
On Spatially Partitioned Temporal Join

Hongjun Lu Beng-Chin Ooi Kian-Lee Tan
Department of Information Systems and Computer Science

National University of Singapore
Lower Kent Ridge, Singapore 0511

Internet: {luhj,ooibc,tankl}Qiscs.nus.sg

Abstract

This paper presents an innovative partition-
based time join strategy for temporal
databases where time is represented by time
intervals. The proposed method maps time
intervals to points in a two dimensional space
and partitions the space into subspaces. Tu-
pies of a temporal relation are clustered into
partitions based on the mapping in the space.
As a result, when two temporal relations are
to be joined over the time attribute, a parti-
tion in one relation only needs to be compared
with a predetermined set of partitions of the
other relation. The mapping scheme and the
join algorithms are described. The use of spa-
tial indexing techniques to support direct ac-
cess to the stored partitions is discussed. The
results of a preliminary performance study in-
dicate the efficiency of the proposed method.

1 Introduction

Research in temporal databases has largely focused on
extensions of existing data models to handle tempo
ral information [EW90, Gad88, GY88, SS871. An im-
portant aspect of these extensions is the introduction
of new temporal operators that facilitate the retrieval
of factual data corresponding to some past states of
the database and/or of the real world. More recently,

Permierion to copy without fee all or part of thir material ir
gmnted provided that the copier am not made or dirtributed for
dinct commercial advantage, the VLDB copyright notice and
the title of the publication and itr date appear, and notice ie
given that copging ir by permieeion of the Very Loge Data Baee
Endowment. To copy otherwire, or to republirh, requinr a fee
and/or special permiarion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

many researchers have expressed interests in the vi-
able implementation of these temporal operators. To
this end, a number of specialized storage structures or
indexes have been proposed to provide support for the
efficient retrieval of temporal data [EWKSO, SOL94].
However, only a few work address the issues of efficient
implementation of one of the most expensive opera-
tions - temporal join [GS91, SSJ94].

Intuitively, temporal joins are needed in applica-
tions which require finding events that happen at the
same time. Some examples include queries to find
the employees who work in the same department or
work on the same project in a company database; to
find the nodes being connected (disconnected) dur-
ing certain period of time in a communication net-
work; to find suspects that appeared at the same lo
cation at the same time in a criminal database sys-
tem; and etc. In order to answer such queries, tempo-
ral join is used to find the overlap among the time
intervals of different tuples. Unlike joins in tradi-
tional relational database systems where equi-joins are
the commonest form, joins on time intervals are non-
equijoins for which less research work has been re-
ported [DNSSl, GS91, SSJ94].

In this paper, we address the issues of efficient pro-
cessing of temporal joins. In particular, we will concen-
trate on the partition-based join methods where two
source relations are partitioned and the original join is
decomposed into joins among the partitions. Although
it is a well known fact that partition-based algorithms
outperform the nested-loops join and sort-merge join
algorithms in most cases, previous results indicated
that, for temporal join, the nested-loops and sort-
merge methods are in fact reasonably good choices,
and the partition-based methods only win in certain
cases. Our initial studies also showed similar results.
The performance bottleneck of partition-based tem-
poral join method is that the partitions containing so-
called “long-lived” tuples (tuples whose time intervals
span over a long period) need to be compared with al-

546

most all the other partitions. This defeats the purpose
of partitioning, i.e. to limit the comparisons among
corresponding partition pairs. As a result, the savings
obtained from the reduction of comparisons among
partitions may not be able to offset the overhead of
partition-based methods - the cost of partitioning.

To solve the problem, we proposed in this paper a
partition-based temporal join method with the follow-
ing unique features:

l Time intervals are mapped to points in a two
dimensional space;

l The tuples are clustered’on the time attributes
according to their positions in the space;

l Time join is performed using partition-based ap-
proach. In other words, a partition of one rela-
tion is only compared with certain partitions of
the other relation to find matches.

Our performance study indicates that the proposed
method outperforms previously proposed methods.

The rest of this paper is organized as follows. Sec-
tion 2 provides the background information to our
study. In Section 3, we look at the basic partition-
based time join algorithm and present a new partition
scheme. Section 4 discusses how spatial index struc-
tures can be used to support the proposed join method.
In Section 5, we present the results of a performance
study that compares our algorithm with the nested-
loops and sort-merge algorithms. Section 6 reviews
some related work. Finally, we conclude in Section 7
with discussions on possible extensions to this work.

2 Preliminaries

There are a number of models proposed for tempo
ral database. We would like to ignore the modeling
issues in this paper and adopt a simple view of the
problem specified in this short section so that we can
concentrate ourselves on the essential issues related to
efficient processing of joins involving time attributes.

Following [GS91, RF931 and others, we consider
the time dimension as a sequence of discrete time in-
stants where consecutive time instants differ exactly
by one time unit. Time unit is assumed to be the
same throughout the time dimension. Attributes of a
temporal relation can be non-time varying attributes
(such as employee id, name, sex), time-varying at-
tributes (such as salary, qualifications) and time at-
tributes that indicate the time interval that the given
values of the time-varying attributes are valid. The
time interval, denoted [Ts, Tn], TE > Ts, where Ts is
the start time and Tn the end time, semantically rep
resents the lifespan of the tuple in question. The time

dimension is represented as a time interval [0, T,,],
where 0 represents the starting time of the application
and Tnw refers to the current time which is continu-
ously increasing. Moreover, all relations are assumed
to be in first temporal normal form [SSSS]. As such,
there are no two intersecting time intervals for a given
surrogate instance. We say that two tuples, t and 8,
intersects if and only if their time intervals overlap, i.e.
r.Ts 2 S.TE A P.TE 2 s.T,. We also say that an in-
terval [Ts, TE] contains another interval [t,, te] if and
only if Ts 5 t, h t, 5 TE.

