
1

Efficiently Supporting Edit Distance based String
Similarity Search Using B+-trees
Wei Lu, Xiaoyong Du, Marios Hadjieleftheriou, Beng Chin Ooi

Abstract—Edit distance is widely used for measuring the similarity between two strings. As a primitive operation, edit distance based
string similarity search is to find strings in a collection that are similar to a given query string using edit distance. Existing approaches
for answering such string similarity queries follow the filter-and-verify framework by using various indexes. Typically, most approaches
assume that indexes and datasets are maintained in main memory. To overcome this limitation, in this paper, we propose B+-tree
based approaches to answer edit distance based string similarity queries, and hence, our approaches can be easily integrated into
existing RDBMSs. In general, we answer string similarity search using pruning techniques employed in the metric space in that edit
distance is a metric. First, we split the string collection into partitions according to a set of reference strings. Then, we index strings
in all partitions using a single B+-tree based on the distances of these strings to their corresponding reference strings. Finally, we
propose two approaches to efficiently answer range and KNN queries, respectively, based on the B+-tree. We prove that the optimal
partitioning of the dataset is an NP-hard problem, and therefore propose a heuristic approach for selecting the reference strings greedily
and present an optimal partition assignment strategy to minimize the expected number of strings that need to be verified during the
query evaluation. Through extensive experiments over a variety of real datasets, we demonstrate that our B+-tree based approaches
provide superior performance over state-of-the-art techniques on both range and KNN queries in most cases.

Index Terms—Similarity search, string, edit distance, B+-tree

F

1 INTRODUCTION

As a primitive operation, string similarity search has
a wide variety of applications in data cleaning, data
integration, error checking, pattern recognition, biolog-
ical sequence analysis, and so forth. For example, in
error checking, string similarity search can help find
good recommendations of similar words from a given
dictionary when users make typos.

Thus far, a variety of similarity functions have been
proposed to measure the similarity between two strings
[1]. While it is widely recognized that there does not exist
a similarity function that provides the best quality in all
application domains [1], [2], edit distance remains one of
the widely accepted similarity measures. Therefore, we
employ edit distance to measure the similarity between
two strings. Given a query string q, string similarity
search returns a set of strings from a collection of strings
S that are similar to q. In general, two types of queries
are often considered:

• Range search: Given a string q, range search returns
all strings in S with edit distance to q not greater
than a user defined threshold θ.

• Wei Lu and Beng Chin Ooi are with the School of Computing, National
University of Singapore, Singapore.
E-mail: {luwei1, ooibc}@comp.nus.edu.sg

• Xiaoyong Du is with the Key Laboratory of Data Engineering and
Knowledge Engineering, Ministry of Education, China, and School of
Information, Renmin University of China, China.
E-mail: duyong@ruc.edu.cn

• Marios Hadjieleftheriou is with the AT&T Labs-Research, 180 Park Ave
Bldg, 103 Florham Park, NJ 07932.
E-mail: marioh@research.att.com

• K-nearest-neighbor search (KNN): Given a string q,
KNN search returns K strings in S with the smallest
edit distances to q.

Verifying whether the edit distance between two
strings with length |s| is smaller than or equal to θ
has complexity O(|s|θ) which is expensive for large
θ or long strings (computing, as opposed to verifying,
the edit distance between two strings has complexity
O(|s|2/ log |s|); for the purpose of answering range or
KNN queries we mostly need to verify edit distances).
It is therefore important for the indexing mechanism to
filter out as many strings as possible so that verification
between string pairs can be reduced to a minimum.
Existing techniques for string similarity search use either
n-gram based inverted indexes [3], [4], [5], [6], [7], [8],
[9], [10], Trie based indexes [11], [12] or B+-trees [13].

The main idea behind the n-gram based inverted index
approaches is to use the inverted lists to identify all
candidate strings that have a certain number of n-grams
in common with the query. This approach can support
both range and KNN queries, and is efficient when
θ is small, but suffers for larger θ and short strings. In
addition, it incurs very high space overhead, resulting
in indexes that are more than five times larger than
the size of the original dataset in most cases, due to
the decomposition of strings into overlapping n-grams.
Besides, as we argue in details in Section 2 using an
example, this approach in many cases resorts to the
linear scan for range queries but misses results for KNN
queries. Moreover, it incurs a random I/O for every
candidate examined, given that the index is not clustered

2

(clustering inverted lists would lead to even larger space
explosion, since each string would have to be duplicated
as many times as the number of n-grams it contains).
Trie based indexing approaches are main memory only
and hence are not directly comparable. Bed-tree [13], a
B+-tree based approach, organizes strings based on a
global ordering and exhibits good scalability. However,
the range search of this approach degenerates to partially
sequential scans of the tree when the average length of
strings in the dataset is short.

In this paper we introduce a new approach that is
based on constructing a clustered B+-tree, which reduces
random I/Os to a minimum, making our technique
faster than existing alternatives across a wide range of
edit distance thresholds and average string lengths in the
indexed dataset. Our approach is based on the fact that
edit distance satisfies the properties of a metric space.
Consequently, the strings can be indexed using a B+-
tree based on the concepts of distance transformation
and distance indexing of the iDistance method [14],
[15]. By selecting a set of reference points, the iDistance
method partitions the dataset into clusters such that
data points within that cluster can be indexed based
on their distances from the reference point. In essence,
this technique implicitly partitions the data space into
Voronoi cells, thereby achieving efficient indexing in
a high-dimensional space by using a B+-tree. When a
range query is issued, the ranges formed by the data
partitions that intersect with the query range are exam-
ined, and data points are pruned based on the metric
values indexed by the B+-tree.

