
ELSEVIER Data & Knowledge Engineering 18 (!996) 147-165

I DATA &
KNOWLEDGE
ENGINEERING

Indexing temporal data using existing B +-trees
Cheng Hian Goh*, Hongjun Lu*, Beng-Chin Ooi, Kian-Lee Tan

Department of Information Systems and Computer Science, National University of Singapore,
10 Kent Ridge Crescent, Singapore 0511, Singapore

Received 22 August 1994; revised 24 March 1995; accepted 4 September 1995

Abstract

Research in temporal databases has largely focused on extensions of existing data models for the proper handling
of temporal information. One approach is to store temporal data on existing DBMS and build some new indexes to
provide support for the efficient retrieval of temporal data. This paper describes mapping strategies to linearize the
data such that existing B +-trees can be used directly. With such an implementation, a temporal relation is mapped
to points in a multi-dimensional space, with each time interval being translated to a two-dimensional coordinate,
and a temporal selection operation is constructed as a spatial search operation. The proposed approach has two
advantages. First, mapping a temporal relation to a multi-dimensional space provides a uniform framework for
dealing with temporal queries involving transaction and valid time, as well as other non-temporal attributes.
Second, linearization of the multi-dimensional search space allows classical indexing methods (such as the B+-tree)
to be used; this means that index support for temporal selection can be accomplished without modification to the
underlying storage components of the DBMS. Both analytical and simulation study show that the proposed
indexing scheme is more efficient than the time index in both its disk utilization and access time.

Keywords: Temporal database; Indexing techniques; B+-tree; Spatial selection; Relational database

I. Introduction

Research in temporal databases has largely focused on extensions of existing data models
for the proper handling of temporal information [1, 3, 5, 6, 18, 20-22]. More recently, many
researchers have expressed an interest in the viable implementation of these temporal
operators. To this end, a number of specialized storage structures or indexes have been
proposed to provide support for the efficient retrieval of temporal data [4, 10, 12, 15, 17].
However, the implementation of these indexing methods entails substantial changes to the

* Author 's current address: Sloan School of Management, Massachusetts Institute of Technology, Room E53-308,
50 Memorial Drive, Cambridge, MA 02139. Internet: chgoh@athena.mit.edu
* Corresponding author. Email: luh@iscs.nus.sg

0169-023X/96/$15.00 (~) 1996 Elsevier Science B.V. All rights reserved
SSDI: 0 1 6 9 - 0 2 3 X (9 5) 0 0 0 3 4 - 8

148 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

storage component of a DBMS. For most practical purposes, such changes may be too
expensive to be viable.

In this paper, we propose a simple but efficient approach to temporal indexing. Our
objective is three-fold. First, we would like to propose a temporal indexing scheme which
provides a uniform approach for handling the different notions of time, as well as non-
temporal attributes. Second, we would like the implementation to be non-intrusive, so that it
can be useful in the context of today's technology. Finally, and perhaps most importantly, the
performance of our indexing scheme should be more efficient than existing indexing methods.

The rest of this paper is organized as follows. Section 2 provides the background to our
study. Section 3 reviews briefly the various proposals for temporal indexing. The time index [4]
is presented in a little more detail here to facilitate its comparison to the method proposed in
this paper. In Section 4, we illustrate how different types of temporal selections can be
mapped to search operations in a multi-dimensional search space. Having reduced the
temporal selection operation to a spatial search operation, we demonstrate in Section 5 that
points in this search space can be indexed using classical indexing schemes by defining a linear
order on these points. Section 6 analyses the performance of a B +-tree implementation using
the proposed approach and the time index. In Section 7, we illustrate how queries that involve
different notions of time can be supported easily using the proposed index. Finally, we present
the conclusion in Section 8 and provide a glimpse of extensions to this work.

2. Background

Following [5] and others, we represent the time dimension using both discrete time points
and time intervals. A time interval, denoted by [a, b] is defined to be a set of consecutive
equidistant time instants (points), where a is the first time instant and b is the last time instant
of the interval. The time dimension is represented as a time interval [0, now], where 0
represents the starting time of our application and n o w refers to the current time which is
continuously increasing.

In [2], three notions of time were accepted to have utility in real world databases:
• transaction time refers to the time when information is stored in the database;
• valid time corresponds to the time when the information recorded in the database is

valid; and
• user-defined time corresponds to additional temporal information which are present in

user-defined attributes.
For a large part of this paper (except Section 7), we will adopt a simple view of a temporal

database so that we can concentrate on the essential issues related to indexing a temporal
database. Throughout, unless otherwise stated, we will use the valid time in our discussion.
However, since both the transaction and valid time are represented as intervals, we should
bear in mind that the discussion applies also to transaction time. A tuple/z corresponding to a
relation in the temporal database has associated with it, a valid time interval [vs, re], denoted
by °V(/.L). We shall use the following example continually in the rest of the paper for
exemplifying our discussion.

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 149

tuple II Ptd[
tl pl
t2 pl
t4 p2
t7 p3
t8 p3
tl0 p4
t l l p4
t12 p5
t13 p6
t14 p7

entry_pt V(p)
NY [0,3]
LA [4,now]
SFO [0,5]
LA [0,7]
SFO [8,9]
NY [2,3]
LA [8,now]
LA [10,now]
NY [12,now]
NY [ll,now]

Fig. 1. The a r r i v a l relation in Example 1.

Example 1. Consider an FBI database which keeps record of a list of persons and their visits
to the United States. An a r r i v a l relation for this database is shown in Fig. 1. Every person
in this database is assigned a unique p i d . The attribute e n t r y _ p t captures the information
on the entry point used to gain entrance to the United States. Arrival and departure time is
normalized against some reference point (day 0) and hence the duration of each person's visit
can be represented as a time interval in the time dimension [0, now]. Each tuple is assigned a
unique tuple id to facilitate references to it.