Example 1. Consider a database that keeps record
of a list of persons and their visits to the United
States. A simplified version of visitor relation for this
database is shown in Table 2. Every person in this
database is assigned a unique pid. The attribute en-
try-pt stores the entry point used to gain entrance to
the United States. Arrival and departure time is nor-
malized against some reference point (day 0) and hence
the duration of each person’s visit can be represented
as a time interval in the time dimension [0, T,,]. Each
tuple is assigned a unique tid, that serves as a surro-
gate, to facilitate references to it.

Table 1: The visitor relation.

tid pid entrypt Ts TE

tl pl NY 0 3
t2 p2 SF0 0 5
t3 p3 LA 0 7
t4 p4 NY 2 3
t5 p5 NY 2 11
t6 p6 LA 4 8
t7 pl NY 4 Tnmu
t8 p2 LA 5 11
t9 p7 SF0 6 8
t10 p7 NY 8 9
tll p8 LA 8 Tnow
t12 p6 LA 10 T,ow
t13 p3 LA 11 Gcw
t14 p9 NY 12 T’ow

A time join, denoted WT on two temporal relations
R and S, consists of the concatenation of all tuples
r E R and s E S such that the time attribute values
in r and 8 intersect. The start and end times of a
resulting record, say z, are given as follows:

%.TS = max(r.Ts, s.Ts) and Z.TE = min(r.TE, s.TE)

For ease of reference in sequel, we use the term
“join” to refer exclusively to the time join, and the
term “relation” to mean temporal relation, unless oth-
erwise stated.

541

3 Spatially Partitioned Time Join

3.1 Partition-Baaed Time Join

In relational systems, the partition-based join is one
of the three major join methods. Compared to the
other two methods, the nested-loops join and sort-
merge join, the partition-based join is more efficient as
only those “promising” tuple pairs, rather than all tu-
ple pairs, are examined. As hashing is the major par-
tition method, most partition-based join algorithms
proposed in relational systems are hash-based. The
basic hash partition-based equi-join operation of two
relations R and S comprises the following two phases
[DK0+84, Sha86]:

l Partition Phase. In this phase, a function (usu-
ally a hash function) is employed to split relation
R into n disjoint partitions RI, Rz, . . . , R,, based
on the join attribute values such that

lJ%,& = R h Vi, j, i # j, & fl Rj = 0

Relation S is also split into partitions
s1,sa , . . . , Sn using the same (hash) function.

l Join Phase. In this phase, tuples of R are joined
with tuples of S. Since tuples in fi are not join-
able with tuples in Sj whenever i # j, RI only
needs to join with Si, Ra with &, and so on. In
other words,

This phase performs the join for each correspond-
ing pair of partitions one at a time using any of
the existing join methods.

Performance studies have shown that partition-
based techniques generally outperform sort-merge and
nested-loops join algorithms for equi-join operation
[DK0+84, Sha86]. Unfortunately, to perform tempo-
ral join efficiently using partition-based algorithm is
not as straightforward. This is because in temporal
database, the join operation requires comparison of
intervals rather than point data. Unless all the tu-
ples within an interval falls in one partition, or a tuple
is duplicated in all the partitions that it overlaps, a
partition has to be joined with more than one parti-
tion of the other relation. Therefore, the traditional
partition-based join algorithms have to be modified to
consider this factor.

Partition-based algorithms for temporal join pro
posed in the literature can be classified into the fol-
lowing two types:

l Static Partitioning. In this method, R and
S are split into n partitions in a similar man-
ner as the conventional partition-based join meth-
ods, except that they are range-partitioned on

the start timestamp (Ts) of the tuple.’ However,
while each tuple of R appears in only one parti-
tion of R, a tuple of S will appear in partition Si
if its temporal interval intersects with the interval
assigned to &. In other words, tuples of S may
be replicated across several partitions. Therefore,

2 IlRill = IIRII and 2 llsill 2 IISII
id i=l

The advantage of replicating S is that each parti-
tion of R needs to be joined with the correspond-
ing partition of S only.

Dynamic Partitioning. In this case, relation R
is rangepartitioned into n non-overlapping inter-
vals li, 1 5 i < n that covers completely the time
line. A tuple (of R and S) must appear in the 8"
partition if its timestamp overlaps the interval Ii.
To avoid replicating tuples of R and S into mul-
tiple partitions, Soo, et. al., keeps each tuple in
the last partition that the tuple overlaps [SSJ94].
The join computation is performed backward by
processing partition n first, followed by partition
n - 1, and so on. To compute the join results cor-
rectly, those tuples whose time intervals intersect
more than one partition range will be retained in
memory to be combined with tuples in the next
partition. For example, a tuple tR whose time in-
terval intersects partitions k and k - 1, is stored
in partition k. After partition k of R has been
joined with partition k of S, tuples whose time
intervals are contained in the interval of partition
k are swapped out to prepare for the join of par-
titions &-I and Sk-i. However, tR will be kept
in memory so that it can be joined with tuples in
Sk-i. In other words, the partitions are dynami-
cally adjusted during the join computation.

