
Lazy XML Updates: Laziness as a Virtue of Update and
Structural Join Efficiency

Barbara Catania
University of Genova, Italy

catania@disi.unige.it

Beng Chin Ooi
National University of Singapore, Singapore

ooibc@comp.nus.edu.sg

Wenqiang Wang
National University of Singapore, Singapore

wangwq@comp.nus.edu.sg

Xiaoling Wang
Fudan University, China
wxling@fudan.edu.cn

ABSTRACT
XML documents are normally stored as plain text files.
Hence, the natural and most convenient way to update XML
documents is to simply edit the text files. But efficient query
evaluation algorithms require XML documents to be in-
dexed. Every element is given a unique identifier based on its
location in the document or its preorder-traversal order, and
this identifier is later used as (part of) the key in the index.
Reassigning orders of possibly a large number of elements is
therefore necessary when the original XML documents are
updated. Immutable dynamic labeling schemes have been
proposed to solve this problem, that, however, require very
long labels and may decrease query performance. If we con-
sider a real-world scenario, we note that many relatively
small ad-hoc XML segments are inserted/deleted into/from
an existing XML database. In this paper, we start from this
consideration and we propose a new lazy approach to handle
XML updates that also improves query performance. The
lazy approach: (i) completely avoids reassigning existing el-
ement orders after updates; (ii) improves query processing
by taking advantages from segments. Experimental results
show that our approach is much more efficient in handling
updates than using immutable labeling and, at the same
time, it also improves the performance of recently defined
structural join algorithms.

1. INTRODUCTION
XML is currently the most widely accepted standardiza-

tion effort in the area of document representation through
markup languages, and it is rapidly becoming a standard for
data representation and exchange over the Internet. Most
research works in the area focus on how to efficiently query
XML documents, and structural join is nowadays considered
a core operation in optimizing XML path queries. Many in-
dex schemes have been proposed to efficiently evaluate struc-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 ...$5.00.

tural joins. Most of them model an XML document as an
ordered tree, and every element/attribute is given a unique
identifier (label) based on its location in the XML document
or its order in the preorder traversal of the tree. This la-
bel is later used as the key or part of the key in the index.
The results returned from structural join algorithms are typ-
ically pairs of element/attribute labels, which are later used
to evaluate other path query expressions.

Obviously, to fully evolve XML into a universal data rep-
resentation and exchange standard, we must not only pro-
vide users with an efficient way to evaluate path queries,
but we must also provide an efficient way to update XML
documents. In this paper, we consider structural update,
where a new element is inserted into (or removed from) an
XML document. Attributes can be considered as subele-
ments of an element and treated accordingly. The major
problem of structural update is that, in order to maintain
the correctness of query results, we need to update the la-
bels of possibly a large number of elements when the original
XML document has been updated, which makes the update
operation very inefficient.

Previous attempts to solve this problem basically rely on
various labeling schemes. [7] is an extended interval-based
scheme where additional space is reserved for future inser-
tion. This scheme fails if the space required to hold in-
serted nodes has exceeded the reserved space. Prefix label-
ing [4, 8, 11] allows each node to inherit its parent’s label
as the prefix of its own label so that inserting new nodes
does not affect the labels of existing nodes, i.e., labels are
immutable. Unfortunately, results presented in [4] estab-
lish that any immutable labeling scheme requires Ω(N) bits
per label, where N is the size of the document, thus in-
curring in high storage overhead. Moreover, structural join
algorithms using a prefix labeling scheme are less efficient
than those using an interval-based labeling scheme because
determining the containment relationship between two ele-
ments using prefix comparison is slower than using simple
integer comparison. The prime number labeling scheme [12]
overcomes some problems of prefix-labeling by assigning to
each node a product of a prime number as its label and the
containment relationship of two elements can be determined
by the properties of prime numbers. The order of each el-
ement is preserved by maintaining a table of simultaneous
congruences of element label sets and element order sets.
Heavy computations are required when inserting a new el-
ement since computing simultaneous congruences is costly.

A different approach to cope with updates while guarantee-
ing good query performance has been proposed in [9], where
a dynamic, thus mutable, labeling scheme is used together
with specific data structures that provide a good trade-off
between query and update costs. However, it is not clear
what the real overhead is in using the proposed data struc-
ture for structural join computation since no experimental
results for that have been reported.

The problem of achieving at the same time XML update
and structural join efficiency has therefore not been com-
pletely solved until now. Motivated by such observation, in
this paper, we present a different solution to the problem of
efficiently updating and querying XML documents in very
dynamic environments. The proposed solution relies on the
consideration that, in real world scenarios, XML document
updates tend to be done in batch manner, i.e., multiple XML
elements are inserted (or removed) together. As an exam-
ple, consider the DBLP XML database. It contains many
articles, books and proceedings and almost each day new
articles and proceedings need to be added into the DBLP
database. Due to the high frequency of update operations,
updating the database after each single request of element
insertion/deletion is not a feasible solution. Another exam-
ple is represented by an on-line registration system. In such
a system, once a user submits a registration form, an auto-
matically generated XML document containing information
about the user’s identification, name, occupation, etc., is in-
serted into the system. In this case, multiple XML elements
are inserted instead of a single element. In both examples,
instead of inserting/deleting each element when requested,
it seems more reasonable to generate XML segments corre-
sponding to a set of elements that must be inserted (deleted)
into (from) the whole database and then update the data-
base once for each segment.

In this paper we present a new approach to dealing with
both updates and queries in an efficient way, based on the
usage of segments. We call it lazy since segments are used to
avoid computations during both updates and queries. The
whole XML database is modeled as a single super document,
by simply adding a dummy root to all the existing XML
documents, and update operations correspond to inserting
(or removing) XML “segments” into (or from) the super
document. Note that, assuming to start from an empty
database, any XML database corresponds to a single XML
document composed of several segments, each of them being
an XML document by itself.

In the considered model, each element has two positions.
The first one is its local position with respect to the XML
segment it belongs to. The second one is its global position
in the super document. The local label will never change
once it is assigned to an element, but it is not unique. On
the other hand, the global label is unique but it will change
if an update occurs. From these considerations it follows
that if a local label is used as the key (or part of the key) in
the element index, after an update we can avoid updating
the existing element labels. However, since local labels are
not unique, they cannot be directly used in structural join.

The key observation here is that the number of inserted
(or removed) segments is likely to be significantly less than
the number of XML elements these segments contain. For
example, an XML document corresponding to a registration
form may contain 20-30 XML elements. This gives us the
inspiration to build an in-memory update log to record the

information of every segment. The information recorded
must be sufficient to support structural join between seg-
ments. We are aware that, after many insertions, the size
of the update log could grow too large to be held inside
memory. However, as we will show in our experiments, the
size of the update log is small enough not to pose a problem
for modern machines. Moreover, the database administrator
can rebuild the index for the whole XML database during
maintenance hours, and therefore the update log can be pe-
riodically cleared for further update operations.

Another difficulty about updating XML documents is that
in real world scenarios, XML documents are very large and
normally stored as plain text files. Therefore, inserting (re-
moving) a segment is done by simply text editing, e.g., only
the start location in the super document and the length of
the inserted (removed) segment are available to us. The up-
date log must therefore allow us to identify the structural
information about the segments given only these two values.