The iDistance method provides an efficient way of in-
dexing high-dimensional data points in a one dimension-
al metric space. However, direct application of iDistance
for supporting string similarity search is challenging
with respect to three issues:

• iDistance can be applied only in Euclidean space.
Partitioning of the string collection in the string
domain remains an open problem since the distance
between two strings is difficult to express geomet-
rically.

• Reference selection over string domain is not sup-
ported in iDistance. In Euclidean space, selection of
the reference points depends on the spatial geom-
etry. e.g., the centroid of the cluster. In the high-
dimensional string domain, there is no known way
of identifying the centroid of a set of strings under
edit distance. Furthermore, identifying the median
string of a given string collection in terms of edit
distance is known to be an NP-hard problem [16].

• It is not easy to find the best partition assignmen-
t strategy. For clustering data, a typical objective
function to optimize is the total distance of points
within a cluster from a reference point. In the high
dimensional string domain this assignment strategy
might not always lead to the best clustering with
respect to answering queries based on edit distance.

In this paper we make the following contributions:
• We propose a partitioning based approach that em-

ploys the B+-trees to answer both range and KNN
queries. Our approach can be easily integrated into
existing RDBMSs.

• By employing our approach, strings that need to
be verified are maintained in the continuous leaves
of the B+-tree, hence reducing random I/O to a
minimum. Furthermore, the size of the index only
relies on the cardinality of the dataset, while existing
indexing techniques depend on both the cardinality
and the length of strings in the dataset.

• Given a set of reference strings, we propose a novel
partition assignment for each string that directly
minimizes the expected number of strings that need
to be verified per query. We demonstrate that select-
ing the optimal set of reference strings is an NP-hard
problem. Hence, we propose a heuristic approach to
extract the reference strings greedily.

• We conduct an extensive experimental study to
evaluate the performance of the proposed approach
in comparison with state-of-the-art techniques.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 states the
problem and necessary definitions. Section 4 describes
the partitioning based approach using the metric prop-
erties of edit distance. Section 5 presents algorithms
for choosing reference strings and assigning strings to
partitions. Experimental results are presented in Section
6. Finally, Section 7 concludes this paper.

2 RELATED WORK

The problem of efficiently answering string similarity
queries under edit distance has attracted a lot of in-
terest from different research communities. Given that
computing the edit distance between two strings is an
expensive operation, filtering algorithms are essential for
reducing the cost of evaluating queries. A variety of
filtering algorithms have been proposed specifically for
join, range and KNN queries [3], [17], [18], [5], [13], [7],
[8], [19]. In addition, a variety of indexing techniques
have been proposed that make use of these filters to
reduce the candidate set size.

The main idea behind the n-gram based inverted index
approaches is to use the inverted lists to identify all can-
didate strings that have a certain number of n-grams in
common with the query. The intuition here is that strings
with small edit distance must share many n-grams. This
is also known as the T -occurrence problem [20], where T
depends on the length of the query |q|, n and θ. Clearly,
the cost of this approach for answering range queries
depends on the algorithm used to merge inverted lists.
Sarawagi and Kirpal [20] propose a heap based merging
algorithm. Li et al. [5] further optimize the merging
process by identifying elements that can be skipped in
the inverted lists. Similar merging techniques can be
used to answer KNN queries with few modifications [6].

3

This technique is efficient for long strings but suffers for
short strings since in this case, when θ is relatively large
but is still a meaningful value, the number of candidates
explodes using either short n-grams (poor selectivity) or
long n-grams (T becomes small). More importantly, it
also suffers from another major problem: n-gram based
inverted index approaches make an implicit assumption
that strings within edit distance θ have at least one n-
gram in common. However, in practice, it is not always
the case. Consider a simple example where θ = 2,
q = abc and s = cba. Clearly the two strings have no
n-grams in common yet they are within edit distance 2.
String s would not be identified as an answer in this
example, given that only the inverted lists of n-grams
belonging to string q would be examined. In this case
(i.e., when T ≤ 0) this technique resorts to a linear
scan. However, for KNN queries, this approach will miss
some of the K nearest neighbors if they have no n-
grams in common with the query. That’s why Flamingo
[6], makes the assumption that all K nearest neighbors
share at least one n-gram with the query. Finally, this
technique also incurs relatively high space overhead in
comparison with the size of the original dataset, due to
the decomposition of strings into overlapping n-grams.
Li et al. [4] propose the use of variable length n-grams
in order to reduce the size of inverted lists. Kim et
al. [21] and Behm et al. [9] propose various algorithms
for compressing inverted lists without affecting query
performance. Recently, [7], [8] propose the prefix-based
approach which is optimized for a specific threshold.
In [9], [10], they focus on designing disk-based indexes
to support string similarity search by extending n-gram
based inverted indexes. Finally, and most importantly,
n-gram based inverted indexes, incur one random I/O
per candidate verification needed.

The second approach builds tries to answer selection
queries based on edit distance. Chaudhuri and Kaushik
[12] and Ji et al. [11], [22] present specialized algorithms
on tries that preserve the state of previous computations
on a particular query string, in order to speed up the
computation of edit distance on subsequent extensions of
the query string (by appending characters to the end of
the string). Based on similar ideas, Deng et al. [23] extend
the trie structure to support KNN queries. However,
these trie-based approaches are main memory only.