While the first method is simple, it introduces both
storage and processing overhead. For example, in
the worst case where all S tuples have time interval
[0, T’,], each S tuple appears in every partition. The
actual tuples processed will be n - IlSll for some n 1 1,
which may be much larger than IIS]]. Therefore it re-
quires additional storage space to hold the replicated
tuples. More importantly, the additional I/OS required
to write and read the replicated tuples result in poor
performance. The second method avoids such repli-
cation in partitions and it was shown to perform well
when the number of so called long-lived tuples (tuples
whose time intervals intersect more than one parti-
tion), is not large. However, it may perform poorly

‘The partitioning can &o be done wing the end timestamp
of the tuple.

548

when the number of long-lived tuples increases. In
such a case, the number of partitions also increases
drastically. Furthermore, retaining the tuples across
partitions during join computation requires quite so-
phisticated memory management.

3.2 Spatial Mapping of Time Intervals

Both the above two methods require determining the
partition to which a time interval belongs, which is
not an easy task [SSJ94]. Furthermore, both methods
need to replicate some tuples, either statically (the first
method) or dynamically (the second method). Based
on a timespace mapping scheme described in [HN83,
SOL94], we propose that tuplea in a temporal relation
be partitioned using both their start timestamps and
time intervals.

Tuples in a temporal relation are viewed as spatial
objects in a multi-dimensional space, one or more of
which is the time dimension. The following function
is introduced to map time intervals to discrete data
points in a twedimensional space:

f: I + N x N where f([a, 61) = (a, b - a)

Applying the function f on tuplea of a temporal
relation results in a spatial rendition. The spatial ren-
dition obtained in this manner have the following nice
properties:

l any tuple with a start time Ts = a must be
mapped to a point on the line z = a;

l any tuple with an end time TE = b must be
mapped to a point on the line z + y = b; and

l any tuple with a total time duration of c must be
mapped to a point on the line v = c.

Figure 1 illustrates the result of applying function
f on the tuplea of the visitor relation. For example,
the tuple t4 is mapped to (2,l) since the time interval
corresponding to tuple t4 is [2, 31.

Interestingly, the spatial rendition supports time-
intersection operation effectively. Given an interval,
we can easily determine the set of tuples that intersect
it. For example, referring to Figure 1, the set of tuples
that intersect t6 (with interval [4, 81) is given by the
shaded region as shown in Figure 2. Clearly, we have
a highly visual representation of the tuples that are
involved in an intersection operation in the form of a
well-delineated search region.

More formally, an interval [Ts, TE] will intersect all
points in the region bounded by the following five lines:

2= 0, I= 0, 2= TE,
s+y=Ts, z+y=Tn,

t2
4 *t6

I

01 I I I I I I
\)

2 4 6 8 10 12 l'4

Figure 1: Spatial rendition of the visitor relation.

Figure 2: Set of tuples that intersect tuple t6.

3.3 Spatial Partitioning of a Temporal Rela-
tion

Based on the mapping defined above, we can partition
a temporal relation on its time attributes represented
by time intervals as illustrated in Figure 3(a):

1. The spatial rendition is split into n diagonal
strips. The it* strip is bounded by the lines z = 0,
y = 0, z + y = z-1, c + y = Ti9 where To = 0
andT,zT,,.

2. The strips obtained are split into partitions by
thelinesz=O,z=Tl, SFT,. Thus,each
partition is bounded by four lines: z = x1:, z =
%+1, z+y = Tj, t+Y =Tj+l,wherenzi,jzO.
Given n strips, there will be a total of & i =
n . (n + 1)/2 partitions. In the Figure, we have
n = 4 and hence 10 partitions. We distinguish
the partitions associated with the now-line as the
now-partitions. For simplicity, we assume that the

549

12345678 910
Ralation R Ralation 8

m now-paItition8

(a) Padions of a qmtial mditi01~ (b) Region to bc joined far pnrtition 5. (c) Join Roceseing of two ~oln?d lwlditions.

Figure 3: Partition-based join algorithm.

3.

partitioning interval is the same for all partitions,
that is Ti - r-1 = Ti-1 - Ti-2 for all i.

Each partition is uniquely identified by an integer
value, the partition-id as shown in the Figure.
Given an interval [Ts, TE], and a partitioning in-
terval oft units, finding its partition can be done
using the following two mapping functions:

f: (Ts, TE) + (c, d) where

and

g: (a, 6) + k where k =

In other words, the partition-id of a time interval
[Ts, T~lisgivenbyg(f(Ts, TE)).

Spatially Partitioned Join

We are now ready to present our partition-based join
algorithm. Two source relations R and S are parti-
tioned on the join time attributes. Without loss of
generality, we assume that the two relations are par-
titioned using the same interval length t. We will dis-
cuss the effects later with non-equal interval length in
partitioning.

Unlike partition-based natural join in the relational
systems where only those corresponding partition pairs
& and Si need to be compared to find matching tu-
ples, partition & of a temporal relation needs to join
with more than one partition of S. Let Figure 3(a) and
(b) represent the partitions of two relations R and S.
Partition 5 in R, R5, needs to be compared with all
the partitions in the shaded region of Figure 3(b), i.e.
partitions SZ, S’s, SJ, S’s, Ss, S’S, Ss and $0. More gen-
eral, Figure 3(c) shows the set of partitions of S that
must be compared with partitions of R, indicated by

the shadowed and black squares. For example, RI has
to join with Sl, Ss, Ss and $0. In fact, Figure 3(c) ex-
plains why the time join is much more expensive than
relational equi-join: For relational join, only those par-
titions in black needs to be compared, the number of
which is much fewer than the number of partitions to
be compared in the time join case where all shadowed
and black partitions need to be joined. If the partition
size is equal to the size of available memory, a partition
has to be brought into memory a number of times.