Finally, we note that the usage of segments does not re-
quire the definition of specific XML query processing tech-
niques. Rather, the update log can be easily integrated in
existing structural join algorithms. However, segment-aware
query processing techniques can be defined to reduce query
processing costs. For example, segments can be used for par-
allelizing query processing or defining new segment-aware
structural join algorithms. In this paper, we present one of
such algorithms and we show that it improves query perfor-
mance compared to non-segment based algorithms.

The contributions of this paper are the following:

• We propose a new lazy approach to handle XML doc-
ument update operations using a novel in-memory up-
date log.

• We present update algorithms for the proposed update
log, assuming that each operation takes as input the
position in the super document where the segment has
to be inserted/deleted and the length of the segment.

• We present a structural join algorithm that works with
our lazy approach. The algorithm has been obtained
by extending the stack-based structural join algorithm
proposed in [1] to deal with segments.

• We conduct experimental study on the update and
structural join operations. The results show that our
approach is significantly more efficient than using ex-
isting dynamic labeling approaches for updates and,
additionally, it improves query processing performance.

The paper is organized as follows. Section 2 presents re-
lated work. Section 3 introduces the structure of the up-
date log together with update algorithms, and suggests how
to build an element index with an update log. Section 4
presents a structural join algorithm based on the element
index and the update log usage. Experimental results are
then discussed in Section 5 and concluding remarks are pre-
sented in Section 6.

2. RELATED WORK
Compared to path query evaluation, the topic of updating

XML documents has received much less attention from the
research community. In [10], a set of basic update operations
for XML data is proposed and the XML query language,

XQuery, is extended to incorporate these update operations.
In [6, 13], efficient update algorithms for summary indexes
have been proposed. The work in [6], based on the notion
of graph bisimilarity, analyzes two kinds of updates – the
addition of a subgraph, intended to represent the addition
of a new document to the database, and the addition of
an edge, to represent a small incremental change. In [13],
algorithms for maintaining a minimal index are provided.

Several labeling schemes have been proposed recently to
solve the update problem. Among the proposed immutable
labeling schemes (all incurring in high storage overhead ac-
cording to [4]), [11] proposed an integer-base prefix labeling
scheme where each label inherits its parent’s label as its
prefix and the nth child of a node is labeled with integer n.
Obviously, this scheme fails if there are more than 10 child
nodes. Adding some sort of delimiter in the label solves
this problem, but it also brings significant storage and query
process overhead since the delimiter must be stored with the
label and time to indicate the parent-child relationship is no
longer constant. The binary-based dynamic labeling scheme
proposed in [4] encodes every label as a binary string. The
label of the (i + 1)th child is generated by adding one to
the label of the ith child and, if the label of the (i + 1)th

child consists of all ones, its length is doubled by adding a
sequence of zeros. Obviously, when the fan-out of the XML
tree is large, the size of the label could become very large.
Moreover, the proposed labeling scheme does not maintain
sibling ordering. In [8], a dynamic variant of the Dewey or-
der is provided. Similarly to the other schemes, the size of
generated labels can be very large. The prime number label-
ing scheme proposed in [12] makes use of a property of prime
numbers: if an integer A has a prime factor which is not a
prime factor of another integer B, then B is not divisible by
A. Every node is first given a prime number as its self label.
Its label is then assigned as the product of its self label and
the label of its parent. Therefore, a node X is an ancestor
of another node Y if and only if label(Y) mod label(X) = 0.
The order of the nodes is maintained by a table of simultane-
ous congruence values which maps nodes’ self labels to order
numbers. To keep the value of the simultaneous congruence
small, which is easier to compute, the number of simultane-
ous congruences may be large. Therefore, when new nodes
are inserted, recomputing large number of simultaneous con-
gruences may be required. In order to solve space problems
of labeling schemes and to guarantee at the same time good
query performance, in [9] a dynamic, thus mutable, labeling
scheme is used together with specific data structures (W-
BOX and B-BOX) that provide a good trade-off between
query and update costs. W-BOX uses weight-balanced B-
trees to reduce the relabeling overhead, obtaining a logarith-
mic amortized update cost and constant worst-case lookup
cost, whereas B-BOX further reduces update costs, resulting
in a constant amortized update time and logarithmic worst-
case lookup cost, by avoiding the storage of labels, that can
however be reconstructed starting from the proposed data
structure, a variant of B-tree. The reported theoretical and
experimental results are very good but no experimental re-
sults for queries are reported.

Structural join, which is now considered a key issue in op-
timizing XML queries, has been intensively studied in recent
years. Various techniques have been proposed to efficiently
perform structural join. The first two approaches [7, 14] are
based on the application of some variations of the relational

merge-join algorithm to lists of elements. More recent ap-
proaches have improved these basic techniques with a stack
mechanism [1, 2], and they are further optimized in [2] to re-
duce the size of the generated intermediate results by using
an holistic approach. Structural join algorithms are based
on the containment relationship between elements. They
use labeling schemes to check ancestor-descendant, as well
as parent-child, relationships.

Indexing techniques are used to improve the efficiency of
structural join algorithms. The approach presented in [7] re-
lies on the use of three main indexes: the element (attribute)
index, for indexing elements (attributes) with respect to
their name, and the structure index, for indexing elements
and attributes with respect to the document they belong
to. In [3], the approach presented in [7] is further improved
by inserting additional information (like sibling pointers) in
the indexes. The new data structure, based on B+-trees, al-
lows the structural join algorithm to skip descendants that
do not match the considered structural relationship. The
XR-tree, proposed in [5], is a further improvement of the
idea presented in [7] to skip not only descendants but also
ancestors. It supports the detection of ancestor-descendant
relationships in logarithmic time. In [2], XB-trees are in-
troduced as a variant of B-trees for indexing the positional
representation of elements in the XML tree to be used in
the proposed holistic algorithm.

3. THE DATA STRUCTURE
In this section, we introduce the in-memory update log

and corresponding update operations. We then present the
element index we use together with the update log.

3.1 Preliminaries
As we have mentioned in Section 1, by adding a dummy

root, the whole XML database, whether it has been orga-
nized with a tree or many sub-trees, can be considered as
one super document and XML update operations are there-
fore modeled as inserting (or removing) XML segments into
(or from) the super document. It is obvious that every seg-
ment inserted (or removed) must be a valid XML document
itself so that the validity of the whole XML database is pre-
served, which also implies that every segment, except the
dummy root, is included in at least one other segment. As
part of the super document, every segment s has a unique
starting position in the super document, which we refer to
as its global position, denoted by s.gp, with respect to the
super document. Each segment has a length, which is de-
noted by s.l. Based on global positions and length, we can
then define a segment containment relationship.

Definition 1. The global position of a segment s, de-
noted by s.gp, is the offset of the first element of s inside
the super document. The length of s, denoted by s.l, is the
number of characters in s. A segment s1 contains a segment
s2 if and only if s1.gp < s2.gp and s1.gp+s1.l > s2.gp+s2.l.
s1 is the ancestor and s2 is the descendant segment. If there
exists no other segment s3 such that s1 contains s3 and s3

contains s2, s1 directly contains s2. In this case, s1 is the
parent and s2 is a child segment of s1. 2

In Figure 1(a), rectangles represent XML segments and
dashed lines the direct containment relationships among dif-
ferent segments. We can see that segment 3 is directly con-
tained in segment 2, which is its parent. Segments 1 is its

ancestor. Segments 4 and 5 are child segments of segment 3
and segment 6 is a descendant of segment 3.

Besides a global position, we also assign a local position
to every segment (except the root), denoted by s.lp. The
local position of a segment s2 with respect to its parent s1

is simply the number of characters in s1 preceding s2 and
not contained in any left sibling of s2, at the time when s2

is being inserted.

