
Llama: Leveraging Columnar Storage for Scalable Join
Processing in the MapReduce Framework

Yuting Lin
National University of Singapore
lin36@comp.nus.edu.com

Divyakant Agrawal
University of California, Santa Barbara

agrawal@cs.ucsb.edu

Chun Chen
Zhejiang University, China
chenc@cs.zju.edu.cn

Beng Chin Ooi
National University of Singapore
ooibc@comp.nus.edu.com

Sai Wu
National University of Singapore
wusai@comp.nus.edu.com

ABSTRACT
To achieve high reliability and scalability, most large-scale data
warehouse systems have adopted the cluster-based architecture. In
this paper, we propose the design of a new cluster-based data ware-
house system, Llama, a hybrid data management system which
combines the features of row-wise and column-wise database sys-
tems. In Llama, columns are formed into correlation groups to pro-
vide the basis for the vertical partitioning of tables. Llama employs
a distributed file system (DFS) to disseminate data among cluster
nodes. Above the DFS, a MapReduce-based query engine is sup-
ported. We design a new join algorithm to facilitate fast join pro-
cessing. We present a performance study on TPC-H dataset and
compare Llama with Hive, a data warehouse infrastructure built on
top of Hadoop. The experiment is conducted on EC2. The results
show that Llama has an excellent load performance and its query
performance is significantly better than the traditional MapReduce
framework based on row-wise storage.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems

General Terms
Design, Performance

Keywords
column store, MapReduce, join

1. INTRODUCTION
In the era of petabytes of data, processing analytical queries on

massive amounts of data in a scalable and reliable manner is be-
coming one of the most important challenges for data warehousing
systems. To deal with data at large scale, special-purpose com-
putations are usually needed for extracting valuable insights and
knowledge. Given the massive scale of data, many of these com-
putations need to be executed in a distributed and parallel manner

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

on hundreds or thousands of machines. Furthermore, these compu-
tations often involve complex analyzes based on sophisticated data
mining algorithms which require multiple data-sets to be processed
simultaneously. When multiple datasets are involved, a most com-
mon operation that is used to combine information from multiple
datasets is what is referred to as the Join operation used widely
in relational database management systems. Although numerous
algorithms have been proposed for performing database joins in
different environments, joining datasets that are widely distributed
and are extremely large poses unprecedented research challenges
for scalable join-processing in data warehouses.

To carry out data-intensive analysis in scalable and fault-tolerant
manner in a distributed environment, Google introduced a distributed
and parallel programming framework called MapReduce [21]. The
MapReduce framework is highly desirable since it allows the pro-
grammer to specify the analytical job and the issue of translating
the job into sub tasks on multiple machines is completely auto-
mated. Under the umbrella of Apache, an open source implemen-
tation of the MapReduce framework, referred to as Hadoop [2] is
freely available to both commercial and academic users. Given its
easy access, Hadoop has become a popular choice to process big
data produced by the web applications and business industry. Fur-
thermore, due to the success of Hadoop and MapReduce, there is
a significant interest in the traditional data warehousing industry to
explore the integration of the MapReduce paradigm for large-scale
analytical processing of relational data. The two major efforts to
provide a declarative interface on top of Hadoop run-time environ-
ment are the Pig [7] from Yahoo! and the Hive [4] from Facebook.

The original design of MapReduce was intended to process a
single dataset at a time. If the analytical task required process-
ing and combining multiple datasets, this needs a sequential com-
position of different MapReduce jobs. As we consider the adap-
tation of the MapReduce framework in the context of analytical
processing over relational data in the data warehouse, one of the
main extensions that becomes necessary is to support join opera-
tions over multiple datasets. Processing multiple join operations
via a sequential composition of multiple MapReduce jobs is not
desirable since it involves storing the intermediate results between
two consecutive jobs to the underlying file-system such as HDFS
(Hadoop Distributed File System) which would incur very high I/O
cost. Recently, several proposals, such as [13], have been made
to process multi-way join in a single job. The main idea is when
the filtered tuples emitted by mappers are shuffled to the reducers,
instead of shuffling a tuple in a one-to-one manner, the tuples are
shuffled in a one-to-many manner and are then joined during the
reduce phase. The problem with this approach, however, is that the

ers to produce the final results. Figure 5(B) shows the examples of
three-way join and four-way join queries in the chain pattern. The
dashed vertical line indicates how we split the chain.

To process a three-way join R0 ��R0.a1=R1.a0
R1 ��R1.a1=R2.a0

R2,
at least two types of mappers are needed: one to retrieve R0’s at-
tributes from R0’s basic group, and the other to perform a map-side
join for R1 ��R1.a1=R2.a0

R2. All the intermediate results from the
mappers are partitioned by R0.a1 and R1.a0.

