
Collective Spatial Keyword Querying

Xin Cao1 Gao Cong1 Christian S. Jensen2 Beng Chin Ooi3
1School of Computer Engineering, Nanyang Technological University, Singapore

xcao1@e.ntu.edu.sg, gaocong@ntu.edu.sg
2Department of Computer Science, Aarhus University, Denmark

csj@cs.au.dk
3School of Computing, National University of Singapore, Singapore

ooibc@comp.nus.edu.sg

ABSTRACT
With the proliferation of geo-positioning and geo-tagging, spatial
web objects that possess both a geographical location and a textual
description are gaining in prevalence, and spatial keyword queries
that exploit both location and textual description are gaining in
prominence. However, the queries studied so far generally focus
on finding individual objects that each satisfy a query rather than
finding groups of objects where the objects in a group collectively
satisfy a query.

We define the problem of retrieving a group of spatial web ob-
jects such that the group’s keywords cover the query’s keywords
and such that objects are nearest to the query location and have the
lowest inter-object distances. Specifically, we study two variants
of this problem, both of which are NP-complete. We devise exact
solutions as well as approximate solutions with provable approxi-
mation bounds to the problems. We present empirical studies that
offer insight into the efficiency and accuracy of the solutions.

1. INTRODUCTION
With the proliferation of geo-positioning, e.g., by means of GPS

or systems that exploit the wireless communication infrastructure,
accurate user location is increasingly available. Similarly, increas-
ing numbers of objects are available on the web that have an asso-
ciated geographical location and textual description. Such spatial
web objects include stores, tourist attractions, restaurants, hotels,
and businesses.

This development gives prominence to spatial keyword queries
[5, 6, 8, 10]. A typical such query takes a location and a set of
keywords as arguments and returns the single spatial web object
that best matches these arguments.

We observe that user needs may exist that are not easily satis-
fied by a single object, but where groups of objects may combine
to meet the user needs. Put differently, the objects in a group col-
lectively meet the user needs. For example, a tourist may have par-
ticular shopping, dining, and accommodation needs that may best
be met by several spatial web objects. As another example, a user
may wish to set up a project consortium of partners within a certain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

spatial proximity that combine to offer the capabilities required for
the successful execution of the project.

To address the need for such collective answers to spatial key-
word queries, we assume a database of spatial web objects and then
consider the problem of how to retrieve a group of spatial objects
that collectively meet the user’s needs given as location and a set of
keywords: 1) the textual description of the group of objects must
cover the query keywords, 2) the objects are close to the query
point, and 3) the objects in the group are close to each other.

Specifically, given a set of spatial web objects D, and a query
q = (λ, ψ), where λ is a location and ψ is a set of keywords, we
consider two instantiations of the spatial group keyword query.

1. We aim to find a group of objects χ that cover the keywords
in q such that the sum of their spatial distances to the query
is minimized.

2. We aim to find a group of objects χ that cover the keywords
in q such that the sum of the maximum distance between an
object in χ and query q and the maximum distance between
two objects in χ is minimized.

It turns out that the subproblems corresponding to these two in-
stantiations are both NP-complete. The first subproblem can be re-
duced from the weighted set cover problem. We propose a greedy
algorithm that provides an approximate solution to the problem.
This algorithm utilizes a spatial-keyword index such as the IR-
tree [8] to prune the search space. The algorithm has a provable
approximation bound. Based on the assumption that in some ap-
plications, the number of keywords in a query q may not be large,
we also propose an exact algorithm that exploits dynamic program-
ming and a spatial-keyword index. The exact algorithm avoids enu-
merating the combinations of data objects in the database. Rather,
it enumerates the query keywords and exploits a series of pruning
strategies to reduce the search space.

For the second subproblem, we develop two approximation algo-
rithms based on a spatial-keyword index with provable approxima-
tion bounds. The first approximation algorithm has a 3-approximat-
ion ratio, while the second algorithm has a 2-approximation ratio.
We also develop an exact algorithm that exploits a spatial-keyword
index and the geometric property and branch-and-bound search to
prune the search space.

In summary, our contribution is threefold. First, we propose a
new type of queries, called spatial group keyword queries, that find
groups of objects that collectively satisfy a query. We consider two
instantiations of the problem and show that both are NP-complete.

Second, we propose algorithms that offer approximate solutions
to the two subproblems with provable approximation bounds. We

also present exact algorithms for the two subproblems. All algo-
rithms exploit a spatial keyword index to prune the search space.

Third, we study the properties of the paper’s proposals empir-
ically based on prototype implementations of the proposals. The
results demonstrate that the proposals offer scalability and are ca-
pable of excellent performance.

The rest of the paper is organized as follows. Section 2 formally
defines the problem and establishes the computational complexi-
ties of the problem. Section 3 presents an approximate algorithm
and an exact algorithm for the first subproblem. Section 4 presents
two approximate algorithms and an exact algorithm for the second
subproblem. We report on the empirical studies in Section 5. Fi-
nally, we cover related work in Section 6 and offer conclusions and
research directions in Section 7.

2. PROBLEM STATEMENT
Let S be a set of keywords. The keywords may capture user

preferences or required project partner capabilities, depending on
the application. Let D be a database consisting of m spatial web
objects. Each object o in D is associated with a location o.λ and
a set of keywords o.ψ, o.ψ ⊂ S, that describe the object (e.g., the
menu of restaurant or the skills of a possible project partner).

Consider a spatial group keyword query q = ⟨q.λ, q.ψ⟩, where
q.λ is a location and q.ψ represents a set of keywords. The spatial
group keyword query finds a group of objects χ, χ ⊆ D, such that
∪r∈χr.ψ ⊇ q.ψ and such that the cost Cost(χ) is minimized.

We proceed to present cost functions. Given a set of objects χ,
the cost function has two weighted components:

Cost(q, χ) = αC1(q, χ) + (1− α)C2(χ),

where C1(·) is dependent on the distance of the objects in χ to
the query object and C2(·) characterizes the inter-object distances
among the objects in χ.

This type of cost function is capable of expressing that result ob-
ject should be near the query location (C1(·)), that the result objects
should be near to each other (C2(·), and that these two aspects are
given different weights (α). We consider two instantiations of the
cost function Cost(q, χ) that we believe match the intended appli-
cations well.
TYPE1 cost function:

Cost(q, χ) =
∑
r∈χ

(Dist(r, q)) (1)

The cost function is the sum of the distance between each object
in χ and the query location. This may fit with applications where
the objects need to meet at the query location, such as incident
handling or the finding of project partners.
TYPE2 cost function:

Cost(q, χ) = αmax
r∈χ

(Dist(r, q)) + (2)

(1− α) max
r1,r2∈χ

(Dist(r1, r2))

The first part of this cost function is the maximal distance be-
tween any object in χ and the query location q, and the second
part is the maximum distance between two objects in χ (this can
be understood as the diameter of the result). When there are mul-
tiple optimal groups of objects, we choose one group randomly.
This second cost function may fit with applications such as tourists
planning visits to several points of interest.

For ease of presentation, we disregard parameter α in the rest of
this paper. But the proposed algorithms remain applicable when α
is enabled.

Lemma 2.1: The decision version of spatial group keyword query

problem using either a TYPE1 or a TYPE2 cost function is NP-
complete.

Proof:We first consider the TYPE1 cost function. We prove the
lemma by reduction from the weighted set cover problem. An in-
stance of the weighted cover problem consists of a universeU = { 1,
2, ..., n} of n elements and a family of sets S = {S1, S2, ..., Sm},
where Si ⊆ U and each Si is associated with a positive cost CSi .
The decision problem is to decide if we can find a subset F of S
such that ∪Si∈FSi = U and such that its cost

∑
Si∈F (CSi) is min-

imized.
To reduce this problem to the TYPE1 spatial group keyword

query problem, we observe thateach element in U corresponds to
a keyword in q.ϕ, that each Si corresponds to a spatial object con-
taining a set of keywords, and that the weight of Si is dist(q, Si).
It is easy to show that there exists a solution to the weighted set
cover problem if and only if there exits a solution to query q. This
completes the proof.

Considering next the TYPE2 cost function, we prove the lemma
by reduction from the 3-SAT problem. An instance of the 3-SAT
problem consists of Φ = C1 ∧ C2, ...,∧Cl, where each clause Cj
= xj ∨ yj ∨ zj , and {xj , yj , zj} ∈ {e1, ē1, e2, ē2, ..., en, ēn}. The
decision problem is to determine whether we can assign a truth
value to each of the literals (e1 through en) such that Φ is true.

Next, we reduce this problem to an instance of the TYPE2 spa-
tial group keyword query problem. The reduction is inspired by the
proof for the hardness of the Multiple-Choice cover problem [2]
(that is different from our problem). Consider a circle with diame-
ter d and with the query point q as its center, and let each variable
ei correspond to a point in the circle, while its negation ēi cor-
responds to the diametrically opposite on the circle. The distance
between ei and ēi is d. We choose d such that d > d1 is sufficiently
close to d1; thus, the distance between any two points correspond-
ing to different variables are smaller than d1.