Definition 2. Let segment s1 be the parent of segment
s2. The local position of s2, denoted by s2.lp, is defined as
s2.lp = s2.gp − s1.gp −

S
(s is a left sibling of s2)

s.l. 2

Local positions, once assigned to a segment, never change.
Indeed, the only updates that may vary the local position of
a segment s2 are insertions and deletions of left siblings of s2.
However such insertions (deletions) increase (decrease) the
global position of s2 while the global position of its parent
does not change; thus, according to Definition 2, s2.lp does
not change too. Moreover, local positions are not unique
whereas global positions are.

Figure 1(b) represents the super document corresponding
to Figure 1(a), pointing out segment length, global and local
positions, assuming, for the sake of simplicity, each element
is a dummy element which contains no character content
and each tag requires n characters for its storage.

3.2 Structure of Update Log
The update log consists of two data structures. The first

consists of a B+-tree to easily access segment information.
The second is the tag-list, which is a simple inverted list
that maps element tags to segments in the super document.

Figure 2 illustrates the structure of the B+-tree. Keys
are segment identifiers (sid), which are unique identifiers
generated by the system when a new segment is inserted.
The B+-tree, called Segment B+-tree (SB-tree), associates
sid’s with the following information: the segment global po-
sition gp, the segment length l, the segment local position
lp, a pointer to its parent, pointers to its children, sorted
by global positions in ascending order. Every node in the
B+-tree corresponds to a segment in the super document.
Since the leaf level is organized as a tree-like data structure,
we refer to it as the ER-tree (sEgment-Relationship tree) in
the remainder of this paper. The ER-tree is a segment based
representation of a document, according to the sequence of
insertions/deletions that have been executed. The root node
represents the dummy root of the super document. As we
will see in Sections 3.3 and 4, the ER-tree simplifies update
operations whereas the B+-tree is needed for query execu-
tion. Figure 3 illustrates the structure of the ER-tree for
the segments shown in Figure 1.

Obviously, the size of the SB-tree is O(N), where N is the
number of segments contained in the super document. We
claim that N will be quite small compared to the size of the
document, thus it is reasonable to assume that the SB-tree
resides in main memory.

Figure 4 illustrates the tag-list structure of the segments
shown in Figure 1, where we suppose the tag ids for tag A

and B are tid-1 and tid-2 respectively. Each list stores not
only the segment id but also a path for every segment in the
ER-tree. The path of a segment is actually the concatenation
of the segment ids of all its ancestor segments plus its own
segment id. Tag ids are sorted by ascending order, and
within the path lists attached to the tags, the paths are

Seg6

<A>

<A>

<A>

<A>

<A>

Seg5

<A>

Seg1 Seg2 Seg3
Seg4

(a)

A

B

A

B

A

B

A B

A

B

A B

Seg1
Seg1.gp=0
Seg1.l = 24n

Seg2
Seg2.gp=2n
Seg2.l=20n
Seg2.lp=2n

Seg3
Seg3.gp=4n
Seg3.l=16n
Seg3.lp=2n

Seg6
Seg6.gp=7n
Seg6.l=4n
Seg6.lp= n

Seg4
Seg4.gp=6n
Seg4.l=8n
Seg4.lp=2n

0

1

2

3

4

5

6

7

8

10 119

Seg5
Seg5.gp=14n
Seg5.l=4n
Seg5.lp= 2n

(b)

Figure 1: (a) Segment containment relationship; (b)
The corresponding global document

sid

sid gp l lp … sid gp l lp … sid gp l lp …

Figure 2: SB-tree (Segment B+-tree)

seg_lpseg_5 lengthseg_gp

seg_6 seg_lplengthseg_gp

seg_4

......

...C3C2dummy root

C1

C1

C2C1

C1

C1

seg_1 seg_lplengthseg_gp

seg_2 seg_lplengthseg_gp

seg_lplengthseg_gp

seg_3 seg_lplengthseg_gp

seg_lpseg_gp lengthseg_0

Figure 3: ER-Tree (sEgment Relationship tree)

1

1

1

1

1

1

1

1

1

1

1

1

tid_2tid_1

0.1.2.3.5

0.1.2.3.4.60.1.2.3.4.6

0.1.2.3.5

0.1

0.1.2

0.1.2.3

0.1.2.3.4

0.1

0.1.2

0.1.2.3

0.1.2.3.4

Figure 4: Tag-list

sorted by global positions of the corresponding segments.
The reason for storing the path is that it allows us to more
efficiently perform operations needed by the structural join
algorithm, as we will see in Section 4. The path is computed
when the segment is inserted into the super document and
the length of the path is at most O(N), which occurs in
the most highly nested case where every segment has at
most one child segment, i.e., the ER-tree is reduced into a
single linked list. We also associate the numbers of element
occurrences for each tag id in each segment together with
the paths, which helps us to determine if a path should
be removed from the path list when we remove segments
from the super document. We will describe this in detail
in Section 3.3. The size of the tag-list is O(TN2) where
T is the number of different tag ids and N is the number
of segments. This is the worst case estimation when every
segment contains all tags and when the segments are most
highly nested as we described above. We are aware that
there could be more compact ways to represent the tag-list,
but this approach is easier to maintain and since all the ids
are simply numbers, the total size of the tag-list is still small
enough to fit into the memory of modern machines.

Proposition 1 (Space complexity). Let N be the
number of segments and T the number of element tags. The
space complexity of the SB-tree and tag-list is O(N) and
O(TN2), respectively. 2

3.3 Updating the Update Log
The assumptions under which we define update operations

are: (i) for each insertion/deletion of a segment, we assume
to know only its global position and its length; local po-
sitions are transparent to the application and are detected
during update execution; (ii) only segment information can
be modified; elements are only inserted or deleted but never
modified; (iii) inserting a segment into the super document
results in adding a new node into the SB-tree, but remov-
ing a segment from the super document does not necessarily
mean deleting a node from the SB-tree.

AddNewSegment Start(new)
1. For each node m in ER-tree s.t. m.gp > new.gp
2. m.gp = m.gp + new.l
3. AddNewSegment(ER root,new,empty path)

AddNewSegment(root,new,path)
1. path := path + root.sid
2. root.length := root.length + new.l
3. If a child node k of root is an ancestor of new
4. Then
5. AddNewSegment(k,new,path)
6. Else
7. insert new.sid into the child list of root
8. path := path + new.sid
9. lengthSum := 0
10. for each left sibling n of new
11. lengthSum := lengthSum + n.l
12. new.lp = new.gp - root.gp - lengthSum
13. insert new.Node into the SB-tree
14. Endif

Figure 5: Adding a segment into the SB-tree

In case of insertion of a segment into the super document,
the system will automatically generate a segment id for it.
Then, both the SB-tree and the tag-list need to be updated.

More precisely, in case of insertion, we need to: (1) update
the global positions of relevant nodes in the ER-tree; (2)
compute the needed information for the segment from the
ER-tree; (3) add a node corresponding to the segment into
the SB-tree; (4) update the tag-list accordingly.