3. Approaches to temporal indexing

Obviously, the full benefits of temporal databases can only be realized if data retrieval
based on the different notions of time can be supported efficiently. In this section, we provide
a brief survey of the various temporal indexing approaches.

In [13], Lum et al. suggested that past versions of an object can be linked or indexed
separately to facilitate their retrieval. However, this means that locating valid versions in a
given time interval is cumbersome. Rotem and Segev [15] proposed that the time dimension
can be viewed as one of the dimensions in a multi-dimensional space and hence temporal data
can be organized using a multi-dimensional partition file. A severe limitation of their approach
lies in their inability to handle time intervals effectively. Both Lomet and Salzberg [12] and
Kolovson and Stonebraker [10] studied the problem with the assumption that historical data is
stored separately from current data in an optical disk. Consequently, their model is
appropriate only in the context of a rollback database. The AP-tree proposed in Segev and
Gunadhi [17] is primarily designed to support the optimization of event-joins and does not
support temporal selections effectively.

More recently, Elmasri et al. [4] proposed the time index which is aimed at providing
efficient access to temporal data in some valid time interval. The idea behind the time index is
to maintain a linearly ordered set of indexing points on the time dimension [0, now]. This set
BP is formed from now and all the time points corresponding to (a) the valid start time of
some tuple, and (b) the time point immediately after the valid end time of some tuple. Since
these indexing points can be linearly ordered, a regular B+-tree is used to index these. Each

150 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

J,I 61,1,o1,1

(11 ~ ~ { + 1 1 0 }
(.~12,--tl ;-110)

'lil'l,I
1+t8,+11 t ,-17} I+t14| ~+

w 1+.3!
Fig. 2. The time index constructed from the most current snapshot of the a r r iva l relation.

leaf node entry of this B +-tree contains a collection of entries of the form (t i, B i), where B i is
a pointer to a bucket containing pointers to tuples which are valid at time ti. To reduce the
number of pointers which are stored in the buckets, only the leading bucket in each leaf node
is retained. All subsequent buckets in the leaf node record only the incremental changes. Fig.
2 depicts the time index constructed using the most current snapshot of the a r r i v a l relation
in Example 1.

The time index can be used to process historical queries reasonably efficiently. For instance,
the query "Find all persons who were in the United States from day 4 to day 6" can be
answered by locating indexing point 4, and reconstructing the list of valid tuples from the
leading bucket and subsequent entries right up to indexing point 6. This represents a vast
improvement over scanning the entire database sequentially. However, like its predecessors,
index support is provided for only a single notion of time (in this case, valid time) and it is not
clear how this can be extended to support temporal queries which necessarily involves both
transaction and valid time.

In [4], Elmasri et al. suggested that their time index can also be appended to regular indexes
to facilitate processing of historical queries involving other non-temporal search conditions.
For example, if queries such as "Find all persons who entered the United States via LA and
remained from day 4 to day 6" is expected on a regular basis, such queries may be supported
by attaching a time index structure to each leaf entry of a B +-tree constructed for the attribute
e n t r y _ p t . Answering the above query will then involve traversing the first B+-tree to first
identify the leaf entry corresponding to attribute value "LA", followed by an interval search
on the time index found there. However, this approach may not be scalable at all since the
number of time indexes will certainly grow to be exorbitantly large in any non-trivial database.

The major drawback of the implementation of any of the above indexing schemes is that it
involves substantial changes to the storage components of existing DBMSs. This means that
existing databases brimming with temporal data cannot benefit from these proposals unless
one is willing to undertake the formidable task of revamping the underlying DBMS.

4. Temporal selection as spatial search

In this section, we introduce a mapping strategy for temporal indexing which, to some
extent, is based on spatial indexing techniques. Although spatial indexing has been very well
researched [16, 14], it is widely recognized that spatial indexes have not been designed to

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 151

efficiently support temporal data [4]. This is because, unlike spatial objects which have
extents, temporal data are lines parallel to the time axis and have zero extent on the
text-attribute dimension. Indexes such as R-trees [7] and R+-tree [19], designed to handle
non-zero sized multi-dimensional spatial objects, cannot therefore be readily used for
temporal indexing.

We overcome the above problem via a transformation which maps a given time interval
(whether valid time or transaction time) to a two-dimensional coordinate [9, 11]. Under this
mapping, any temporal selection (whether involving valid time, transaction time, or non-
temporal attributes) can be mapped to a spatial search operation in a multi-dimensional space.
We call such a transformation on time intervals interval-spatial transformation (IST).

Definition 1. Let 5~ be the set of all time intervals [a, b] in the time dimension [0, now], and
be the set of discrete time points in the time dimension. The interval-spatial transform,
denoted by O-, is a function from 5 ~ to ~2, such that ~-([a, b]) = (a, b - a).

The function S can be applied to any time interval regardless of its semantics (i.e. whether
it is a transaction time interval or a valid time interval). The utility of this transformation is
exemplified below.

Example 2. Consider the snapshot of the arrival relation at now. These tuples can be
mapped to discrete points in a two-dimensional space by defining a mapping function ~ on
this relation, such that for each tuple/x, ~(/ .Q = ~-(~(/z)). For example, ~ (t l 0) = (2, 1) since
the valid time interval corresponding to tuple tl0 is [2, 3]. Fig. 3 shows the result after
applying the mapping ~ to the most recent snapshot of a r r i v a l .

Observe that Fig. 3 provides a highly visual representation of three important parameters
associated with the valid time interval of each tuple.

