
A

Deep Learning At Scale and At Ease

Wei Wang, School of Computing, National University of Singapore, Singapore
Gang Chen, College of Computer Science, Zhejiang University, China
Haibo Chen, NetEase, Inc., China
Tien Tuan Anh Dinh and Jinyang Gao and Beng Chin Ooi and
Kian-Lee Tan and Sheng Wang, School of Computing, National University of Singapore, Singapore
Meihui Zhang, Singapore University of Technology and Design

Recently, deep learning techniques have enjoyed success in various multimedia applications, such as image classification
and multi-modal data analysis. Large deep learning models are developed for learning rich representations of complex data.
There are two challenges to overcome before deep learning can be widely adopted in multimedia and other applications. One
is usability, namely the implementation of different models and training algorithms must be done by non-experts without
much effort especially when the model is large and complex. The other is scalability, that is the deep learning system must
be able to provision for a huge demand of computing resources for training large models with massive datasets. To address
these two challenges, in this paper, we design a distributed deep learning platform called SINGA which has an intuitive
programming model based on the common layer abstraction of deep learning models. Good scalability is achieved through
flexible distributed training architecture and specific optimization techniques. SINGA runs on GPUs as well as on CPUs, and
we show that it outperforms many other state-of-the-art deep learning systems. Our experience with developing and training
deep learning models for real-life multimedia applications in SINGA shows that the platform is both usable and scalable.

CCS Concepts: rComputing methodologies→ Neural networks; rInformation systems→ Multimedia and multimodal
retrieval; rSoftware and its engineering→ Data flow architectures;

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Multimedia, Deep Learning, Distributed Training

ACM Reference Format:
Wei Wang, Gang Chen, Haibo Chen, Tien Tuan Anh Dinh, Jinyang Gao, Beng Chin Ooi, Kian-Lee Tan, Sheng Wang,
Meihui Zhang. 2016. Deep Learning At Scale and At Ease. ACM Trans. Multimedia Comput. Commun. Appl. V, N, Article A
(January YYYY), 23 pages.
DOI: 0000001.0000001

1. INTRODUCTION
In recent years, we have witnessed successful adoptions of deep learning in various multimedia ap-
plications, such as image and video classification [Krizhevsky et al. 2012; Wu et al. 2014], content-
based image retrieval [Wan et al. 2014], music recommendation [Wang and Wang 2014] and multi-
modal data analysis [Wang et al. 2014; Feng et al. 2014; Zhang et al. 2014]. Deep learning refers
to a set of feature learning models which consist of multiple layers. Different layers learn different
levels of abstractions (or features) of the raw input data [Le et al. 2012]. It has been regarded as a re-
branding of neural networks developed twenty years ago, since it inherits many key neural networks
techniques and algorithms. However, deep learning exploits the fact that high-level abstractions are
better at representing the data than raw, hand-crafted features, thus achieving better performance
in learning. Its recent resurgence is mainly fuelled by higher than ever accuracy obtained in image
recognition [Krizhevsky et al. 2012]. Three key factors behind deep learning’s remarkable achieve-
ment are the advances of neural net structures, immense computing power and the availability of

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 2016 ACM. 1551-6857/2016/-ART0 $15.00
DOI: 0000001.0000001

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 W. Wang et al.

massive training datasets, which together enable us to train large models to capture the regularities
of complex data more efficiently than twenty years ago.

There are two challenges in bringing deep learning to wide adoption in multimedia applications
(and other applications for that matter). The first challenge is usability, namely the implementa-
tion of different models and training algorithms must be done by non-experts with little effort. The
user must be able to choose among many existing deep learning models, as different multimedia
applications may benefit from different models. For instance, the deep convolutional neural net-
work (DCNN) is suitable for image classification [Krizhevsky et al. 2012], recurrent neural network
(RNN) for language modelling [Mikolov et al. 2011], and deep auto-encoders for multi-modal data
analysis [Wang et al. 2014; Feng et al. 2014; Zhang et al. 2014]. Furthermore, the user must not
be required to implement most of these models and training algorithms from scratch, for they are
too complex and costly. An example of complex models is the GoogleLeNet [Szegedy et al. 2014]
which comprises 22 layers of 10 different types. Training algorithms are intricate in details. For
instance the Back-Propagation [LeCun et al. 1996] algorithm is notoriously difficult to debug.

The second challenge is scalability, that is the deep learning system must be able to provision for
a huge demand of computing resources for training large models with massive datasets. As larger
training datasets and bigger models are being used to improve accuracy [Ciresan et al. 2010; Le
et al. 2012; Szegedy et al. 2014], memory requirement for training the model may easily exceed the
capacity of a single CPU or GPU. In addition, the computational cost of training may be too high for
a single commodity server, which results in unreasonably long training time. For instance, it takes
10 days [Yadan et al. 2013; Paine et al. 2013] to train the DCNN [Krizhevsky et al. 2012] with 1.2
million training images and 60 million parameters using one GPU 1.

Addressing both usability and scalability challenges requires a distributed training platform that
supports various deep learning models, that comes with an intuitive programming model, and that
is scalable. Popular deep learning systems, including Caffe [Jia et al. 2014], Torch [Collobert et al.
2011] and Theano [Bastien et al. 2012], address the first challenge but fall short at the second
challenge (they are not designed for distributed training). There are several systems supporting dis-
tributed training [Paine et al. 2013; Yadan et al. 2013; Krizhevsky 2014], but they are model specific
and do not generalize well to other models. General distributed platforms such as MapReduce and
epiC [Jiang et al. 2014], achieve good scalability, but they are designed for general data process-
ing. As a result, they lack both the programming model and system optimization specific to deep
learning, hindering the overall usability and scalability. Recently, there are several specialized dis-
tributed platforms [Dean et al. 2012; Coates et al. 2013; Chilimbi et al. 2014] that exploit deep
learning specific optimization and hence are able to achieve high training throughput. However,
they forgo usability issues: the platforms are closed-source and no details of their programming
models are given, rendering them unusable by multimedia users.

In this paper, we present our effort in bringing deep learning to the masses. In particular, we
extend our previous work [Ooi et al. 2015; Wang et al. 2015] on distributed training of deep learn-
ing models. In [Wang et al. 2015], we designed and implemented an open source distributed deep
learning platform, called SINGA2, which tackles both usability and scalability challenges at the
same time. In this paper, we will introduce optimization techniques and GPU support for SINGA.
SINGA provides a simple, intuitive programming model which makes it accessible even to non-
experts. SINGA’s simplicity is driven by the observation that both the structures and training algo-
rithms of deep learning models can be expressed using a simple abstraction: the neuron layer (or
layer). In SINGA, the user defines and connects layers to form the neural network model, and the
runtime transparently manages other issues pertaining to the distributed training such as partitioning,
synchronization and communication. Particularly, the neural network is represented as a dataflow
computation graph with each layer being a node. During distributed training, the graph is partitioned
and each sub-graph can be trained on CPUs or on GPUs. SINGA’s scalability comes from its flexible

1According to the authors, with 2 GPUs, the training still took about 6 days.
2http://www.comp.nus.edu.sg/∼dbsystem/singa/

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:3

system architecture and specific optimization. Both synchronous and asynchronous training frame-
works are supported with a range of built-in partitioning strategies, which enables users to readily
explore and find an optimal training configuration. Optimization techniques, including minimizing
data transferring and overlapping computation and communication, are implemented to reduce the
communication overhead from distributed training.

In summary, this paper makes the following contributions:

(1) We present a distributed platform called SINGA which is designed to train deep learning models
for multimedia and other applications. SINGA offers a simple and intuitive programming model
based on the layer abstraction.

(2) We describe SINGA’s distributed architecture and optimization for reducing the communication
overhead in distributed training.

(3) We demonstrate SINGA’s usability by describing the implementation of three multimedia ap-
plications: multi-modal retrieval, dimensionality reduction and sequence modelling.

(4) We evaluate SINGA’s performance by comparing it with other open-source systems. The results
show that SINGA is scalable and outperforms other systems in terms of training time.

This paper is an extension of our conference paper [Wang et al. 2015]. In [Wang et al. 2015], we
have presented the basic SINGA framework for a homogeneous architecture (where we consider
only CPU nodes). In this paper, we extend the framework to a heterogeneous setting that consists
of both GPU and CPU processors. Optimization techniques in terms of reducing communication
overhead from distributed training are introduced in this paper. Correspondingly, we conducted
experiments on GPUs in comparison with existing systems. The rest of this paper is organized as
follows. Section 2 provides the background on training deep learning models and related work. An
overview of SINGA as a platform follows in Section 3. The programming model is discussed in
Section 4. We discuss SINGA architecture and training optimization in Section 5. The experimental
study is presented in Section 6 before we conclude in Section 7.

2. BACKGROUND
Deep learning is considered as a feature learning technique. A deep learning model typically consists
of multiple layers, each associated with a feature transformation function. After going through all
layers, raw input features (e.g., pixels of images) are converted into high-level features that are used
for the task of interest, e.g., image classification.