To perform a four-way chain query R0 ��R0.a1=R1.a0
R1 ��R1.a1=R2.a0

R2 ��R2.a1=R3.a0
R3, two types of mappers are created for R0 �� R1

and R2 �� R3. They join R0’s PF group with R1’s basic group, and
join R2’s PF group with R3’s basic group, respectively. All the in-
termediate results are shuffled via R1.a1 and R2.a0 and are finally
joined in the reduce phase. In this approach, there may be miss-
ing attributes of R0 and R2 because we process them via their PF
groups for the map-merge join. To get the missing attributes of R2,
we could use one more kind of mapper to retrieve them from R2’s
basic group, or late materialize them in the reduce phase. For the
missing attributes of R0, only random access is possible. The rea-
son is that, intermediate results from the mappers to the reducers
are partitioned by R1.a1 or R2.a0. Since R0 does not contain these
attributes, partitioner is unable to partition R0’s tuples individually
to the proper reducer.

The primary difference of join strategies between these two pat-
terns is that: In the star pattern, all joins between the fact table and
dimension table are performed in the map phase. Their interme-
diate results are shuffled via the primary key of the fact table and
reducers essentially perform the merge-like operation. In the chain
pattern, intermediate results from the mappers are shuffled via the
join key instead of the primary key of the fact table.

5.3 Hybrid Pattern
Given a complex query, Llama translates it into a set of sub-

queries. Each sub-query is composed of a set of joins that can be
processed by a single MapReduce job. Basically, sub-queries of
star pattern and chain pattern are considered. Algorithm 1 illus-
trates the plan generation for complex queries in Llama.

Algorithm 1 Plan generatePlan(QueryGraph G)

1: NodeSet S = getAllNode(G);
2: PlanCost cost = MaximumCost; Plan plan=null;
3: if S.size() == 1 then
4: return Materialization(S);
5: for ∀ node ni ∈ S do
6: Plan tmpPlan = null;
7: if ni can be buffered in memory then
8: QueryGraph G′ = G−ni
9: tmpPlan = FragmentReplicationJoin(ni, generatePlan(G′));
10: else if ni is a fact table in G then
11: // process in star pattern
12: List list = new List();
13: for ∀ (connected subGraph G j) do
14: list.add(Join(generatePlan(G j), ni));

15: tmpPlan = Join(list);
16: else
17: // process in chain pattern
18: Split G into G1 and G2

19: tmpPlan = Join(generatePlan(G1), generatePlan(G2));
20: if cost > estimateCost(tmpPlan) then
21: plan = tmpPlan; cost = estimateCost(plan);
22: tmpPlan = flattenPlan(tmpPlan);
23: if cost > estimateCost(tmpPlan) then
24: plan = tmpPlan; cost = estimateCost(plan);
25: return plan;

As presented in Algorithm 1, if there is only one table in the
graph, it returns a materialization operation (Line 4). Otherwise,

it iterates all the nodes and generates different execution plans ac-
cording to the following cases:

• If Table ni is small enough to be buffered in the memory, we
employ the fragment-replication algorithm (Line 9) to join ni
with the remaining graph G′. That is, each mapper reads a
replica of ni and stores it in the local memory. The join is
thus capable to be performed in the map phase. The plan of
G′ is generated by the same algorithm as well.

• If Table ni only acts as a fact table in the graph, that is, all
its edges are pointing from its connected components, Llama
applies the star pattern strategy on table ni to generate the
plan. For each of its connected components, Llama calls this
algorithm to respectively generate their sub-plans (Line 14).
All of them are finally joined together based on the primary
key of the fact table (Line 15).

• If Table ni is a dimension table joined with table n j, that is,
an edge is pointing from ni to n j, Llama splits the graph G
into two components G1 and G2, each of which contains ni
and n j respectively (Line 18). They call this algorithm to
generate their sub-plans (Line 19) and finally join them by
the joined key (ni’s primary key).

The cost estimation during plan generation is focused on the I/O
cost incurred in initialization, shuffle and output. The calculation
is similar to the overhead analysis in Section 4. In addition, the
cost estimation also needs to check whether the required PF group
exists in the plan. If not, the overhead to generate the proper PF
group should be taken into consideration. Note that the Join() in
the algorithm which joins decomposed components increases the
depth of the plan tree by 1, implying that one more MapReduce
job is needed during the query processing. To make the plan tree
compact, we call the f lattenPlan() function after the original plan
is generated. This function combines two MapReduce jobs when
the partition key of one job is a subset of its subsequent job. After
flattened, their join operations are performed in the same phase to
reduce the number of MapReduce jobs and further reduce the in-
termediate I/O cost. However, it is worth noting that, the flattened
plan may not be better than the original one, because generating the
proper PF group is also a MapReduce job and its overhead needs
thorough consideration.