(1) any tuple with a valid start time v s = a must fall on the line x = a;

Y

1 4 -

1o-- \ / - : ,,,,,.
8_- _ ~,7 "~~
6-~4 ~ 1 2

4 - + t l

2 - . " " ° • ta \
I I I I I I I I I I I I i | ~ 1 .
I I I I I I I I I I I I I I I - X

0 2 4 6 8 1 0 1 2 1 4 n ° w

Fig. 3. Mapping the most current snapshot of the a r r i v a l relation to discrete points in a two-dimensional space
based on the valid time interval of each tuple.

152 C.H. G o h et al. / Data & K n o w l e d g e Engineer ing 18 (1996) 1 4 7 - 1 6 5

(2) any tuple with a valid end time u e = b must fall on the line x + y = b; and
(3) any tuple with a total valid time duration of c must fall on the line y = c.

With the above observations, it is not difficult to understand how temporal queries on the
relation can be mapped to spatial search operations in this two-dimensional space. Consider
the following queries:

• List all persons who entered the country on or before day t,.
• List all persons who left the country on or after day t b.

• List all persons who remained in the country for a total duration of t c or less days.
The answers to each of these queries can be found by retrieving all points which fall in the
regions shown in Fig. 4(a), (b) and (c), respectively.

Since we assumed that the time dimension is discrete, selections such as "List all persons
who entered the country before ta" can be easily transformed to "List all persons who entered
the country o n o r before I a - - 1". Moreover, conjunctions of selection criteria refers naturally
to the intersection of those regions corresponding to the individual selection criterion. For

i
t a now

(a)

r tb n o w - 1 x

(b)

n o w .r t a t b n o w - I

(c) (d)

y~

tc

t a n O W ~. ~c r / o w

(e) (f)

> ~t ̧

Fig. 4. Temporal selections based on valid time and their corresponding search spaces.

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 153

instance, the query "List all persons who entered the country on or before t o and left on or
after tb" , shown in Fig. 4(d), is simply the intersection of the two regions in Fig. 4(a) and (b).
Similarly, disjunctions of selection criteria can be modeled as the union of respective regions.
For example, the query "List all persons who entered on or before t a or remained for t c days
or less" can be answered by retrieving all points in the region shown in Fig. 4(e). Finally, a
degenerate instance of such queries corresponds to selection on time points, such as "Find all
persons who were in the United States on t / ' corresponds to the search space shown in Fig.
4(f). []

The above transformation can be extended to temporal selections involving non-temporal
attributes. Suppose Q is a query on some temporal relation r having attributes A 1 , . . . , A m ,

and suppose tuples are to be selected based on some restrictions of the values of attributes
A 1 , . - . , An, where n ~< m, and their corresponding valid times. We can define a function
on r which maps to an (n + 2)-dimensional space. Hence, i f /z is a tuple in r,

J/(/x) = (x, y, a l , . . . , an)

where (x, y) = 9-(°U(/x)) and a i =/z[Ai] for i = 1 , . . . , n.

Example 3. Consider once again the most current snapshot of the a r r i v a l relation in
Example 1. Suppose we are interested in defining an efficient access path for queries of the
form "Find all persons who entered via LA before day 6, and who remained until after day
10." In this query, the selection criteria are (i) the valid time interval for each tuple, and (ii)
the entry point, which is the value corresponding to the attribute e n t r y _ p t . The mapping d/
on this relation can thus be defined as follows: suppose /x is a tuple of a r r i v a l , then
~ (/x) = (x, y, e), where (x, y) = ~(°V(/z)) and e = / x [e n t r y _ p t] . For instance, tuple t l0 will
be mapped to the point (2, 1, "NY") . Fig. 5 shows the result of applying M on the most
current snapshot of a r r i v a l . The answer to the earlier query can be found by identifying
those points which now fall in the shaded region as shown. As is evident from Fig. 5, the only
tuple which satisfies the selection criteria is t2.

5. Indexing the spatial representation

In the previous section, we have shown that temporal retrieval (based on valid time and/or
non-temporal attributes) can be transformed to spatial search operations in a multi-dimension-
al space constructed from the target relation. Clearly, a viable solution for the spatial indexing
problem (e.g. the grid file [9], the L S D tree [8] and other data structures for handling point
data [16]) could be adapted to provide the needed indexing support for temporal data.
Notwithstanding this, we will, in the remainder of this paper, explore an alternative approach
to indexing which exploits the peculiar characteristics of temporal search spaces. Specifically,
we demonstrate that, depending on the types of temporal queries most frequently executed,
points in a multi-dimensional space can be linearized using a number of orderings. Conse-
quently, conventional indexing mechanisms (such as the B+-tree) can now be employed for
indexing these points. For the sake of simplicity, we shall confine our discussion to the

154 C.H. Goh et aI. / Data & Knowledge Engineering 18 (1996) 147-165

n°wY " Points i . LA plarle

14 ~ L ~ Polntll in NY plane

_ _ Points in SFO plane

10- - 8 -

; e-
8 -

; 4: , ~
6 d.l L/~ I I I I I"~JLt2%l I I IN,I .

4 - 0 2 8 112 14 now

- - i ~ / l l l i i i I X i I I I I \
2 - - / 2 I I i I i i i I i | [

4 6 8 "~lO I 12 14 now

sr-e l l l l l l i l l l I ' ' I I ' ~ J
f I I I I I I I

~ t r y _ p t 2 4 6 8 10 12 14 now

Fig. 5. A three-dimensional representation of the most current snapshot of a r r i v a l . The shaded region represents
the search space corresponding to the query "Find all persons who entered via LA before day 6 and who remained until after day
I0".

indexing of points in a two-dimensional space. The proposed approach however, can be
extended for indexing points in a higher dimension.