2.1. Models and Training Algorithms

A: Feed-forward

B: Undirected C: Recurrent

CNN MLP
Auto-Encoders

Fig. 1: Deep learning model categorization.

We group popular deep learning models into three categories based on the connection types be-
tween layers, as shown in Figure 1. Category A consists of feed-forward models wherein the layers

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 W. Wang et al.

are directly connected. The extracted features at higher layers are fed into prediction or classifi-
cation tasks, e.g., image classification [Krizhevsky et al. 2012]. Example models in this category
include Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN) and Auto-Encoders.
Category B contains models whose layer connections are undirected. These models are often used
to pre-train other models [Hinton and Salakhutdinov 2006], e.g., feed-forward models. Deep Belief
Network (DBN), Deep Boltzmann Machine (DBM) and Restricted Boltzmann Machine (RBM) are
examples of such models. Category C comprises models that have recurrent connections. These
models are called Recurrent Neural Networks (RNN). They are widely used for modelling sequen-
tial data in which prediction of the next position is affected by previous positions. Language mod-
elling [Mikolov et al. 2011] is a popular application of RNN.

initialize
parameters

compute
gradients

update
parameters

read mini-
batch data

Fig. 2: Flow of stochastic gradient descent algorithm.

A deep learning model has to be trained to find the optimal parameters for the transformation
functions. The training quality is measured by a loss function (e.g., cross-entropy loss) for each
specific task. Since the loss functions are usually non-linear and non-convex, it is difficult to get
closed-form solutions. A common approach is to use the Stochastic Gradient Descent (SGD) algo-
rithm shown in Figure 2. SGD initializes the parameters with random values, and then iteratively re-
fines them to reduce the loss based on the computed gradients. There are three typical algorithms for
gradient computation corresponding to the three model categories above: Back-Propagation (BP),
Contrastive Divergence (CD) and Back-Propagation Through Time (BPTT).

2.2. Related Work
Due to its outstanding capabilities in capturing complex regularities of multimedia data (e.g., image
and video), deep learning techniques are being adopted by more and more multimedia applications,
e.g., image retrieval [Wan et al. 2014], multi-modal retrieval [Wang et al. 2015; Wang et al. 2014],
sentiment analysis [You et al. 2015], etc. In recent years, we have witnessed fast increase of deep
learning models’ depth, from tens of layers (e.g., AlexNet [Krizhevsky et al. 2012], VGG [Simonyan
and Zisserman 2014]) to hundreds of layers [He et al. 2015]. It has been shown that deeper models
work better for the ImageNet challenge task [Szegedy et al. 2014; Simonyan and Zisserman 2014].
Meanwhile, training datasets are also becoming larger, from 60,000 images in the MNIST and Cifar
datasets to millions of images in the ImageNet dataset. Complex deep models and massive training
datasets require a huge amount of computing resources for training.

Table I: Comparison of existing open source systems (and libraries).

SINGA Torch Caffe MxNet TF Theano CNTK
Programming style I I I I, D D D D
Flexibility and extensibility *** **** ** **** **** **** ****
Distributed training **** ** ** *** *** ** ***
Hardware support ** *** *** ** *** *** **

Different applications use different deep learning models. It is essential to provide a general deep
learning system for non-experts to implement their models without much effort. Recently, some dis-
tributed training approaches have been proposed, for examples [Paine et al. 2013; Yadan et al. 2013;
Krizhevsky 2014]. They are specifically optimized for training the AlexNet model [Krizhevsky
et al. 2012], thus cannot generalize well to other models. Other general distributed deep learning

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:5

platforms [Dean et al. 2012; Coates et al. 2013; Chilimbi et al. 2014] exploit deep learning specific
optimization and hence are able to achieve high training throughput. However, they are closed-
source and there are no details of the programming model, rendering them unusable to developers.
There are also some popular open source systems for training deep learning models on a single
node, including TensorFlow [et al. 2015] (TF), Caffe [Jia et al. 2014], Torch [Collobert et al. 2011],
MxNet [Chen et al. 2015], Theano [Bastien et al. 2012] and CNTK[et al. 2014]. Distributed training
is being added for some of these systems. We briefly compare these systems (or libraries) in Table I,
which mainly includes the usability (the first two rows) and efficiency (the last two rows).

Two major programming styles are used in these systems, namely imperative programming and
declarative programming. SINGA, Caffe and Torch use imperative programming (denoted as I),
which is easy to get started and debug. Tensorflow, Theano and CNTK follow the declarative pro-
gramming model (denoted as D), where users simply declare the learning objective and the system
creates a computation graph (dataflow graph) for automatically optimizing the learning objective.
The computation graph provides opportunities for speed and memory optimization [Chen et al.
2016b], but is not easy to debug and requires some effort to get started.

Layer is an inherent abstraction of neural networks. Almost all system provide the layer ab-
straction (may use different names). Caffe uses Layer as the lowest computation unit. Other system
provides Tensor abstractions for algebra operations. Caffe’s layer abstraction was designed for feed-
forward neural networks, and was latter extended to support RNN, but has no support for energy
models. SINGA’s layer abstraction supports all three popular neural networks. Other systems, since
provides both Tensor and Layer abstractions, are more flexible to implement general machine learn-
ing algorithms.

Distributed training is becoming more and more important. All systems in the table support dis-
tributed training to improve the training efficiency. Caffe, Torch and Theano were originally de-
signed for easy to prototype new models in research on a single node. Training with multi-GPU
cards are supported now. But training in a GPU cluster is not officially supported. SINGA, Tensor-
flow, CNTK and MxNet are designed with distributed training considered. SINGA is flexible to pro-
vide distributed training frameworks (See section 5.2), and exploits asynchronous data transferring
and hybrid partitioning to optimize the communication cost (See Section 5.4). MxNet has a fixed
two layer distributed training architecture. Tensorflow and CNTK are also working on improving
distributed training, e.g., CNTK uses parameter compressing to reduce communication cost [Seide
et al. 2014], and Tensorflow uses synchronous SGD with auxiliary workers [Chen et al. 2016a].

Hardware acceleration is vital for the success of deep learning models. All systems in the table use
CUDA and the cuDNN library3 to run computation intensive operations on GPUs, e.g., convolution
and pooling. Caffe, Torch and Theano has partial support of OpenCL for deployment on small
devices.

3. OVERVIEW
SINGA trains deep learning models using SGD over the worker-server architecture, as shown in
Figure 3. Workers compute parameter gradients and servers perform parameter updates. To start a
training job, the user (or programmer) submits a job configuration specifying the following four
components:

— A NeuralNet describing the neural network (or neural net) structure with the detailed layers and
their connections. SINGA comes with many built-in layers (Section 4.1.2), and users can also
implement their own layers for feature transforming or data reading (writing).

— A TrainOneBatch algorithm for training the model. SINGA implements different algorithms
(Section 4.1.3) for all three model categories.

— An Updater defining the protocol for updating parameters at the servers (Section 4.1.4).

3https://developer.nvidia.com/cudnn

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 W. Wang et al.

TrainOneBatch

NeuralNet

Layer

stop
Updater:
Update(step, param)

DataShard

Worker

Worker

Server

Server
Cluster Topology

Fig. 3: SINGA overview.

— A Cluster Topology specifying the distributed architecture of workers and servers. SINGA’s ar-
chitecture is flexible and can support both synchronous and asynchronous training (Section 5).

Given a job configuration, SINGA distributes the training tasks over the cluster and coordinates
the training. In each iteration, every worker calls TrainOneBatch function to compute parameter
gradients. TrainOneBatch takes a NeuralNet object representing the neural net, and it visits (part of)
the model layers in an order specific to the model category. The computed gradients are sent to the
corresponding servers for updating. Workers then fetch the updated parameters at the next iteration.