Given a partition of R with its unique partitionid
k, the id’s of the S partitions to be joined can be
computed by mapping its partitionid k, to its two-
dimensional counterpart using the following function:

h:k+(a,b) where b=k-
t3)

where a is the largest integer that satisfies b > 0.
Given a partition & of relation R with its two
dimensional counterpart (aR, by), a partition Si of S
whose partitionid maps to (as, bs) is joinable with fi
if and only if

(as > bR)A(aR- 12 6s) (4

The join algorithm is summarized in Figure 4. The
two major functions in the algorithm are GetParti-
tionID and ComputeMatchPartition. Function Get-
PartitionID computes the partitionid for a tuple using
Equations 1 and 2. Function ComputeMatchPartition
returns a set of partitionid’s which is to be joined with
a partition of R using Equations 3 and 4.

4 Spatial Indexing Structures Sup-
porting Partition-Based Join

In the previous section, we have seen how tuples of
a temporal relation can be mapped into points in a
two-dimensional time-space, and how a join can be
processed for such spatially partitioned relations. In

550

Algorithm BaiscSpotiallyPartitionedJoin
for each tuple r in R do

k := GetPartitionID(r, t)
Output (r, k)

endfor
for each tuple s in S do

k := GetPartitionID(s, t)
Output (s, k)

endfor

for each partition i in R
read in partition i
sets := ComputeMatchPartition(i)
for each partition j in Sets do

read in partition i
for each tuple pair in i and j do

if the two intervals intersect
then output the tuple pair

endfor
endfor

endfor

Figure 4: The spatially partitioned time join algo-
rithm.

this section, we further analyze how to improve the
performance of the partition-based join.

4.1 The Bottleneck

Like the conventional partition-based join method, the
basic algorithm presented in Figure 4 consists of two
phases: the partition phase and the joining phase.
During the joining phase, a partition is only joined
with a set of predetermined partitions, which reduces
the cost of join. Because of the nature of time join,
however, the partition-based join over temporal at-
tributes does not perform as well as that over non-
time attributes. Refer to the example in Figure 3(c).
For nested-loops join, the number of partition pairs to
be joined is 100. If the join of R and S is over non-
time attributes and partition-based algorithm is used,
the number of partition paiw to be joined is 10. If R
and S are to be joined over a time attribute, the num-
ber of partition pairs to be joined is 70. That is, if we
compare the partition-based join with the nested loops
join, the saving is only 30%. On the other hand, the
partitioning process does incur overhead. In the same
example, the partitioning process of one relation needs
to read and write the whole relation at least once. A
preliminary study was conducted to show the effect
of memory size on the nested-loops and the partition-
based join algorithms. Figure 5 shows the result of
this study. The details of the experimental study will
be discussed in Section 5. For the moment, it suffices

551

for us to observe that the partition-based approach, as
expected, outperforms nested-loops algorithm only at
low memory size, and is inferior to nested-loops algo-
rithm when the memory size is large. Previous work
shows similar results [SSJ94].

160

J

Nested - Loops -
Partition - Based * l * -

120
Number

$3 80
(x 1000)

0 8 16 24 32 40 48 56 64
Memory Size (MBytes)

Figure 5: Preliminary study on effects of varying mem-
ory (mean lifespan = 1 unit).

Thus, the.partition-based algorithm will not be very
attractive unless the overhead of partitioning can be
reduced.

4.2 Clustering Tuples To Avoid Partitioning

One effective method that can be used to avoid par-
titioning is to cluster the temporal data on the time
attributes. In other words, when tuples are inserted,
they are clustered on the time attribute in such a way
that tuples belonging to the same partition are stored
together. Furthermore, a spatial index is built to sup
port direct access to the stored partitions. That is,
we adopt the methodology used in spatial databases
to treat temporal data. A large number of indexing
techniques have been developed to store spatial data
[LO93]. Most of these techniques can be used here for
indexing spatially partitioned temporal relations with
slight modifications.

When two temporal relations are clustered on their
time attributes, the partitioning phase can be elimi-
nated. For convenience, we use one recently proposed
indexing technique, TP-index [SOL94], to illustrate
how a spatial index can be used in the joining pro-
cess to avoid the partitioning cost. The TP-index, like
the B+-tree index [Com79], is a dynamic, multi-level,
tree-structured index. The leaf nodes of a TP-index
contain pointers pointing to the data pages. Unlike
the conventional B+-trees where entries of index nodes
contain numeric or alphabetical key values, an entry of

database in the Zdimensional space organized by a TP-index.

the TP-index nodes represent the subspace comprised
by the data pages in the subtree of which the entry is
the root. Figure 6 illustrates a sample TP-index for a
relation with 12 data pages, and each index node can
accommodate three entrka Each data page stores
points in the corresponding areas as shown.

It is obvious that two TP-indexed temporal rela-
tions can be joined over the time attributes: data
pages of one relation are read into memory in batches.
In our example, if the available memory for the outer
relation is two pages, pages 1 and 5 are read in as one
batch, followed by pages 2 and 3, 6 and 4, and so on.
For each batch of pages read in, the pages from the
other relation that are joinable with those pages in
memory can be computed as described in the previous
section. The TP-index of the inner relation is then
used to retrieve the desired pages to perform the join.