Consider a two-dimensional space similar to the ones shown in Fig. 3. Points in this
two-dimensional space can be mapped to a one-dimensional space by defining a linear order
on them. While infinitely many linear orders can probably be identified, only a handful are
likely to be useful. Recall that
dimension); we shall introduce
space ~ 2. We refer to these as
tal)-order, and denote them by

-- { 0 , . . . , now} (i.e. the set of time instants in the time
three linear orders for those points in the two-dimensional
the D(iagonal)-order, the V(ertical)-order and the H(orizon-
<D, <V and <H, respectively.

Definition 2. Let P1 (xl, Y 1) and
(1) P1 <D P2 iff

(2)

(3)

P2(x2, Y2) be two distinct points in ~2 , We say that

(a) (,.If I + y l) < (x 2 + Y 2) ; or
(b) (x 1 +Yl) -- (x2 +Y2) and x 1 <x2;
P1 <v P, iff
(a) x2 + Y2 = now and xa < x 2; or
(b) x 1 +YI ¢ n o w and x 2 +Y2 # n o w and Xl <x2; or
(c) x~ +yl # n o w and x 2 +Y2 # n o w and x 1 =x2, and YI <Y2;
P1 < . Pz iff
(a) x2 +Y2 =now and y~ <Y2; or
(b) x~ +Yl # n o w and x 2 + Y 2 # n o w and Yl <Y2; or
(c) x~ +Yl # n o w and x2 +Y2 # n o w and y~ =Y2, and Xl <x2;

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 155

Y

I ~-- x
o

Ib)

Y

b

v , ~ x

Fig. 6. Three alternate orderings (D, V and H) for points in the two-dimensional search space.

Fig. 6 provides a graphic representation of the three linear orders defined above. Notice
that in adopting any one of these linear orders, points in ~2 can now be organized using an
index such as the B+-tree. Consequently, spatial search operations on this two-dimensional
space can be translated to range search operations on the linear space defined by the ordering
relation.

Example 4. Consider the spatial representation of the most current snapshot of arrival
depicted in Fig. 3. We can index these points using conventional indexing schemes by adopting
any linear order defined on @ 2. For instance, if we order these points using the D-order, then
we may say that t l(0,3) < o t10(2,1) since both points fall on the line x + y = 3 and 0 < 2. Also,
t8(8,1) <D t2(4,11) since 8 + 1 = 9 < 4 + 11 = n o w . Fig. 7 depicts a B+-tree which is used for
indexing the spatial representation found in Fig. 3, while adopting the D-order.

The motivation behind the choice of linear orders is best illustrated with an example.
Consider the query "Find all persons who left the United States on or after day 5." The search
space is similar to that shown in Fig. 4(b), where t b is now 5. If n o w is day 15, the points in

I ~°,! I

I1

I,I ~o.~ I
I

,I c~., I,I co.~)1,1,1

IlO N

I c0.~ I, I~"..

[
,,, ,,

I,Ic,..o-~l, I I I

17 18 t2

Fig. 7. Organizing the spatial representation of the most current snapshot of arrival using a B+-tree and
linearizing using the D-order.

156 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

this search space can be found by traversing the D-order B +-tree and retrieving all points in
the interval [(0,5), (14,0)]. The answer is clearly persons corresponding to tuples t4, t7 and t8.
However, not all temporal queries can be mapped to a simple range search; it may be
necessary for the spatial search to be decomposed into a number of interval queries. For
instance, the query "Find those persons who were in the United States on day 11" would be
decomposed into the following interval searches: [(0,11), (11,0)], [(0,12), (11,1)],
[(0,13), (11,2)], [(0,14), (11,3)], and [(0,15), (11,4)] (assuming that n o w is 15).

A careful examination of Fig. 4 reveals that different classes of temporal queries give rise to
spatial search spaces of different forms. Intuitively, temporal queries with search spaces
similar to Fig. 4(b) are best supported by a D-order B +-tree. Similarly, queries similar to Fig.
4(a) are best supported by a V-order B+-tree, and those of Fig. 4(c), by a H-order B+-tree.
This suggests that different indexes (constructed using different ordering relations) may be
used to support the various types of queries. Where multiple indexes exist, the selection of a
most appropriate index structure constitutes an access path optimization problem.

From a practitioner's perspective, the most important feature of our approach is perhaps the
ease with which this indexing scheme can be implemented using existing DBMSs. Unlike
existing temporal indexes, the implementation of our indexing approach does not require any
changes to the storage component of existing DBMS. The different orderings for points in ~ 2
(and hence different access paths) can be effected by altering the manner in which each
coordinate (x, y) is mapped to a linear bit string. Suppose we are to construct a D-order
B +-tree: if x + y can be represented using n bits, then we can represent each coordinate with a
bit-string of length 2n + 1; the lower n bits is used for representing the x-value, with the next n
bits representing the x + y-value; finally, if the y-value happens to be n o w , the leading bit s is
set to one (otherwise it is 0), and the x + y-field is set to 0. Fig. 8 illustrates the bit-string

I'1 x . , I x I

I'1 ' I ' I

tuple coordinate(z,y)

t l (0,3)
t2 (4,now)
t4 (0,5)
t7 (o,7)
t8 (8,1)
tlO (2,1)
t l l (8,now)
t12 (lO,now)
t13 (12,now)
t14 (11,now)

D-order V-order H-order
rep. rep. rep.