Each set Si (i ∈ [1, n]) contains a pair of points ei and ēi, and
the two points contain a distinct keyword in q.ψ. Each set Sj (j
∈ [n + 1, n + l]) contains each triple of points corresponding to
a cause Cj−n, and they contain a distinct keyword in q.ψ. Thus,
to cover all keywords in q.ψ, a query result of q must contain one
point from each Si (i.e., ei and ēi), and it must contain at least one
point from each Sj (corresponding to clause Cj−n).

Given this mapping, we can see that if there exits a truth assign-
ment for Φ, all the keywords in q are covered, andmaxr∈χdist(q, r)
+maxi,j∈χdist(i, j) = d

2
+maxdist(i, j), i, j ∈ χ is minimized,

i.e., a feasible solution χ with at most d
2
+ d1 exists. On the other

hand, if there exists a subset of points on the circle whose diameter
is at most d1, there exists a truth assignment for the instance Φ.
This completes the proof. 2

In the problem definition, we assume that each object either has
or does not have a given keyword. In some applications, e.g., where
keywords represent skills, degrees can be associated with the key-
words, and queries then require certain minimum degrees for their
keywords. To accommodate this setting, we assume that an object
has a keyword only if its keyword degree is equal to or higher than
the degree required by the query at hand.

3. PROCESSING OF TYPE1 SPATIAL
GROUP KEYWORD QUERIES

3.1 Preliminaries: The IR-Tree
We briefly review the IR-tree [8], which we use as an index struc-

ture in the algorithms to be presented. We note that other spatial-
keyword indexes (e.g., [10]) may be used in its place.

The IR-tree [8] is essentially an R-tree [12] extended with in-
verted files [16]. Each leaf node in the IR-tree contains entries of
the form (o, o.λ, o.di), where o refers to an object in datasetD, o.λ
is the bounding rectangle of o, and o.di is an identifier of the de-
scription of o. Each leaf node also contains a pointer to an inverted
file with the keywords of the objects stored in the node.

An inverted file index has two main components.

• A vocabulary of all distinct words appearing in the descrip-
tion of an object.

• A posting list for each word t that is a sequence of identifiers
of the objects whose descriptions contain t.

Each non-leaf nodeR in the IR-tree contains a number of entries
of the form (cp, rect, cp.di), where cp is the address of a child
node of R, rect is the minimum bounding rectangle (MBR) of all
rectangles in entries of the child node, and cp.di is an identifier of
a pseudo text description that is the union of all text descriptions in
the entries of the child node.

As an example, Figure 1(a) contains eight spatial objects o1, o2, . . . , o8,
and Figure 1(b) shows the words appearing in the description of
each object. Figure 2 illustrates the corresponding IR-tree, and Ta-
ble 1 shows the content of the inverted files associated with the
nodes.

o
4

q

o
1

o
5

o
3

o
6

o
2

o
7

o
8

R1

R2

R3

R4

R5

R6

object words
o1 t1, t2
o2 t2, t3
o3 t1, t3
o4 t1, t5
o5 t2, t4
o6 t4, t6
o7 t4, t5
o8 t1, t5

(a) object locations (b) object descriptions

Figure 1: A Dataset of Spatial Keyword Objects

Figure 2: Example IR-Tree

Table 1: Content of Inverted Files of the IR-Tree
Root R5 R6 R1 R2 R3 R4

t1: R5, R6 t1: R1, R2 t1: R3, R4 t1: o1 t1: o8 t1: o4 t1: o3
t2: R5 t2: R1, R2 t3: R4 t2: o1, o5 t2: o2 t5: o4 t3: o3
t3: R5, R6 t3: R2 t4: R4 t4: o5 t3: o2 t4: o6
t4: R5, R6 t4: R1, R2 t5: R3 t4: o7 t6: o6
t5: R5, R6 t5: R2 t6: R4 t5: o7, o8
t6: R6

3.2 Approximation Algorithm
We show that the first subproblem is NP-complete by a reduc-

tion from the Weighted Set Cover (WSC) problem in Lemma 2.1.
The reduction in the proof is approximation preserving. Thus, the
approximation properties of the WSC problem carry over to our
problem.

For the WSC problem, it is known (see [7]) that a greedy al-
gorithm is an Hk-approximation algorithm for the weighted k-set
cover, where Hk =

∑k
i=1

1
i

is the k-th harmonic number. In our

problem, k is the number of query keywords. Thus, we can adapt
the greedy algorithm to process the TYPE1 spatial group keyword
query.

A straightforward method of adapting the greedy algorithm is
to decompose the given user query q dynamically into a sequence
of partial queries, each containing a different set of keywords de-
pending on the preceding partial queries, and then to evaluate these
partial queries. Specifically, we start with the user query q, which
can be regarded as the first partial query, and we find the object
with the lowest cost that covers part or all of the keywords in q.
The object is added to the result set. The uncovered keywords in q
form a new partial query with the same spatial location as q. We
then find an object with the lowest cost that covers part or all of the
keywords in the new partial query. This process continues until all
keywords are covered or some keyword cannot be covered by any
object. This method needs to scan the dataset multiple times, once
for each partial query.

To avoid multiple scans, we propose a greedy algorithm on top of
the IR-tree. We proceed to focus on two aspects of the idea that are
important to the performance: (1) how to find the object with the
lowest cost for each partial query using the IR-tree, and (2) whether
we can reuse the computation for the preceding partial query when
computing the next partial query.

Given a partial query qs, we adopt the best-first strategy to tra-
verse the IR-tree. We use a min-priority queue to maintain the inter-
mediate results. The key of the queue is the cost of each element.
The cost of an object o is computed by Dist(q,o)

|o.ψ∩qs.ψ| ; the cost of a

node entry e is computed by minDist(q,e)
|e.ψ∩qs.ψ| , where minDist (q, e)

represents the minimum distance between q and e.

Lemma 3.1: Given a partial query qs and an IR-tree, the cost of a
node is a lower bound of the cost of any of its child nodes.

Proof:Given a node e and any of its child nodes e′, we have minDist
(q, e) ≤ minDist (q, e′), and |e.ψ ∩ qs.ψ| ≥ |e′.ψ ∩ qs.ψ|. 2

Lemma 3.1 says that the cost of a node is a lower bound of the
costs of all objects in the subtree rooted at the node. Thus, if the
cost exceeds that of some object that has been visited, we can dis-
regard all objects in the subtree for qs. This guarantees the correct-
ness of the best-first strategy for finding an object with the lowest
cost for a partial query qs.

We next discuss whether we can reuse the computation for pre-
ceding partial queries. An obvious method is to process each par-
tial query from scratch. However, this incurs repeated computation
when a node or an object is visited for multiple times. To avoid this,
we divide the entries (corresponding to leaf and non-leaf nodes) in
the priority queue into two parts: (1) the entries that have already
been visited when processing previous partial queries, and (2) the
entries that have not yet been visited.

Lemma 3.2: The elements in the priority queue that have been vis-
ited when processing previous partial queries can be disregarded
when processing a new partial query.

Proof:The keyword set of a previous partial query is a superset of
the keyword set of a new partial query. For a visited node, all its
entries containing keywords of the new partial query have been en-
queued into the priority queue; thus, we can disregard the elements
that have been visited. 2

The pseudocode is outlined in Algorithm 1. The algorithm uses a
min-priority queue for the best-first search with the cost as the key.
Variable mSet keeps the keyword set of the current partial query,
and pSet keeps the keyword set of the preceding partial query. For
each partial query, we use the best-first search to find an object that

Algorithm 1: Type1Greedy(q, irTree)
1 U ← new min-priority queue;
2 U .Enqueue(irTree.root, 0);
3 V ← ∅; Cost← 0;
4 mSet← q.ψ; pSet← q.ψ;
5 while mSet ̸= ∅ do
6 while U is not empty do
7 e← U.Dequeue();
8 Cost← Cost+ e.Key;
9 if e is an object then

10 V ← V ∪ e;
11 pSet←mSet ;
12 mSet←mSet \ e.ψ;
13 for each entry e′ in U do
14 if e′.λ∩ e.λ ̸= ∅ then
15 e′.key = e′.key∗|e′.λ∩mSet|

|e′.λ∩pSet| ;

16 else remove e from U ;

17 reorganize priority queue U using new key values;
18 break;

19 else
20 read the posting lists of e for keywords in mSet;
21 for each entry e′ in node e do
22 if mSet ∩ e′.ψ ̸= ∅ then
23 if e is a non-leaf node then
24 U .Enqueue(e′, minDist(q,e′)

|mSet∩e′.ψ|);

25 else
26 U .Enqueue(e′, Dist(q,o)

|mSet∩o.ψ|);

27 return Cost and V ; // results

overlaps with the query keyword mSet and has the lowest cost.
The algorithm computes the cost for a non-object node (line 23)
and the cost for an object (line 25).