5.4 A Running Example
Taking the query Q9 from the TPC-H benchmark as an example,

we illustrate how the query plan is generated and executed in Llama
using the proper vertical groups. Q9 determines how much profit
is made on a given line of parts, which is expressed as Lineitem ��
Orders �� PartSupp �� Part �� Supplier �� Nation. For simplicity,
we use L, O, PS, P, S and N to represent the corresponding tables.
The query graph of Q9 is shown in Figure 6.

The size of table N is small enough to be fully buffered in mem-
ory and hence can be joined with other tables by using the fragment-
replication method. The original query is thus reduced to L �� O ��
PS �� P �� S. Next, by analyzing the graph, the edges from PS and
O point to L. L is thus treated as a fact table. Splitting the graph in
L by the star pattern strategy, we obtain two components connected
to L: P �� PS �� S and O. The similar approach could be adopted in
the first component by using PS as the fact table. Before flattening
the plan, there are two MapReduce jobs to complete the query. The
first job performs J1 = (PS �� P) �� (PS �� S �� N) and the second
job performs J2 = (J1 �� L) �� (O �� L). Since the partitioning key
in the first job is PS’s primary key, which is the subset of the par-
titioning key (L’s primary key) in the second job, it is possible to

its corresponding partition of the fact table, it quickly locates the
start position of the corresponding values in the dimension table via
the joining key. Then, it can perform a merge join by sequentially
scanning both the fact and dimension tables. The result tuples are
pipelined to the mappers. If the join selectivity is high, we exploit
the index of the dimension table to seek to the corresponding block,
which further reduces the scan cost.

To facilitate different types of processing procedure in one MapRe-
duce job, we implement LlamaInputs which specifies particular in-
putformat, mappers, combiner and partitioner in terms of different
datasets. Since it provides more flexible user defined configurations
to handle heterogeneous data input, it is superior to MultipleInputs
in Hadoop [2] and TableInputs in [24]. To simplify the deployment
of customized interfaces, it is defined as follows:

int LlamaInputs.addInput(configuration, dataset,
inputformat, mapper, combiner, partitioner);

In this interface, con f iguration describes the job configuration in
the MapReduce environments; dataset indicates the table(s) to be
processed in this specific mapper; input f ormat is the particular in-
put format to handle different data sources; mapper, combiner and
partitioner are respectively used to filter particular tuples, combine
the intermediate results, and define the partition strategy to the re-
ducers. The return value of this interface is an integer, which binds
the input dataset with the customized processing. According to this
integer, Llama can use the proper input format to materialize or
join the tables and instantiate the specific mapper, combiner and
partitioner to process the intermediate tuples.

To join heterogeneous data sources in the reduce phase, we in-
troduce a joiner before the reducer as the Map-Join-Reduce pro-
posal [24]. The join processing logic is specified by creating a
joiner class and implementing specific join() functions. Joiners are
registered to the system by the following function:

LlamaInputs.addJoiner(int[] tableID, Joiner joiner);

In this function, tableID indicates two or more tables to be joined
by the same joining key; joiner provides the join() function to join
the indicated tables in the reduce phase. Before the join process-
ing, data from these tables is sorted by the joining key. As Llama
inherits and extends the joiner from the previous proposal [24], it is
able to complete multiple joins of different join keys in the reduce
phase.

7. EXPERIMENTS
In this section, we study the performance of Llama. We first

compare the data storage with the existing file formats in Hadoop.
Then we study the column materialization in the MapReduce frame-
work. Finally we benchmark our system against Hive with TPC-H
queries. We choose Hive for comparison for three reasons: First,
Hive is built on top of Hadoop and provides efficient performance
on large scale data analysis. Second, Hive has benchmarked it-
self with Hadoop and Pig using the TPC-H benchmark. It pro-
vides scripts with reasonable query plans and execution parame-
ters. Third, Hive provides the column-wise storage format RCFile,
which could be adopted in the HiveQL and compared with our ap-
proach to the column-wise storage.

7.1 Experimental Environment
We conduct our experiments on Amazon EC2 cloud with large

instance. Each instance has 7.5 GB memory, 2 virtual cores with
2 EC2 compute units each. There are 850 GB local storage in two
local disks for each instance. The operating system is 64-bit Linux.

In our configuration, one instance is used as the NameNode and
JobTracker, to manage the HDFS cluster and schedule the MapRe-
duce jobs. The others are used as the DataNodes and TaskTrackers
to store the files and execute the tasks assigned by the JobTracker.

We implement Llama on top of Hadoop v0.20.2, and use Hive
v0.5.0 for comparison purposes. Based on the hardware capacity,
we adjust the maximum number of mappers and reducers to 2. We
assign 1024 MB memory for each task. Chunk size in the HDFS is
set to 512 MB and the replication factor is 3. Following the sugges-
tion of the Hive TPC-H experiments, we set the replication factor
of the intermediate results to 1; that is, the results of intermediate
jobs are stored in 1 node instead of 3 nodes, to save the replication
cost. The number of reducers is automatically configured by Hive’s
default setting.