The third approach uses B+-trees to index strings for
answering range and KNN queries. Zhang et al. [13]
propose to organize the string collection using a B+-
tree index based on three unique global orders. Then,
they present specialized algorithms that use the B+-
tree to answer range and KNN queries efficiently. This
approach suffers when the indexed strings are short.

There also exist some related work about how to
partition the dataset [24], [25], [26]. Jin et al. [24], [25]
cluster the dataset using the k-medoids algorithm. Each
medoid is selected as a reference string and strings in
the dataset are assigned to the referencee string with
the closest distances. In [26], they propose a method

Symbol Definition
U a universal string domain
S a string collection, S ⊂ U

si the ith string in S
q a query string
ed(q, s) the edit distance between q and s ∈ S
θ the threshold for range search
K the threshold for KNN search
N the number of partitions
Pi a partition, where Pi ⊆ S, 1 ≤ i ≤ N
oi the reference string corresponding to Pi

Pi.l minimum edit distance between oi and all s ∈ Pi

Pi.u maximum edit distance between oi and all s ∈ Pi

Pi[j] {s|s ∈ Pi, ed(s, oi) = j}

TABLE 1
Symbols and their definitions.

called Maximum Variance to select the reference strings.
Specifically, they iteratively select the reference strings,
and at each iteration, a string that makes the maximum
variance for partial strings in the dataset is selected
as the reference string. Although these approaches are
proposed based on certain criteria, all of them lack an
explicit definition what partitioning strategy can opti-
mize the query performance. To address this problem,
we argue that the optimal partitioning strategy is not
to minimize the distance of strings from the respective
reference strings, but to directly minimize the expected
number of strings that need to be verified per query.
Indeed, due to the different partitioning strategy, in [26],
the distance between each string in the dataset and every
reference string is required to maintain in main memory.
Such maintenance incurs prohibitive storage cost and
update cost when integrating this method into existing
DBMSs. Take a dataset with 1M strings for example.
Suppose 1% of strings are taken as the reference strings
(in their experiments, the percentage is set to at least
2.5%). As we can see, the storage cost to maintain these
distances is 4 * 106 * 104B = 40GB. Although they argue
that the storage cost can be reduced by maintaining
the distances from each string to a portion of reference
strings, the storage cost can still be expensive.

3 PROBLEM DEFINITION

Let alphabet Σ be a finite nonempty set of symbols.
For string s, we use |s| to denote the length of s, and
s[i] (1 ≤ i ≤ |s|) to denote the ith symbol of s, where
s[i] ∈ Σ. An edit operation on s is either one of the
following: (1) Insertion: insert a symbol x ∈ Σ into s
to form a new string s̄ = s[1] . . . s[i − 1]xs[i] . . . s[|s|]; (2)
Deletion: delete a symbol s[i] from s to form a new
string s̄ = s[1] . . . s[i− 1]s[i+1] . . . s[|s|]; (3) Substitution:
substitute a symbol s[i] of s with x ∈ Σ to form a new
string s̄ = s[1] . . . s[i − 1]xs[i + 1] . . . s[|s|]. The notation
used throughout the paper is summarized in Table 1.
Now we can define edit distance:

Definition 1. (Edit Distance) Given two strings s and s̄, the
edit distance between s and s̄, denoted as ed(s, s̄), is defined

4

as the minimum number of edit operations that are required
to transform s to s̄.

String similarity queries based on edit distance are
defined as follows:

Definition 2. (Range Search) Given a query string q and a
collection of strings S, a range query returns a set of strings
S̄ ⊆ S, such that, ∀s̄ ∈ S̄, ed(s̄, q) ≤ θ, while ∀s ∈ S − S̄,
ed(s, q) > θ, where θ is a user specified threshold.

Range search is an important query type for string
similarity search when the length of strings in the dataset
is uniformly short (e.g., employee names and company
names in relational databases). In general, when the
length of the strings in the dataset is short, user defined
thresholds also tend to be small (large edit distance
thresholds on short strings result in too many mean-
ingless answers). However, when the average length of
strings in the dataset is relatively large and non uniform
(e.g., a database of protein sequences), using a small edit
distance threshold may not always produce any results.
As such, KNN search in this case is a more meaningful
query:

Definition 3. (KNN Search) Given a query string q and a
collection of strings S, a KNN query returns a set of strings
S̄ ⊆ S, such that |S̄| = K, and ∀s̄ ∈ S̄, ∀s ∈ S − S̄,
ed(s̄, q) ≤ ed(s, q), where K is a user specified constant.

The edit distance between s and s̄ can be computed
using dynamic programming and involves the use of an
(|s| + 1) ∗ (|s̄| + 1) matrix. The value of the element on
row i (0 ≤ i ≤ |s|), column j (0 ≤ j ≤ |s̄|) of the matrix,
denoted as d[i][j], is:

d[i][j]=

i, if j = 0;
j, if i = 0;
d[i−1][j−1], if s[i−1] = s̄[j−1];
1+min{d[i−1][j−1],d[i−1][j],d[i][j−1]}, else.

Then, d[|s|][|s̄|] is the actual edit distance between s and
s̄. The time complexity of this dynamic programming
approach is O(|s| ∗ |s̄|) (the fastest known algorithm has
complexity O(|s| ∗max{1, |s̄|/log|s|}) when |s| ≥ |s̄| [27]).
For our purposes we need to verify whether the edit
distance between two strings is not greater than a user
specified threshold θ. The verification algorithm provid-
ed in [13] has the time complexity O(max (|s|, |s̄|)θ).