Because the data points may not be uniformly dia-
tributed, the subspace covered by each data page are
usually different. In other wotds, a partition shown in
Figure 3 may consists of a number of data pages or one
data page may cover a number of partitions. For ease
of reference, we call the uniform partitions formed by
linest,2t,3t ,..., z+y=t,t+y=2t ,..., z+y=nt
logical partitions. Using the notation of logical parti-
tion, the join algorithm for two spatially indexed tem-
poral relations R and S can be expressed as in Figure 7.

In the algorithm shown in Figure 7, the outer rels-
tion, R, is sequentially read in. S-pages are retrieved
via an index on S with a given search region.

5 Performance Study

In this section, we describe the performluce study con-
ducted in order to evaluate the proposed technique.

2F%.eadere mqy notice that the partition lines shown here is
different from that described in [SOL94]: In order to facilitate
efficient procami ng of the partition-baaed join, we partition the
time space using yline in&ad of s-line. The basic properties,
however, remain the same.

Algorithm SpatiallyPartitionedJoin
Sets := 0
while there are unprocessed R pages do

read in pages of R to fill memory
SetR := logical partitions covered by R-pages
for each logical partition i in SetR

Sets := Sets U ComputeMatchPartition(i)
for each partition j E Sets do

read in pages of partition j
for each S-page s read in do

compare tuple pairs from s and
R-pages joinable with j

if two intervals intersect
then output the tuple pair

endfor
endfor

endwhile

Figure 7: The time join algorithm for spatially indexed
relations.

The nested-loops join and sort-merge join algorithms
[GS91] are also used as references. As in [SsJ94], we do
not assume any sort ordering of input tuples. However,
both the nested-loope and sort-merge join algorithms
were designed to utilize the main memory effectively.

For each algorithm, we simulate its execution on
IBM FWC/SOOO to obtain the number of random and
sequential I/OS needed. Since the result sise is the
same for all algorithms, we ignore the I/OS for writing
the result sil;e to disks. All the algorithms are com-
pared on the basis of the number of I/Os required.

Table 2 shows the parameters used and their default
settings. Most of the parameters are self-explanatory.
Each relation has 100,000 objects. The range of time is
0 - 100,000 units. The start time of each object follows
a Poisson distribution. Each object has an average of
10 versions, the duration of each of which is deter:
mined by an exponential distribution, i.e. the lifespan

552

of each tuple is exponentially distributed. Thus, each
relation has l,OOO,OOCi tuples. The partitioning inter-
val at which the relations are to be partitioned is fixed
at 1,000 time units, and hence the proposed structure
has a total of 5,050 logical buckets. We‘distinguish be-
tween the more expensive random I/OS from the less
costly sequential I/OS [SSJ94], and sssume that ran-
dom I/O is 2 times more costly.

Table 2: Parameters used and their default settings.

Parameter Default
Lifespan of relation [O, 100,000]
Number of objects per relation 100,000
Avg number of versions per object 10
Number of tuples per relation 1,000,000
Memory size 16 MBytes
Page size 4 KBytes
Partitioning interval (in time units) 1,000
Number of buckets (l1oo+:)x loo) 5,050
Ratio of cost of random I/O to
cost of sequential I/O 2:l
Avg number of (random) I/OS for
index access per bucket access 4

For the proposed partition-based join, to access a

bucket, the index must be traversed. Therefore, the
cost for the proposed algorithm includes the cost to
access the index, and the cost for the join itself. For
simplicity, as well as to avoid restricting our discussion
to a particular index mechanism, we model the index
cost using the auemge number of I/OS for index access
per bucket access (denoted 2). In other words, for each
bucket accessed, the cost incurred for traversing the
index is equal to the value as given by 2. Note that
these I/OS incurred are random I/OS. For example, if
10 buckets are accessed, then the index cost would be
10 x Z random I/OS. When Z is small, such as 0 or
1, it would imply that the index cost is negligible, and
a high value of Z would mean that it is expensive to
access the buckets through the index.

For the following experiments, we use the following
notations for the algorithms studied:

NL: Nested-loops join algorithm
SM:Sort-merge join algorithm
Pi: Partition-based join algorithm with Z = i.

Varying Z allows us to model a family of partition-
based join algorithms with different index mechanisms.

5.1 Experiment 1: Effect of Memory Size

Partition-based algorithms are sensitive to memory
size [DK0+84, Sha86]. In this section, we study how

sensitive the various algorithms are to the amount of
memory available. We vary the memory size from 1
MBytes to 64 MBytes. We also vary Z from 0 to 6.
As lifespan of a tuple will affect the performance of a
join to a large extent, two tests were conducted,

1. The lifespan of each tuple is small with the mean
value set to 1 time unit. In this case, most of the
tuples do not overlap other buckets.

2. The lifespan of each tuple is large with the mean
value set to 4,000 time units, which means that
on average, each tuple will overlap 4 buckets.

Figure 8 shows the results when the mean lifespan,
denoted t, is 1 time unit. We can see that the perfor-
mance of all algorithms improves as memory increases.
When the memory size is small, the nested-loops algo
rithm must repeatedly scan the inner relation a large
number of times since the memory can contain only a
few pages of the outer relation. This results in high
I/O cost. As memory increases, the number of scans
over the inner relation reduces quickly and the total
number of I/OS required decreases.