Whenever the algorithm pops an object from U , it is guaran-
teed that the text description of the object overlaps with mSet (the
keyword set of the current partial query), and that the object has
the lowest cost. Thus, it becomes part of the result. The algorithm
proceeds with the next partial query by changing the keyword com-
ponent (line 12). Based on Lemma 3.2, we do not need to scan all
objects to process the new partial query. Rather, we only have to
update the unvisited elements in the priority queue with the new
cost based on the new partial query (lines 13–16). We then use the
best-first search to process the new partial query.

3.3 Exact Algorithm
The number of keywords of a query may be small in some ap-

plications. This motivates us to develop an exact algorithm for pro-
cessing the TYPE1 spatial keyword group query.

We present a dynamic programming algorithm that does not use
an index in Section 3.3.1, and we present a version of the algorithm
that uses an index to prune the search space in Section 3.3.2.

3.3.1 Exact Algorithm Without an Index
An obvious exact algorithm enumerates every subset of spatial

objects whose text descriptions overlap with the query keyword
set in D.For each such subset, the algorithm then checks whether
the subset covers all query keywords and computes its cost. This
yields an exponential running time in terms of the number of ob-
jects, which is very expensive if D is large.

A better method is to perform the exhaustive search on a smaller
set of objects. We proceed to introduce a lemma that lays the foun-
dation for the algorithm to be proposed.

Lemma 3.3: Consider a query q and two objects oi and oj , each
of which contains a subset of the query keywords. Let wsi = q.ψ∩
oi.ψ and wsj = q.ψ ∩ oj .ψ. If Dist(q, oi) < Dist(q, oj), {oi} is a
better group than {oj} for any keyword subset of wsi ∩ wsj .

Proof:Obvious since oi always incurs lower cost than does oj for
any keyword subset wsi ∩ wsj . 2

According to the lemma, given a subset of query keywords ws,
among the objects covering ws, the one that is the closest to the
query contributes the lowest cost to ws.

Example 3.1: Consider a query q with keywords q.ψ = {t1, t2, t3}
and the four objects in Table 2. We know that Dist(q, o1) < Dist(q,
o2) and o1 ∩ o2 = {t2}. According to lemma 3.3, {o1} is a better
result set for the query with keyword set {t2}. 2

o1 o2 o3 o4
Distance to the query 1 2 2.5 4

Keywords t1,t2 t2,t3 t1,t3 t1

Table 2: Example data set
Since the set of query keywords is small, the number of its sub-

sets is not large although it is exponential to the number of query
keywords. For each subset of query keywords, we find the ob-
ject that covers the subset of query keywords and has the lowest
costs according to Lemma 3.3. Then an exhaustive search on these
objects can find the best group. However, this method is time-
consuming since it runs exponentially in terms of the number of ob-
jects, which can be exponential in the number of query keywords.

Instead, we develop a dynamic programming algorithm with ex-
ponential running time in terms of the number of query keywords.
The idea of the algorithm is summarized as follows: Given a query
q with n (= |q.ψ|) keywords, we process the subsets of q.ψ in
breadth-first order, i.e., we process subsets in ascending order of
their length. For each subset X of q.ψ, we find the best set of cov-
ering objects, i.e., a set of objects that cover X and have the lowest
cost, by utilizing the best covering sets of the subsets of X .

Existing WSC algorithms are mostly approximation algorithms.
Several recent proposals [4, 9] have good (e.g., constant) approxi-
mation guarantees with moderately exponential running time. Björk-
lund et al. [3] propose an exact algorithm for the unweighted set
cover problem using the inclusion-exclusion principle, which is not
directly applicable to the WSC problem.

Formally, let F be the set of all subsets of q.ψ. For each sub-
set X ⊆ q.ψ, we denote the set of objects that cover X and has
the lowest cost by Group(X) and the cost of covering set X by
Cost(X).

Our dynamic programming algorithm avoids enumerating all the
set partitions. Equation 3 shows the approach to computing the
lowest cost for each subset X . If X is not covered by any object
o, its cost is initialized to ∞; otherwise, its cost is initialized to
the cost of the best covering object, as shown in Equation 3. Then
the dynamic programming idea is adopted to find the lowest cost of
each subset X in ascending order of the length of X . Specifically,
for each X , we check each pair of component subsets (whose op-
timal costs are already known) to find a pair with the lowest cost.
Note that the optimal set of two subsets may share some objects
whose costs are computed by oCost.

Cost(X) =

{
mino∈D∧X⊆o.ψ{Dist(q, o)}, ∃o(X ⊆ o.ψ)
∞, otherwise

(3)

Cost(X) = min
S∈F∧S⊆X

{Cost(X\S)+Cost(S)−oCost(S,X\S)}

oCost(S,X \ S) =
∑

o∈Group(X\S)∩Group(S)

Dist(o, q) (4)

Algorithm 2: Type1ExactNoIndex (q,D)

1 n← |q.ψ|;
2 for i from 1 to 2n − 1 do Cost[i]←∞, Group[i]← ∅;
3 for each object oi in D do
4 if oi.ψ ∩ q.ψ ̸= ∅ then
5 Dist[oi]← Dist (oi, q);
6 for each subset si in oi.ψ ∩ q.ψ do
7 i←MapToInteger(si);
8 if Cost[i] > Dist [oi] then
9 Cost[i]← Dist [oi];

10 Group[i]← {oi};

11 for i from 1 to 2n − 1 do
12 minV alue←∞, bestSplit← 0;
13 for j from 1 to i/2 do
14 if j & i = j then
15 S← Group[j]

∩
Group[i− j];

16 oDist← 0;
17 for each object o in S do
18 oDist← oDist + Dist [o];

19 cost← Cost[j] + Cost[i− j] − oDist;
20 if cost < minV alue then
21 minV alue← cost;
22 bestSplit← j;

23 if Cost[i] >minV alue then
24 Cost[i]←minV alue;
25 Group[i]← Group[bestSplit] ∪ Group[i− bestSplit];

26 return Cost[2n − 1] and Group[2n − 1]

Group(X) =

{
argmino∈D∧X⊆o.ψ{Dist(q, o)}, ∃o(X ⊆ o.ψ)
∅, otherwise

S∗ = argmin
S∈F∧S⊆X

{Cost(X \ S) + Cost(S)− oCost(S,X \ S)}

Group(X) = Group(S∗) ∪ Group(X \ S∗)
(5)

To implement the algorithm efficiently, we encode the subsets.
A query q with n keywords q.ψ = {t1, t2, . . . , tn} has (2n − 1)
non-empty subsets of keywords. We encode each subset X by an
integer i of n bits, where each bit corresponds to a keyword in
q. If the jth keyword is contained in X , the jth bit in the binary
format of i is set to 1; otherwise, it is set to 0. For example, for
q.ψ={t1, t2, t3}, we can encode subset {t1} by 1, {t2} by 2, and
{t1, t2} by 3.

We maintain two arrays: Cost[i] records the lowest cost of the
subset that is encoded by integer i, and Group[i] records the group
of objects that contribute to the lowest cost. Equations 4 and 5 can
be rewritten as the following equation:

Cost[i] = min
j,i&j=j

{Cost[j] + Cost[i− j]− oCost(i, j)}

oCost(i, j) =
∑

o∈Group[i]∩Group[i−j]

Dist(o, q)

opt = argmin
j,i&j=j

{Cost[j] + Cost[i− j]− oCost(i, j)}

Group[i] = Group[opt] ∪ Group[i− opt]

(6)

Here, & is the bit-wise AND operator, and i&j = j states that the
set represented by j is a subset of the set represented by i.

The pseudocode is outlined in Algorithm 2. We progressively
compute Cost[i] and Group[i] from i = 1 to (2n − 1). When i
= (2n − 1), we get the results with the lowest cost, Cost[2n −
1], and the best group, Group[2n − 1]. We scan the dataset D.

For each single object that overlaps with query keyword set q.ψ,
we check whether the object contributes to the lowest cost for a
keyword subset (lines 3–10). If a keyword subset is not contained
by any single object, its cost is initialized to ∞.

The algorithm proceeds to use Equation 6 to compute the lowest
cost for each subset (lines 11–25). We check each subset, repre-
sented by j, of the current keyword subset, represented by i, to
see whether the subset represented by j and the subset represented
by (i − j) contribute a lower cost (lines 13–22). The lowest cost
from combining two subsets is kept in minV alue, and the integer
that represents the corresponding subset is kept in bestSplit. If
the minV alue contributed by aggregating two subsets is smaller
than the current lowest cost of the keyword subset represented by i,
we update its cost Cost[i] and update the group of objects Group[i]
that covers it (lines 23–25). Finally, we return the lowest cost and
the best group (line 26).

The algorithm scans the whole dataset D in lines 3–10, and it
finds the best group according to Equation 6 in lines 11–22. There-
fore, it runs exponentially in terms of the number of query key-
words and linearly in terms of the size of the dataset.