4 PARTITIONING BASED SOLUTION

Our main idea is to split the string collection into
partitions, where each partition is characterized by a
representative reference string and each string in the
collection is assigned to one and only one partition based
on a certain criterion. Based on an important fact that
edit distance is a metric (Theorem 9.4, Chapter 9 in [28]),
we elaborate on how to apply the triangle inequality
to prune strings with edit distance to the query that is
greater than the given query threshold. We then show

String Reference String Edit Distance
Robert Marcus Robert Mercas 2
Robert Morris Robert Mercas 3
Robert Berks Robert Mercas 3
Robert Fergus Robert Mercas 3
Robert Lewis Robert Mercas 4

TABLE 2
Edit distance between strings and the reference string.

how to map strings in partitions to a one dimensional
space and index these strings using a B+-tree based
on the iDistance approach. Finally, we develop two ap-
proaches to answer range and KNN queries, respectively,
by traversing the B+-tree.

4.1 Preliminaries

Let O be a set of reference strings and |O| = N . Given a
string collection S, ∀s ∈ S, s is assigned to one and only
one reference string o ∈ O according to a certain criterion
which will be addressed in the next section. Hence,
we can split S into N partitions, i.e., S = ∪Ni=1{Pi}
and Pi ∩ Pj = ∅. By default, let oi be the reference
string of partition Pi and Pi.l, Pi.u be the minimum
and maximum edit distance, respectively, between all
s ∈ Pi and oi. Formally, Pi.l = min{ed(s, oi)|s ∈ Pi},
Pi.u = max{ed(s, oi)|s ∈ Pi}. For simplicity, let parti-
tion Pi be denoted with Pi(o, l, u), where l = Pi.l and
u = Pi.u. Note that the edit distance between any two
strings must be an integer. Hence, given an integer j, we
let Pi[j] = {s|s ∈ Pi, ed(s, oi) = j}.

Example 1. Consider a set of strings shown in the first
column of Table 2 as partition P . Suppose that string “Robert
Mercas” is selected as the reference string o. The edit distance
between each string in P and o is shown in the third
column. P can be represented as P (“Robert Mercas”, 2, 4).
P [2] = {“Robert Marcus”}, P [3] = {“Robert Morris”,
“Robert Berks”, “Robert Fergus”}, and P [4] = {“Robert
Lewis”}.

4.2 Verification of Partitions

When a user issues a range query, the relationship
between any partition and the query string will belong
to one of the following types:

Definition 4. (Prunable Partition) Given a range search
with threshold θ and query string q, a partition P is a
prunable partition if and only if one of the following conditions
holds: (1) ed(o, q)− P.u > θ; or (2) P.l − ed(o, q) > θ.

Figure 1 shows an example of prunable partition. From
the figure, we can see that there is no overlap between
the search range and the edit distance range of the
partition.

Pruning Rule 1. If partition P is a prunable partition, then
∀s ∈ P , ed(s, q) > θ. Thus, strings that lie in P do not have
to be verified and can be pruned directly.

5

o ed(o,q)

o l ued(o,q)
θ θ

θ θ
case1:

case2:

l u

Fig. 1. Prunable Partition

Proof: Suppose ed(o, q) − P.u > θ. ∀s ∈ P , since
ed(o, s) ≤ P.u, according to the triangle inequality,
ed(s, q) ≥ ed(o, q) − ed(o, s) ≥ ed(o, q) − P.u > θ. We
omit the proof of case 2 which is analogous to that of
case 1.

Definition 5. (Candidate Partition) Given a range search
with threshold θ and query string q, partition P is a candidate
partition if and only if one of the following conditions holds:
(1) P.l ≤ ed(o, q) ≤ P.u; or (2) P.l − θ ≤ ed(o, q) ≤ P.l; or
(3) P.u ≤ ed(o, q) ≤ P.u+ θ;

Figure 2 shows an example of candidate partition.
From the figure we can see that there is overlap between
the search range and the edit distance range of the
partition for each case.

o ed(o,q)

o ed(o,q)

o ed(o,q)
θ θ

θ θ

θ θ
case1:

case2:

case3:
l u

l u

l u

Fig. 2. Candidate Partition

Pruning Rule 2. Suppose P is a candidate partition. Then,
∀s ∈ P , s needs to be verified if and only if

lb ≤ ed(o, s) ≤ ub (1)

where lb = max{ed(o, q) − θ, P.l}, ub = min{ed(o, q) +
θ, P.u}. We refer to range [lb, ub] as candidate region.

Proof: ∀s ∈ S, suppose that |o, s| < lb or |o, s| >
ub. For the first case, we can derive |o, s| < ed(o, q) − θ
since |o, s| ≥ P.l. Hence, θ < ed(o, q) − |o, s| ≤ |q, s|; For
the second case, we can derive |o, s| > ed(o, q) + θ since
|o, s| ≤ P.u. Thus, θ < |o, s| − ed(o, q)| ≤ |s, q|.

Definition 6. (Selectable Partition) Given a range search
with threshold θ and query string q, a partition P is a
selectable partition if and only if the following condition holds:
ed(o, q) + P.u ≤ θ.

Figure 3 shows an example of a selectable partition.
Generally, selectable partitions occur when θ is relatively
large and P.u is relatively small.

o
θ

ed(o,q) l u

Fig. 3. Selectable Partition

Pruning Rule 3. Suppose that partition P is a selectable
partition. Then, ∀s ∈ P , ed(s, q) ≤ θ, and s is reported as a
result. We refer to range [P.l, P.u] as selectable region.