Figure 5 gives the algorithm for Steps (1), (2), and (3).
Function AddNewSegment Start first increases global posi-
tions greater than that of the new segment by the length
of the new segment. Then, it calls function AddNewSegment,
that recursively transverses the ER-tree and adds the new
node into the proper location in the child list of its parent
node. The path variable is initially empty. The root para-
meter is initially set to the root node of the ER-tree. We
first append the segment id of the current root node into
the path variable and increase the length of the current root
node by the length of the segment represented by the new
node. Then, according to Definition 1, we check if any of
the children of the current root fully contains the inserted
node. If there exists such a child node, the current root is
not the parent node of the inserted node and we recursively
call the AddNewSegment function, setting this child node as
the new root. If there is no such child node, which means
that the current root is the parent of the inserted node, we
simply insert the node into the child list of the current root.
Of course, the new node must be inserted into a proper loca-
tion in the child list such that the order in global positions
of the child nodes is still preserved. New segment’s local
position is then computed according to Definition 2 and the
node inserted into the SB-tree. Although child lists could
be long after many insertions, we can search or update a
child list of size K in O(log(K)) time because the SB-tree
resides in memory and efficient algorithms like binary search
can be used. It is obvious that the overall cost of adding a
node into the ER-tree is bounded by O(N), where N is the
number of segments. This worst case also occurs in the most
highly nested case we described earlier. Concerning global
position changes, again, although the cost of this propaga-
tion process is O(N), it is still efficient in most cases because
the SB-tree is memory resident. Since the cost of inserting
a node into the SB-tree is O(log(N)), the overall time to
update the SB-tree is O(N).

Once we have obtained the path of an inserted segment,
we can update the tag-list accordingly. If the inserted seg-
ment contains the tag with tag id T , then its path (com-
puted by the AddNewSegment function) is inserted into the
path list associated with tag id T according to global or-
dering. The cost of locating a tag id is O(log(T)), where
T is the number of different tags. The cost of inserting a
path into the path list associated with a tag id is bound
by O(log(N)). Therefore the total cost of updating the tag-
list is O(p(log(T)+log(N))), where p is the number of tags
contained in the inserted segment.

Compared to inserting a new segment, removing a seg-
ment from a super document is a bit more complicated. In-
deed, the removed segment may not be any of the existing
segments recorded in the SB-tree. To clarify the problem,
let seg be the segment to be removed. We formalize the re-
lationship between the removed segment and a segment k in
the ER-tree (except the dummy root) into three main cases:

1. seg is contained in k, i.e., k.gp < seg.gp and k.gp + k.l
> seg.gp + seg.l. The length of k is reduced by seg.l.

2. seg contains k, i.e., seg.gp < k.gp and seg.gp + seg.l >

0

3

seg_1

seg_2 seg_5 seg_7

seg_3 seg_4 seg_8seg_6

Removed segment

6

52

4 8

7

1

Figure 6: Removing a segment

k.gp + k.l. k and all its descendants are deleted from
the ER-tree in this case.

3. seg intersects k. If k.gp < seg.gp < k.gp + k.l < seg.gp
+ seg.l, it is a left intersection; if seg.gp < k.gp <

seg.gp + seg.l < k.gp + k.l, it is a right intersection.
The length of k is reduced by k.gp + k.l - seg.gp (for
left intersection) or seg.gp + seg.l - k.gp (for right in-
tersection).

Besides the previous cases, the global position of segments
starting after seg ending position is reduced by seg.l.

The relationship between the removed segment and the
super document is a combination of the cases listed above.
In Figure 6, the removed segment (dashed box) is contained
in segment 1, contains segments 4, 5 and 6, left intersects
segment 2 and right intersects segments 7 and 8. In the
corresponding ER-tree, black nodes refer to those segments
that are to be completely deleted from the tree, gray nodes
refer to those segments that are affected by the removed seg-
ment in terms of segment length and global position, white
nodes refer to those segments that are not affected when
deletion occurs. Node 0 is the dummy root, whose global
position never changes.

Figure 7 gives the algorithm for updating the SB-tree
when a segment is removed from the super document. Func-
tion RemoveSegment Start takes the current segment to be
removed as parameter. We first reduce the global position
of segments starting after seg ending position by the length
of the current removed segment. Then, we call the recursive
function RemoveSegment with the root of the ER-tree and
the segment to be removed as parameters. In calling such
function, the root segment will always contain the segment
to be removed. RemoveSegment first updates the root length,
then it checks the relationship between the current removed
segment and the child segments of the current root. If the
removed segment is contained in a child node, we just call
function RemoveSegment recursively. If a child node is con-
tained in the current removed segment, we remove the child
node from the child list of the current root and from the
SB-tree, together with all its descendants. If the removed
segment left intersects a child node, we update the length
of the removed segment by using an auxiliary segment, as
indicated in lines 12-13, and call function RemoveSegment re-
cursively, setting the child node as new root. If the removed
segment right intersects a child node, we update the length
and the global position of the removed segment by using an

RemoveSegment Start(seg)
1. For each node m in ER-tree s.t. m.gp > seg.gp+seg.l
2. m.gp = m.gp - seg.l
3. RemoveSegment(ER root,seg)

RemoveSegment(root,seg)
1. root.l := root.l - seg.l
2. For every child node k of root
3. If seg is contained in k
4. Then
5. RemoveSegment(k,seg)
6. Else if k is contained in seg
7. Then
8. remove k from the child list of root
9. remove k and its descendant nodes from SB-tree
10. Else if seg left intersects k
11. Then
12. segaux.gp = seg.gp;
13. segaux.l := k.gp + k.l - segaux.gp
14. RemoveSegment(k,segaux)
15. Else if seg right intersects k
16. Then
17. segaux.gp = k.gp;
18. segaux.l := segaux.gp + segaux.l - k.gp
19. RemoveSegment(k,segaux)
20. k.gp := k.gp + segaux.l
21. Endif
22. Endfor

Figure 7: Removing a segment from the SB-tree

auxiliary segment, as indicated in lines 17-18, we call func-
tion RemoveSegment recursively, and we update the global
position of the child node. The usage of an auxiliary segment
allows the algorithm to maintain the correct information as-
sociated with the segment to be removed when checking the
other child nodes. During the recursive removing process,
we also record the information about those segments in the
ER-tree which are affected. If a segment is completely con-
tained in the removed segment, we simply record its segment
id. If only part of a segment is contained in the removed seg-
ment, we record its segment id and the start/end position of
that part. We do this for the convenience of removing cor-
responding element records from the element index, which
we will describe in Subsection 3.4. The cost of recursively
updating the ER-tree is bounded by O(N). The worst case
happens when the segments are most highly nested and the
removed segment intersects all of them. Since the cost of
deleting a node from the SB-tree is O(log(N)), the total
cost for updating the SB-tree is O(Nlog(N)).

The tag-list is updated after updating the element index,
as described in the next subsection. To update the tag-list
when a segment is removed, we need to know the tag name
and the number of elements actually removed from the su-
per document, since a path has to be deleted only if no
more elements with that tag are contained in the segment
after the deletion. The information concerning the type
and the number of elements removed is computed when we
actually perform the delete operation in the element index.
The cost of updating the tag-list for one tag id is bound
by O(log(T)+mlog(N)), where m is the number of segment
paths to be removed from the path list, T is the number
of different tags in the super document, and N is the num-
ber of segments. log(T)+log(N) is the worst case cost of
locating a single path in the tag-list for a given tag id. The
worst case occurs when the tag id is contained in all seg-

ments and a path is to be removed from the path list associ-
ated with this tag id. Therefore, the total cost of updating
the update log when a segment is removed is O(Nlog(N) +
p(log(T)+mlog(N))), where p is the number of distinct tag
names the removed segment contains.