030
104
050
070
098
032
108
10A
10C
10B

003 030
140 104
005 050
007 070
081 018
021 012
180 108
1A0 10A
1C0 10C
1B0 10B

Fig. 8. Effecting t h e D - , V- and H-ordering via a bit-string representation of a co-ordinate point (x, y). The
hexadecimal equivalents of the most current snapshot of a r r i v a l is shown while assuming that n = 4.

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 157

representations for the D-, V- and H-order diagrammatically. The accompanying table also
shows the key values for tuples belonging to the most recent snapshot of a r r i v a l .

6. Analytical evaluation

In this section, we study the performance of the proposed scheme by comparing both the
storage requirement and query performance of a B+-tree implementation (based on the
proposed method) with the time index proposed by Elmasri et al. [4].

We begin by stating some of the assumptions about the system parameters:
• block size, B = 4 Kbytes;
• pointer size, p = 32 bytes;
• integer size (corresponding to time points), t = 8 bytes.

With these values, the order of our B+-tree, m0, can be determined directly:

B-p]
2m0(p + 2 t) + p = B ~ m 0= 2 (p + 2 t) ~'42

(This means that each node of this B +-tree has at least 42 and at most 84 entries.) The order
of the B+-tree for the time index, m e is slightly larger since the key value is merely one
indexing point (one time point) as opposed to the ordered pair in ours. Thus, we have

2me(p + t) + p = B ~ m e ~.-~- 50

We also make the assumption that (in the case of the time index) all bucket entries
corresponding to the same leaf node are clustered together whenever possible. This cuts down
the number of disk pages needed for bucket storage. The number of bucket entries which can
fit into a single disk page is approximately 2m e or 100.

The remainder of the section addresses two performance measures: (i) storage requirements
of the indexing scheme, and (ii) the performance of the two indexing methods under a variety
of temporal queries, as measured by the number of disk accesses needed. For convenience, we
assume that the target relation is none other than the a r r i v a l relation presented in Example
1. We also assume that the arrival of persons is a Poisson process, and hence inter-arrival time
is exponentially distributed with mean 1/h. The duration of each visit is assumed to be
uniformly distributed over the interval [0, 2/z].

6.1. Storage requirements

We shall first derive an analytical model for the storage requirements of Elmasri's time
index. Let S e be the total number of disk blocks which are consumed for a relation having N
tuples. Clearly, S e = S~ + S be, where S~ is the number of disk blocks used by the time index
B +-tree structure, and Se b refers to the number of disk blocks needed to contain all the bucket
entries.

Obviously, the size of the time index B+-tree depends on the number of distinct indexing
points in B P (the set of base points which are used in constructing the time index). Suppose X

158 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

is a Poisson random variable which represents the number of arrivals in unit time (in this
example, one day). IBPI can be approximated by

2N x Prob(X > 0) = 2N(1 - (1 - e-a)) = 2N e -a

Assuming that the nodes in the B +-trees is In 2 full on average [23], the number of leaf nodes
is given by

[2N e -a] [.Ne_~_*_
2--~ein2/=/me ln21

If we account for the non-leaf nodes as well, then

[Ne-'~l(1) Ne -a [2meln2)
S =lmeln21 1+ 2m -ln2 + " " =meln2 x 1

Each leaf node of the time index B +-tree makes use of at least one disk block for its bucket
entries. We estimate the number of entries in the leading bucket of each leaf node by the
expected number of arrivals in a period /x, which yields the value /xA. The number of
incremental entries for each leaf node is merely (expected number of time points in each leaf
mode) × (expected number of arrivals at any time point) = (2m e In 2)A. By assuming that the
bucket pages are packed as tightly as possible, we have

Seb=[g e - a] m e In 2 x [/~A + 2meA In 2] 2 m e

Consequently,

[N e ~ a_ (2meln2 2m~Aln2]]
Se / m e l n 2] x [1 = \2mee i-n~:) + [/zA+ ~ lJ

The above expression suggests that even for a fixed N, the storage requirements of the time
index varies with the characteristics of the temporal data. We may interpret this intuitively as
follows: if the inter-arrival time is small, multiple arrivals at the same time become likely and
hence the number of distinct indexing points is reduced. This leads to a smaller B +-tree and
hence lower disk utilization. If however, the (valid time) duration of each tuple is large
compared to the inter-arrival time, the same tuple is potentially duplicated across many
leading buckets and this leads to large storage overheads. Fig. 9 depicts this graphically by
plotting the total number of disk blocks used against 1/A and the ratio/xA.

Unlike the time index, the B+-tree constructed on the mapped temporal data is not
dependent on the characteristics of the temporal data. This is due to the fact that each tuple is
represented only once, and hence the number of indexing values is bounded by N (the total
number of tuples in the temporal relation). Suppose S O denotes the number of disk blocks
required for constructing a B +-tree under our scheme. The approximation of this value is
identical to the analysis for classical B+-tree:

N 1 N
S o = [2 m o l n 2] (l + 2 m o l n 2 + . . .) ~ [- 2 m o l n 2] (2m°ln2xk2~ooFn~-l)

C . H . G o h et al. / D a t a & K n o w l e d g e E n g i n e e r i n g 18 (1 9 9 6) 1 4 7 - 1 6 5 1 5 9

numbe~ of disk blocks

7OO0
600O
500O
4OOO

:30O0

2000

oo ~ °

mere d~ration I
naenn 6 7 .~'a"~.~.._~.~ l/i00200 lerarrival time

me~ interan'iv~l time I0

Fig. 9. Three-dimensional plot depicting the relationship between disk utilization with inter-arrival time (mean =
l/A) and valid time duration (mean =/x) for Elmasri's time index.