4. PROGRAMMING MODEL
This section describes SINGA’s programming model, particularly the main components of a SINGA
job. We use the MLP model for image classification (Figure 4a) as a running example. The model
consists of an input layer, a hidden feature transformation layer and a Softmax output layer.

sub-layer 0 sub-layer 1 sub-layer 2

W[:,0:3] b[:,0:3] W[:,0] b[:,0] W[:,1] b[:,1] W[:,2] b[:,2]

(a) Sample MLP.

layer: name: “softmax loss”
 type: SoftmaxLossLayer
 srclayer: “hidden”,
 “data”
layer: name: “hidden”
 type: HiddenLayer
 srclayer: “data”
 shape: 3
layer: name: “data”

 type: kInputLayer
 path: “./train.shard”

Blob feature = data[0], gradient=data[1];
Param W, b;

Func ComputeFeature(flag, srclayers) {
 feature= logistic(dot(srclayers[0].feature, W.data) + b.data);
}
Func ComputeGradient(flag, srclayers) {
 Blob tmp = feature * (1-feature);
 srclayers[0].gradient = tmp*dot(gradient, W.data.transpose());
 W.gradient = tmp*dot(src[0].data.transpose(), gradient);
 b.gradient = tmp * gradient;
}

𝑣

ℎ = 𝜎(𝑣𝑊 + 𝑏)

𝑦𝑖 =
𝑒ℎ𝑖

 ℎ𝑗𝑗

data

hidden

softmax loss

(b) Net configuration.
layer: name: “softmax loss”
 type: SoftmaxLossLayer
 srclayer: “hidden”,
 “data”
layer: name: “hidden”
 type: HiddenLayer
 srclayer: “data”
 shape: 3
layer: name: “data”

 type: kInputLayer
 path: “./train.shard”

Blob feature = data[0], gradient=data[1];
Param W, b;

Func ComputeFeature(flag, srclayers) {
 feature= logistic(dot(srclayers[0].feature, W.data) + b.data);
}
Func ComputeGradient(flag, srclayers) {
 Blob tmp = feature * (1-feature);
 srclayers[0].gradient = tmp*dot(gradient, W.data.transpose());
 W.gradient = tmp*dot(src[0].data.transpose(), gradient);
 b.gradient = tmp * gradient;
}

𝑣

ℎ = 𝜎(𝑣𝑊 + 𝑏)

𝑦𝑖 =
𝑒ℎ𝑖

 ℎ𝑗𝑗

data

hidden

softmax loss

(c) Pseudo code for the hidden layer.

Fig. 4: Running example using an MLP.

4.1. Programming Abstractions
4.1.1. NeuralNet. NeuralNet represents a neural net instance in SINGA. It comprises a set of

unidirectionally connected layers. Properties and connections of layers are specified by users. The
NeuralNet object is passed as an argument to the TrainOneBatch function.

Layer connections in NeuralNet are not designed explicitly; instead each layer records its own
source layers as specified by users (Figure 4b). Although different model categories have different
types of layer connections, they can be unified using directed edges as follows. For feed-forward
models, nothing needs to be done as their connections are already directed. For undirected models,
users need to replace each edge with two directed edges, as shown in Figure 7. For recurrent models,
users can unroll a recurrent layer into directed-connecting sub-layers, as shown in Figure 8.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:7

Layer:
 vector<Blob> data
 vector<Param> param
 Func ComputeFeature(flag, srclayers);
 Func ComputeGradient(flag, srclayers);

Param:
 Blob data, gradient;

Fig. 5: Layer abstraction.

4.1.2. Layer. Layer is a core abstraction in SINGA. Different layer implementations perform
different feature transformations to extract high-level features. In every SGD iteration, all layers in
the NeuralNet are visited by the TrainOneBatch function during the process of computing parameter
gradients. From the dataflow perspective, we can regard the neural net as a graph where each layer
is a node. The training procedure passes data along the connections of layers and invokes functions
of layers. Distributed training can be easily conducted by assigning sub-graphs to workers.

Figure 5 shows the definition of a base layer. The data field records data (blob) associated with
a layer. Some layers may require parameters (e.g., a weight matrix) for their feature transforma-
tion functions. In this case, these parameters are represented by Param objects, each with a data
field for the parameter values and a gradient field for the gradients. The ComputeFeature function
evaluates the feature blob by transforming features from the source layers. The ComputeGradient
function computes the gradients associated with this layer. These two functions are invoked by the
TrainOneBatch function during training (Section 4.1.3).

SINGA provides a variety of built-in layers to help users build their models. Table II lists the
layer categories in SINGA. For example, the data layer loads a mini-batch of records via the Com-
puteFeature function in each iteration. Users can also define their own layers for their specific re-
quirements. Figure 4c shows an example of implementing the hidden layer h in the MLP. In this
example, beside feature blobs there are gradient blobs storing the gradients of the loss with respect
to the feature blobs. There are two Param objects: the weight matrix W and the bias vector b. The
ComputeFeature function rotates (multiply W), shifts (plus b) the input features and then applies
non-linear (logistic) transformations. The ComputeGradient function computes the layer’s param-
eter gradients, as well as the source layer’s gradients that will be used for evaluating the source
layer’s parameter gradients.

Table II: Layer categories.

Category Description
Input layers Load records from file, database or HDFS.
Output layers Dump records to file, database or HDFS.
Neuron layers Feature transformation, e.g., convolution.
Loss layers Compute objective loss, e.g., cross-entropy loss.
Connection layers Connect layers when neural net is partitioned.

4.1.3. TrainOneBatch. The TrainOneBatch function determines the sequence of invoking Com-
puteFeature and ComputeGradient functions in all layers during each SGD iteration. SINGA imple-
ments two TrainOneBatch algorithms for the three model categories. For feed-forward and recurrent
models, the BP algorithm is provided. For undirected modes (e.g., RBM), the CD algorithm is pro-
vided. Users simply select the corresponding algorithm in the job configuration. Should there be
specific requirements for the training workflow, users can define their own TrainOneBatch function
following a template shown in Algorithm 1. Algorithm 1 implements the BP algorithm which takes

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 W. Wang et al.

a NeuralNet object as input. The first loop visits each layer and computes their features, and the
second loop visits each layer in the reverse order and computes parameter gradients.

ALGORITHM 1: BPTrainOneBatch
Input: net
foreach layer in net.layers do

Collect(layer.params()) // receive parameters
layer.ComputeFeature() // forward prop

end
foreach layer in reverse(net.layers) do

layer.ComputeGradient()// backward prop
Update(layer.params())// send gradients

end

4.1.4. Updater. Once the parameter gradients are computed, workers send these values to servers
to update the parameters. SINGA implements several parameter updating protocols, such as Ada-
Grad[Duchi et al. 2011]. Users can also define their own updating protocols by overriding the Up-
date function.

4.2. Multimedia Applications
This section demonstrates the use of SINGA for multimedia applications. We discuss the training
of three deep learning models for three different applications: a multi-modal deep neural network
(MDNN) for multi-modal retrieval, a RBM for dimensionality reduction, and a RNN for sequence
modelling.

ImageParserLayer

PoolingLayer

RectifierLayer

NormalizationLayer

Inner-ProductLayer

SoftmaxLossLayer

ConvolutionLayer

Data Layer

TextParserLayer
bird dog ship

Label Layer

plan ball sky

SoftmaxLossLayer

Euclidean loss

Inner-Product

LogisticLayer

Inner-ProductLayer

Fig. 6: Structure of MDNN.

4.2.1. MDNN for Multi-modal Retrieval. Feed-forward models such as CNN and MLP are widely
used to learn high-level features in multimedia applications, especially for image classifica-
tion [Krizhevsky et al. 2012]. Here, we demonstrate the training of the MDNN [Wang et al. 2015]
using SINGA to extract features for the multi-modal retrieval task [Wang et al. 2014; Feng et al.
2014; Shen et al. 2000] that searches objects from different modalities. In MDNN, there is a
CNN [Krizhevsky et al. 2012] for extracting image features, and a MLP for extracting text fea-
tures. The training objective is to minimize a weighted sum of: (1) the error of predicting the labels

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:9

of image and text documents using extracted features; and (2) the distance between features of
relevant image and text objects.

Figure 6 depicts the neural net of the MDNN model in SINGA. We can see that there are two
parallel paths: one for text modality and the other for image modality. The data layer reads in records
of semantically relevant image-text pairs. The image layer, text layer and label layer then parse the
visual feature, text feature (e.g., tags of the image) and labels respectively from the records. The
image path consists of layers from DCNN [Krizhevsky et al. 2012], e.g., the convolutional layer
and pooling layer. The text path includes an inner-product (or fully connected) layer, a logistic layer
and a loss layer. The Euclidean loss layer measures the distance of the feature vectors extracted from
these two paths. All except the parser layers, which are application specific, are SINGA’s built-in
layers. Since this model is a feed-forward model, the BP algorithm is selected for the TrainOneBatch
function.

4.2.2. RBM for Dimensionality Reduction. RBM is often employed to pre-train parameters for
other models. In this example application, we use RBM to pre-train deep auto-encoders [Hinton
and Salakhutdinov 2006] for dimensionality reduction. Multimedia applications typically operate
with high-dimensional feature vectors, which demands large computing resources. Dimensionality
reduction techniques, such as Principal Component Analysis (PCA), are commonly applied in the
pre-processing step. Deep auto-encoders are reported [Hinton and Salakhutdinov 2006] to have
better performance than PCA.

W1, b2

W1, b1

Input feature Input feature

Input feature
W1, b2

W2, b3

W2, b4

W1, b2

W2, b4

W2
T, b3

W1
T, b1

ReconstructionLossLayer

RBM 1

RBM 2

Deep Auto-encoder Step 1 Step 2

Fig. 7: Structure of RBM and deep auto-encoders.