On the other hand, when the mean lifespan is 1 time
unit, the sort-merge algorithm is not as sensitive to the
memory size. The memory affects mainly the sorting
phase of the algorithm. For small memory, more sorted
runs are generated, each of which has fewer pages of
data. This results in more random I/OS to generate
and merge the sorted runs. However, increasing the
memory size allows fewer sorted runs to be produced,
leading to fewer random I/OS. Since the mean lifespan
is 1 time unit and the algorithm is optimized to utilize
memory efficiently, there is little backing-up during the
merging phase. Thus, the merging phase is virtually
unaffected by memory size. However, because of the
“fixed” overhead involved in sorting the relations, it is
inferior to nested-loops join algorithm for large mem-
ory (> 10 MBytes) where the nested-loops algorithm
can bring large portion of the outer relation into mem-
ory and small number of scans over the inner relation
is required. This result coincides with the findings in
[GS91, SSJ94J.

When the index cost is small (Z < 4), the proposed
partition-based join algorithm outperforms sort-merge
and nested-loops join algorithms at all memory @es.
This is because each partition only joins with a few
partitions, and hence the total number of reads of the
inner relation is reduced dramatically. Moreover, the
low index cost do not contribute significantly to the
cost of the algorithm. However, as the index cost in-
creases, the cost of the partition-based algorithm in-
creases, and it becomes inferior to the nested-loops join
method at large memory size (> 32 MBytes). This is
expected since at large memory, the gain in the joining

553

809

Number
of

I/OS 409
(x 1000)

6

0

NL .a. _
SM .e +
PO +
h -
p4 -

PS t

0.
ht*‘..*. . . .*.

‘0..
*

* * .
. 4

I I I I I I I I
8 16 24 32 40 48 56 64

Memory Size (MBytes)

Figure 8: Effects of varying memory (fZ = 1 unit). Figure 9: Effects of varying memory (C = 4000 units).

cost of the partition-based algorithm over the nested-
loops method is not significant as compared to its over-
head in traversing the index.

With the mean lifespan is 4,000 units, the relative
performance of the algorithms are similar. The result
is shown in Figure 9.

The nested-loops algorithm is unaffected by the
mean lifespan of the tuples, as all tuple pairs are com-
pared anyway. However, for the sort-merge algorithm,
it incurs a higher cost during the merging phase due to
more backing up being performed. In some instances,
especially for low memory size, a tuple of relation R
overlaps a large number of S tuples. Since the number
of matching tuples may not fit in memory, some por-
tion of the relations may have to be reread, resulting
in higher I/O cost.

sort-merge algorithm becomes worse as the mean lifes-
pan increases. This is expected since more tuples over-
lap as the mean lifespan increases and leads to ro
reading of some pages of the relations. Since the sort-
merge algorithm is inferior to nested-loops join at 16
MBytes memory (from Figures 8 and 9), and increas-
ing the mean lifespan increases the cost, it performs
worse than the nested-loops join algorithm.

The curve for the partition-based join algorithm
moves up when the mean lifespan is increased to 4,000
time units. The algorithm performs worse than the
nested-loops join at a smaller memory size than that
with mean lifespan of 1 time unit. In the next exper-
iment, we can see this more clearly and explain the
reasons.

The number of disk I/O’s required for the partition-
based join algorithm also increases when the mean
lifespan increases. This can be explained as follows:
The number of S partitions to be joined with each R
partition is fixed as shown in Figure 3. For example,
when there are 10 partitions, RI should join with 4 S
partitions, R2, & and RIO need to join with 8, 9, and
10 S partitions, respectively. The general pattern is
that, the R partitions in the lower part of the triangle
need to join with relatively fewer number of S parti-
tions. The partitions located at the upper corner of the
space rendition need to join with larger number of par-
titions. Partition 10, for example, needs to join with all
the S buckets. When we increase the mean lifespan of
tuples, more tuples have longer lifespan. Graphically,
their mapping points in the space rendition move up
wards. In other words, with longer lifespan, the parti-
tions at the upper corner of the space rendition contain
more tuples, hence more pages. Therefore, the number
of S partitions to be compared in fact increases which
results in higher costs.

5.2 Experiment 2: Vary the mean lifespan of
tuples

To further study the effects of the mean lifespan of tu-
ples on the algorithms’ performance, we vary the mean
lifespan from 250 time units to 16,000 time units and
measure the number of disk I/O’s under the default
memory size (16 MBytes). The result is shown in Fig-
ure 10.

As before, the nested-loops algorithm is not sen-
sitive to the mean lifespan of the tuples, and is in-
cluded for comparison purpose. Performance of the

Number

I/%

(x 1000)

80 :
@-Ii

NL .o..
SM .k .
PO ++
p2 -

p4 -

p6 t

01
0 8 16 24 32 40 48 56 64

Memory She (MBytes)

As observed earlier, as the index cost increases, the
cost of the partition-based algorithm increases. In this
experiment, we see that the partition-based algorithm
is superior over the nested-loops join (and sort-merge)
for up to an average of 4 I/OS for index accesses per
bucket access.

For most indexes, the fan-out, i.e. the ratio be

554

240-l NJ,.-o--

Number

$8
(x 1000)

22

b *

.*- . . &f.*..

20 .* * PO Jt
pa -e-

18 P4 -

0 2 4 6 8 10 12 14 16
Mean lifespan, C (x 1000 time units)

Figure 10: Effects of varying mean lifespan, lZ.

tween the number of data pages and the number of
index pages, is large. This is also true for spatial in-
dexes. Furthermore, most systems will try to keep the
first few levels and/or as many index pages as possible
in buffer to reduce the cost of direct access to index
pages. In the eulnquent subsections, we only show
the results with Z = 4, which represents reasonably
large cost of accessing index pages and is unfavorable
to the performance of the proposed algorithm.