Example 3.2: We proceed to illustrate Algorithm 2. Given a query
q with the keywords set q.ψ = {t1, t2, t3} and three objects o1, o2,
and o3 with description: o1.ψ = {t1, t2} and Dist (q, o1) = 1; o2.ψ
={t2, t3} and Dist (q, o2) = 2; o3.ψ = {t1, t2, t3} and Dist (q, o3)
= 4. Lines 3–10 return the following results:

i 1 2 3 4 5 6 7
Cost 1 1 1 2 4 2 4

Group o1 o1 o1 o2 o3 o2 o3

We subsequently utilize these values to compute the final re-
sults. For example, when computing Cost[5], we determine that
{o1, o2}(Cost[1]+Cost[4]) is better than {o3}, and we update its
value. Finally, we have the following results:

i 1 2 3 4 5 6 7
Cost 1 1 1 2 3 2 3

Group o1 o1 o1 o2 o1, o2 o2 o1, o2
2

3.3.2 Exact Algorithm Using an Index
The dynamic programming algorithm presented above needs to

scan the whole dataset. This has two drawbacks: (1) it wastes com-
putation when checking many unnecessary objects that do not con-
tain any query keyword, and (2) all the objects whose text descrip-
tions overlap with the query keywords are scanned to obtain the
lowest costs for the query keyword subsets.

To overcome the first drawback, we utilize the IR-tree that en-
ables us to retrieve only the objects that contain some query key-
words while avoiding checking the objects containing no query
keywords. For the second drawback, we show that it is not al-
ways necessary to scan all the objects covering part of the query
keywords.

We propose the following principle for our algorithm: we pro-
cess objects in ascending order of their distances to a query q. By
following that order, we know that the lowest cost of a subset is
always contributed by a single or a group of closer objects based
on Lemma 3.3.

Lemma 3.4: Consider a query q. If we process objects in ascend-
ing order of their distances to q, when we reach an object oi con-
taining a query keyword subset ws, all subsets of ws will get their
lowest costs.

Proof:Obvious since all objects to be visited after oi have larger
cost for any subset of ws; thus, its lowest cost is either contributed
by oi or by objects visited earlier. 2

Example 3.3: Recall the query in Example 3.1. We first process
object o1, and we know 1 is the lowest costs of subsets {t1, t2},
{t1}, and {t2}. Then we reach o2, and we know 2 is the lowest
costs of subsets {t2, t3} and {t3} ({t2} already has lowest cost 1).

2

Based on Lemma 3.4, we can derive a stopping condition for
our algorithm—we reach an object that contains all the query key-
words. However, if no such object exists in the dataset, the algo-
rithm is still required to scan to the furthest object containing some
query keywords before it can stop. In the example in Table 2, we
need to read all the four objects. But if the third furthest object o3
covers {t1, t2, t3}, we need not read o4.

We proceed to present an additional stopping condition.

Lemma 3.5: Given two query keyword subsets wsi and wsj , and
with union wsu = wsi ∪ wsj , we have Cost(wsu) ≤ Cost(wsi)
+ Cost(wsj).

Proof:Obvious from Equations 3–5. 2

Based on Lemma 3.5, for any two keyword subsets whose lowest
costs are known, we can obtain an upper bound of the lowest cost
value for the keyword subset that is the union of the two keyword
subsets. We denote the upper bound by Costu.

In our algorithm, we keep track of the upper bounds for the sub-
sets whose costs are still unknown. Whenever we reach an object
from which some keyword subset gets its lowest cost (according
to Lemma 3.4), the subset, together with each of the subsets that
have either lowest costs or upper bounds of cost (i.e., the keyword
subsets that are covered by visited objects), are used to update the
upper bound cost values of the corresponding union keyword sub-
sets.

Example 3.4: Recall Example 3.1. After the object o2 is scanned,
{t3} gets its lowest cost 2. We can compute an upper bound for
{t1, t3} using the costs of {t1} and {t3}, i.e., Costu({t1, t3}) =
Cost({t1})+Cost({t3}) = 3 (covered by o1 and o2). Similarly, we
can also compute an upper bound value 3 for {t1, t2, t3} using the
costs of {t1, t2} and {t3}, and the set is also covered by o1 and o2.

When we reach o3, we get a lower cost of 2.5 for {t1, t3}(the
previous upper bound of 3 is updated). Then {t1, t3} are combined
with {t2} to form {t1, t2, t3} with a cost of 3.5. Since this value
exceeds its current upper bound, no update is needed. 2

We are ready to introduce a lemma that provides an early stop-
ping condition for our algorithm.

Lemma 3.6: Suppose that we scan objects in ascending order of
their distances to q. Given a keyword subset ws, when we reach
object oi, and if Dist(q, oi) ≥ Costu(ws), then Cost(ws) =
Costu(ws), where Costu(ws) is the current upper bound of ws.

Proof: We prove this by contradiction. If any object oj further to q
than oi is a member of the best group then it must have

Cost(ws) ≥ Dist(q, oj) ≥ Dist(q, oi) ≥ Costu(ws)

SinceCostu(ws) cannot be smaller than Cost(ws), no further ob-
ject will be contained in the best group. In addition, Costu(ws)
is the current minimum cost value, and thus it becomes the lowest
cost of ws. 2

Example 3.5: Recall again Example 3.1. By following ascending
order of distances, when the algorithm reaches o4 (Dist (q, o4) =
4), we can conclude that Costu({t1, t2, t3}) = 3 is the lowest cost
and that the best group is (o1, o2). 2

The pseudocode is described in Algorithm 3. All the keyword
subsets whose lowest costs are already known are stored in the
variable markedSet, and the subsets that have upper bounds are

Algorithm 3: Type1ExactWIndex(q, irTree)
1 markedSet← ∅, valuedSet← ∅;
2 n← |q.ψ|;
3 for i from 1 to 2n − 1 do Cost[i]←∞, Group[i]← ∅;
4 U ← new min-priority queue;
5 U .Enqueue(irTree.root, 0);
6 while U is not empty do
7 e← U.Dequeue();
8 ks← q.ψ

∩
e.ψ ;

9 if ks ̸∈markedSet then
10 if e is a non-leaf node then
11 foreach entry e′ in node e do
12 if q.ψ

∩
e′.ψ ̸= ∅ and q.ψ

∩
e′.ψ ̸∈ markedSet

then U .Enqueue(e′, minDist(q, e′));

13 else if e is a leaf node then
14 foreach object o in leaf node e do
15 if q.ψ

∩
o.ψ ̸= ∅ and q.ψ

∩
o.ψ ̸∈ markedSet

then U .Enqueue(o, Dist(q, o));

16 else // e is an object
17 foreach set S ∈ valuedSet do
18 i←MapToInteger(S);
19 if Cost[i] < Dist (q, e) then
20 if i = 2n−1 then // Lemma 3.6
21 return Cost[2n−1] and Group[2n − 1];

22 valuedSet← valuedSet \ S;
23 markedSet←markedSet

∪
S;

24 tempSet← ∅;
25 foreach subset ss ⊆ ks do // Lemma 3.4
26 if ss ̸∈markedSet then
27 i←MapToInteger(ss);
28 markedSet←markedSet

∪
ss;

29 tempSet← tempSet
∪
ss;

30 if ss ∈ valuedSet then
31 valuedSet← valuedSet \ ss;

32 Cost[i]← Dist (e, q);
33 Group[i]← {e};
34 if j = 2n − 1 then // Lemma 3.4
35 return Cost[2n − 1] and Group[2n − 1];

36 foreach set ts ∈ tempSet do
37 j←MapToInteger(ts);
38 for i from 1 to 2n − 1 do
39 if Cost[i] =∞ then continue;
40 unionKey← i|j;
41 if unionKey = i ∧ unionKey = j then
42 continue;
43 D← Cost[i] + Dist (e, q);
44 if Cost[unionKey] > D then
45 Cost[unionKey]←D;
46 Group[unionKey]← Group[i]

∩
{e};

47 return Cost[2n − 1] and Group[2n − 1];

stored in the variable valuedSet. The IR-tree is used for retrieving
the next nearest object that covers some query keywords. We use a
min-priority queue U to store the IR-tree nodes and objects, where
their distances to the query are the keys.