Generally, the deep auto-encoders are trained to reconstruct the input feature using the feature of
the top layer. Hinton et al. [Hinton and Salakhutdinov 2006] used RBM to pre-train the parameters
for each layer, and fine-tuned them to minimize the reconstruction error. Figure 7 shows the model
structure (with parser layer and data layer omitted) in SINGA. The parameters trained from the first
RBM (RBM 1) in step 1 are ported (through checkpoint) into step 2 wherein the extracted features
are used to train the next model (RBM 2). Once pre-training is finished, the deep auto-encoders
are unfolded for fine-tuning. SINGA applies the contrastive divergence (CD) algorithm for training
RBM and back-propagation (BP) algorithm for fine-tuning the deep auto-encoder.

4.2.3. RNN for Sequence Modelling. Recurrent neural networks (RNN) are widely used for mod-
elling sequential data, e.g., natural language sentences. We use SINGA to train a Char-RNN model
4 over Linux kernel source code, with each character as an input unit. The model predicts the next
character given the current character.

Figure 8 illustrates the net structure of the Char-RNN model. In each iteration, the input
layer reads unroll len + 1 (unroll len is specified by users) successive characters, e.g., “int a;”
and passes the first unroll len characters to OneHotLayers (one per layer), and passes the last
unroll len characters as labels to the label layer (the label of the ith character is the (i + 1)th

4https://github.com/karpathy/char-rnn

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 W. Wang et al.

OneHotLayer

GRULayer

GRULayer

InnerProductLayer

SoftmaxLossLayer

LabelLayer

Fig. 8: Structure of 2-stacked Char-RNN (left before unrolling; right after unrolling).

character, i.e., the objective is to predict the next character). The model is configured similarly as
for feed-forward models except the training algorithm is BPTT, and unrolling length and connec-
tion types are specified for recurrent layers. Different colors are used for illustrating the neural net
partitioning which will be discussed in Section 5.3.

5. DISTRIBUTED TRAINING
In this section, we introduce SINGA’s architecture, and discuss how it supports a variety of dis-
tributed training frameworks.

5.1. System Architecture
Figure 9 shows the logical architecture, which consists of multiple server groups and worker groups,
and each worker group communicates with only one server group. Each server group maintains a
complete replica of the model parameters, and is responsible for handling requests (e.g., get or
update parameters) from worker groups. Neighboring server groups synchronize their parameters
periodically. Typically, a server group contains a number of servers, and each server manages a parti-
tion of the model parameters. Each worker group trains a complete model replica against a partition
of the training dataset (i.e. data parallelism), and is responsible for computing parameter gradients.
All worker groups run and communicate with the corresponding server groups asynchronously.
However, inside each worker group, the workers compute parameter updates synchronously for the
model replica. There are two strategies to distribute the training workload among workers within
a group: by model or by data. More specifically, each worker can compute a subset of parameters
against all data partitioned to the group (i.e., model parallelism), or all parameters against a subset
of data (i.e., data parallelism). SINGA also supports hybrid parallelism (Section 5.3).

In SINGA, servers and workers are execution units running in separate threads. If GPU devices
are available, SINGA automatically assigns g GPU devices (g is user specified) to the first g workers
on each node. A GPU worker executes the layer functions on GPU if they are implemented using
GPU API (e.g., CUDA). Otherwise, the layer functions execute on CPU. SINGA provides several
linear algebra functions for users to implement their own layer functions. These linear algebra func-
tions have both GPU and CPU implementation and they determine the running device of the calling
thread automatically. In this way, we keep the implementation transparent to users. Workers and
servers communicate through message passing. Every process runs the main thread as a stub that
aggregates local messages and forwards them to corresponding (remote) receivers. SINGA uses the
ZeroMQ library for message passing over the network.

5.2. Training Frameworks
In SINGA, worker groups run asynchronously and workers within one group run synchronously.
Users can leverage this general design to run both synchronous and asynchronous training frame-
works. Specifically, users control the training framework by configuring the cluster topology, i.e.,
the number of worker (resp. server) groups and worker (resp. server) group size. In the following,
we will discuss how to realize popular distributed training frameworks in SINGA, including Sand-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:11

Server Group

Parameters

Server Server Server

Server Group

Worker Group

Server Group

Worker Group

Worker Group
(Model Parallelism)

Parameters

Neural Net

Data

Worker Worker Worker

Worker Group
(Data Parallelism)

Parameters

Neural Net

Data

Worker Worker Worker

Fig. 9: Logical architecture of SINGA.

blaster and Downpour from Google’s DistBelief system [Dean et al. 2012], AllReduce from Baidu’s
DeepImage system [Wu et al. 2015] and distributed Hogwild from Caffe [Jia et al. 2014].

Server Worker

Node Group

Inter-node
Communication

(a) Sandblaster. (b) AllReduce. (c) Downpour. (d) Distributed Hogwild.

Fig. 10: Training frameworks in SINGA.

5.2.1. Synchronous Training. A synchronous framework is realized by configuring the cluster
topology with only one worker group and one server group. The training convergence rate is the
same as that on a single node. Figure 10a shows the Sandblaster framework implemented in SINGA.
A single server group is configured to handle requests from workers. A worker operates on its
partition of the model, and only communicates with servers handling the related parameters. This
framework is typically used if high performance dedicated servers with large network bandwidth are
available[Chilimbi et al. 2014]. Figure 10b shows the AllReduce framework in SINGA, in which we
bind each worker with a server on the same node, so that each node is responsible for maintaining
a partition of parameters and collecting updates from all other nodes. This framework is suitable
for single node multi-GPU case or small GPU clusters. For large clusters, the all-to-all connection
would incur huge amount of communication cost.

Synchronous training is typically limited to a small or medium size cluster, e.g. fewer than 100
nodes. When the cluster size is large, the synchronization delay is likely to be larger than the com-
putation time. Consequently, the training cannot scale well.

5.2.2. Asynchronous Training. An asynchronous framework is implemented by configuring the
cluster topology with more than one worker groups. The training convergence is likely to be differ-
ent from single-node training, because multiple worker groups are working on different versions of
the parameters [Zhang and Re 2014]. Figure 10c shows the Downpour [Dean et al. 2012] frame-
work implemented in SINGA. Similar to the synchronous Sandblaster, all workers send requests to

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 W. Wang et al.

a global server group. We divide workers into several groups, each running independently and work-
ing on parameters from the last update response. Like Sandblaster, this framework also requires the
servers to have large bandwidth to handle requests for multiple worker groups. Figure 10d shows the
distributed Hogwild framework, in which each node contains a complete server group and a com-
plete worker group. Parameter updates are done locally, so that communication cost during each
training step is minimized. However, the server group must periodically synchronize with neighbor-
ing groups to improve the training convergence. The topology (connections) of server groups can be
customized (the default topology is all-to-all connection). This framework is most widely used for
single node Multi-GPU environment, where server groups synchronize via shared memory. For a
large cluster, the synchronization among server groups would incur significant overhead and delay.

Asynchronous training can improve the convergence rate to some degree. But the improvement
typically diminishes when there are more model replicas because the delay (or staleness) of pa-
rameter updates would increase. A more scalable training framework should combine both the
synchronous and asynchronous training. In SINGA, users can run a hybrid training framework by
launching multiple worker groups that run asynchronously to improve the convergence rate. Within
each worker group, multiple workers run synchronously to accelerate one training iteration. Given a
fixed budget (e.g., number of nodes in a cluster), there are opportunities to find one optimal hybrid
training framework that trades off between the convergence rate and efficiency in order to achieve
the minimal training time.

5.3. Neural Network Partitioning
In this section, we describe how SINGA partitions the neural net to support data parallelism, model
parallelism, and hybrid parallelism within one worker group.

sub-layer 0 sub-layer 1 sub-layer 2

W[:,0:3] b[0:3] W[:,0] b[0] W[:,1] b[1] W[:,2] b[2]

Fig. 11: Partition the hidden layer in Figure 4a.

SINGA partitions a neural net at the granularity of layer. Every layer’s feature blob is considered
a matrix whose rows are feature vectors. Thus, the layer can be split on two dimensions. Partitioning
on dimension 0 (also called batch dimension) slices the feature matrix by row. For instance, if the
mini-batch size is 256 and the layer is partitioned into 2 sub-layers, each sub-layer would have 128
feature vectors in its feature blob. Partitioning on this dimension has no effect on the parameters, as
every Param object is replicated in the sub-layers. Partitioning on dimension 1 (also called feature
dimension) slices the feature matrix by column. For example, suppose the original feature vector has
50 units, after partitioning into 2 sub-layers, each sub-layer would have 25 units. This partitioning
splits Param objects, as shown in Figure 11. Both the bias vector and weight matrix are partitioned
into two sub-layers (workers).