This expression is independent of 1/A and/z.
Fig. 10 shows the results obtained from a simulation study in which N is kept constant at

50 000, and the inter-arrival time 1/A and valid time duration/z is varied. The results confirm
our analysis: disk utilization for a B +-tree constructed for temporal indexing using our scheme
remains practically constant with no regard for/x or A; the disk utilization for the time index,
on the other hand, fluctuates as a function of both of these parameters.

14O00 M
: : : : ~ ~. r

- ~ ~ (I ®) ~ n
i : 4 4!', ~ i ~"t~lg_)-4- I
i i t i i i i " e , ~ l o) " . n . - . /

120oo ~. _.~...:-';-'.:Z--.-i------- :.- g4.. 4 ~ . ~ . ~ 1 ~ o ~ " - - ~ - . - I
i ..'"J ~ i " o ~ (~) " "~-- I

I
~ . . " !] i i

oX
1 0 0 0 0 * ' : ' ; ~ " G i- ... ~ ... i"

, ; i i i i
l ." i i i |

: " i ! i _ _ ~ _ - :+-- -I,.
~ 8000 .-,~ ; i - = ~ . . . ~ . ~ _ . ~ _ . . - . ' Z i ~ i -

,' ! i ~ .-- 'V. i ~ ~ i
l

; . , . , , - ' T " i } ; i i ;
'~ 6000 ÷ -4- -" + ¢- ¢~ 4 ~

! i i
4o00 - ~. ~ ~ ~ -I . ~-

i i i i
2000 • r r .. r* .. r

i i i ~ l
' ~ " --" ~ . . L . I t • ~- - "

-"~=--.-~--- -w-----w-,--:=* -~ -.*-- w= =
i ! i i . i ! i

0 I I I I I I I

2 3 4 5 6 7 8 9 I0
mean interan-ival time

F i g . 1 0 . E x p e r i m e n t a l r e s u l t d e p i c t i n g h o w s t o r a g e u t i l i z a t i o n v a r i e s w i t h i n t e r - a r r i v a l t i m e a n d v a l i d t i m e d u r a t i o n •

T h e n u m b e r g i v e n i n p a r e n t h e s i s r e p r e s e n t s t h e r a t i o ~ A .

160 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

6.2. Query performances

In this subsection, we examine the performance of the proposed indexing scheme against
the Elmasri's time index under a variety of queries.

In the case of the time index, queries relating to both arrival and/or departure time can be
supported with reasonable efficiency. For instance, retrieving all persons who arrived between
the time interval [a, b] can be accomplished by (i) traversing the B÷-tree to locate the leaf
node containing time point a, and (ii) following the sequential links between leaf nodes and
retrieving all incremental entries in the buckets, right up to time point b. The efficiency
achieved in this instance, however, could be matched by using a V-order B+-tree. We
substantiate this claim by the following analysis.

Let ae be the number of page accesses needed to answer the query "Retrieve all persons
who arrived between time interval [a, b]" using Elmasri's time index. For the purpose of the
analysis, we assume that a is a randomly selected time point from interval [0, now], and the
length of the interval (i.e. b - a) is an exponential random variable with mean 3'.

To obtain an estimate of the number of distinct time points in B P which correspond to the
given interval, we do the following. Let L n be the nth order interarrival time for the
underlying arrival process. (L n is an Erlang random variable with mean n/h .) We are
interested in what n might be, assuming that the nth arrival (from time a) coincides with T
(the mean interval value). Hence, we have

n
~-= T f f n =AT

The total number of distinct time points (which must include arrivals and departures) which
are in B P and which fall into the interval [a, b] is therefore

- A 2AT × Prob(X > 0) = 2AT e

A conservative estimate of the number of the time index leaf nodes which need to be accessed
is therefore [(2AT e-~) / (2me In 2)]. For each of these leaf nodes, the associated bucket would
need to be searched as well. Ignoring any other additional disk accesses (say, fetching the
non-leaf nodes of the time index + B -tree), we obtain

[ATe-~] (/ z h + 2 m e h l n 2 ~
Q e = meeln2 X 1+ ~]

Again, this value could blow up for large values of/xh.
Consider now the index support provided by a V-order B+-tree. We denote by Q0, the

number of disk accesses needed to retrieve all temporal data points corresponding to the same
query: "Retrieve all persons who arrived during the interval [a, b]". As we have suggested
earlier, this temporal query can be mapped to a spatial search on the region as indicated in
Fig. 11. Assuming that now is currently some value n 0, this spatial search can be mapped to at
most two interval searches: (a, 0)---~ (b, n o - b - 1) and (a, n o - a)----~ (b, n o - b) 1. In the worst

1 T h e r ea son b e h i n d this shou ld be clear by s tudying the V-order ing as shown in Fig. 8.

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 161

Y

no

a b no

Fig. 11. Search region corresponding to tuples having an arrival time in the interval [a, b].

case, the expected number of points in each of the intervals is bounded by A7 (since there are
time units on the average, and the expected number of arrivals during any one is merely A).

Clearly,

Q0 < 2 x 2m0 In 2

Comparing the above page accesses with the time index disk accesses, the V-order B÷-tree
clearly provides better and more consistent performances.

Integral to the design of the proposed indexing scheme is the desire to provide a uniform
framework for temporal queries of all kinds. In this respect, the proposed scheme dis-
tinguishes itself in being able to support a host of other operations which have not received
any help from existing indexing schemes such as the time index. For instance, a query such as
"Find all persons who stayed in the country for more than 30 days" means scanning the entire
database if only existing temporal indexes were used. Using the method which we have
proposed, this query corresponds to at most two interval searchers of a H-order B÷-tree.