Both Hadoop and Llama store the files in HDFS. We use dbgen
in TPC-H to generate the synthetic dataset. We benchmark the per-
formance with the cluster size of 4, 8, 16, 32 and 64 nodes. Each
node stores 10 GB TPC-H data. The size of TPC-H data are thus
40 GB, 80 GB, 160 GB, 320 GB and 640 GB respectively.

7.2 Comparisons Between Files
In this test, we compare the performance of different file formats

implemented on the Hadoop system. They are TFile of Zebra [9],
RCFile of Hive [4], HFile of HBase [3] and our CFile. First we
compare their compression performance in terms of their compres-
sion speed and compression ratio based on the three general com-
pression algorithms, namely BZip2, Gzip and Lzo. Then, we com-
pare their performance on write, sequential scan, and random reads.
All these operations are run on the HDFS. The original dataset is
the Orders table in TPC-H schema (15M tuples with 9 columns,
1.75 GB uncompressed text data when TPC-H scale is 10). Our
objective here is to demonstrate that the CFile format has distinct
advantages in large scale data processing.

In the experiment, we first parse the data into columns and write
them by specific writer of these files. HFile and TFile use one
column family to store all the columns. In HFile, one tuple is parsed
into multiple key-value pairs, and each pair represent a value in
one column. Its key is a composite of orderID and the column
qualifier, its value is the data in the corresponding column. No
timestamp is included in our experiments. In TFile, one tuple is
parsed into one key-value pair. Its key is orderID, and its value is a
byte array of the other columns, which is in row-wise format. For
comparison purposes, we use TFile to simulate the column-wise
storage. That is, each file represents one column family. The key
is the orderID and the value is the specific value of that column.
This key is necessary to combine different columns, when random
accessing several columns from different files. In our experiment,
we use TFile-one and TFile-multi to represent these two storage
approaches. The data is block compressed and stored in the HDFS.
TFile and HFile only support Lzo and GZip. Therefore, the results
of TFile and HFile presented below do not contain BZip2.

Storage Efficiency.
Figure 7 shows the size of files compressed based on different

compression algorithms. The results show that BZip2 compressed
the data with a higher ratio than Gzip and Lzo. CFile and RCFile
are smaller than other file formats, because they both compress the
data in columns. On the other hand, since HFile and TFile-multi
contain the row-id for each record, their sizes are relatively larger.
Moreover, HFile has to store the column qualifier and is thus larger.

Creation Overhead.
Figure 8 presents the creation overhead of different files for table

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

HFile TFile−one TFile−multi RCFile CFile

Si
ze

 (
M

B
)

Lzo
Gzip
Bzip2

Figure 7: Storage Efficiency

 0

 100

 200

 300

 400

 500

HFile TFile−one TFile−multi RCFile CFile

T
im

e
(s

ec
on

ds
)

676.6 564.94

Lzo
Gzip
Bzip2

Figure 8: File Creation

 0

 10

 20

 30

 40

 50

 60

 70

 80

HFile TFile−one TFile−multi RCFile CFile

T
im

e
(s

ec
on

ds
)

113.33

Lzo
Gzip
Bzip2

Figure 9: All-Column Scan

 0

 10

 20

 30

 40

 50

 60

 70

HFile TFile−one TFile−multi RCFile CFile

T
im

e
(s

ec
on

ds
)

Lzo
Gzip
Bzip2

Figure 10: Two-Column Scan

 0

 20

 40

 60

 80

 100

 120

 140

HFile TFile−one TFile−multi RCFile CFile

T
im

e
(s

ec
on

ds
)

Lzo
Gzip
Bzip2

Figure 11: Two-Column Random Access

 0

 20

 40

 60

 80

 100

 120

 140

0 2.5*10-5 5*10-5 7.5*10-5 10*10-5

T
im

e
(s

ec
on

ds
)

selectivity

Late Materialization
Early Materialization

Figure 12: Column Materialization

Orders. Although the compression ratio of Lzo is not as good as
Gzip and BZip2, its compression speed is much faster. Their write
overhead is primarily proportional to the size of the file. As such,
the creation of CFile is an efficient process.

Access Performance.
Figure 9 shows the performance of scanning all the columns.

Similar to compression, Lzo decompresses faster than the other al-
gorithms. CFile is not as good as RCFile and TFile-one, because
CFile has to read all the columns from different files and decom-
press them individually.