Network partitioning is conducted while creating the NeuralNet instance. SINGA extends a layer
into multiple sub-layers. Each sub-layer is assigned a location ID, based on which it is dispatched to
the corresponding worker. Advanced users can also directly specify the location ID for each layer to
control the placement of layers onto workers. For the MDNN model in Figure 6, users can configure
the layers in the image path with location ID 0 and the layers in the text path with location ID 1,
making the two paths run in parallel. Similarly, for the Char-RNN model shown in Figure 8, we
can place the layers of different colors onto different workers. Connection layers will be automati-
cally added to connect the sub-layers. For instance, if two connected sub-layers are located at two

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:13

different workers, then a pair of bridge layers is inserted to transfer the feature (and gradient) blob
between them. When two layers are partitioned on different dimensions, a concatenation layer which
concatenates feature rows (or columns) and a slice layer which slices feature rows (or columns) are
inserted. Connection layers help make the network communication and synchronization transparent
to the users.

When every worker computes the gradients of the entire model parameters, we refer to this pro-
cess as data parallelism. When different workers compute the gradients of different parameters, we
call this process model parallelism. In particular, partitioning on dimension 0 of each layer results in
data parallelism, while partitioning on dimension 1 results in model parallelism. Moreover, SINGA
supports hybrid parallelism wherein some workers compute the gradients of the same subset of
model parameters while other workers compute on different model parameters. For example, to
implement the hybrid parallelism in [Krizhevsky 2014] for the CNN model, we set partition dim
= 0 for lower layers and partition dim = 1 for higher layers. The following list summarizes the
partitioning strategies, their trade-off is analyzed in Section 5.4.

(1) Partitioning all layers into different subsets→ model parallelism.
(2) Partitioning each single layer into sub-layers on batch dimension→ data parallelism.
(3) Partitioning each single layer into sub-layers on feature dimension→ model parallelism.
(4) Hybrid partitioning of strategy 1, 2 and 3→ hybrid parallelism.

5.4. Optimization
Distributed training (i.e, partitioning the neural net and running workers over different layer parti-
tions) increases the computation power, i.e., FLOPS. However, it introduces overhead in terms of
communication and synchronization. Suppose we have a homogeneous computation environment,
that is, all workers run at the same speed and get the same workload (e.g., same number of training
samples and same size of feature vectors). In this case, we can ignore the synchronization overhead
and analyze only the communication cost. The communication cost is mainly attributed to the data
transferred through PCIe over multiple GPUs in a single node, or through the network in a cluster.
To cut down the overall overhead, first we try to reduce the amount of data to be transferred. Further
more, we try to parallelize the computation and communication, in order to hide the communica-
tion time. Here we discuss synchronous training only (i.e., a single worker group), which has the
identical theoretical convergence as training in a single worker. Optimization techniques that may
affect convergence rate of SGD are not considered, e.g., asynchronous SGD (i.e., multiple worker
groups) and parameter compression [Seide et al. 2014]. The following analysis works for training
either over multiple CPU nodes or over multiple GPU cards on a single node.

5.4.1. Reducing Data Transferring. There are two types of data transferring in distributed train-
ing. First, the feature vectors may be transferred as messages if two connected layers are located
in different workers, e.g., by model parallelism. Second, the parameter (values and gradients) are
transferred for aggregation if there are replicated due to data parallelism. The guideline for reducing
data transferring is do data parallelism for layers with fewer parameters and do model parallelism
for layers with smaller feature vectors. To illustrate, we use the popular benchmark model, i.e.,
AlexNet, as an example. AlexNet is a feed-forward model with single path, the ith layer depends
on (i − 1)th layer directly. It is not feasible to parallelize subsets of layers as in MDNN, therefore
we do not consider the first partitioning strategy. Next, we discuss every type of layer involved in
AlexNet one by one.

Convolutional layers contain 5% of the total parameters but 90-95% of the computation, accord-
ing to AlexNet [Krizhevsky 2014]. It is essential to distribute the computation from these layers.
Considering that convolutional layers have large feature vectors and a small amount of parameters,
it is natural to apply data parallelism.

Fully connected layers occupy 95% of the total parameters and 5-10% of computa-
tion [Krizhevsky 2014], therefore we should avoid data parallelism and use model parallelism for
them. Particularly, with data parallelism, the communication overhead per worker is O(p), where

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 W. Wang et al.

b

worker 1 worker 2

worker 1 worker 2

worker 1 worker 2

(a) Two fully connected layers.

b

worker 1 worker 2

worker 1 worker 2

worker 1 worker 2
(b) Partition on hidden layer.

b

worker 1 worker 2

worker 1 worker 2

worker 1 worker 2

(c) Partition on visible layer.

Fig. 12: Distributed computing for fully connected layers.

p is the size of the (replicated) parameters. Let b be the effective mini-batch size (summed over all
workers), K be the number of workers, and dv (resp. dh) be the length of the visible (resp. hidden)
feature vector. Figure 12b shows the case for data partitioning for the visible layer and model parti-
tioning for the hidden layer, the overhead is O(b∗dv) for exchanging the visible features. Figure 12c
applies model partitioning for the visible layer, whose overhead comes from exchanging the hidden
features, i.e., O(b ∗ dh). For the first fully connected layer in AlexNet, p is about 177 million while
dv = dh = 4096. In other words, p > b ∗ dv and p > b ∗ dh, hence data parallelism is costlier than
model parallelism.

For pooling layers and local responsive normalization layers, each neuron depends on many neu-
rons from their source layers. Moreover, they are inter-leaved with convolutional layers, thus it is
cheaper to apply data parallelism than model parallelism for them. For the remaining layers, they
do not have parameters and their neurons depend on source neurons element-wise, hence their par-
titioning strategies just need to be consistent with their source layers. Consequently, a simple hybrid
partitioning strategy for AlexNet [Krizhevsky 2014] could be applying data parallelism for layers
before (or under) the first fully connected layer, and then apply model parallelism or no parallelism
for all other layers. Currently, we require users to configure the partitioning strategy for each layer
to get the above hybrid partitioning scheme. Automatic optimization and configuration is left as a
future work. Reducing data transferring could save power but may not bring speed improvement if
the communication cost is hidden due to overlapping with computation as described below.

5.4.2. Overlapping Computation and Communication. Overlapping the computation and commu-
nication is another common technique for system optimization. In SINGA, the communication com-
prises transferring parameter gradients and values, and transferring layer data and gradients. First,
for parameter gradients/values, we can send them asynchronously while computing other layers.
Take Figure 4 as an example, after the hidden layer finishes ComputeFeature, we can send the gra-
dients asynchronously to the server for updates while the worker continues to load data for the next
iteration. The updated parameters are transferred back to the server by pushing a copy operation
into the Copy queue as shown in Figure 13, which is checked and executed by the worker. Sec-
ond, the transferring of layer data/gradients typically comes from model partitioning as discussed in
Section 5.4.1. In this case, each worker owns a small subset of data and fetches all rest from other
workers. To overlap the computation and communication, each worker can just initiate the commu-
nication and then compute over its own data asynchronously. Take the Figure 12b as an example,
to parallelize the computation and communication, SINGA runs over the layers shown in Figure 13
in order. The BridgeSrcLayer::ComptueFeature initiates the sending operations and returns imme-
diately. The BridgeDestLyer::ComputeFeature waits until data arrives (by checking a signal for the
ending of data transferring). All layers are sorted in topology order followed by communication
priority.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:15

worker 1 worker 2

worker 1 worker 2

v[0:b/2]

h[0:b/2]

InnerProductLayer

h[b/2:b]

h[0:b]

v[b/2:b]

ConcatenateLayer

BridgeDestLayer

BridgeSrcLayer

InnerProductLayer

1

2 3 4

5

1.5

Copy Queue

Fig. 13: Parallelize computation and communication for a GPU worker.

6. EXPERIMENTAL STUDY
We have developed SINGA using C++ on Linux platforms. OpenBLAS and cuDNN are integrated
for accelerating linear algebra and neural net operations. ZeroMQ is used for message passing.
In this section, we evaluate SINGA with real-life multimedia applications. Specifically, we used
SINGA to train the models discussed in Section 4.2, which required little development effort since
SINGA comes with many built-in layers and algorithms. We then measured SINGA’s training per-
formance in terms of efficiency and scalability when running on CPUs and GPUs. We found that
SINGA is more efficient than other open-source systems, and it is scalable for both synchronous
and asynchronous training.

6.1. Applications of SINGA
We trained models for the example applications in Section 4.2 using SINGA. Users can train these
models following the instructions on-line5.The neural nets are configured using the built-in layers
as shown in Figure 6, 7, 8.

Multi-modal Retrieval. We trained the MDNN model for multi-modal retrieval application. We
used NUS-WIDE dataset [Chua et al. 2009], which has roughly 180,000 images after removing
images without tags or from non-popular categories. Each image is associated with several tags. We
used Word2Vec [Mikolov et al. 2013] to learn a word embedding for each tag and aggregated the
embedding of all the tags from the same image as a text feature. Figure 14 shows sample search
results. We first used images as queries to retrieve similar images and text documents. It can be
seen that image results are more relevant to the queries. For instance, the first image result of the
first query is relevant because both images are about architecture, but the text results are not very
relevant. This can be attributed to the large semantic gap between different modalities, making it
difficult to locate semantically relevant objects in the latent (representation) space.