Proof: ∀s ∈ P , based on the triangle inequality,
ed(q, s) ≤ ed(o, s) + ed(o, q). Since ed(o, q) + P.u ≤ θ and
ed(o, s) ≤ P.u, we derive ed(q, s) ≤ P.u+ ed(o, q) ≤ θ.

To answer both range queries and KNN queries, we
sequentially process partitions. In general, based on the
above three pruning rules, for each partition P , if P
is either a prunable partition or a selectable partition,
no further verification1 of edit distances on the strings
contained in the partition is required. If P is a candidate
partition, then only strings that lie in the candidate
region need to be verified. Note that in order to identify
the relationship between each partition and the query
string, we need to actually compute (rather than verify)
the edit distance between the query and all reference
strings (hence, the number of reference strings selected
affects the cost of the algorithms).

4.3 Index Construction
We now show how to employ the iDistance method
[14], [15] to index the partitions using a single B+-tree.
As already discussed, strings in each partition Pi can
be ordered in a one-dimensional space by using their
distances from a reference string oi. In order to index all
strings of the collection into a single B+-tree, we must
guarantee that no strings from the other partitions are
accessed when we try to traverse strings of a specific
partition. In other words, we must guarantee that strings
of the same partition are clustered within continuous
physical pages. Hence, an alternative way is that we map
the edit distance of each string to a new value based on
its reference string oi using the following formula:

ed(s, oi) = i× c+ ed(s, oi) (2)

where c can be set to 1 plus the maximum length of
all strings in the collection (note that the edit distance
between any two strings in the collection cannot exceed
the maximum length). This mapping limits the range of
mapped distances for strings in partition Pi to [i× c, (i+
1)×c), and consequently, there is no overlap between any
two partitions as each partition is mapped to a separate
range. Figure 4 shows an example of indexing strings in
two adjacent partitions Pi and Pi+1 using a B+-tree. As
the range of edit distances between strings in Pi and oi is
[Pi.l, Pi.u], all strings will be indexed using the range of
values from i×c+Pi.l to i×c+Pi.u in the leaf nodes of the
B+-tree. Similarly for Pi+1. Hence, given a partition Pi,
∀s ∈ Pi we can construct a tuple ⟨ed(s, oi), τ(s)⟩, where
ed(s, oi) is the key, and τ(s) is the physical address of
s in the data file, and insert the tuple into the B+-tree.
Hence, we can easily build a clustered B+-tree as the
index.
Remark. To insert a string s, we first identify the ref-
erence string to which s is assigned. For ease of expla-
nation, o is denoted as the reference string. Then, we
compute ed(s, o) according to Equation 2, construct a

1. We will explain the reason why it is unnecessary to do the
verification even for answering KNN queries in the next section.

6

oi oi+1
u ul l

...

(i +1)* c + Pi+1.li* c + Pi.l i* c + Pi.u

leaf

nodes

...

(i +1)* c + Pi+1.u

Fig. 4. Keys of Strings from Two Adjacent Partitions in the
B+-tree.

Algorithm 1: RangeSearch(P, btree, q, θ)

1 SR← ∅; // a list maintains search range for
partitions

2 foreach Pi ∈ P do
3 if Pi is a selectable partition then
4 SR.add(⟨[i ∗ c+ Pi.l, i ∗ c+ Pi.u], true⟩);
5 else if Pi is a candidate partition then
6 SR.add(⟨[i ∗ c+ lb, i ∗ c+ ub], false⟩);

7 S̄ ← ∅; scan.keys← SR;
8 while btGetNextIndexTuple(btree,&scan) do
9 s← getString(scan.τs);

10 if scan.selectable then
11 S̄ ← S̄ ∪ {s};
12 else if VerifyED(s, q, θ) ̸= −1 then
13 S̄ ← S̄ ∪ {s};

14 return S̄;

tuple ⟨ed(s, oi), τ(s)⟩, and insert the tuple into the B+-
tree. Similarly, to delete a string s, we also need to
identify the reference string o to which s is assigned,
compute ed(s, o), find all keys that are equal to ed(s, oi)
in the B+-tree, and remove all strings that are equal to
s by fetching them from the disk. An update operation
can typically be transformed into a delete operation and
an insert operation, and hence we omit the details.

4.4 Range and KNN Search Algorithms

To determine the relationship between q and each par-
tition, we need to actually compute the edit distance
between q and each reference string. Hence, to efficiently
answer both range and KNN queries, the number of
reference strings cannot be too large. In this way, we
maintain the information of each partition Pi, including
the reference string Pi.o, minimum and maximum edit
distance Pi.l and Pi.u, in main memory.

Algorithm 1 shows how to answer range queries. First,
we collect the search ranges of candidate regions and
selectable regions by sequentially checking partitions
based on the Pruning Rule 2 and 3, and maintain the
search ranges using a list named SR (line 1–6). Subse-
quently, we verify strings with their keys in these search
ranges by traversing the B+−tree once. To facilitate iden-
tification of these strings, we maintain a data structure
scan with search keys equal to SR, and employ function

btGetNextIndexTuple to identify strings with their keys in
search ranges progressively according to the ascending
order of the keys (line 7–13). For each qualified string s, if
its key lies in the selectable region, we add it to S̄ directly
(line 10–11); otherwise, we verify s using Algorithm ??
and add s to S̄ if ed(q, s) ≤ θ (line 12–13). Note that
in our case it is able to avoid the random I/O problem
because we maintain the clustered B+−tree.

id

0

1

...

100

...

Leaf nodes

of the B+tree
...