Figure 10 shows the speed of scanning the 2nd and the 7th columns
in Orders. TFile-one and HFile are essentially the row-wise storage
in one column family. Therefore they need to read all the data and
decompress them as scanning all the columns. RCFile, on the other
hand, groups each column on a separate mini block. This approach
avoids decompressing the unnecessary columns, but it still has to
read the whole block. Different with the above formats, TFile-multi
and CFile only read the required columns and thus obtain a better
performance. Moreover, CFile outperforms TFile-multi because it
is designed for column access with more compact storage.

Performance of randomly accessing 10000 records with the two
same columns is reported in Figure 11. RCFile is designed for se-
quential scan without providing the interface for random accesses,
thus its corresponding results are not captured in the figure. Al-
though CFile has to perform two seeks to random access two columns,
its performance is as good as HFile and TFile-one which performs
only one seek.

CFile shows its competitive performance than the existing file
formats for large scale data processing. In terms of storage effi-
ciency, it is more compact with less storage overhead. In execu-
tion, even though it is not as good as RCFile in terms of scanning
all the columns, its speed is fastest when only a few columns have
to scanned. Therefore, it is particularly suitable for the analysis
that only requires a few columns, but not the whole table. In addi-
tion, CFile provides the random access efficiently similar to that of
HFile and TFile.

7.3 Column Materialization
In this experiment, we first estimate the cost ratio discussed in

Section 4. Then we run a simple aggregation query to study the
column materialization within the MapReduce framework. Based
on our experiment, we find that LM is preferred when the selectiv-
ity is very high.

To estimate the cost ratio of r1 = rrandom/rscan in the cost model,
we compare the average running time of scanning versus random
accessing. By examining at the execution time presented in Figure
10 and Figure 11, r1 is about 1.5× 104. To estimate the cost ra-
tio of r2 = rshu f f le/rscan, we run two MapReduce jobs that write
no results back to the HDFS. The first job is a map only job that
scans a large data set without any processing. Its running time t1
is thus proportional to the scanning overhead. The second job is a
MapReduce job that shuffles all the input data to the reducers with-
out any filtering. Its running time t2 is thus proportional to both
scanning and shuffling overhead. Therefore, r2 is approximately
(t2 − t1)/t1. Based on the running time of these two jobs on EC2,
we estimate that r2 is about 3. Obviously, the overhead of random
access is much larger than scanning and shuffling. If the column
size is small, the predicate discussed in Equation 6 can be further
reduced to 1/r1. That is, LM is picked only when the selectivity is
smaller than 1/r1. To verify this estimation, we run a simple aggre-
gation query to study when LM outperforms EM by adjusting the
constant x below:

select sum(l_price), sum(l_discount), sum(l_quality), sum(l_tax)
from lineitem where l_orderkey < x
group by l_orderkey;

The performance of these two strategies are summarized in Fig-
ure 12. LM is better than EM only when the selectivity is less than
6× 10−5. Moreover, as the selectivity grows, the running time of
LM increases rapidly. When the selectivity is low, EM is there-
fore preferred. Since the selectivity in TPC-H is low, Llama mainly
employs EM for the following TPC-H queries.

7.4 Data Loading
We report the loading time of all the tables in the TPC-H bench-

mark in Figure 13, and briefly describe our loading procedures

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

T
im

e
(s

ec
on

ds
)

Hadoop−Text
Hive−RCFile
Llama−Sorting
Llama−CFile

Figure 13: Load time

 0

 100

 200

 300

 400

 500

 600

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

T
im

e
(s

ec
on

ds
)

Hive−Row
Hive−Col
Llama

Figure 14: Aggregation Task: TPC-H Q1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

T
im

e
(s

ec
on

ds
)

Hive−Row
Hive−Col
Llama

Figure 15: Join Task: TPC-H Q4

here. First we use dbgen to generate the TPC-H data for the dif-
ferent local disks of the cluster. Then we use Hadoop’s file utility
“copyFromLocal” to upload unaltered TPC-H text data from the lo-
cal disk to the HDFS in parallel. It directly copies the text without
parsing the data. The HDFS automatically partitions each file into
blocks and replicates to three data nodes.

In Hive, we transform the raw-text to RCFile by HiveQL. For
example, if there is raw text data located in directory ’/A’ and the
schema is (int, int), we could use the following HiveQL to complete
the format transformation.

CREATE EXTERNAL table A (a1 int, a2 int)
STORED AS TEXTFILE LOCATION ’/A’;

CREATE table B (b1 int, b2 int) STORED as RCFILE;
INSERT OVERWRITE table B SELECT a1, a2 FROM A;

The first two commands are to declare the meta data information
such as the schema and data location. The third command is to
execute the specific transformation. In our experiment, RCFile is
block compressed by Lzo.