5.3 Experiment 3: Vary number of buckets

Like all partition-based algorithms, the granularity of
the bucket affect the performance of the algorithm.
Recall that when the partitioning interval is t, we have
n = T,,/t diagonal strips, and there are a total of
n.(n+1)/2 buckets. With finer partitions, the number
of S buckets to be read for each R bucket is controlled
more cloeely. That is, fewer of the S buckets read
are wasteful or unnecessary. However, increasing the
number of buckets also increases the number of ran-
dom I/OS (for index access and bucket access), and
fragmented pages. In this experiment, we study this
tradeoff by varying the number of buckets. Both the
relations have the same number of buckets. Since the
sort-merge join performs worse than nested-loop join,
we will ignore the sort-merge join from thii point on-
wards, and compare the partition join algorithm with
the nested-loops algorithm only.

Figure 11 shows the result of the experiment with
mean lifespan 1 and 4,000 units respectively. Our first
obeervation from the results is that there is an op
timal number of buckets for the partition-baaed join
algorithm. A small number of buckets (10) is not very
effective as each bucket contains more pages which lead
to unnecessary and redundant reads. As the number

.e. -

*
P4 (C =“l’i -

. P4 (L = 4000) * * ’ * **
**. j, It’

.* *.* a*’

461
0 10 20 39 40 50 60 70 80 90100 (n)

Number of partitions = n - (n + l)/2

Figure 11: Effects of varying number of partitions.

of buckets increases (until 30 or 40), the I/O cost ia re-
duced. In other words, the gain from minimizing the
wasteful reads outweighs the overhead of additional
random I/O cost. However, further increase in the
number of buckets results in poor performance again
because the gain from minimizing the wasteful reads
is not significant as compared to the overhead of ad-
ditional random I/O cost. Second, performance im-
provement for the case with larger lifespan is more.
Thii can be explained as follows: When the mean lifes-
pan is small (1 time unit), the number of tuples that
overlap several partitions is small and there are not
too many unnecessary reads of S’buckets, hence the
potential of improvement is limited. For large mean
lifespan (4,000 time units) with small number of buck-
ets, each partition consists of a large number of buck-
ets. The number of unnecessary comparisona is large
which leads to higher cost and to more space for im-
provement .

5.4 Experiment 4: Vary number of partitions
of one relation

So far, we have assumed that both relations R and S
are partitioned with the same interval (granularity).
When two relations are partitioned on different parti-
tioning interval, the proposed partition join algorithm
is still applicable. All that is needed is to map the
bucket in R to a corresponding region in S. Then we
can treat the join as if the two relations are partitioned
using the same partition interval.

Let the partitioning intervals of R and S be tl and
t2 respectively. Suppose the lines that bound a bucket
of R are t = kl - tl, t = (kl + 1) * tl, z + y = ka - tl,
z+y = (ka+l)-t , f i or some kl and k2. Then the lines
that bound the region of S that contains this bucket

555

Figure 12: Mapping of partitions between two relations partitioned using different interval

of R are: z = ks . ta, z = kq . tz, x + y = kg . t2,
z + g = k6. la, where ks is the largest integer such that
ks . t2 < kl . tl, ka is the smallest integer such that
kr. t2 2 (kl + 1). tl, ks is the largest integer such that
kg . t2 5 k2 . tl, ks is the smallest integer such that
ks%~.(kz+l)-tl.

Figure 12 illustrates an example in which relation R
is partitioned into 10 buckets while relation S is parti-
tioned into 6 buckets. The join of 3 example partitions
of R can be mapped to the region of S as shown.

We conducted an experiment to study the effect of
partitioning two source relations using different parti-
tion interval. In the experiment, we keep the partition
interval of S as 1,000 time units, i.e. 5,050 buckets
and vary the partition interval of R so that the total
number of buckets in R varies from 55 (i.e. partition
interval of 10,000 time units) to 5,050 (i.e. partition
interval of 1,000 time units). The results of this study
is shown in Figure 13.

From the result, we see that partitioning two rela-
tions using different partition interval does affect the
performance. While the two relations are partitioned
with the same interval gives the best performance,
there are some other choices that give similar per-
formance. This is because the mapping between two
partition schemes fits nicely and does not introduce
extra comparison of buckets. However, if two parti-
tion schemes do not fit each other, in the sense that
partitions of R have to be mapped to partitions of S
with a lot of overlapping buckets, the performance will
degrade.

6 Related Work

Most of the previous work in temporal join evaluation
has concentrated on refinements of the basic nested-
loops approach [GS91, LM90, RF93]. Gunadhi and
Segev proposed three such join algorithms that, un-

*
‘* -*.

yr* * .*. *
* .*’ x

.o. _
P.@ zN$ -

P&z = 4000) .* *

-

40(
0 10 20 30 40 50 60 70 80 90100 (4

Number of Partitions of R = 71. (n + 1)/2

Figure 13: Effects of varying number of buckets of R.

like the conventional nested-loops algorithm, require
only partial scans of the inner and/or outer relations
[GS91]. This is achieved by exploiting the sort-order
of the input relations to determine if and when the
scan of the inner and/or outer relations can be ter-
minated. The algorithms are distinguished by its sort-
order (whether the sort ordering is based on Ts only or
on (Ts, TE) pair) and the number of relations sorted
(one or both). An analytical study showed that the
proposed algorithms performed well when the average
scan length through the inner relation is small; other-
wise the traditional nested-loops algorithm is superior.