Note that the main aim of this paper is to propose a scheme for indexing temporal data
which could be translated to many different implementations. For this reason, we have chosen
to compare different indexes with the time index under different query requirements. This is
reasonable as the choice of which index to adopt in a real setting is dependent on the needs of
the application. We have demonstrated that for each class of temporal queries, there exists an
indexing scheme which outperforms the time index. This clearly provides much more
flexibility to system designers to tune the performance of the query system to respond to
queries which are most critical or frequently asked. The existence of multiple indexes (using
different orderings) moreover provides opportunities for optimization and is analogous to the
classical problem of access path optimization.

A plausible alternative to organizing the temporal data points is to adopt some spatial
indexing method in place of the classical indexing schemes. This approach would advocate the
partitioning of data space into subspaces and organizing these in a hierarchy. This notion of
cell partitioning is similar to that of the grid file [9]. However, due to the types of search
spaces unique to temporal queries (see Fig. 4) rhombus shaped cells may be more efficient
than the conventional rectangular grid cells. Another major difference is that the mapped data
space is not bounded but instead grows diagonally. Extensions of the grid file aimed at
exploiting these characteristics are currently being studied.

162 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

7. Support for complex queries in bitemporal databases

As mentioned earlier, the full benefits of temporal databases can only be realized if data
retrieval based on the different notions of time can be supported efficiently. In this section, we
demonstrate how the proposed approach can be used to support complex queries in a
bitemporal database (a temporal database that supports both valid and transaction time). In
other words, we are interested in indexing techniques that can efficiently handle queries that
involve both the transaction and valid time. For example, a query of the nature "Find all
people who are known to arrive on day 4 as of day 10" (assuming that day 10 has already
passed). To our knowledge, none of the existing work address how such queries may be
supported.

We use Fig. 12 to illustrate how our proposed indexing scheme can offer huge savings by
indexing the points constructed from the four-dimensional space. Here, each tuple /z in the
database has associated with it two time intervals: a transaction time interval Ix s, Xe], denoted
by X(/x), and a valid time interval [vs, Ve] , denoted by ~V(/x).

The following remarks are useful in understanding the content of this relation:
(1) Tuple t l has been added to the database retroactively, since it is discovered that p l was

in the United States from day 0 to 3 only when he re-enters on day 4.
(2) Person p2 enters the United States on day 0 and leaves on day 5; arrival and departure

events result in the tuples t3 and t4, respectively.
(3) Person p3 was mistaken to have left on day 4; the mistake was discovered on day 7

when he actually leaves the country resulting in tuple t7.

Example 5. Consider this query on the a r r i v a l relation: "Find all persons who are known
to be present in the United States on day 2, as of day 3". This query can be transformed to a
spatial search on a four-dimensional space by once again, defining a function M on tuples in

t8
t9

tl0
t l l
t12
t13
t14

Fig. 12. The a r r i v a l

[tuple II pid l entry_pt II V0,) I X(~) I
t l pl NY [0,3] [4,.o~]
t2 ol LA [4,now] [4,noto]
t3 p2 SFO [O,now] [0,5]
t4 p2 SFO [0,5] [5,now]
t5 p3 LA [O,now] [0,4]
t6 p3 LA [0,4] [4,7]
t7 1)3 LA [0,7] [7,now]

p3 SFO [8,0] [8,now]
p4 NY [2,now] [2,3]
I)4 NY [2,3] [3,now]
p4 LA [8,now] [8,now]
p5 LA [lO,now] [lO,now]
I)6 NY [12,now] [12,now]
07 NY [ll,now] [ll,noto l

relation that supports both transaction and valid time.

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 1 6 3

8 -

6 -

4 -

2 -

. t 3 , t 5 flOW

::i::i::iii::~ t2 xa -
1 0 -

8 -

 i;i %1, ,_ "x,-,
4 -

2::i~iiii::i::i, t ao o t8 2 -

I I I I I ! I I I I 1 t I I I - -

2 4 6 8 10 1:) 14 now

~!!i!i!!!!!~!!!ii tl,

2 4 6 8 1 0 1 2 14 n°w

Fig. 13. Four-dimensional search space for the temporal query "Find all persons who are known to be present in
the United States on day 2, as of day 3".

a r r i v a l . Given any tuple /x, At(/x)=(x, y, w,z) where (x, y) = 3-(°V(/x)) and (w,z)=
3-(~(tz)). The earlier query can now be answered by identifying those points which are in the
four-dimensional search space as shown in Fig. 13. The answer is clearly tuples t3, t5, t9 and
tl0.

8. Conclusion

In this paper, we addressed the issues of temporal indexing by using existing B +-trees. The
proposed paradigm provides an elegant framework within which temporal selections based on
transaction time, valid time, and/or non-temporal attributes are shown to be equivalent to
spatial searches in a multi-dimensional space. Index support for these operations can be
obtained by merely defining a linear order on temporal data points in this multi-dimensional
space, and making use of conventional indexing structures such as the B ÷-tree. This enables
existing DBMSs to be used for the implementation of temporal databases with little or no
modifications. Performance analysis shows that this approach leads to indexes which are more
efficient than the time index [4] in both storage utilization as well as query efficiency.

The work reported here can be extended in a variety of ways. Amongst those already
mentioned include: (i) identifying extensions to spatial indexes (such as the grid file) for
temporal indexing, and (ii) query optimization strategies in situations where different indexes
(e.g. index structures created using different orderings) exist. Other work which are currently
in progress include: (iii) examining how other temporal operators (such as temporal join)
could benefit from this indexing scheme, and (iv) extending an existing DBMS with temporal
facilities by augmenting it with a frontend that will provide for mapping between a temporal
model and a (non-temporal) backend DBMS.