Dimensionality Reduction. We trained RBM models to initialize the deep auto-encoder for di-
mensionality reduction. We used the MNIST6 dataset consisting of 70,000 images of hand-written
digits. Following the configuration used in [Hinton and Salakhutdinov 2006], we set the size of each
layer as 784→1000→500→250→2. Figure 15(a) visualizes sample columns of the weight matrix
of the bottom (first) RBM. We can see that Gabor-like filters are learned. Figure 15(b) depicts the
features extracted from the top-layer of the auto-encoder, wherein one point represents one image.
Different colors represent different digits. We can see that most images are well clustered according
to the ground truth, except for images of digit ’4’ and ’9’ (central part) which have some overlap (in
practice, handwritten ’4’ and ’9’ digits are fairly similar in shape).

Char-RNN We used the Linux kernel source code extracted using an online script7 for this ap-
plication. The dataset is about 6 MB. The RNN model is configured similar to Figure 8. Since

5http://singa.apache.org/v0.3.0/en/docs/examples.html
6http://yann.lecun.com/exdb/mnist/
7http://cs.stanford.edu/people/karpathy/char-rnn

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 W. Wang et al.

nature canada digital quebec
nature canada digital wild quebec
nature canada scenery waterfalls
nature explore food culture
walking castle belgium raw

lowers garden home lawn
cow nederland cows
flowers plants
flowers park love quality photographer
flower flowers orchid

water colors love heart joy
sepia golden contrast awesome exposure
digital great dream photographers
blue color needles
blue sea portrait mountain cold moon

water beach sun
pink lake boat
cloud evening

shore

sky blue bravo reflection ocean rainbow
sky water ocean boat rocks reflections
blue water bravo explore white italy
rain boats canal rainy
clouds green sea bay cliff needles

sky architecture
quebec montreal

city river lights new lines barge
sky night art eos moon stars wales
sky night lights bazaar
sky sunset building office skyscraper
city river old boat house ship thailand

white house home
interior modern
french furniture

traditional

light portrait window warehouse
old man walking mosque
red germany decay berlin dress court
light dark shoes clothes shirt clothing
red car window field head hawk

Query Text Results Image Results

Fig. 14: Multi-Modal Retrieval. Top 5 similar text documents (one line per document) and images
are displayed.

(a) Bottom RBM weight matrix.
−40 −30 −20 −10 0 10 20 30 40 50

−40

−30

−20

−10

0

10

20

30

40

50

(b) Top layer features.

Fig. 15: Visualization of the weight matrix in the bottom RBM and top layer features in the deep
auto-encoder.

this dataset is small, we used one stack of recurrent layers (Figure 8 has two stacks). The training
loss and accuracy is shown in Figure 16. We can see that the Char-RNN model can be trained to
predict the next character given previous characters in the source code more and more accurately.
There some fluctuations due to the variance of data samples in different mini-batches (the loss and
accuracy are computed per mini-batch).

6.2. Training Performance Evaluation on CPU
We evaluated SINGA’s training efficiency and scalability for both synchronous and asynchronous
frameworks on a single multi-core node, and on a cluster of commodity servers.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:17

0 20000 40000 60000 80000 100000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Accuracy

(a) Training accuracy.

0 20000 40000 60000 80000 100000
Iterations

1.5

2.0

2.5

3.0

3.5

4.0

4.5 Loss

(b) Training loss.

Fig. 16: Training accuracy and loss of Char-RNN.

20 21 22 23 24 25

number of cores/workers

0

1

2

3

4

5

6

7

8

tim
e

pe
ri

te
ra

tio
n

(s
ec

on
ds

)

CXXNET
Caffe
SINGA
SINGA-dist

(a) On the single node.

4 8 16 32 64 128
number of workers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tim
e

pe
ri

te
ra

tio
n

(s
ec

on
ds

)

Petuum
SINGA

(b) On the 32-node cluster.

Fig. 17: Synchronous training.

6.2.1. Methodologies. The deep convolution neural network8 for image classification was used as
the training model for benchmarking. The training was conducted over the CIFAR10 dataset9 which
has 50,000 training images and 10,000 test images. For the single-node setting, we used a 24-core
server with 500GB memory. The 24 cores are distributed into 4 NUMA nodes (Intel Xeon 7540).
Hyper-threading is turned on. For the multi-node setting, we used a 32-node cluster. Each cluster
node is equipped with a quad-core Intel Xeon 3.1 GHz CPU and 8GB memory. The cluster nodes
are connected by a 1Gbps switch.

6.2.2. Synchronous training. We compared SINGA with CXXNET10 and Caffe [Jia et al. 2014].
All three systems use OpenBlas to accelerate matrix multiplications. Both CXXNET and Caffe
were compiled with their default optimization levels: O3 for the former and O2 for the latter. We
observed that because synchronous training has the same convergence rate as that of sequential
SGD, all systems would converge after same number of iterations (i.e., mini-batches). This means
the difference in total training time among these systems is attributed to the efficiency of a single
iteration. Therefore, we only compared the training time for one iteration. We ran 100 iterations for
each system and averaged the result time over 50 iterations: 30th to 80th iteration, in order to avoid
the effect of starting and ending phases.

On the 24-core single node, we used 256 images per mini-batch and varied the number of Open-
Blas’s threads. The result is shown in Figure 17(a). SINGA-dist represents the SINGA configuration
in which there are multiple workers, each worker has 1 OpenBlas thread11. In contrast, SINGA

8https://code.google.com/p/cuda-convnet/
9http://www.cs.toronto.edu/ kriz/cifar.html
10https://github.com/dmlc/cxxnet
11OPENBLAS NUM THREADS=1

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 W. Wang et al.

0 5000 10000 15000 20000
training time (seconds)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

ac
cu

ra
cy

1 worker
2 workers
4 workers
8 workers
16 workers
32 workers

(a) Caffe on the single node.

0 5000 10000 15000
training time (seconds)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

ac
cu

ra
cy

1 worker
2 workers
4 workers
8 workers
16 workers
32 workers

(b) SINGA on the single node.

0 1000 2000 3000 4000 5000
training time (seconds)

0.55

0.60

0.65

0.70

0.75

0.80

te
st

ac
cu

ra
cy

1 worker per group
2 workers per group
4 workers per group

(c)SINGA on the cluster.

Fig. 18: Asynchronous training.

represents the configuration which has only 1 worker. We configured SINGA-dist with the cluster
topology consisting of one server group with four servers and one worker group with varying num-
ber of worker threads (Figure 17(a)). In other words, SINGA-dist ran as the in-memory Sandblaster
framework. We can see that SINGA-dist has the best overall performance: it is the fastest for each
number of threads, and it is also the most scalable. Other systems using multi-threaded OpenBlas
scale poorly. This is because OpenBlas has little awareness of the application, and hence it cannot
be fully optimized. For example, it may only parallelize specific operations such as large matrix
multiplications. In contrast, in SINGA-dist partitions the mini-batch equally between workers and
achieves parallelism at the worker level. Another limitation of OpenBlas, as shown in Figure 17(a),
is that when there were more than 8 threads, the overheads caused by cross-CPU memory access
[Tan et al. 2015] started to have negative effect on the overall performance.

On the 32-node cluster, we compared SINGA against another distributed machine learning frame-
work called Petuum [Dai et al. 2013]. Petuum runs Caffe as an application to train deep learning
models. It implements a parameter server to perform updates from workers (clients), while the
workers run synchronously. We used a larger mini-batch size (512 images) and disabled OpenBlas
multi-threading. We configured SINGA’s cluster topology to realize the AllReduce framework: there
is 1 worker group and 1 server group, and in each node there are 4 workers and 1 server. We varied
the size of worker group from 4 to 128, and the server group size from 1 to 32. We note that one
drawback of synchronous distributed training is that it cannot scale to too many nodes because there
is typically an upper limit on the mini-batch size (1024 images, for instance). Consequently, there
is an upper bound on the number of workers we can launch (1024 workers, for instance), otherwise
some workers will not be assigned any image to train. Figure 17(b) shows that SINGA achieves
almost linear scalability. In contrast, Petuum scales up to 64 workers, but becomes slower when 128
workers are launched. It might be attributed to the communication overheads at the parameter server
and the synchronization delays among workers.