0 28 73

o

kaandorp, brigitte

mann, amanda

...

danklmaier,florian

...

P.l P.u Ed(o,q)

0 28 16

0 10 13

...

0 12 10

...

i*c+P.l i*c+p.u

0 28

... ...

7300 7312

... ...

Ed(o,q)

16

...

7310

...

Search range

[15, 17]

...

[7309, 7311]

...

query: billmeier, sylvia range threshold: 1 c = 73

7300 7312114

Fig. 5. A Running Example of Executing a Range Search.

Example 2. (Range Search) The table in Figure 5 shows the
statistics of partitions for the actor name dataset taken from
the IMDB database, where c = 73. Each partition is associated
with an id, a reference string o, P.l, and P.u. Given a query
”billmeier, sylvia” with θ = 1, we first identify the search
range for each partition (if any) shown in the last column
and combine them together. We then verify candidates by
traversing the B+−tree once. By invoking function btGet-
NextIndexTuple, we locate key 15, the minimum search key
of P0, in the first leaf node of the B+-tree. After verifying all
qualified strings in P0, btGetNextIndexTuple will switch to
next leaf node that contains keys in the search ranges. In our
example, the second leaf node is skipped as it does not contain
any qualified strings.

The KNN algorithm uses a top-down strategy. We
transform KNN search into a sequence of range searches.
Specifically, at the ith (i ≥ 1) iteration, we issue a range
query with threshold θ = i − 1, and refine the KNN
candidates of q by strings that have been probed. The
iteration goes on until the maximum edit distance of
strings in the KNN candidates is less than or equal to θ.

Algorithm 2 describes the details to answer KNN
search. Initially, we set search range θ to 0, current
candidates S̄ to ∅, and maximum edit distance maxED
between strings in S̄ and q to∞ (line 1). We then perform
a sequence of range searches (lines 2–22) until maxED ≤
θ (line 17,21). At the ith iteration, to avoid redundant
verification of strings probed in the previous iterations,
we set search range to [i ∗ c+ θ, i ∗ c+ θ] for a selectable
partition and [i∗ c+ lb, i∗ c+ lb], [i∗ c+ub, i∗ c+ub] for a
candidate partition, respectively (line 3–10). For a string
s in a selectable partition, on one hand, ed(s, q) ≤ θ based
on Pruning Rule 3; on the other hand, ed(s, q) > θ − 1
since it was not discovered in the previous iterations.
Therefore, we guarantee ed(s, q) = θ (line 14–15); for
a string s in a candidate partition, we verify it using
maxED as the threshold, and update S̄ if necessary

7

Algorithm 2: KNNSearch(P, btree, q,K)

1 θ ← 0; S̄ ← ∅; maxED ←∞;
2 while true do
3 SR← ∅; // a list maintains search range for

partitions
4 foreach Pi ∈ P do
5 if Pi is a selectable partition then
6 SR.add(⟨[i ∗ c+ θ, i ∗ c+ θ], true⟩);
7 else if Pi is a candidate partition then
8 SR.add(⟨[i ∗ c+ lb, i ∗ c+ lb], false⟩);
9 if lb ̸= ub then

10 SR.add(⟨[i ∗ c+ ub, i ∗ c+ ub], false⟩);

11 scan.keys← SR;
12 while btGetNextIndexTuple(btree,&scan) do
13 s← getString(scan.τs);
14 if scan.selectable then
15 S̄ ← S̄ ∪ {⟨s, θ⟩};
16 update maxED by S̄ and K;
17 if maxED ≤ θ then return S̄;

18 else if VerifyED(s, q,maxED) ̸= −1 then
19 S̄ ← S̄ ∪ {⟨s, ed(s, q)⟩};
20 update maxED by S̄ and K;
21 if maxED ≤ θ then return S̄;

22 θ ← θ + 1;

id

0

1

...

100

...

o

kaandorp, brigitte

mann, amanda

...

danklmaier,florian

...

Ed(o,q)

16

13

...

10

...

Ed(o,q)

16

86

...

7310

...

Search range

[16,16]

...

[7310,7310]

...

query: billmeier, sylvia K=16 c = 73

Search range

[15,15],[17,17]

...

[7309,9309],[7311,9311]

...

q = 0 q = 1

Search range

[14,14],[18,18]

...

[7308,9308],[7312,9312]

...

q = 2

Fig. 6. A Running Example of Executing a KNN Search.

(line 18–19). When S̄ is updated, we then refine maxED
accordingly and return S̄ if maxED ≤ θ.

Example 3. Consider a KNN query in the same setting as
Example 2. We first issue a range search with θ = 0, and
the search range for each partition is described in the 5th

column of Figure 6. Note that P1 is a prunable partition
and no verification of strings in P1 is required. Suppose that
maxED > 0 after performing the first range search. We then
issue another range search with θ = 1, and the search range
is described in the 6th column. Note that search ranges in
the first iteration are excluded. We iteratively conduct range
queries until K strings with the maximum distances to q equal
to or less than the current θ.

4.5 Cost Analysis

The computation cost of both Algorithm 1 (RangeSearch)
and Algorithm 2 (KNNSearch) consists of three parts:(1)
Tc, the time to compute the edit distance between the
query and all reference strings; (2) Tv, the time to verify
the edit distance between q and all candidate strings;

(3) the time to load the index nodes (if necessary), and
strings lying in the selected partitions and candidate
regions of candidate partitions from the disk. Let Λ
be the time to fetch a page from the disk. The time
complexity of RangeSearch is:

TRS = Tc + Tv + (IRS +DRS)× Λ (3)

where IRS and DRS are the number of index nodes
and data nodes that are loaded to main memory, respec-
tively during the range search. The time complexity of
KNNSearch is:

TKS = Tc + Tv + (IKNN +DKNN)× Λ (4)

where IKNN and DKNN are the number of index nodes
and data nodes that are loaded to main memory, respec-
tively during the KNN search. Note that for range search
or KNN search at each iteration, a data node is at most
loaded to main memory once due to the consistency of
our storage strategy and access mechanism which are
previously described.