164 C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165

References

[1] U. Dayal and G. Wuu, A uniform approach to processing temporal queries, in: Proc. 18th VLDB (1992).
[2] C.J. ??????, ed., A consensus glossary of temporal database concepts, SIGMOD RECORD 23(1) (1994)

52-63.
[3] R. Elmasri and G. Wuu, A temporal model and query language for temporal databases, in: Proc. 6th Int.

Conf. on Data Engineering (1990) 76-83.
[4] R. Elmasri, G. Wuu and Y.-J. Kim, The time index: an access structure for temporal data, in: Proc. 16th

VLDB (1990) 1-12.
[5] S. Gadia, A homogeneous relational model and query language for ER databases, ACM Trans. Database

Syst. 13(4) (1988) 418-448.
[6] S. Gadia and C.-S. Yeung, A generalized model for a relational temporal database, in: Proc. ACM SIGMOD

(1988) 251-259.
[7] A. Guttman, R-trees: A new dynamic index structure for spatial searching, in: Proc. ACM SIGMOD (1984)

45 -57.
[8] A. Henrich, H.-W. Six and P. Widmayer, The lsd tree: Spatial access to multidimensional point and non-point

objects, in: Proc. 15th VLDB (1989) 45-53.
[9] K. Hinrichs, Implementation of the grid file: Design concepts and experience, BIT 25 (1985) 569-592.

[10] C. Kolovson and M. Stonebraker, Indexing techniques for historical databases, in: Proc. 5th Int. Conf. on
Data Engineering (1989) 127-137.

[11] H.-P. Kriegel and B. Seeger, Multidimensional order preserving linear hashing with partial expansions, in:
Proc. 4th Int. Conf. on Data Engineering (1988) 369-376.

[12] D. Lomet and B. Salzberg, Access methods for multiversion data, in: Proc. ACM SIGMOD (1989) 315-324.
[13] V. Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and J. Woodfill, Designing dbms

support for the temporal dimension, in: Proc. ACM SIGMOD (1984) 115-130.
[14] B.C. Ooi, Efficient Query Processing in Geographic Information Systems (Springer-Verlag, 1990).
[15] D. Rotem and A. Segev, Physical organization of temporal data, in: Proc. Int. Conf. on Data Engineering

(1987) 454-466.
[16] H. Samet, The Design and Analysis of Spatial Data Structures (Addison-Wesley, 1989).
[17] A. Segev and H. Gunadhi, Event-join optimization in temporal relational databases, in: Proc. 15th Int. Conf.

on VLDB (1989) 205-215.
[18] A. Segev and A. Shoshani, Logical modeling of temporal data, in: Proc. ACM SIGMOD (1987) 454-466.
[19] N.R.T. Sellis and C. Faloutsos, The R+-tree: A dynamic index for multi-dimensional objects, in: Proc. 13th

VLDB (1987) 507-518.
[20] A. Tansel, Modeling temporal data, Information and Software Technology, 32(8) (1990) 514-520.
[21] B. Tauzovick, Toward temporal extensions to the entity-relationship model, in: Proc. lOth Int. Conf. on

Entity-Relationship Approach (1991) 163-179.
[22] G. Wuu and U. Dayal, A uniform model for temporal objected-oriented databases, in: Proc. 8th Int. Conf. on

Data Engineering (1992) 584-593.
[23] A. Yao, Random 2-3 trees, Acta lnformatica 2(9) (1978) 159-170.

Cheng Hian Gob received his BSc
(First Class Honours), and MSc from
the National University of Singapore.
He is currently a doctoral candidate
(Information Technologies) at the
Sloan School of Management, MIT.
His research interests include
heterogeneous database integration,
relational database theory, database
design, and query optimization.

Honglun Lu, currently a senior lec-
turer in the National University of
Singapore, received the B.S. degree
in electronic engineering from the
Tsinghua University, Beijing, China
in 1968, and the M.S. and Ph.D.
degrees, both in computer science
from the University of Wisconsin,
Madison. His research interests in-
clude data/knowledge base query
processing and optimization, parallel
and distributed database systems,
and knowledge discovery and data
mining.

C.H. Goh et al. / Data & Knowledge Engineering 18 (1996) 147-165 165

Beng Chin Ooi received B.Sc. (First
Class Honours) and Ph.D. in com-
puter science from Monash Universi-
ty, Australia, in 1985 and 1989, re-
spectively. He is currently a senior
lecturer at the Department of Infor-
mation Systems and Computer Sci-
ence, National University of Singa-
pore. Before joining the Depart-
ment, he was with the Institute of
Systems Science from 1989 to 1991.
His research interests include data-
base performance issues, database

UI, multi-media databases and GIS. He is the author of a
monograph "Efficient Query Processing in Geographic In-
formation Systems" (Springer-Verlag, 1990), a co-editor of
three books. He is an editorial board member of the
International Journal of Geographical Information Systems
(Taylor & Francis), the Journal on Universal Computer
Sciences (Springer-Verlag), and the International Journal of
Information Technology (World-Scientific). He is a member
of Singapore Computer Society, Association for Computing
Machinery (ACM) and IEEE Computer Society.

Kian-Lee Tan received his B.S., M.S.
and Ph.D. in computer science, from
the National University of Singapore,
in 1988, 1991 and 1994, respectively.
His major research interests include
query processing and optimization in
multiprocessor and distributed sys-
tems, and database performance. He
is also a co-author of the tutorial
entitled Query Processing in Parallel
Relational Database Systems. Kian-
Lee was a Visiting Scientist at IBM's
Almaden Research Center, Califor-

nia (from Jan. 92 to July 92), and CSIRO's Canberra
Laboratory, Australia (from June 94 to June 95).