In Llama, we transform the raw-text to CFile. To build the basic
group, map-only job is launched to read the data from the HDFS.
It parses the text records into columns guided by the delimiters,
and writes each column to the corresponding CFile. The black part
of the graph in Figure 13 indicates the processing time required to
build the basic group of TPC-H dataset. The white part of the graph
indicates the additional cost for building two PF groups: PF group
of Partsupp sorted by supplierID, and the PF group of Orders
sorted by customerID. The first PF group is to facilitate the map-
merge join of TPC-H Q3 while the second one is to facilitate the
map-merge join of TPC-H Q9.

As shown in Figure 13, Llama performs slightly better than Hive
if we do not take the sorting time into account. On the other hand,
even though the transformation cost of Llama is higher than the
pure HDFS copy because of the additional overhead of parsing and
sorting, this transformation is worthwhile because it significantly
reduces the processing time of the analytical task. As will be seen
in the following experiments, the accumulated savings are signifi-
cantly more than the loading overhead.

7.5 Aggregation Task
We use TPC-H Q1 as our aggregation task to measure the perfor-

mance improvement gained by adopting the column-wise storage.
Q1 is to provide the pricing report for all the lineitems shipped on
a given date. Intermediate results have to be exchanged between
nodes in the cluster.

The results are shown in Figure 14. Hive-Row and Hive-Col
represent the performance of Hive with the same execution plan
but on the row-wise and column-wise storage respectively. The re-
sults confirm the benefit of exploiting column-wise storage in com-
pression. Under the compressed column-wise storage, both Hive
and Llama save the I/O cost. In contrast to the RCFile that stores

columns in one file in a record columnar manner, CFile stores each
column in an individual file. This guarantees that only necessary
data is read, and hence saves more I/O during processing.

7.6 Join Task
We choose TPC-H Q4, Q3 and Q9 as our join tasks. There are

one, two and five join operations in these queries respectively. They
are chosen to study the performance and scalability of the system
with respect to the data and cluster size. In Hive, the execution
plans for a specific query are the same regardless of the underlying
file formats.

TPC-H Q4.
Q4 is to determine how well the order priority system is working

and gives an assessment of customer satisfaction. It contains one
join operation and is compiled into three main MapReduce jobs
by Hive. Job 1 creates a temporary table T mp that contains only
distinct qualified key from Lineitem. Job 2 joins T mp with Orders
and Job 3 aggregates the results.

Llama processes the query using the similar approach. In the
first job, Llama materializes Lineitem and creates a temporary ta-
ble T mp with distinct orderID. It performs a map-merge join for
Orders and T mp in the second job and aggregates the final results
in the last job.

As shown in Figure 15, Llama runs about 2 times faster than
Hive. The performance benefit is derived from its column-wise
storage. Applying the map-merge join, it further reduces the shuf-
fling cost of the intermediate results. As the query becomes com-
plex in Hive, the benefit of the I/O saving from column-wise stor-
age becomes less obvious because the storage layer only affects the
performance in the initial phase.

TPC-H Q3.
Q3 is to retrieve 10 unshipped orders with the highest revenue

operating on table Lineitem, Orders, and Customer. Hive compiles
Q3 into five MapReduce jobs. The first two jobs join the three
tables, and other three jobs aggregate the tuples, sort them and get
the top 10 results.

Llama processes this job with two jobs. In the first job, there
are two types of map tasks, joining Orders with Customer and ma-
terializing Lineitem. The intermediate results are shuffled to the
reducers by the order key. Reducers perform the reduce-join fol-
lowed by a local aggregation. The second job combines the partial
aggregations for the final answer. To enable the concurrent join, PF
group of table Orders is built in the loading phase.

Figure 16 summarizes the results for different cluster sizes. Con-
current join facilitates a more flexible query plan with fewer jobs,
which significantly reduces the job launching time and the interme-
diate I/O transfer cost, and thus makes it about 2 times faster than
Hive. When the data size scales to 640 GB for a cluster size of 64

 0

 200

 400

 600

 800

 1,000

 1,200

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

T
im

e
(s

ec
on

ds
)

Hive−Row
Hive−Col
Llama

Figure 16: Join Task: TPC-H Q3

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

T
im

e
(s

ec
on

ds
)

Hive−Row
Hive−Col
Llama

Figure 17: Join Task: TPC-H Q9

nodes, one reduce task at the second stage in Hive’s job is shuf-
fled more than 30 GB data to process. It ran for a long time and
was finally killed after failing to report the status in 600 seconds.
Therefore, the execution time of Hive is not reported in the graph
for the cluster size of 64.

TPC-H Q9.
Q9 is to determine how much profit is made on a given line of

parts, broken down by supplier’s nation and year. Hive compiles
Q9 into seven MapReduce jobs. The first five jobs are respectively
to join the six tables of the query. After these joins are finished,
two additional jobs are launched for aggregation and ordering.