The priority queue U is initialized to the root node of the IR-tree
(line 4). We dequeue an element e from U , and we compute the
keyword intersection ks between e and q (lines 7–8). If the key-
word subset ks is contained in markedSet (whose lowest costs
are known), we do not need to process e according to Lemma 3.3
(line 9). Otherwise, we process e according to its type: 1) If e is
a non-leaf index node, we check each of its child nodes, denoted

by e′, to see whether e′ contains a keyword subset of q that is not
contained in markedSet. If so, e′ is inserted into U with its min-
imum distance to query q as its priority key (lines 10–12). 2) If
e is a leaf node, we handle each object in e similarly to how we
handle each child node in 1) (lines 13–15). 3) If e is an object, we
first utilize its distance to q to move some keyword subsets from
valuedSet to markedSet. The subsets whose upper bounds are
smaller than Dist(q, e) get their lowest costs (lines 17–23) accord-
ing to Lemma 3.6. If the query keyword set q.ψ is confirmed to get
its lowest cost, the algorithm terminates (line 21). Then for each
subset ss of q.ψ ∩ e.ψ, if its lowest cost is unknown (line 26),
the object e constitutes the best group (Lemma 3.4) for ss. Since
ss may already be covered by previously visited objects and have
an upper bound of its lowest cost, we remove ss from valuedSet
(lines 30–31). Once q.ψ gets its lowest cost, the algorithm termi-
nates (lines 34–35). In lines 36–46, we combine each subset ts that
newly obtained its lowest cost with the subsets that already have
cost values (Lemma 3.5). In line 40, ”|” is the bit-wise OR opera-
tor. If one is the subset of the other (line 41), we do not combine
the two subsets; otherwise, we update the cost value for the union
of the two subsets (lines 44–46).

This algorithm runs faster than Type1ExactNoIndex due to two
reasons: first, using the IR-tree avoids scanning the whole dataset;
second, based on Lemma 3.6, we are able to find the best group
without scanning objects whose distances exceed the cost of the
current group.

Example 3.6: Recall Table 2 in Example 3.1. The algorithm works
as follows. 1) After processing o1, the result is shown in Table 3, in
which i is the integer representing a keyword subset and status “M”
means that the subset is contained in markedSet. Table 3 shows
that {t1} (i = 1), {t2} (i = 2), and {t1, t2} (i = 3) get their lowest
costs and best groups. 2) After processing o2, the result is shown in
Table 4. Except for {t1, t3} and {t1, t2, t3}, all the subsets obtain
their lowest costs. The cost values of the two subsets are obtained
by combining other subsets with known lowest cost. The status
value “V” means that the subset is stored in valuedSet. 3) After
processing o3, we have the result shown in Table 5. Here, {t1, t3}
gets its lowest cost since it is covered by o3. 4) When we reach o4,
since its distance to the query is already larger than the currently
lowest cost of {t1, t2, t3} (the only element in valuedSet), we do
not need to process it. Set {t1, t2, t3} gets the lowest cost value 3
and is moved to markedSet. We now find the best group and the
lowest cost.

i 1 2 3 4 5 6 7
Cost 1 1 1 ∞ ∞ ∞ ∞

Group o1 o1 o1 null null null null
Status M M M null null null null

Table 3: Results after processing o1
i 1 2 3 4 5 6 7

Cost 1 1 1 2 3 2 3
Group o1 o1 o1 o2 o1,o2 o2 o1,o2
Status M M M M V M V

Table 4: Results after processing o2
i 1 2 3 4 5 6 7

Cost 1 1 1 2 2.5 2 3
Group o1 o1 o1 o2 o3 o2 o1,o2
Status M M M M M M V

Table 5: Results after processing o3 2

4. PROCESSING TYPE2 SPATIAL GROUP
KEYWORD QUERIES

We present two approximation algorithms in Sections 4.1 and 4.2
and an exact algorithm in Section 4.3.

Algorithm 4: Type2Appro1(q, irTree)
1 U ← new min-priority queue;
2 U .Enqueue(irTree.root, 0);
3 V ← ∅;
4 uSkiSet← q.ψ ; // uncovered keywords
5 while U is not empty do
6 e← U.Dequeue();
7 if e is an object then
8 V ← V ∪ e ; // add e to result
9 uSkiSet← uSkiSet \ e.ψ;

10 if uSkiSet=∅ then break;

11 else
12 read the posting lists of e for keywords in uSkiSet;
13 foreach entry e′ in node e do
14 if uSkiSet ∩ e′.ψ ̸= ∅ then
15 if e is a non-leaf node then
16 U .Enqueue(e′, minDist(q, e′));

17 else U .Enqueue(o, Dist(q, o));

18 return V ; // results

4.1 Approximation Algorithm 1
Given a query q, the idea of the algorithm, called Type2Appro1,

is to find the nearest object for each keyword ti in q.ψ. The set of all
such nearest objects make up the result set. The pseudocode, which
assumes that the dataset is indexed using the IR-tree, is outlined in
Algorithm 4. The algorithm uses a min-priority queue U for the
best-first search. In each iteration, we dequeue an element e from
U . If e is an object, we push it into the result set and update the
uncovered keyword subset (lines 7–10); if e is a node in the IR-tree,
we insert all its child nodes that contain some uncovered keywords
into U (lines 12–17). The runtime of this algorithm is linear in the
number of query keywords.

Example 4.1: Consider a query q.ψ = {t1, t3, t5} and the objects
shown in Figure 1. The object o1 covering t1 is first added to the
result. Then o2 containing t3 is added, and when o4 containing t5 is
retrieved, we obtain a group. Object o4 has the maximum distance
to query, which is 4. The maximum diameter is 6, which is the
distance between o2 and o4. Hence, the cost of this group is 10. 2

We proceed to show that Type2Appro1 is within an approxima-
tion factor of 3.

Theorem 4.1: The cost of the solution V , returned by Type2Appro1
for a given query q, is at most three times the cost of the optimal
solution OPT : Cost(V) ≤ 3 · Cost(OPT).

Proof:Let d = maxoi∈V {Dist(oi, q)}, where V is the solution re-
turned by Type2Appro1. Obviously, the optimal solution OPT
satisfies Cost(OPT) ≥ d.

For the solution V , the largest possible distance between two
objects in V is 2d. Thus, we have the following cost: Cost(V) ≤
d+ 2d ≤ 3 · Cost(OPT). 2

4.2 Approximation Algorithm 2
Based on Type2Appro1, we present an algorithm with a better

approximation bound.
Let of be the furthest object returned by Type2Appro1, and let

ts be the keyword covered by of , but not by nearer objects in the
result set. We create a new query qof using the position of of
and the keywords of the original query q, i.e., qof .λ = of .λ and
qof .ψ = q.ψ. We invoke Type2Appro1 to find a group of objects
for qof . We compute the cost of this group with respect to q, and
this cost serves as the initial lowest cost.

Algorithm 5: Type2Appro2(q, irTree)
1 U ← new min-priority queue;
2 U .Enqueue(irTree.root, 0);
3 V ← Type2Appro1(q, irTree);
4 CostV ← the cost of V ;
5 ts ← the word only covered by the furthest object in V ;
6 while U is not empty do
7 e← U.Dequeue();
8 if e is not an object then
9 if minDist(q, e) ≥ CostV then break;

10 foreach entry e′ in node e do
11 if ts ∈ e′.ψ then
12 if e is a non-leaf node then
13 U .Enqueue(e′, minDist(q, e′));
14 else U .Enqueue(e′, Dist(q, e′));

15 else
16 if Dist(q, e) ≥ CostV then break;
17 qe.λ← e.λ; qe.ψ ← q.ψ;
18 V ′← Type2Appro1(qe, irTree);
19 CostV ′ ← the cost of V ′;
20 if CostV ′ < CostV then
21 CostV ← CostV ′ ;
22 V ← V ′;

23 return V

Then we incrementally find the next nearest objects containing
keyword ts. For each such object ots , we create a query for ots in
the same way as for of . Similarly, Type2Appro1 is used to find a
group of objects for the query. If the cost of this group is smaller
thanCostV , we updateCostV , and this group becomes the current
best group. This process is repeated until we reach an object whose
distance to q is larger than CostV , or until we have considered all
objects containing keyword ts.

The pseudocode is given in Algorithm 5. In lines 3–4, we find a
group V that satisfies the query using Type2Appro1, and we com-
pute its costCostV . Then we find the word ts that is only contained
in the furthest object in V (line 5). In lines 6–22, we incrementally
search for the next nearest objects containing ts within the range of
CostV to q. We dequeue an element e from U . If it is an IR-tree
node, we check if its minimum distance exceeds CostV (line 9). If
so, the algorithm terminates since all further-away objects have a
higher cost than the current best solution and will not be contained
in the result group. Otherwise, we read all its child nodes and insert
the nodes that contain ts into U according to their minimum dis-
tances to q (lines 10–14). If e is a spatial object, we also compare
its distance to q with CostV to determine whether the algorithm
terminates (line 16). In lines 17–19, we create a new query qe with
the position of e and the texts of q, and we then find a group using
qe as the query and compute its cost. If this new cost is smaller than
CostV , we updateCostV and the current best group (lines 20–22).
Finally, we return V as the result group.

Since we invoke algorithm Type2Appro1 on each object con-
taining ts, in the worst case, this algorithm runs linearly in terms
of both the number of query keywords and the size of the dataset.
However, in practice, only a fraction of the dataset needs to be con-
sidered.