6.2.3. Asynchronous training. We compared SINGA against Caffe which has support for in-
memory asynchronous training. On the single node, we configured Caffe to use the in-memory
Hogwild [Recht et al. 2011] framework, and SINGA to use the in-memory Downpour framework.
Their main difference is that parameter updates are done by workers in Caffe and by a single server
(thread) in SINGA. Figure 18(a) and Figure 18(b) show the model accuracy versus training time
with varying numbers of worker groups (i.e. model replicas). Every worker processed 16 images
per iteration, for a total of 60,000 iterations. We can see that SINGA trains faster than Caffe. Both
systems scale well as the number of workers increases, both in terms of the time to reach the same
accuracy and of the final converged accuracy. We can also observe that the training takes longer
with more workers. This is due to the increased overhead in context-switching when there are more
threads (workers). Finally, we note from the results that the performance difference becomes smaller
when the cluster size (i.e., the number of model replicas) reaches 16. This implies that there would

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:19

64 128 256
Mini-batch size

0

50

100

150

200

250

300

350

400

450

Ti
m

e
pe

ri
te

ra
tio

n
(m

ill
is

ec
on

d)

No Copy
Async Copy
Sync Copy

(a) Hide communication cost.

64 128 256
Mini-batch size

0

50

100

150

200

Ti
m

e
pe

ri
te

ra
tio

n
(m

ill
is

ec
on

d)

Data parallelism Hybrid parallelism

(b) Reduce data transferring.

Fig. 19: Effect of optimization techniques.

be little benefit in having too many model replicas. Thus, we fixed the number of model replicas
(i.e., worker groups) to 32 in the following experiments for the distributed asynchronous training.

On the 32-node cluster, we used mini-batch of 16 images per worker group and 60,000 train-
ing iterations. We varied the number of workers within one group, and configured the distributed
Downpour framework to have 32 worker groups and 32 servers per server group (one server thread
per node). We can see from Figure 18(c) that with more workers, the training is faster because each
worker processes fewer images. However, the training is not as stable as in the single-node setting.
This may be caused by the delay (staleness) of parameter synchronization between workers, which
is not present in single-node training because parameter updates are immediately visible on the
shared memory. The final stage of training (i.e., last few points of each line) is stable because there
is only one worker group running during that time, namely the testing group. We note that using a
warm-up stage, which trains the model using a single worker group at the beginning, may help to
stabilize the training as reported in Google’s DistBelief system [Dean et al. 2012].

6.3. Training Performance Evaluation on GPU
We evaluated the training performance of SINGA running on GPUs. We first analyzed the two
optimization techniques discussed in Section 5.4, then we compared SINGA with other open source,
state-of-the-art systems.

6.3.1. Methodologies. We used the on-line benchmark model from Soumith12 as the training
workload. The model is adapted from the AlexNet [Krizhevsky 2014] model with some layers omit-
ted. Two sets of hardware are used in our experiments, whose specs and software configurations are
shown in Table III.

Table III: Specs of hardware and software.

Type CPU Memory GPU CUDA cuDNN
Single node Intel i7-5820K 16 GB GTX 970 (4GB) 7.0 4.0
GPU cluster (4 nodes) Intel i7-5820K 64 GB GTX TITAN-X (12GB) 7.5 4.0

6.3.2. Overlapping Communication and Computation. In Section 5.4.2, we analyzed the optimiza-
tion technique for hiding the communication overhead by overlapping it with the computation. Here
we evaluate the effect of this technique using the single node. Particularly, we compare the efficiency
in terms of time per iteration for three versions of SINGA. No Copy version indicates that there is

12https://github.com/soumith/convnet-benchmarks

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 W. Wang et al.

no communication between GPU and CPU, which is widely used for training with a single GPU,
where all operations including parameter update are conducted on the single GPU. The other two
versions conduct BP algorithm on GPU and parameter updating on CPU, differing only by whether
data transferring is done synchronously or asynchronously.

Figure 19(a) shows the time per iteration with different mini-batch size. First, we can see that No
Copy is the fastest one because it has no communication cost at all. Second, Async Copy is faster
than Sync Copy, which suggests that the asynchronous data transferring benefits from the overlap-
ping communication and computation. Moreover, we can see that when the mini-batch increases, the
difference between Async Copy and Sync Copy decreases. This is because for large mini-batches,
the BP algorithm spends more time doing computation, which increases the overlap area of com-
putation and communication, effectively reducing the overhead. For mini-batch size = 256, Async
Copy is even faster than No Copy, this is because Async Copy does not do parameter update, which
is done by the server in parallel with BP. However, No Copy has to do BP and parameter updating
in sequential.

6.3.3. Reducing Data Transferring. In Section 5.4.1, we discussed how hybrid partitioning is bet-
ter than other strategies in terms of the overheads in transferring feature vectors between layers in
different workers. To demonstrate its effectiveness, we ran SINGA on the single node using two
partitioning strategies, i.e., data partitioning and hybrid partitioning for the first fully connected
layer in AlexNet. 2 workers are launched (one per GPU). Figure 19(b) shows the time per iter-
ation with different mini-batch sizes. We can see that hybrid partitioning has better performance
over data partitioning. For data partitioning, only parameter gradients and values are transferred,
which is independent of the mini-batch size, thus the time per iteration does not change much when
mini-batchs size increases. For hybrid partitioning, when the mini-batch size increases, more feature
vectors would be transferred, and then the time increases.

6.3.4. Comparison with Other Systems. We also compared SINGA with four other state-of-the-
art deep learning systems namely, Caffe [Jia et al. 2014], MxNet [Chen et al. 2015], Torch7 [Col-
lobert et al. 2011], and TensorFlow [et al. 2015] (TF). The performance is measured using the
throughput, i.e., number of processed images per second. We used (or adapted) the scripts (or in-
structions) from each system’s multi-GPU examples 13 14 15 16. We simply adapted the on-line code
for the experiments, better performance could be achieved with further tuning.

We first compared the throughput of training on a single node with different number of workers
(GPUs). We varied the number of workers from 1 to 3, where each worker ran on a GPU. Because
Tensorflow ran out of memory with batch size = 128 (the setting used by Soumith’s benchmark),
we decreased the batch size to 96 for all runnings. The results are shown in Figure 20(a).

Caffe has the best single worker performance. This is because there is no parameter transferring
between GPU and CPU, whereas others have parameter transferring, e.g., SINGA has to transfer the
parameter from the worker (on GPU) to the server (on CPU). However, its performance decreases
when more workers are added. This is because 1) the parameters have to be transferred among GPUs
(via CPUs), which brings in communication cost; 2)its tree reduction communication pattern (See
the link in the footnote) incurs more cost than the all-to-one or all-reduce communication pattern
used by other systems when there are more than 2 workers.

For other systems, they have similar performance for the single worker case, as they all use
the same cuDNN library for most of the computation. Note that their throughput is lower than
Soumith’s benchmark because the GPUs are slower than Soumith’s and there is communication cost
whereas Soumith’s benchmark does not involve parameter transferring. Thanks to the optimization

13Caffe, https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
14MxNet, https://mxnet.readthedocs.io/en/latest/how to/multi devices.html
15Torch7, https://github.com/soumith/imagenet-multiGPU.torch
16Tensorflow, https://www.tensorflow.org/versions/r0.8/tutorials/deep cnn/index.html and https://github.com/tensorflow/
models/tree/master/inception

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:21

1 2 3
Number of workers

0

100

200

300

400

500

600

700

800

900

N
um

be
ro

fi
m

ag
es

pe
rs

ec
on

d Caffe
MxNet
Torch
TensorFlow
SINGA

(a) A single node with multi-GPUs.

1 2 4
Number of workers

0

200

400

600

800

1000

N
um

be
ro

fi
m

ag
es

pe
rs

ec
on

d TensorFlow
SINGA
SINGA-VGG-No-FC

(b) A GPU cluster with 4 nodes.

Fig. 20: Performance comparison of open source systems.

techniques introduced in Section 5.4, SINGA has almost linear scalability. Tensorflow shows the
best scalability among all tested system.

Next, we ran SINGA and Tensorflow in the GPU cluster using the synchronous training frame-
work. We varied the number of nodes (one GPU worker per node) as shown in Figure 20(b). For
Tensorflow, we launched one parameter server, which communicates with all workers via gRPC.
For SINGA, we created a single server group with 1 server, which is in the same process as the
first worker and communicates with other workers using ZeroMQ. We reduced the size of the first
fully connected layer to 128, because this layer has a big parameter matrix whose size exceeds the
limit of the Protobuf message used by Tensorflow. Consequently, the performance for single node
(i.e., single GPU) is better than that in Figure 20(a). We can see that SINGA performs much better
than Tensorflow in terms of throughput. It is likely caused by the network communication, which
is not well optimized in Tensorflow. SINGA avoids some communication cost by running the first
worker and the parameter server in the same process (they transfer messages via sharing memory).
Both systems show poor scalability when there are more than two workers (nodes). On the one
hand, node-to-node communication cost and synchronization cost are introduced when there are
more than two workers. One the other hand, the Alexnet model has too many parameters that makes
the communication the bottleneck. To verify this explanation, we conducted another set of experi-
ments using the VGG model [Simonyan and Zisserman 2014] with fully connected layers omitted,
denoted as VGG-No-FC. This model has 10 convolutional layers and a small amount of parameters,
which make it more computation intensive than the Alexnet model. The result in Figure 20(b) shows
that SINGA has good scalability for this model, which confirms our explanation. To conclude, dis-
tributed training is more suitable for models that are computation intensive and with a small amount
of parameters.