Proposition 2 (Update complexity). Let N be the
number of segments, T the number of distinct element tag
ids, p the average number of distinct element tag names in a
segment, and m the average number of paths to be removed
from a path list in the tag-list. The segment insertion cost
is O(N + p(log(T)+ log(N))) and the segment deletion cost
is O(Nlog(N) + p(log(T) + mlog(N))). 2

3.4 Element Index
The element index is simply a B+-tree. Every record in

the index represents an element and the key of the B+-tree
index is the tuple (tid, sid, start, end, LevelNum), where
tid is the tag id of the element, sid is the segment id the
element belongs to, start is the starting position of the ele-
ment in the segment identified by sid, i.e., the local position
of the element; end is the local ending position of the ele-
ment; LevelNum is the depth at which the element appears
in the document. According to the proposed numbering,
each element is univocally identified by the pair (sid, start).

Search and insertion operations for the element index are
the same as those for standard B+-trees. But when element
records are removed from the element index, we need to
record the number of removed elements with the same tid
and sid, which is necessary when we decide if a segment
path should be removed from a path list as we mentioned
when we discussed the impact of deletion on the tag-list in
Subsection 3.3.

4. QUERY EVALUATION
Under the lazy XML update approach, existing structural

join algorithms can still be used to compute pairs of ances-
tor/descendant or parent/child elements. As we discussed
in Section 3.4, elements in the element index are identified
by the id of the segment in which they appear and their
local position. In order to compute structural joins, we first
need to access the SB-tree to get the global position of the
segments in which elements are contained. From that, ele-
ment global starting and ending positions can be generated
and structural joins computed by using any existing algo-
rithm. The cost of this approach is comparable to that of
the algorithm we use since the update log from which we
get segment information is contained in main memory. How-
ever, information concerning segments can be used to reduce
the number of elements to be checked, thus improving the
processing. In the following, we first present some results
concerning containment of elements and segments; then we
show how to perform structural join by using the element
index and the update log.

4.1 Preliminaries
The containment relationship between XML segments is

closely related to the containment relationship between XML
elements, which is the foundation of structural join. In gen-
eral, we distinguish between cross-segment join, i.e. join
between elements contained in distinct segments, and in-
segment join, i.e. join between elements contained in the
same segment.

E2

E1

S3<A>

E3

S1<A>

...

...

...

...

S1<A>

E1

E2

S2<A>

...

...

...

...

...

E1

E4
E1

S1S2<A>

S1 <A>

S2<A>

S3<A>

S5<A>

E5

Seg_1

Seg_2

Seg_3
Seg_4

E2

...

...

...

E3

S4<A>

Figure 8: Cross-segment join between segments

In the following, we present two properties of cross-
segment joins that will be useful in defining our structural
join algorithm. Their proof trivially follows from Definition
1. The first property specifies that, in order to be related by
an ancestor-descendant relationship, elements must be con-
tained in pairs of ancestor-descendant segments, thus pro-
viding a necessary condition for pairs of segments to gener-
ate cross-segment joins; the second provides a sufficient and
necessary condition for an element to generate cross-segment
joins. In presenting such properties, given two segments S

and T such that S contains T , P S
T denote the local position

of a segment L containing T and directly contained in S. For
example, if S is identified by path 0.1.2 and T by 0.1.2.3.4.6,
P S

T is the local position of segment 3 with respect to S. If S
directly contains T, we just set P S

T to be the local position
of T in S. Moreover, we call X-element an element with X

as tag name.

Proposition 3. Let S and T be two distinct segments.
Let a be an A-element in S and b a B-element in T .

1. If a is an ancestor (parent, descendant, child) of b then
S contains T (S directly contains T , T contains S, T

directly contains S).

2. a is an ancestor of b if and only if a contains T and
a.start < P S

T and a.end > P S
T . 2

Example 1. Consider Figure 8, where Sn and En rep-
resent the starting and ending position of element n. We
see that the A-element S2 in segment 2 contains segment 3
and so is its ancestor A-element S1. Therefore, according to
Proposition 3(2), we have two join results: (2:S1,3:S1) and
(2:S2,3:S1). Segment 2 is contained in the A-element S4 in
segment 1, hence, the A-element S4 in segment 1 contains
segment 3 as well. We get another three results from A-
element S4 in segment 1 and its ancestor A-elements, which
are S2 and S3. The three pairs are (1:S2, 3:S1), (1:S3, 3:S1)
and (1:S4, 3:S1). We can finally see that A-element S3 in
segment 2 does not produce any result with B-element in
segment 3 since it does not contain segment 3. The same
happens with A-elements S1 and S5 in segment 1. 2

4.2 The Lazy-Join Algorithm
In the following, we present a structural join algorithm

that uses segment information to improve the processing.
It is a variation of the stack-based algorithm proposed in

Algorithm Lazy-Join(SLA,SLD)
1. sa = SLA.firstNode; sd = SLD.firstNode; OutputList = NULL; stack = empty stack();
2. While (stack is empty) /* the stack is empty*/
3. If (sa.gp < sd.gp)
4. stack.push(sa);
5. sa = SLA.nextNode;
6. Else if (sa.gp = sd.gp)
7. Append the result of Stack-Tree-Desc(sa,sd) to OutputList;
8. sd = SLD.nextNode;
9. Endif
10. Endwhile
11. While ((SLA and SLD are not empty) /* both lists are not empty */
12. If (sd.gp > stack.top.gp + stack.top.l) stack.pop(); /* Step 1 */
13. Else if (sa.gp < sd.gp) /* Step 2 */
14. If (sa contains sd)

15. remove from stack.top() elements e such that e.lep < P
stack.top()
sa ;

16. stack.push(sa);
17. EndIf
18. sa = SLA.nextNode
19. Else if (sa.gp ≥ sd.gp) /* Step 3 */
20. For every segment sa1 in stack, starting from stack bottom
21. For every element a1 in sa1 such that a1.start < P sa1

sd , starting from the lowest local position
22. If (a1.end > Psa1

sd)
23. For every element d1 in sd
24. Append (sa.sid,a1.lp,sd.sid,d1.lp) to OutputList;
25. If (sa.gp = sd.gp) Append the result of Stack-Tree-Desc(sa,sd) to OutputList;
26. sd = SLD.nextNode
27. Endif
28. Endwhile

Figure 9: Algorithm Lazy-Join

[1], called Stack-Tree-Desc. We consider this algorithm be-
cause it is quite efficient and, at the same time, it is very easy
to implement. The algorithm we propose, called Lazy-Join

to highlight that it relies on a lazy XML update approach,
returns pairs of ancestor/descendant elements first sorted
with respect to descendant positions.
Lazy-Join differs from traditional structural join algo-

rithms in two aspects: (i) it computes the result starting
from two lists of segment identifiers, instead of two lists of
element identifiers; (ii) it relies on Proposition 3 to improve
cross-segment join computation. Any traditional structural
join algorithm can be used to generate in-segment joins.

Suppose the path expression is A//D. The algorithm starts
from two lists of segment identifiers SLA and SLD, the first
containing A-elements, the second containing D-ones, sorted
by global position. These lists are extracted from the tag-
list (see Section 3.2). The basic idea of the algorithm is to
merge the two lists of segments (thus, each segment in the
lists is accessed just once), according to their global position,
using a stack. The stack at all times contains a sequence of
segments from SLA. Each segment in the stack is a descen-
dant of the segment below it. For each segment s, we push:
(i) its identifier, global position, and length (retrieved from
the SB-tree); (ii) the local starting and ending positions of
A-elements in s (retrieved from the element index).