5 DISTRIBUTION-AWARE PARTITIONING

Regarding the query cost presented in the previous sec-
tion, Tc remains constant once the reference strings are s-
elected, and Tv relies on strings lying in candidate region
of each partition Pi. For the I/O cost, besides requesting
and loading candidate strings (in the candidate regions)
to main memory, it also consists of loading strings in
the selectable partitions. According to the definition of
selectable partition, to qualify Pi as a selectable partition,
we need to guarantee that ed(o, q) + Pi.u ≤ θ. However,
in practice, due to the high dimensionality of the string
domain [13], given a query q and a threshold θ, the
edit distance from q to o is often larger compared with
the threshold θ (small θ is required in order to achieve
meaningful results). In this way, the number of strings
lying in the selectable partitions should be rather small.
Hence, our optimization objective to reduce the query
cost is to minimize the number of strings in the candidate
regions.

Recall that our approach splits the string collection in-
to partitions and assigns each string in the collection to a
proper partition. To achieve the best query performance
by minimizing the number of strings in the candidate
regions, we need to consider the following two concerns
carefully:

• choosing appropriate reference strings
• assigning each string to a reference string optimally.
In this section, we first elaborate on how to assign

each string to a reference string such that the number of
strings in the candidate regions is minimized, and then
describe how to choose proper reference strings.

5.1 Partition Assignment
Suppose we have obtained a set of partitions and their
reference strings. Which partition should a new string be

8

θ = 3 ed(o,s) = 9

1 12
72edit distance

po
ss

ib
ili

ty

6

Fig. 7. A Running Example of Computing Relative Verifi-
cation Likelihood

assigned to such that its likelihood of avoiding verification
is maximized? To answer this question, traditional clus-
tering methods involve assigning the new string to the
partition with the minimum edit distance or maximum
edit distance (hierarchical clustering methods). For ex-
ample, in iDistance, the whole data space is divided
into Voronoi cells, i.e., each point is assigned to the
reference point with the minimum distance. In this way,
ranges formed by the data partitions that intersect with
the query range are examined. This partitioning strategy
works well in the low-dimensional space since many of
the partitions do not overlap with the query range can
be pruned. However, regarding our application scenario,
due to the high dimensionality of the string domain [13],
most of the partitions overlap with the query range.
Therefore, the pruning power is degraded significantly.
To achieve the optimal query performance, instead, we
aim to minimize the expected number of strings that
need to be verified per query.

Given a reference string o, let fo(q, i) be the probability
density function (PDF) over a universal string domain
U that describes the probability that ed(o, q) = i,∀q ∈ U .
Formally,

fo(q, i) =
|{q|∀q ∈ U, ed(o, q) = i}|

|U |
(5)

Deriving the actual PDF of each reference string o for
a universal string domain U is impossible. Hence, we
approximate the PDF by using S or a sample of S instead
of U . In practice, we can also approximate fo(q, i) after
collecting a proper number of queries and using these
queries as U .

Lemma 1. (Relative Verification Likelihood) Given a
string s that belongs to partition P , when we issue a range
query with threshold θ, the likelihood that s needs to be verified
with respect to reference string o is:

ρo(s) =
∑

L≤i≤U

fo(q, i) (6)

where L=max{P.l, |ed(o, s)−θ|}, U=min{P.u,|ed(o, s)|+θ}.

Example 4. (Relative Verification Likelihood) Figure 7
shows the PDF, fo(q, i), for a particular reference string o,
using actor names taken from the IMDB database. Suppose
that the edit distance between o and some string s is 9. If
a user issues a range query with query string q and θ = 3,
then s does not have to be verified when ed(o, q) > 12 or
ed(o, q) < 6. Thus, the likelihood that s needs to be verified
is equal to

∑
6≤i≤12 fo(q, i) (the gray region in the figure).

Equation 6 expresses the likelihood that s will have to
be verified with respect to reference string o. Therefore,
given a set of strings S, the expected number of strings
in S that need to be verified with respect to reference
string o for a range query is:

Eo(S) =
∑
s∈S

ρo(s). (7)

In order to decrease the verification likelihood for S,
we can leverage a set of reference strings O and assign
strings optimally among multiple reference strings. As-
suming that we are given a set of reference strings, the
partition assignment can be accomplished as follows.

Definition 7. (Verification Likelihood) Given a set of
reference strings O, the verification likelihood of string s is
defined as:

ψO(s) = min
o∈O
{ρo(s)}. (8)

Lemma 2. (Partition Assignment) Given a set of reference
strings O, the expected number of strings from S that need
to be verified is:

EO(S) =
∑
s∈S

ψO(s). (9)

The objective function of a partition assignment is to minimize
EO(S).

The distribution based partitioning method greedily
assigns each string to the reference string that yields the
minimum relative verification likelihood. In this way,
once the reference strings are selected, the expected
number of strings from S that need to be verified is
minimized. Given that the query threshold θ is unknown
in advance, in order to perform distribution based par-
titioning we need to use a pre-defined threshold α for
computing the verification likelihood for each reference
string. A natural question is how to select a good
value for α. From our experiments we observe that
the expected number of strings from S that need to
be verified varies slightly with different α for a given
string distribution, which makes our approach overall
insensitive to this parameter. In order to approximately
achieve the best performance, one could set α to the
maximum frequently used θ across all queries.