The execution of Q9 in Llama has earlier been presented in Sec-
tion 5.4. To facilitate the concurrent join, PF group of table Partsupp
is built during the loading phase.

Figure 17 shows the performance of Hive and Llama for Q9 with
respect to different cluster sizes. Based on the results, the perfor-
mance difference between Hive of different storage formats is not
very obvious. The main reason is that, Hive configures its num-
ber of mappers and reducers by the size of the input dataset. With
different file formats, the size of the input varies, which further af-
fects the mappers and reducers in the subsequent jobs. In this case,
the overall performance of the subsequent MapReduce jobs slightly
deteriorates. Therefore, the benefit of the I/O saving is not appar-
ent in the overall performance. As in TPC-H Q3, Q9 could not be
completed in Hive within a specific time frame for the cluster size
of 64 nodes.

On the other hand, the concurrent join method is capable of com-
pleting all the join in one MapReduce job, which significantly re-
duce the materialization of intermediate results by the execution
plan. As can be observed from Figure 17, concurrent join runs
nearly 5 times faster than the traditional execution plan.

In summary, Llama achieves a very good scalability when the
cluster size increases from 4 nodes (with 40 GB of total data size)
to 64 nodes (with 640 GB of total data size). Its scalability is almost
linear for large scale data processing.

8. RELATED WORK

8.1 Join Processing in MapReduce
The MapReduce paradigm [21] has been introduced as a dis-

tributed programming framework for large-scale data-analytics. Due
to its ease of programming, scalability, and fault tolerance, the
MapReduce paradigm has become popular for large-scale data anal-
ysis. An open source implementation of MapReduce, Hadoop [2]
is widely available to both commercial and academic users. Build-
ing on top of Hadoop, Pig [7] and Hive [4] provide the declara-
tive query language interface and facilitate join operation to handle
complex data analysis. Zebra [9] is a storage abstraction of Pig to
provide column wise storage format for fast data projection.

To execute equi-joins in the MapReduce framework, Pig [7] and
Hive [4] provide several join strategies in terms of the feature of
the joining datasets [6, 5]. For example, [29] proposes a set of opti-
mization strategies for automatic optimization of parallel dataflow
programs such as Pig. On the other hand, HadoopDB [12] provides
a hybrid solution which uses Hadoop as the task coordinator and
communication layer to connect multiple single node databases.
The join operation can be pushed into the database if the involved
tables are partitioned on the same attribute. Hadoop++ [22] pro-
vides a non-invasive index and join techniques for co-partitioning
the tables. The cost of data loading of these two systems is quite
high. A comprehensive description and comparison of several equi-
join implementations for the MapReduce framework appears in
[16, 23]. However, in all of the above implementations, one MapRe-
duce job can only process one join operation with a non-trivial
startup and checkpointing cost. To address this limitation, [13,
24] propose a one-to-many shuffling strategy to process multi-way
join in a single MapReduce job. However, as the number of join-
ing tables increases, the tuple replication during the shuffle phase
increases significantly. In another recent work [25], an interme-
diate storage system of MapReduce is proposed to augment the
fault-tolerance while keeping the replication overheads low. [19]
presents a modified version of the Hadoop MapReduce framework
that supports online aggregation by pipelining. However, they do
not essentially improve the performance of MapReduce based multi-
way join processing.

8.2 Column-wise Storage in MapReduce
The fundamental idea of the column-wise storage is to improve

I/O performance in two ways: (i) Reducing data transmission by
avoiding to fetch unnecessary columns; and (ii) Improving the com-
pression ratio by compressing the data blocks of individual colum-
nar data. Although vertically partitioning the table has been around
for a long time [20, 15], it has only recently gained wide-spread
attention to build columnar analytic databases [27, 30, 8, 26] pri-
marily for data warehousing and online analytical processing.

Column-wise data model is also preferred in MapReduce and
distributed data storage systems. HadoopDB [12] can use columnar
database like C-store [30] as its underlying storage. Dremel [28]
proposed a specific storage format for nested data along with the
execution model for interactive queries. Bigtable [17] proposed
column family to group one or more columns as a basic unit of ac-
cess control. HBase [3], an open source implementation of BigTable,
has been developed as the Hadoop [2] database. HFile is its un-
derlying column-wise storage. Besides, TFile and RCFile are the
other two popular file structures that have been used in Zebra [9]
and Hive [4] projects for large scale data analysis on top of Hadoop.
Each of these files represents one column family and contains one
or more columns. Their records are presented as a key-value pair.