At each step, the ancestor-descendant relationship be-
tween the current segment in SLA - say sa - and the current
segment in SLD - say sd - is checked. Based on the result
of this comparison, the stack is manipulated, pointers in the
lists advanced, and results produced, according to Propo-
sition 3. More precisely, three distinct operations can be
executed, until SLA or SLD become empty:

1. Pop segments: sd.gp > stack.top.gp+stack.top.l. This

means that sd is not a descendant of the top segment
in the stack, thus no future segment from SLD will be
a descendant of the current top of the stack (since seg-
ments are sorted by their global position). Therefore,
we can pop the stack. No result is generated.

2. Push segments: sa.gp < sd.gp. Due to Step 1, we
know that sd is a descendant of the top segment in
the stack. Since sa.gp < sd.gp, sa is a descendant of
the top segment, too. If sa contains sd, sa is pushed
into the stack since, due to Proposition 3(1), it may
generate joins with sd. Then, we advance SLA. No
result is generated.

3. Join generation: sa.gp ≥ sd.gp. Due to Steps 1 and 2,
we know that sd is a descendant of all the segments in
the stack, thus, according to Proposition 3(1), all seg-
ments in the stack may generate cross-segment joins
with sd. However, differently from [1], not all ele-
ments in the stack will generate joins with elements
in sd. Thus, for each segment in the stack, say sa1,
we generate cross-segment joins with D-elements in sd

only if condition 2 of Proposition 3 is satisfied. No
condition has to be checked for elements in sd.

If sa.gp = sd.gp, in-segment joins are then gener-
ated. Elements are joined based on their local po-
sitions by using any structural join algorithm (e.g.,
Stack-Tree-Desc [1]). Note that if sa.gp > sd.gp, sa

and sd cannot generate joins due to Proposition 3(1).
In both cases, according to Proposition 3(1), due to the
ordering of SLA, any future segment in SLA cannot
generate joins with sd. Thus, SLD is advanced.

If SLD becomes empty before SLA, no more joins can be
generated and the algorithm stops. On the other hand, if

sa1

sad4

sa2

sd3
sd5

push
sa2

sad4
sd3
sad4
sd5

sa1

sad4
sd3
sad4
sd5sa2

sa1

sad4 sad4
sd5sa2

sa1

sad4
sd5sa2

sa1

sd5sa2
sa1

sd5

sa1

cross-seg joins:
(3,1), (3,2)

cross-seg joins:
(4,1) , (4,2)
in-seg: (4,4)

Advance
since sad4 does
not contain sd5 pop

sa1

sa1
sa2

sad4
sd3
sad4
sd5

push

cross-seg joins:
(5,1)

Figure 10: Lazy-Join algorithm processing: segments sai contain A elements and not D ones, segments sdi

contain D elements and not A ones, segments sadi contain both D and A elements

SLA becomes empty before SLD, we just process the re-
maining segments in SLD according to Steps (1) and (3),
until SLD or the stack become empty.

According to the algorithm above, elements in the stack
do not represent a chain of ancestor-descendant relation-
ships. On the other hand, this property is satisfied by the
algorithm presented in [1]. In order to reduce the overhead,
due to the fact that more elements than required are inserted
in the stack, the Lazy-Join algorithm can be optimized by
inserting in the stack only elements that can potentially gen-
erate cross-segment joins. Since the stack contains a chain
of ancestor-descendant segments, according to Proposition
3(2), those elements are such that they contain at least one
child segment. We get this behavior by modifying Step (2)
as follows: (i) we push only elements containing at least
one segment; this information can be checked by using child
information associated with each leaf value in the SB-tree.
Note that, since in-segment joins are computed before a seg-
ment from SLA is pushed into the stack, no pairs are lost;
(ii) before pushing a segment sa into the stack, we remove
from the top segment the elements ending before sa starts,
since they will not contain any future segment from SLA.
Figure 9 presents the optimized version of the algorithm, as-
suming the length of SLA is not shorter than SLD. Figure
10 presents an example of its application.

We finally observe that the Lazy-Join algorithm can be
easily extended to compute parent-child relationships. In
this case, according to Proposition 3(1), segments must share
a parent-child relationship. Thus, at Step 3, cross-segment
joins can be generated only from the pair of segments
(stack.top, sd). For each pair of elements (a1, d1), the join
is generated if d1.LevelNum = a1.LevelNum + 1.

4.3 Analysis of Lazy-Join algorithm
Correctness of the proposed algorithm follows from Propo-

sition 3 and [1]. Concerning time complexity, the algorithm
implements a merge of two lists. Let pA (pD) be the average
number of A(D)-elements in one segment. The operations
performed by the algorithm are the following:

• Push segments. Each segment in SLA is pushed at
most once. Since for each pushed segment sa we need
to access the SB-tree to get necessary information about
sa and the element index to retrieve A-elements from
sa, the cost of pushing segments is O(|SLA|∗(log(N)+
log(NE) + pA)), where N is the total number of seg-
ments and NE is the total number of elements.

• Pop segments. Each segment can be popped at most
once. Thus, the cost is bounded by O(|SLA| ∗ pA).

• Join generation. In Step 3, for each segment in the
stack, at most all its A-elements are checked. Each
of them either generates cross-segment joins with all
D-elements in sd or with none of them (lines 21-22-
23-24). Thus, the cost of accessing A- and D-elements
is amortized by the cost of returning join results in
output. Moreover, according to the applied optimiza-
tion, only in the top segment more than one element
may generate no join with elements in sd (all ele-
ments ending before sd starts). Since SLD is ordered,
such elements will generate no join with any next seg-
ment from SLD and therefore can be removed from
the stack. By applying this additional optimization,
each top segment is completely analyzed once during
the overall join computation. Thus, the complexity of
generating cross-segment joins is O(|SLD|(log(NE) +
log(N)) + |SLA| ∗ pA + OutputList), where log(NE)
is due to the element index access needed to retrieve
D-elements contained in sd, log(N) is due to the com-
putation of P sa1

sd for the top segment in the stack (for
the others, it can be computed after each push oper-
ation and stored in an auxiliary data structure), and
OutputList is the number of returned pairs. Concern-
ing in-segment joins, since we use the algorithm pro-
posed in [1], the cost is O(SAD(pA + pD + log(NE)) +
OutputList), where SAD is the number of segments
containing both A- and D-elements.

Proposition 4 (Time complexity). The time
complexity of algorithm Lazy-Join is O(|SLA| ∗ pA + SAD ∗
pD + Seg overhead + OutputList) where
Seg overhead = (|SLA| + |SLD|) ∗ (log(N) + log(NE)). 2

We note that SAD∗pD is the maximum overhead due to in-
segment joins. Thus, by fixing the total number of joins and
the number of segments, increasing the percentage of cross-
segment joins improves the performance. This is due to the
fact that, in this case, segments that do not satisfy Proposi-
tion 3(1) are skipped. With respect to the Stack-Tree-Desc
algorithm, whose complexity is linear in the number of A-
and D-elements [1], i.e., in |SLA| ∗ pA + |SLD| ∗ pD, we
note that, since SAD ∗ pD ≤ |SLD | ∗ pD, Lazy-join outper-
forms Stack-Tree-Desc depending on: (i) the percentage of
in-segment joins; (ii) the segment overhead, which in turn
depends on the number of segments.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 10 60 110 160 210 260

up
da

te
 lo

g
si

ze
 (

kb
)

of segments

SB tree, balanced ER tree
TagList, balanced ER tree

SB tree, nested ER tree
TagList, nested ER tree

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 60 110 160 210 260

bu
ild

in
g

tim
e

(m
s)

of segments

SB tree, balanced ER tree
TagList, balanced ER tree

SB tree, nested ER tree
TagList, nested ER tree

(b)