In [RF93], seven nested-loops-like algorithms were
proposed. The main feature of these algorithms is that
they minimise the number of unnecessar y, and hence
wasteful, tuple comparisons. This is done through
sorting and/or providing additional pointers. Unfortu-
nately, the algorithms assumed that the smaller rela-

556

tion fit in memory. Mbreover, no performance analysis
was presented.

Leung and Muntz considered stream processing
techniques for processing temporal join [LM90]. They
studied the effects of various sort orderings of the
streams of input on the workspace requirement. Ad-
ditional house-keeping must be done or a semi-join al-
gorithm may also be used to preserve the order of an
output stream to that of the input stream.

Partitioned-based algorithms have also been stud-
ied recently [LM92, SSJ94]. Leung’s approach is es-
sentially based on the the static partitioning approach.
However, in his work, the algorithm is developed in a
multiprocessor setting. Soo, et. al., on the other hand
adopted the dynamic partitioning strategy. Both al-
gorithms were discussed in Section 3.

7 Conclusions

In this paper, we discussed the issues of efficient pro-
cessing of temporal join, the join on time intervals. For
such joins, the well-known efficient join method in rela-
tional systems, the partition-based join, does not per-
form very well compared to the nested-loops. The ma-
jor reason is that temporal join is a non-equijoin opera-
tion by nature and a partition from one relation must
be compared with several partitions from the other
relation. The savings in reducing the number of com-
parisons may not be enough to offset the overhead in-
curred in the partitioning phase of the partition-based
join algorithm.

To overcome the problem, we proposed in this pa-
per a spatially partitioned time join method. Using
this method, time intervals are mapped to points in a
two-dimensional space. When tuples are inserted into
the relation, they are clustered based on their corre-
sponding points in the space. As such, the partition
phase can be eliminated when join over the time at-
tributes of two relations is to be performed. Hence,
the join performance is much improved.

To provide direct access to the partitions to be
joined with, certain spatial index must be used. Lim-
ited by space, we have not discussed this issue in detail
here. One of our future work is to study existing spa-
tial indexing mechanisms to see how well they can sup
port the proposed partition based join method sa well
as other primitive operations in temporal databases.
We would also like to compare our algorithm with
other partition-base algorithms, such as the algorithm
proposed in [SSJ94].

References

[Corn791 D. Comer. The ubiquitous b-tree. ACM Com-
puting Suruev8, 11(2):121-137, Jun 1979.

[DKO+84] D. Dewitt, R. Katz, F. OIken, L. Shapiro,

[DNSSl]

[EWW

[G=W

[GS91]

[GY@l

[HN=l

[LMW

W921

Lo931

(RF931

[SOL941

W3”l

[s=l

[SSJ94]

M. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems.
In 1984 SIGMOD, Jun X%4.

D. Dewitt, J. Naughton, and D. Schneider. An
evaluation of non-equijoin algorithms. In 17th
VLDB, pagee 443-452, Sept 1991.

R. Ehuasri and G.T.J. Wuu. A tempord model
and query Ianguage for temporal databases. In
6th ZCDE, pages 76X3, Apr 1990.

R. Ehuasri, G.T.J. Wuu, and Y. J. Kim. The
time index: An access structure for temporaI
data. In 16th VLDB, pages 1-12, Aug 1990.

S. Gadia. A homogeneous reIational model and
query Ianguage for ER databases. ACM Tmnr-
actions on Database Systems, 13(4):41%448,
De-c 1988.

H. Gunadhi and A. Segev. Query processing
algorithms for temporal intersection joins. In
7th ZCDE, pages 336-344, Apr 1991.

S. Gadia aud C.S. Yeung. A generalized model
for a relational temporal database. In 1988
SIGMOD, Jun 19%

K. Hinrichs and J. Nievergelt. The grid IiIe: A
data strucbre designed to support proximity
queries on spa&I objects. In 1983 Workshop
on Graphtheoretic Concepts in Computer sci-
ence, pages 100-113, 1983.

T.Y.C. Leung and R.R. Muntz. Query proceea-
ing for temporal databases. In 6ti ICDE, pagea
200-208, Apr 1990.

T.Y.C. Leuug and R.R. Muntz. Temporal
query processing and optimization in multi-
processor database machines. In 18th VLDB,
pages 383-394, Aug 1992.

H. Lu and B.C. Ooi. Spatial indexing: Past
and future. IEEE Data Engineering, 16(3):X-
21;Sept 1993.

S.P. Rana and F. Fotouhi. Efficient prows&g
of time-joins in temporal data bases. In 3rd
DASFAA, pages 427-432, Apr 1993.

L. Shapiro. Join processing in da&base sys-
tems with large main memories. ACM Itans-
actions on Database Systems, 11(3):23%264,
Sept 1986.

H. Shen, B.C. Ooi, and H. Lu. The tpindex:
A dynamic and efficient indexing mechanism
for temporal databases. In 10th ICDE, pages
274-281, Feb 1994.

A. Segev and A. Shoshaui. Logical mode&g of
temporel data. In 1987 SIGMOD, pages 454-
466, May 1987.

A. Segev and A. Shoshani. The repwe.ntation
of a temporal data model in the reIationaI en-
vironment. LNCS 339, pages 39-61,1988.

M. Soo, R. Snodgrass, and C. Jenson. Efficient
evaluation of the w&d-time naturd join. In
10th ICDE, pages 282-292, Feb 1994.

557