Example 4.2: Recall query q and the dataset in Example 4.1. Al-
gorithm Type2Appro1 is invoked to return a group {o1, o2, o4}, in
which o4 is the furthest and contains t5. We search for a group near
o4, that is {o1, o3, o4} with cost 9 (Dist(q, o4) + Dist(o3, o4) = 4
+ 5). The next nearest object containing t5 is o7. For o7, we find a
group {o2, o7, o8} with cost 8 (Dist(q, o8) + Dist(o7, o8) = 6 + 2),

which is better than that of the previous one. Therefore {o2, o7, o8}
is the result. Note that the optimal group is {o1, o2, o7} with cost
7.5 ((Dist(q, o7) + Dist(o7, o1) = 5 + 2.5). 2

We proceed to study the approximation ratio of the algorithm.

Lemma 4.2: Given an object oj containing ts, the cost of the
group found at the position of oj , denoted by CostV (oj), is in the
following range: Dist(q, oj) + Dist(oj , omax) ≤ CostV (oj) ≤
Dist(q, oj)+3Dist(oj , omax), in which omax is the furthest object
from oj in the group.

Proof: 1) Dist(q, oj) is a lower bound on the distance of this group
to q , and Dist(oj , omax) is a lower bound on the diameter of this
group. As a result, the minimum cost of this group is Dist(q, oj) +
Dist(oj , omax).

2) Dist(q, oj) + Dist(oj , omax) is the maximum possible dis-
tance to q of this group. Further, the diameter will not exceed
2Dist(oj , omax) since every object of this group is in the circle
with center oj and radius Dist(oj , omax). Therefore, the cost of
this group is upper bounded by Dist(q, oj) + 3Dist(oj , omax).

2

Lemma 4.3: Let OPT denote the optimal group, and let oj denote
the object containing word ts in OPT , and let omax denote the
furthest object to oj in group V found by Type2Appro1. It holds
that: CostOPT ≥ Dist(q, oj) + Dist(oj , omax).

Proof: Object omax must contain some keyword, denoted by t,
which is not covered by the other objects in V . Among objects
containing t, omax is the closest to oj . Therefore, in OPT , the
object covering t cannot be closer to oj than omax. As a re-
sult, Dist(oj , omax) is a lower bound on the diameter of OPT .
Dist(q, oj) is a lower bound on the distance between q and OPT .
Therefore, CostOPT ≥ Dist(q, oj) + Dist(oj , omax). 2

Lemma 4.4: The approximation ratio of algorithm Type2Appro2
is not larger than 2.
Proof:Let oj denote the object containing word ts in the optimal group
OPT . Let CostAPPR be the cost returned by Algorithm Type2Appro2.
We know that CostAPPR ≤ CostV (oj), because CostAPPR is the small-
est among all cost values of groups found at each object containing ts. Let
oi be the nearest object containing ts. We get CostAPPR ≤ CostV (oi) ≤
3Dist(q, oi) according to Theorem 4.1. Therefore,

CostAPPR

CostOPT
≤

3Dist(q, oi)

CostOPT
≤

3Dist(q, oi)

Dist(q, oj) + Dist(oj , omax)

= 2 +
3Dist(q, oi)− 2(Dist(q, oj) + Dist(oj , omax))

Dist(q, oj) + Dist(oj , omax)

a) If Dist(q, oj) + Dist(oj , omax)≥1.5Dist(q, oi) then
CostAPPRCostOPT ≤ 2.
b) If Dist(q, oj) + Dist(oj , omax) < 1.5Dist(q, oi), because
Dist(q, oj) ≥ Dist(q, oi), then Dist(oj , omax) ≤ 0.5Dist(q, oj).

Since CostAPPR ≤ CostV (oj), we have:

CostAPPR

CostOPT
≤
CostV (oj)

CostOPT

≤
Dist(q, oj) + 3Dist(oj , omax)

Dist(q, oj) + Dist(oj , omax)

= 2 +
Dist(oj , omax)− Dist(q, oj)

Dist(q, oj) + Dist(oj , omax)

≤ 2− 0.5
Dist(oj , omax)

Dist(q, oj) + Dist(oj , omax)
≤ 2

Thus, we complete the proof. 2

4.3 Exact Algorithm
It is challenging to develop an exact algorithm for TYPE2 spatial

group keyword queries, as it appears that an exact algorithm cannot
avoid an exhaustive search of the object space.

We utilize the Type2Appro2 algorithm to first derive an upper
bound cost for the best group and then use this cost to bound the
exhaustive search in the object space. Specifically, we develop sev-
eral pruning strategies to prune the enumeration space. With these
efforts, we expect the exact algorithm to be reasonably efficient
when the dataset contains at most tens of thousands of objects and
the number of query keywords is small.

Before presenting the idea underlying the algorithm, we define
the concept of covering node set and the lower bound cost of such
a set.

DEFINITION 1 (COVERING NODE SET). Given a query q, a
covering node set is a set of nodes that cover the query keywords,
with each node contributing at least one object to the final result.

DEFINITION 2. Given a query q and a covering node set N ,
1) if N contains only one node e, its lower bound cost is:

minCost(N) = minDist(q, e)

2) if N contains multiple nodes, its lower bound cost is:

minCost(N) =maxei∈NminDist(q, ei)

+maxej ,ek∈NminDist(ej , ek),

where maxei∈NminDist(q, ei) is the minimum distance from q to
a group from N , and maxej ,ek∈NminDist(ej , ek) is the minimum
diameter of a group from N . Therefore, minCost(N) is the lower
bound of the cost of the best group from N .

The algorithm’s idea is to perform a best-first search on the IR-
tree to find the covering node sets, with some objects from these
nodes constituting a group satisfying the keywords requirement of
a query. We process the covering node set with the lowest cost to
find covering node sets from their child nodes. When we reach
a covering node set consisting of leaf nodes, we find a group of
objects with the lowest cost by performing an exhaustive search.

The pseudocode is given in Algorithm 6. A priority queue U
stores the covering node sets. Algorithm 4 (Type2Appro1) is in-
voked to find a group, and its cost serves as the current lowest cost
(lines 3–4). We next search from the root node, enumerating all its
child node sets to find covering node sets. If a node set covers the
query keywords, we estimate its lower bound cost by Definition 2
and insert it into U with the estimated cost as the key. After we fin-
ish enumerating the covering node sets of a covering node set, we
dequeue a covering node set N from U , and we find its lower level
covering node sets that cover the query keywords. The covering
node sets whose lower bounds are smaller than the current lowest
cost are inserted into U (lines 14–17). Once we reach a leaf node,
we do an exhaustive search to get the best group in the covering
node set, and we update the lowest cost stored in CostV with the
cost of this group (lines 10–12).

The algorithm terminates when the lower bound of the covering
node set at the top position of U is larger than the current lowest
cost (line 7) because the remaining covering node sets in U have
larger costs than the current lowest cost, and because covering node
sets at their lower levels do not contain better groups according to
Lemma 4.5.

Lemma 4.5: For any lower level covering node set L enumerated
from covering node setN , we haveminCost(L) ≥ minCost(N).

Algorithm 6: Top-Down Search (q, irTree)

1 U ← new min-priority queue;
2 U .Enqueue(irTree.root,0);
3 V ← Type2App2(q, irTree);
4 CostV ← the cost of V ;
5 while U is not empty do
6 N ← U .Dequeue();
7 if minCost(N) ≥ CostV then break;
8 if N contains leaf nodes then
9 V ′ ← ExhaustiveSearch(N);

10 CostV ′ ← the cost of V ′;
11 if CostV ′ < CostV then
12 CostV ← CostV ′ ; V ← V ′;

13 else
14 S ← EnumerateNodeSets(N , CostV , q);
15 foreach node set ns in S do
16 if q.ψ ⊆ ns.ψ then
17 U .Enqueue(ns, minCost(ns));

18 return V and CostV

Proof: a) Denote by la the child node of the node ni that is the
furthest from Q in N . We have: minDist(q, la) ≥ minDist(q, ni).
b) Denote by lb and lc the child nodes of nj and nk that have
the largest distance among all pairs of child nodes from nj and
nk. We then have: minDist(lb, lc) ≥ minDist(nj , nk). In addi-
tion, as la, lb, and lc ∈ L, it is true that maxli∈LminDist(q, li) ≥
minDist(q, la), andmaxlj ,lk∈LminDist(lj , lk) ≥ minDist(lb, lc).
We then obtainminCost(L) ≥ minDist(q, la)+minDist(lb, lc) ≥
minCost(N). 2

Algorithm 7: EnumerateNodeSets (N , Cost, q)
1 setList← ∅;
2 foreach node ni in N do
3 cListi ← ∅;
4 L1

i ← ∅;
5 foreach child node ci of ni do
6 if minCost(ci) ≥ Cost then L1

i ← L1
i

∪
ci;

7 for m from 2 to (|q.ψ| − |N |+ 1) do
8 Lmi ← ∅;
9 foreach node set NS1 ∈ Lm−1

i do
10 foreach node set NS2 ∈ Lm−1

i do
11 if NS1 and NS2 share the first (m− 1) nodes

then
12 NS←Merge(NS1, NS2);
13 if minCost(NS) < Cost then
14 Lmi ← Lmi

∪
NS;

15 cListi ← cListi
∪
Lmi ;

16 foreach node set ns formed by node sets selected from each of
cList1...cListn do

17 if minCost(ns) < Cost then
18 setList← setList

∪
ns;

19 return setList;

We proceed to describe EnumerateNodeSets called in line 14,
which enumerates all possible lower level covering node sets from
an upper level covering node set. First, we consider the simple
case where the covering node set N only contains one node. We
use a bottom-up method to find all the covering node sets. Let
n = |q.ψ| be the number of keywords in query q. The size of a
covering node set is at most n based on the pigeon-hole principle.

