-
atively larger radius. Third, it is clear that the rebuilding
algorithms can reduce the performance degradation. For
∆+-size and ∆+-variance, the degradation is only around
15% even for 100% new insertions. So the ∆+-tree remains
very effective after new data points are inserted. We also ob-
serve that ∆+-size is slightly better than ∆+-variance. This
is because it incurs more rebuilding. Once the new points of
a global cluster is more than the threshold, it rebuilds the
sub-tree regardless of the data distribution.

The results show ∆+-tree’s robustness with respect to up-
dates in the sense that it can take sufficiently large number
of updates. Additionally, we can do the rebuilding offline
while not interfering with the other queries. This makes the
∆+-tree a promising candidate even for dynamic datasets.

6. CONCLUSION
In this paper, we have addressed the problem of access-

ing high-dimensional data in main memory databases. We
presented an efficient novel index method, called ∆-tree, for
KNN search. The ∆-tree employs hierarchical clustering and
multiple level of projections of points to allow nodes to bet-
ter fit into the L2 cache. Thus, the search process can be ac-
celerated by reducing computational cost and cache misses.
We also proposed an extension, called ∆+-tree, that fur-
ther partitions a cluster into regions. We conducted exten-
sive experiments to evaluate the ∆-tree and ∆+-tree against
several known techniques, and the results showed that our
technique is superior in most cases. To our knowledge, this
is the first work on conducting extensive experimental study
on high-dimensional indexes using both real and synthetic
data in the context of main memory databases.
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