In HFile, each record contains detailed information to indicate

the key by (row:string, column-qualifier:string, timestamp:long),
because it is specifically designed for storing sparse and real-time
data. This makes HFile incompact and thus ineffective in large
scale data processing. TFile, on the other hand, does not store such
meta data in each record. Each record is stored in the following for-
mat:(keyLength, key, valLength, value). The length information is
necessary to state the boundary of the key and value in each record.
Similar to TFile, RCFile stores the same data on each block for
given columns. However, within each block, it groups all the val-
ues of a particular column together on a separate mini block, which
is similar to PAX [14]. RCFile also uses the key-values pair to rep-
resent the data, whereas the key contains the length information for
each column in the block, and the value contains all the columns.

The above file formats store the columns in a column family on
the same block within a file. This strategy provides a good data
locality while accessing several columns in the same file. However,
it requires reading the entire block even if some columns are not
needed in the query, resulting in wasted I/Os. Even though each
file stores only one column, the file format is incompact, because
the length information of both key and value for each record incur
non-trivial overhead, especially when that column is small such as
being an integer type. Furthermore, these files are only designed
to provide the I/O efficiency. There is no effort to leverage the file
formats to expedite query processing in MapReduce. In this aspect,
Zebra [9] and Hive [4] could not be treated as a truly column-wise
data warehouse.

9. CONCLUSION
In this paper, we present Llama, a column-wise data manage-

ment system on MapReduce. Llama applies a column-wise parti-
tioning scheme to transform the imported data into CFiles, a spe-
cial file format designed for Llama. To efficiently support data
warehouse queries, Llama adopts a partition-aware query process-
ing strategy. It exploits the map-side join to maximize the par-
allelism and reduce the shuffling cost. We study the problem of
data materialization and develop a cost model to analyze the cost
of data accesses. We evaluate Llama’s performance by comparing
it against Hive. Our experiments conducted on Amazon EC2 us-
ing TPC-H datasets show that, Llama provides the speedup of 5
times compared to Hive. The performance evaluation confirms the
robustness, efficiency and scalability of Llama.

10. ACKNOWLEDGEMENTS
The work of Yuting Lin, Beng Chin Ooi, Sai Wu, and Chun Chen

are respectively supported in part by the Ministry of Education of
Singapore (Grant No. R-252-000-394-112) and the National Natu-
ral Science Foundation of China (Grant No. 61070155). We thank
Amazon for the research grant of the free usage of AWS. We also
thank the anonymous reviewers for their insightful comments.

11. REFERENCES
[1] Epic. http://www.comp.nus.edu.sg/~epiC.

[2] Hadoop. http://hadoop.apache.org.

[3] Hbase. http://hbase.apache.org.

[4] Hive. http://hive.apache.org.

[5] Hive/tutorial. http://wiki.apache.org/hadoop/
Hive/Tutorial#Joins.

[6] Join framework.
http://wiki.apache.org/pig/JoinFramework.

[7] Pig. http://pig.apache.org.

[8] Vertica. http://www.vertical.com/.

[9] Zebra. http://wiki.apache.org/pig/zebra.

[10] D. J. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented database
systems. In SIGMOD, 2006.

[11] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden.
Materialization strategies in a column-oriented dbms. In
ICDE, 2007.

[12] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,
and A. Silberschatz. Hadoopdb: An architectural hybrid of
mapreduce and dbms technologies for analytical workloads.
In PVLDB, volume 2, pages 922–933, 2009.

[13] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In EDBT, 2010.

[14] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, 2001.

[15] D. S. Batory. On searching transposed files. ACM Trans.
Database Syst., 4(4):531–544, 1979.

[16] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita,
and Y. Tian. A comparison of join algorithms for log
processing in mapreduce. In SIGMOD, 2010.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for structured
data. In OSDI, 2006.

[18] C. Chen, G. Chen, D. Jiang, B. C. Ooi, H. T. Vo, S. Wu, and
Q. Xu. Providing scalable database services on the cloud. In
WISE, 2010.

[19] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In NSDI,
2010.

[20] G. P. Copeland and S. N. Khoshafian. A decomposition
storage model. In SIGMOD, 1985.

[21] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, 2004.

[22] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
and J. Schad. Hadoop++: Making a yellow elephant run like
a cheetah (without it even noticing). PVLDB, 3(1):518–529,
2010.

[23] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of
mapreduce: An in-depth study. PVLDB, 3(1):472–483, 2010.

[24] D. Jiang, A. K. H. Tung, and G. Chen. Map-join-reduce:
Towards scalable and efficient data analysis on large clusters.
IEEE Transactions on Knowledge and Data Engineering,
2010.

[25] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud
intermediate data fault-tolerant. In SoCC, 2010.

[26] R. MacNicol and B. French. Sybase iq multiplex - designed
for analytics. In VLDB, 2004.

[27] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
database architecture for the new bottleneck: memory
access. VLDB Journal, 9(3):231–246, 2000.

[28] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[29] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs. In
USENIX Annual Technical Conference, 2008.

[30] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: a column-oriented dbms. In VLDB, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