Figure 11: (a) Update log size; (b) Elapsed time for
building the update log

5. PERFORMANCE STUDY

5.1 Experiment Setup
We have implemented the update log and the related ele-

ment index in C++, on an ultra450 machine with processor
of 500MHz and 3Gbytes of main memory. For the experi-
ments, we used both synthetic data sets, created by the IBM
XML Generator [15] and XMark benchmark [16]. We used
synthetic data sets in order to more easily get the character-
istics we need for analyzing the properties of the proposed
algorithms. On the other hand, by using XMark datasets,
we can analyze the proposed techniques in more realistic
situations. When using synthetic data sets, to simulate the
real world scenario, we chopped the data sets into many
small segments and inserted these segments into an initially
dummy XML document, while maintaining the validity of
the super document. Segment size varies from few kilo
bytes to several hundred kilo bytes and the number of ele-
ments they contain varies from a few to several thousands.

Experiments have been conducted concerning update log
space occupancy and building time, as well as time to ex-
ecute structural joins and to update the structures. In the
last two cases, we considered two different assumptions, re-
sulting in different query/update times. Under the first
assumption (that we call lazy dynamic (LD)) we assume
to maintain incrementally updated the update log, thus at
query time the update log is ready to be used; under the sec-
ond assumption (that we call lazy static (LS)), we further
reduce update time by assuming to maintain incrementally
updated only the ER-tree and to keep the tag-list unsorted.
Path lists are sorted and the B+-tree generated from scratch
just before querying the XML database.

5.2 Update Log Space and Building Time
The update log consists of both the SB-Tree and the tag-

list. Figure 11(a) reports the size of each component and
the total size of the update log, in term of kbytes, when the
number of inserted segments varies. Each segment contains
all element tags appearing in the tag-list (worst-case for tag-
list update). We can see that the size of the tag-list increases
much faster than that of SB-tree and the tag-list size con-
tributes a large part of the total size of update log. This is
because, as stated in Section 3.2, the size of the tag-list is
O(TN2) while that of the SB-Tree is O(N), where T the is
number of distinct tag ids and N is the number of segments.
We also note that in the nested case tag-list size increases
faster, as discussed in Section 3.2. As we have claimed be-
fore, the size of the update log is considerably small. Its

 200

 400

 600

 800

 1000

 1200

 20 40 60 80 100

Q
ue

ry
 R

es
po

nd
in

g
tim

e(
m

s)

% of results from cross segment join

LS
STD

LD

(a) 50 segments

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100

Q
ue

ry
 R

es
po

nd
in

g
tim

e(
m

s)

% of results from cross segment join

LS
STD

LD

(b) 100 segments

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100

Q
ue

ry
 R

es
po

nd
in

g
tim

e(
m

s)

% of results from cross segment join

LS
STD

LD

(c) 50 segments

 500

 1000

 1500

 2000

 20 40 60 80 100

Q
ue

ry
 R

es
po

nd
in

g
tim

e(
m

s)

% of results from cross segment join

LS
STD

LD

(d) 100 segments

Figure 12: Elapsed time for structural join over: (a)-
(b) nested ER-trees; (c)-(d) balanced ER-trees

size is only about 95 kbytes for balanced ER-trees and 195
kbytes for nested ER-trees after over 300 insertions, which
cannot be a problem for modern machines. Figure 11(b)
reports similar results for update log building time.

5.3 Structural Join Processing
We compared the elapsed time of solving path expressions

like A//D by LS, LD, and the Stack-Tree-Desc algorithm
proposed in [1] (denoted by STD in the following). Three
main groups of experiments have been performed.

The aim of the first group is to analyze the impact of cross-
segment joins in query performance. To this purpose, we
fixed the number of segments and the number of A- and D-
elements. Then, we varied the percentage of cross-segment
joins. Since the structure of the ER-tree determines how
many segments containing D-elements can be skipped, we
considered two different ER-tree structures: a completely
nested one (which corresponds to the worst case) and a bal-
anced one, which corresponds to a more reasonable real sit-
uation. Figure 12 reports the results for the nested and
balanced case, by considering 50 and 100 segments. We can
see that when the number of cross-segment joins increases,
the performance of LS and LD increases, since, as we saw
in Section 4, the cost of performing cross-segment joins is
lower than the cost of performing in-segment joins. On the
other hand, the cost of STD is almost constant since, even if
it can be influenced by the position of elements generating
joins, it has to read all elements that may potentially gener-
ate joins even if some of them will not generate any result.
From this experiment we also note that, as expected, LD is
always more efficient than STD, due to the fact that by LD
entire segments can be skipped and the segment process-
ing overhead is very low. On the other hand, LS is more
efficient than STD for high cross-segment join percentage
(higher than 60% inthis experiment).

In the second group of experiments, we investigated the
impact of the number of segments in structural join per-
formance. To this purpose, we fixed a document (which

 700

 800

 900

 1000

 10 60 110 160 210 260

Q
ue

ry
 R

es
po

nd
in

g
tim

e(
m

s)

of segments

LD, balanced ER tree
LD, nested ER tree

STD

Figure 13: Elapsed time for structural join over the
same document, with different ER-trees

Query Xpath expression Result cardinality
Q1 person//phone 413170
Q2 profile//interest 494240
Q3 watches//watch 879891
Q4 person//watch 1455040
Q5 person//interest 1074792

Figure 14: Xmark Queries

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Q1 Q2 Q3 Q4 Q5

Q
u

e
r
y

R

e
s

p
o

n
d

i
n

g

T

i
m

e

(
s

)

LD

STD

LS

Figure 15: Elapsed time for structural join over
XMark datasets

contains about 120000 elements and whose size is approx-
imatively 10Mb), we changed the number of segments and
the structure of the ER-tree, and we executed the same
query over all situations. In all cases, the percentage of
cross-segment joins is around 20%. Results for LD and STD
are reported in Figure 13. We can see that the higher is
the number of segments the higher is the processing time
since the segment lists to be scanned are longer. We also
note that, for more than 180 segments and balanced ER-
tree, LD performs worst than STD. This is because, in this
case, the overhead in segment processing is higher than the
improvement got from cross-segment join computation.

Finally, in the third group of experiments, we analyzed
the performance of LD on an XMark dataset, slightly modi-
fied to increase the number of cross-segment joins. The size
of the dataset is 100Mb and it contains about 3 millions ele-
ments. Figures 14 and 15 present the considered queries and
the obtained results. For the experiment, we chopped it into
100 segments and we considered a balanced ER-tree. The
percentage of cross-segment joins is about 20% to 30%. We
can see that for all the considered queries, LD, differently
from LS, outperforms STD. These results are coherent with
those presented in Figure 12.

From the first two groups of experiments, it follows that,
when the number of segments is very high or when the per-
centage of cross-segment joins decreases, and therefore for
the special case when one segment coincides with one ele-
ment, the performance of LS and LD may decrease. In those
cases, nested segments can be collapsed together in order to
reduce the overall number of segments, increase their size,
and improve query performance. Alternatively, traditional

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

in
se

rt
io

n
tim

e
(s

)

Xmark Data Size (mb)

Traditional
LD

Figure 16: Elapsed time of inserting one segment

structural join algorithms can still be used. At the same
time, as we will see in Subsection 5.4, the usage of segments
is still useful since it always improves update performance.