We first enumerate the covering node sets that consist of a single
node. Then these covering node sets are combined to form covering
node sets with two members. In general, all the covering node
sets of size m can be combined by two covering node sets of size
(m − 1). If two covering node sets with size (m − 1) share the
first (m− 2) nodes and the lower bound cost of the new combined
node set is smaller than that of the current lowest cost, this new set
is a candidate covering node set.

Next, we move to the case where a covering node setN contains
more than one node. For each node, we follow the previous method
to get a list of candidate node sets. However, we do not need to
enumerate all combinations. Rather, we only need to enumerate its
child nodes up to size (|q.ψ|−|N |+1) according to the pigeon-hole
principle (each node in N must contribute at least one child node).
After we get a list of child node sets from each node, we select a
node set from each list and merge them to determine whether they
are a covering node set and to learn whether the merged node set
has a lower bound cost that is smaller than the current lowest cost.
The details of EnumerateNodeSets are covered in Algorithm 7.

5. EXPERIMENTAL STUDY

5.1 Experimental Settings
Algorithms. For the TYPE1 spatial group keyword query, we con-
sider the approximation algorithm from Section 3.1 (denoted by
T1A1), the exact algorithm without index from Section 3.2 (de-
noted by T1E1), and the exact algorithm utilizing the IR-tree from
Section 3.3 (denoted by T1E2). For the TYPE2 spatial group key-
word query, we study the two approximation algorithms in Sec-
tions 4.1 and 4.2 (denoted by T2A1 and T2A2, respectively) and
the exact algorithm from Section 4.3 (denoted by T2E1).
Dataset and queries. We use three datasets. Table 6 shows some
properties of these datasets. Dataset GN is extracted from the U.S.
Board on Geographic Names (geonames.usgs.gov), in which each
object is a location with a geographic name (e.g., valley). Dataset
Web is generated from two real datasets. One is WEBSPAM-
UK20071 that consists of a large number of web documents; the
other is a spatial dataset containing the tiger Census blocks in Iowa,
Kansas, Missouri, and Nebraska (www. rtreeportal.org). We ran-
domly combine web documents and spatial objects to get the Web
dataset. Dataset Hotel contains spatial objects that represent some
hotels in the U.S. (www.allstays.com). Each object has a location
and a set of words that describe the hotel (e.g., restaurant, pool).

Hotel is small and is used to evaluate the performance of our
algorithms when the dataset and index are memory resident, and the
other two large datasets are used to evaluate our algorithms when
the dataset and index are disk-based.

Property Web GN Hotel
Number of objects 579,727 1,868,821 20,790

Number of unique words 2,899,175 222,409 602
Number of words 249,132,883 18,374,228 80,845

Table 6: Dataset properties

We generate 5 query sets in the space of GN, in which the num-
ber of keywords is 3, 6, 9, 12, and 15, respectively. We also gen-
erate 5 similar query sets in the space of both Web and Hotel.
Each set comprises 50 queries. We rank words in descending order
of their frequencies in each dataset. The keywords of each query
are randomly generated from the words in the percentile range of
10–40, and the location is randomly generated in the whole region
of the dataset. Such queries would need similar processing time,

1http://barcelona.research.yahoo.net/webspam/datasets/uk2007

and we report the average cost of queries in each query set. We
also conduct experiments on queries generated in other ways, and
a summary of experimental results is presented in Section 5.2.3.
Setup. The IR-tree index structure is disk resident, and the page
size is 4KB. The number of children of a node in the IR-tree is com-
puted given the fact that each node occupies a page. This translates
to 100 children per node in our implementation.

All algorithms were implemented in VC++ and run on an In-
tel(R) Core(TM)2 Duo CPU E6550 @2.66GHz with 4GB RAM.

5.2 Experimental Results

5.2.1 Type 1 Spatial Group Keyword Query
Efficiency of different algorithms. The objective of this set of ex-
periments is to study the efficiency of the three algorithms when we
vary the number of query keywords. Figure 3 shows the runtime
of the three algorithms on the dataset GN. As expected, the ap-
proximation algorithm T1A1 runs much faster than the two exact
algorithms, i.e., T1E1 and T1E2. The runtime of the approxima-
tion algorithm T1A1 increases almost linearly with the number of
query keywords. It is understandable that its running time is in pro-
portion to the number of query keywords: T1A1 keeps searching
for the object with the lowest cost that covers part or all of the query
keywords, and it terminates when a group of objects that covers the
query keywords has been found.

For the two exact algorithms, T1E1 runs slower than T1E2. T1E1
needs to scan the whole dataset and process all the objects that over-
lap with the query keywords. In contrast, T1E2 avoids scanning
objects that do not contain query keywords by utilizing the IR-tree
and can avoid accessing the objects whose distances to the query
are larger than the cost of the discovered group, thus pruning the
search space significantly. The experimental results demonstrate
the usefulness of the IR-tree based pruning strategies. It can also
be observed that the runtimes of T1E1 and T1E2 increase with the
number of keywords; however, the increase is not exponential. The
reason is that computing the costs of objects dominates the running
time over the dynamic programming component (with an exponen-
tial complexity in terms of the number of keywords).

The runtime is consistent with I/O costs, and we do not report
I/O costs due to the space limitation.
Accuracy of the approximation algorithm. Figure 4 shows the
accuracy of T1A1 on GN. The approximation algorithm is capable
of achieving very accurate results.

100

1000

10000

100000

3 6 9 12 15

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of keywords

T1E1
T1E2
T1A1

Figure 3: Runtime (GN)

1

1.002

1.004

1.006

1.008

1.01

3 6 9 12 15

R
at

io

number of keywords

T1A1/T1E1

Figure 4: Appro. Ratio (GN)

Experiments on Web. This experiment studies the efficiency and
accuracy on the dataset Web in which each object is associated
with a large set of keywords. Figure 5 shows the runtime of the
algorithms T1A1 and T1E2, and Figure 6 shows the accuracy of
T1E2. To ensure readability of the figures, we omit T1E1 since it is
inferior to T1E2 (in orders of magnitude). We observe qualitatively
similar results on Web as we do on GN.
Experiments on the memory-resident dataset Hotel. This exper-
iment studies the performance of our algorithms when the dataset

10

100

1000

5000
10000

3 6 9 12 15

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of keywords

T1E2
T1A1

Figure 5: Runtime (Web)

1

1.05

1.1

1.15

1.2

3 6 9 12 15

R
at

io

number of keywords

T1A1/T1E2

Figure 6: Appro. Ratio (Web)

and index are in memory. Figure 7 shows the runtime and Figure 8
shows the accuracy of T1A1. We observe qualitatively similar re-
sults as we do on the two disk-resident datasets. T1E2 takes only
slightly more time than T1A1 when the number of keywords is
smaller than 12, while T1E1 performs much slower. We also con-
duct experiments on Hotel when the data and index are disk-based,
and we observe qualitatively similar results.

10

100

1000

5000

3 6 9 12 15

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of keywords

T1E1
T1E2
T1A1

Figure 7: Runtime (Hotel)

1

1.005

1.01

1.015

1.02

3 6 9 12 15

R
at

io

number of keywords

T1A1/T1E1

Figure 8: Appro. Ratio(Hotel)

Scalability. To evaluate scalability, we generate 5 datasets con-
taining from 2 to 10 million objects: we generate new locations by
copying the locations in GN to nearby locations while maintaining
the real distribution of the objects; for each new location, a docu-
ment is selected randomly from the text descriptions of the objects
in GN. Figure 9 shows the runtime of T1A1 and T1E2 (the num-
ber of query keywords is 6). T1A1 scales well with the size of the
dataset. The exact algorithm T1E2 also scales well. The accuracy
changes only slightly; we omit the details due to the space limita-
tion. T1E1 runs much slower than T1A1 and T1E2 and is omitted.

20

15

10

5

1
10M8M6M4M2M

R
un

tim
e

(s
ec

on
ds

)

number of objects

T1A1
T1E2

Figure 9: Scalability (Type1)

10

8

6

4

2

0
10M8M6M4M2M

R
un

tim
e

(s
ec

on
ds

)

number of objects

T2A1
T2A2

Figure 10: Scalability (Type2)

5.2.2 Type 2 Spatial Group Keyword Query
Efficiency of the algorithms and accuracy of the approximation
algorithms. The objective of this set of experiments is to evaluate
the efficiency of the two approximation algorithms T2A1 and T2A2
and the exact algorithm T2E1, and to evaluate the accuracy of the
two approximation algorithms, when we vary the number of query
keywords. Figure 11 shows the runtime of the three algorithms,
and Figure 12 shows the accuracy of T2A1 and T2A2 on GN.