7. CONCLUSION
In this paper, we proposed a distributed deep learning platform, called SINGA, for supporting mul-
timedia applications. SINGA offers a simple and intuitive programming model, making it accessible
to even non-experts. SINGA is extensible and able to support a wide range of multimedia applica-
tions requiring different deep learning models. The flexible training architecture gives the user the
chance to balance the trade-off between the training efficiency and convergence rate. Optimization
techniques are applied to improve the training performance. We demonstrated the use of SINGA for
representative multimedia applications using a CPU cluster and a single node with multiple GPU
cards, and showed that the platform is both usable and scalable.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 W. Wang et al.

ACKNOWLEDGMENTS

This work was in part supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Com-
petitive Research Programme (CRP Award No. NRF-CRP8-2011-08) and A*STAR project 1321202073. Gang Chen’s work
was supported by National Natural Science Foundation of China (NSFC) Grant No. 61472348. We would like to thank the
SINGA team members and NetEase for their contributions to Apache SINGA, the anonymous reviewers for their insightful
and constructive comments, and NUS SeSaMe center for sharing the GPU cluster for our experiments. Meihui’s work was
funded under the Energy Innovation Research Programme (EIRP, Award No. NRF2014EWTEIRP002-026), administered
by the Energy Market Authority (EMA). The EIRP is a competitive grant call initiative driven by the Energy Innovation
Programme Office, and funded by the National Research Foundation (NRF).

REFERENCES
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud Bergeron, Nicolas Bouchard,

and Yoshua Bengio. 2012. Theano: new features and speed improvements. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop. (2012).

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. 2016a. Revisiting Distributed Synchronous SGD. CoRR
abs/1604.00981 (2016). http://arxiv.org/abs/1604.00981

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng
Zhang. 2015. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv preprint arXiv:1512.01274 (2015).

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016b. Training Deep Nets with Sublinear Memory Cost. CoRR
abs/1604.06174 (2016). http://arxiv.org/abs/1604.06174

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. 2014. Project Adam: Building an Effi-
cient and Scalable Deep Learning Training System. In OSDI. USENIX Association, 571–582. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/chilimbi

Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao. Zheng. July 8-10, 2009. NUS-WIDE: A
Real-World Web Image Database from National University of Singapore. In CIVR’09.

Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. 2010. Deep Big Simple Neural Nets
Excel on Handwritten Digit Recognition. CoRR abs/1003.0358 (2010).

Adam Coates, Brody Huval, Tao Wang, David J. Wu, Bryan C. Catanzaro, and Andrew Y. Ng. 2013. Deep learning with
COTS HPC systems. In ICML (3). 1337–1345.

R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011. Torch7: A Matlab-like Environment for Machine Learning. In BigLearn,
NIPS Workshop.

Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong Ho, and Eric P. Xing. 2013. Petuum:
A Framework for Iterative-Convergent Distributed ML. CoRR abs/1312.7651 (2013). http://arxiv.org/abs/1312.7651

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew W. Senior, Paul A. Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In
NIPS. 1232–1240.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods for Online Learning and Stochastic Op-
timization. Journal of Machine Learning Research 12 (2011), 2121–2159. http://dl.acm.org/citation.cfm?id=2021068

Amit Agarwal et al. 2014. An Introduction to Computational Networks and the Computational Network Toolkit. Technical
Report. Microsoft Technical Report MSR-TR-2014-112.

Martı́n Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http://tensorflow.
org/ Software available from tensorflow.org.

Fangxiang Feng, Xiaojie Wang, and Ruifan Li. 2014. Cross-modal Retrieval with Correspondence Autoencoder. In ACM
Multimedia. 7–16. DOI:http://dx.doi.org/10.1145/2647868.2654902

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition. arXiv
preprint arXiv:1512.03385 (2015).

Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science 313,
5786 (2006), 504 – 507.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093
(2014).

Dawei Jiang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Sai Wu. 2014. epiC: an Extensible and Scalable System for
Processing Big Data. PVLDB 7, 7 (2014), 541–552. http://www.vldb.org/pvldb/vol7/p541-jiang.pdf

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural networks. CoRR abs/1404.5997 (2014).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Deep Learning At Scale and At Ease A:23

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural
Networks. In NIPS. 1106–1114.

Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Corrado, Kai Chen, Jeffrey Dean, and Andrew Y.
Ng. 2012. Building high-level features using large scale unsupervised learning. In ICML.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. 1996. Effiicient BackProp. In Neural Networks:
Tricks of the Trade. 9–50. DOI:http://dx.doi.org/10.1007/3-540-49430-8 2

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. 2011. Extensions of recurrent
neural network language model. In ICASSP. IEEE, 5528–5531. DOI:http://dx.doi.org/10.1109/ICASSP.2011.5947611

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed Representations of
Words and Phrases and their Compositionality. In NIPS. 3111–3119.

Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang Chen, Jinyang Gao, Zhaojing Luo, Anthony
K. H. Tung, Yuan Wang, Zhongle Xie, Meihui Zhang, and Kaiping Zheng. 2015. SINGA: A Distributed Deep Learning
Platform. In ACM Multimedia.

Thomas Paine, Hailin Jin, Jianchao Yang, Zhe Lin, and Thomas S. Huang. 2013. GPU Asynchronous Stochastic Gradient
Descent to Speed Up Neural Network Training. CoRR abs/1312.6186 (2013).

Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. 2011. Hogwild: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent. In NIPS. 693–701.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech DNNs. In INTERSPEECH 2014, 15th Annual Conference of the International
Speech Communication Association, Singapore, September 14-18, 2014. 1058–1062.

Heng Tao Shen, Beng Chin Ooi, and Kian-Lee Tan. 2000. Giving meanings to WWW images. In ACM Multimedia. 39–47.
Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-

houcke, and Andrew Rabinovich. 2014. Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).
Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang Yao, and Hao Zhang. 2015. In-memory Databases:

Challenges and Opportunities From Software and Hardware Perspectives. ACM SIGMOD Record 44, 2 (2015), 35–40.
Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong Zhang, and Jintao Li. 2014. Deep

Learning for Content-Based Image Retrieval: A Comprehensive Study. In ACM Multimedia. 157–166.
Wei Wang, Gang Chen, Tien Tuan Anh Dinh, Jinyang Gao, Beng Chin Ooi, Kian-Lee Tan, and Sheng Wang. 2015. SINGA:

Putting Deep Learning in the Hands of Multimedia Users. In ACM Multimedia.
Wei Wang, Beng Chin Ooi, Xiaoyan Yang, Dongxiang Zhang, and Yueting Zhuang. 2014. Effective Multi-Modal Retrieval

based on Stacked Auto-Encoders. PVLDB 7, 8 (2014), 649–660.
Wei Wang, Xiaoyan Yang, Beng Chin Ooi, Dongxiang Zhang, and Yueting Zhuang. 2015. Effective deep learning-based

multi-modal retrieval. The VLDB Journal (2015), 1–23. DOI:http://dx.doi.org/10.1007/s00778-015-0391-4
Xinxi Wang and Ye Wang. 2014. Improving Content-based and Hybrid Music Recommendation using Deep Learning. In

ACM Multimedia. 627–636. DOI:http://dx.doi.org/10.1145/2647868.2654940
Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. 2015. Deep Image: Scaling up Image Recognition. CoRR

abs/1501.02876 (2015). http://arxiv.org/abs/1501.02876
Zuxuan Wu, Yu-Gang Jiang, Jun Wang, Jian Pu, and Xiangyang Xue. 2014. Exploring Inter-feature and Inter-class Relation-

ships with Deep Neural Networks for Video Classification. In ACM Multimedia. 167–176.
Omry Yadan, Keith Adams, Yaniv Taigman, and Marc’Aurelio Ranzato. 2013. Multi-GPU Training of ConvNets. CoRR

abs/1312.5853 (2013).
Quanzeng You, Jiebo Luo, Hailin Jin, and Jianchao Yang. 2015. Joint Visual-Textual Sentiment Analysis with Deep Neu-

ral Networks. In Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, MM ’15, Brisbane,
Australia, October 26 - 30, 2015. 1071–1074. DOI:http://dx.doi.org/10.1145/2733373.2806284

Ce Zhang and Christopher Re. 2014. DimmWitted: A Study of Main-Memory Statistical Analytics. PVLDB 7, 12 (2014),
1283–1294. http://www.vldb.org/pvldb/vol7/p1283-zhang.pdf

Hanwang Zhang, Yang Yang, Huan-Bo Luan, Shuicheng Yang, and Tat-Seng Chua. 2014. Start from Scratch: Towards
Automatically Identifying, Modeling, and Naming Visual Attributes. In ACM Multimedia. 187–196.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