5.4 Update Processing
In order to analyze update time of the lazy approach, we

considered two different experiments. In the first experi-
ment, we compared LD with a traditional approach, label-
ing elements by their starting and ending positions. For
that, we inserted a segment into Xmark datasets of variable
size and we reported the elapsed time of updating the ele-
ment index (and the update log, for the lazy approach). We
considered the average case in which the inserted segment
causes half the elements to change their global position. Fig-
ure 16 reports the obtained results in logscale. We can see
that, as the size of the XML document increases, the inser-
tion time of the traditional approach increases dramatically,
while that of LD remains low and almost constant. The rea-
son is simple. For the traditional approach, whenever a new
segment is inserted, many of the indexed element records
have to be updated. However, for LD, we need only to in-
sert a new segment into the in-memory log, and to insert
element records of that segment into the element index. No
update of existing element records is required. We note that
for the lazy approach, global renumbering of segments is re-
quired. However, since the number of segments is usually
much less than that of elements, the overhead of this step
does not greatly impact the insertion cost.

The aim of the second experiment is to compare update
performance of LD and LS with that of approaches based
on immutable labeling schemes. To this purpose, we consid-
ered the prime numbering scheme recently proposed in [12]
(denoted by PRIME in the following). Since the structure of
the ER-tree influences the length of paths in the tag-list and
the number of segments to be updated, we considered both
the balanced and nested case. Figure 17 shows the elapsed
time of inserting one element in a document chopped in 100
segments, by changing (a) the number of elements (main-
taining fixed the number of distinct tag names) and (b) the
number of distinct tag names (maintaining fixed the number
of elements) in the inserted segment. Since our approach is
based on segments, to determine the update cost of each
single element (needed in order to compare LD and LS with
PRIME), we divided the time required to insert the segment
by the number of elements it contains. K value in the figure
is the number of prime numbers that share the same si-
multaneous congruence in PRIME. We can see that LS and
LD require much less time than PRIME. Indeed, PRIME
requires recomputing at least one simultaneous congruence
value in the table of simultaneous congruence values and
this recomputation process contributes in large part of the

 0

 5

 10

 15

 5 10 15 20

10
0

*
pr

oc
es

si
ng

 ti
m

e(
m

s)

of element(s) in one segment

LS,balanced ER tree
LS,nested ER tree

LD,balance ER tree
LD, nested ER tree

Prime (k=5)
Prime (k=10)

(a)

 0

 2

 4

 6

 5 10 15 20

10
0

*
pr

oc
es

si
ng

 ti
m

e(
m

s)

of tags in one segment

LS,balanced ER tree
LS,nested ER tree

LD,balance ER tree
LD, nested ER tree

Prime (k=5)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 50 100 150 200

10
0

*
pr

oc
es

si
ng

 ti
m

e(
m

s)

of segments

balanced ER tree
nested ER tree

(c)

Figure 17: Elapsed time of inserting one element by
varying the number of: (b) elements; (c) tag names;
(d) segments

total processing time and it is also very costly according to
the algorithm presented in [12]. On the other hand, under
the lazy approach, no complicated computation is required.
We see that by increasing the number of elements inside a
segment, the insertion time decreases. This is due to the fact
that, in order to obtain the element insertion time, we divide
the segment insertion time, which is constant, by the num-
ber of elements one segment contains. On the other hand,
costs increase when the number of tag names increases since
more path lists must be updated. The structure of the ER-
tree also influences costs. We can see that nested ER-trees
require slightly higher costs since path lengths increase and
tag-list update cost increases as well. This is even more
evident from Figure 17(c), showing how insertion costs for
LD change when varying the number of segments. As ex-
pected, insertion time varies almost linearly with respect to
the number of segments. Moreover, LS is more efficient com-
pared to LD, even if the gain in performance is very small.
Since LD guarantees better query performance, it provides
the best compromise between update and query time.

6. CONCLUDING REMARKS
In this paper we have presented a lazy approach to XML

updates. Differently from all the other existing approaches
for XML updates, under the lazy approach multiple XML
elements (called XML segments) are inserted (deleted) into
(from) the whole XML database without modifying element
identifiers. Thus, no update to existing records in the ele-
ment index is required. To support the proposed approach,
specific data structures have been designed and a structural
join algorithm relying on the usage of segments has been pro-
posed. Experimental results show that our approach outper-
forms other existing solutions in handling updates and guar-
antees better performance compared with traditional struc-
tural join algorithms, such as the one proposed in [1]. As a
future work, we plan to investigate how packing techniques

and concurrency can be used to improve segment update
and query processing. We also plan to compare the lazy ap-
proach with the one proposed in [9] and to investigate how
it can be used for improving other XML data management
techniques, such as query optimization and access control.

7. REFERENCES
[1] S. Al-Khalifa et al. Structural Joins: A Primitive for

Efficient XML Query Pattern Matching. In Proc. of
Int. Conf. on Data Engineering, page 141-152, 2002.

[2] N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. In
Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 310-321, 2002.

[3] S.Y. Chien et al. Efficient Structural Join on Indexed
XML Documents. In Proc. of the Int. Conf. on Very
Large Data Bases, pages 263-274, 2002.

[4] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML Tree, In Proc. of the ACM Int. Symp. on
Principles of Database Systems, pages 271-281, 2002.

[5] H. Jiang, H. Lu, W. Wang, and B.C. Ooi. XR-Tree:
Indexing XML Data for Efficient Structural Joins. In
Proc. of the Int. Conf. on Data Engineering, pages
253-263, 2003.

[6] R. Kaushik, P. Bohannon, J. F. Naughton, and P.
Shenoy. Updates for Structure Indexes. In Proc. of
the Int. Conf. on Very Large Data Bases, pages
239-250, 2002.

[7] Q. Li and B. Moon. Indexing and Querying XML
Data for Regular Path Expressions. In Proc. of the
Int. Conf. on Very Large Data Bases, pages 361-370,
2001.

[8] P. E. O’Neil et al. ORDPATHs: Insert-Friendly XML
Node Labels. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, pages 903-908, 2004.

[9] A. Silberstein, H. He, K. Yi, and J. Yang. BOXes:
Efficient Maintenance of Order-Based Labeling for
Dynamic XML Data. In Proc. of the Int. Conf. on
Data Engineering, 2005. To appear.

[10] I. Tatarinov, Z.G. Ives, A.Y. Halevy, and D.S. Weld.
Updating XML. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, 2001.

[11] I. Tatarinov et al. Storing and Querying Ordered
XML Using a Relational Database System. In Proc.
of the ACM SIGMOD Int. Conf. on Management of
Data, pages 204-215, 2002.

[12] X. Wu, M.L. Lee, and W. Hsu. A Prime Number
Labeling Scheme for Dynamic Ordered XML Trees.
In Proc. of the Int. Conf. on Data Engineering, pages
66-78, 2004.

[13] K. Yi, H. He, I. Stanoi, and J. Yang. Incremental
Maintenance of XML Structural Indexes. In Proc. of
the ACM SIGMOD Int. Conf. on Management of
Data, pages 491-502, 2004.

[14] C. Zhang et al. On Supporting Containment Queries
in Relational Database Management Systems. In
Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 425-436, 2001.

[15] IBM Alpha Works XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgeneratorhp

[16] The XML Benchmark Project.
http://www.xml-benchmark.org