As can be seen, T2A1 outperforms T2A2 in terms of runtime,
and the accuracy of T2A1 is worse than that of T2A2. This is
because T2A1 terminates once a group of nearest objects cover-
ing query keywords is found. In contrast, T2A2 may invoke T2A1

10

100

1000

10000

500000

3 6 9 12 15

R
un

tim
e

(s
ec

on
ds

)

number of keywords

T2A1
T2A2
T2E1

Figure 11: Runtime (GN)

1

1.02

1.04

1.06

1.08

1.1

3 6 9 12 15

R
at

io

number of keywords

T2A1/T2E1
T2A2/T2E1

Figure 12: Appro. Ratio (GN)

multiple times. Both T2A1 and T2A2 achieve good accuracy com-
pared with the optimal group returned by T2E1. T2E1 is able to
find the optimal group. However, it is much slower than the two
approximation algorithms. As expected, with the increase in the
number of keywords, the runtime of T2E1 increases exponentially
due to its enumerating the covering node sets and performing ex-
haustive search. When the number of keywords is small, its run-
time would be reasonable for applications without a high demand
on query time, e.g., finding research partners. However, approxi-
mation algorithms represent a better option when the query time is
essential.
Experiments on Web. Figure 13 shows the runtimes of T2A1,
T2A2, and T2E1. Figure 14 shows the accuracy of T2A1 and
T2A2. We observe qualitatively similar results on Web as we do
on GN.

10

100

1000

10000

100000
500000

3 6 9 12 15

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of keywords

T2A1
T2A2
T2E1

Figure 13: Runtime (Web)

1

1.05

1.10

1.15

1.2

3 6 9 12 15

R
at

io

number of keywords

T2A1/T2E1
T2A2/T2E1

Figure 14: Appro. Ratio(Web)

10

100

1000

10000

100000

3 6 9 12 15

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of keywords

T2A1
T2A2
T2E1

Figure 15: Runtime (Hotel)

1

1.05

1.10

1.15

1.2

3 6 9 12 15

R
at

io

number of keywords

T2A1/T2E1
T2A2/T2E1

Figure 16: Appro. Ratio(Hotel)

Experiments on memory-resident dataset Hotel. We evaluate
performance when the dataset and index are in memory using Ho-
tel. Figure 15 shows the runtime of the three algorithms on Hotel,
and Figure 16 shows the accuracy of T2A1 and T2A2. The results
are consistent with those obtained for disk-resident datasets. T2A2
runs slower than T2A1 while it has better accuracy. The runtime of
T2E1 increases exponentially with the number of keywords. When
the dataset Hotel and index are disk-based, we observe qualita-
tively similar results.

Scalability. We use the same settings as those used in the scalabil-
ity experiment for TYPE1 query. Figure 10 shows the runtime of
T2A1 and T2A2. Both approximation algorithms scale well with
the size of the dataset. The runtime of T2E1 increases exponen-
tially with the dataset size. Thus, to ensure readability of the fig-
ure, we omit T2E1, which is orders of magnitudes slower than the
approximation algorithms.

5.2.3 Additional Experiments
We also generate queries using the keywords beyond the per-

centile range of 10–40, and we report a summary of experimental
results. From the perspective of efficiency, the approximation al-
gorithms perform similarly on all the queries, irrespective of the
frequencies of the query keywords. However, on queries contain-
ing frequent words, the runtime of exact algorithm T1E2 is slightly
slower than the runtime reported in Section 5.2.1, and T2E1 per-
forms much worse than the results reported in Section 5.2.2. If we
use infrequent words as query keywords, the exact algorithms run
faster, but are still much slower than the approximate algorithms.

In terms of accuracy, the approximation algorithms have better
approximation ratio on queries containing many infrequent words.
In the extreme case, when all query keywords occur once in the
dataset, the approximation algorithms return the correct results.
Generally, the approximation ratio becomes worse when frequent
words are used, e.g., around 1.2–1.5 for T1E1.

6. RELATED WORK
Spatial web objects are gaining in prevalence, and numerous

works on geographical retrieval study the problem of extracting
geographic information from web pages (e.g., [1, 11, 13]), which
yields spatial web objects that can subsequently be queried.

Commercial services such as Google and Yahoo! offer local-
search functionality. Given a spatial keyword query, they return
spatial web objects, e.g., stores and restaurants, near the query lo-
cation. The results consist of single objects that each satisfy the
query in isolation. In contrast, we aim to find groups of objects
such that the objects in a group collectively satisfy a query.

Several recently proposed hybrid indexes [5, 8, 10, 14, 15] that
tightly integrate spatial indexing (e.g., the R-tree) and text index-
ing (e.g., inverted lists). In these indexes, each entry e in a tree node
stores a keyword summary field that concisely summarizes the key-
words in the subtree rooted at e. This enables irrelevant entries to
be pruned during query processing.

The IR2-tree and the bR*-tree [14] augment the R-tree with sig-
natures and bitmaps, respectively. We use the IR-tree [8], covered
in Section 3.1, as our index structure due to two features of the
IR-tree. First, the fanout of the tree is independent of the number
of words of objects in the dataset. Second, during query process-
ing, only (a few) posting lists relevant to the query keywords need
to be fetched. However, we note that our proposed algorithms are
not tied to the IR-tree, but can be used also with the other tightly
combined index.

Most existing works on spatial keyword queries retrieve single
objects that are close to the query point and are relevant to the query
keywords. In contrast, we retrieve groups of objects that are close
to the query point and collectively meet the keywords requirement.

To the best of our knowledge, the only work that retrieves groups
of spatial keyword objects relates to the mCK query [14, 15] that
takes a set of m keyword as argument. It returns m objects of min-
imum diameter that match the m keywords. It is assumed that each
object in the result corresponds to a unique query keyword. In con-
trast, our query takes both a spatial location and a set of keywords
as arguments, and its semantics are quite different from those of the
mCK query.

7. CONCLUSIONS AND FUTURE WORK
We present the new problem of retrieving a group of spatial ob-

jects, each associated with a set of keywords, such that the group
covers the query’s keywords and has the lowest cost measured by
their distance to the query point, and the distances between the ob-
jects in the group. We study two particular instances of the prob-

lem, both of which are NP-complete. We develop approximation
algorithms with provable approximation bounds and exact algo-
rithms to solve the two problems. Results of experimental eval-
uation offer insight into the efficiency and the accuracy of the ap-
proximation algorithms, and the efficiency of the exact algorithms.

This work opens to a number of promising directions for future
work. First, it is worth extending the algorithm to find top-k groups.
An open problem here is to what extent we should allow the overlap
among top-k groups. The top-k groups would provide users more
options. It might not be useful to return groups sharing lots of mem-
bers, while it seems to be reasonable to allow a certain degree of
overlap groups. Second, it is of interest to develop algorithms for
alternative cost functions, such as SUM for both C1(·) and C2(·).
For the top-k groups problem, one meaningful research issue is to
determine which types of cost function are most amenable to effi-
cient processing. Third, it is of interest to consider the problem of
partial coverage of query keywords. Finally, treating all query key-
words equally may not be suitable in some application scenarios.
It is of interest to consider an information retrieval ranking model,
such as the vector space model, when computing the text relevance
for the spatial group query problem.

8. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful comments.

C. S. Jensen is an adjunct professor at University of Agder, Norway.
This research was supported in part by the Geocrowd project.

9. REFERENCES
[1] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-where:

geotagging web content. In SIGIR, pp. 273–280, 2004.
[2] E. M. Arkin and R. Hassin. Minimum-diameter covering problems.

Networks, 36(3):147–155, 2000.
[3] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via

inclusion-exclusion. SIAM J. Comput., 39(2):546–563, 2009.
[4] N. Bourgeois, B. Escoffier, and V. T. Paschos. Efficient

approximation of min set cover by moderately exponential
algorithms. Theor. Comput. Sci., 410(21-23):2184–2195, 2009.

[5] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. PVLDB, 3(1):373–384, 2010.

[6] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD, pp. 277–288, 2006.

[7] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4:233–235, 1979.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[9] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time
approximation of weighted set cover. Inf. Process. Lett.,
109(16):957–961, 2009.

[10] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pp. 656–665, 2008.

[11] J. Ding, L. Gravano, and N. Shivakumar. Computing geographical
scopes of web resources. In VLDB, 2000.

[12] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In B. Yormark, editor, SIGMOD’84, Proceedings of
Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pp.
47–57. ACM Press, 1984.

[13] K. S. McCurley. Geospatial mapping and navigation of the web. In
WWW, pp. 221–229, 2001.

[14] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, pp. 688–699, 2009.

[15] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources
in web 2.0. In ICDE, pp. 521–532, 2010.

[16] J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2):6, 2006.