5.2 Selection of the Reference Strings

Given a collection of strings S, our objective is to select
N reference strings O such that EO(S) can be minimized.

Lemma 3. The problem of selecting a set of reference strings
O such that EO(S) is minimized is NP-hard.

Proof sketch: Our problem is essentially the K-Means
problem with a different optimization objective. Hence,
we can reduce the K-means problem, which is NP-hard,
to our problem. Besides, it is also NP-hard to find Median
String and N -Median Strings as well [16].

9

Algorithm 3: pivotSel(S,N)

1 S ← select a sample from S; // use S instead of S
2 T ← select a sample from S; // extract O from T
3 foreach s ∈ T do
4 compute fs(q, i) over S;

5 O ← ∅;
6 for i = 1 to N do
7 select o ∈ T such that EO∪{o}(S) is minimized;
8 O ← O ∪ {o};
9 return O;

• Median String Problem: Given a set of strings
S, find a string o ∈ U such that

∑
s∈S ed(o, s) is

minimized;
• N-median Strings Problem: Given a set of strings
S, find a set of strings S̄ ⊂ U such that |S̄| = N and∑

s∈S min{ed(s, s̄)|s̄ ∈ S̄} is minimized.

To address our problem practically, we assume O ⊂ S
and set N = |O| to be a tunable, user defined parameter.
Based on the above assumption, we propose a heuris-
tic approach to extract the reference strings greedily.
Algorithm 3 gives the pseudo-code of our proposed
approach. To enable fast reference string selection, we
select two samples S and T from the string collection S
(line 1–2). We extract O from T and ∀s ∈ T , we compute
fs(q, i) based on objects in S according to Equation 5
(line 3–4). We then iteratively extract reference strings in
a greedy manner (line 6–8) and finally return O as the
reference strings.

The time complexity of Algorithm 3 consists of two
parts. The first part has complexity O(Σs∈T Σs′∈S |s| ×
|s′|) to compute the PDF for each s. The second part
has complexity O(N × |T | × |S|) to obtain O. To select
a reference string o, we need to identify the minimum
verification likelihood for each s′ ∈ S by checking each
s ∈ T that has not been selected. As we can use an array
to maintain the current minimum verification likelihood
for each s′, the time complexity of selecting a reference
string o is O(|T | × |S|).
Remark. Although we consider the number N of refer-
ence strings as a tuning parameter, the best N depends
on the application domains, including the average length
AL, the deviation DL of the lengths for the strings in the
dataset. According to our experiments, setting N = 2000
and N = 500 can achieve approximately best query
performance for the dataset with AL ≈ 15, DL ≈ 4
and AL ≈ 67, DL ≈ 25, respectively. Generally, for a
dataset with long strings, N should be set to a relatively
small value since computing the edit distances between
queries and reference strings are costly while it is effec-
tive to apply other filtering techniques, such as length
filtering, character count filtering to do the verification.
Rather, for a dataset with short strings, N could be set
to a relatively large value. Since strings are short, the

pruning power of applying length filtering and character
count filtering techniques degrades. By introducing a
larger number of reference strings, the candidate set size
can be reduced. Theoretically, the optimal N is able to
achieve when by enlarging N , the saved verification cost
(due to the decrease of the candidates) is less than the
increase computation cost (due to the increase of the
reference strings).

6 EXPERIMENTAL EVALUATION

We evaluate state-of-the-art approaches as well as our
approach in the experiments. For reference, we also
compare the proposed approach with other in-memory
approaches and the results can be found in the appendix.

• EXH is an exhaustive approach that sequentially
verifies strings in the dataset using the verification
Algorithm in [13]. For the KNN search, it takes the
first K strings as the candidate set and then refines
the candidate set by verifying the remaining strings.

• Flamingo is one of the latest n-gram based inverted
index approaches. Note that Flamingo is continu-
ously updated by assimilating other n-gram based
techniques, and we use its latest version. As dis-
cussed in Section 2, it may lead to false negatives
for KNN search since in their method, they assume
that any result must share at least one n-gram in
common with the query.

• Bed-tree[13] organizes strings in the dataset as a
B+-tree according to a certain order. For each ex-
periment, we enumerate all the orders and present
the result based on the order that achieves the best
performance.

• PBI is our proposed Partitioning Based Indexing
approach.

Except EXH, either the source code or the binary code
of the other approaches is generously provided by the
authors. All approaches are implemented in C++ and
compiled using GCC 4.1.2 with ”-O3” flag. By default,
the size of both index and data pages is set to 8KB, and
the buffer size is set to 16MB.

We use four publicly available real datasets from [13]
and show the statistics of the datasets in Table 3. To
better illustrate the datasets, we also show the string
length distribution of each dataset in Figure 8. The
query workload for each dataset is also provided by the
authors in [13]. String length distribution of the query
workload is shown in Table 4. As we can see, the average
length and variance of the query workload basically
follow the same distributions as those shown in Table
3. All experiments are conducted on a PC with Intel
X3430 2.4GHz processor, 8GB of memory, and CentOS
5.5 operating system. We evaluate the performance of
all approaches in terms of index construction time, index
size, average query response time, average candidate set
size and average number of I/Os.

10

20

60

100

140

180

 1 15 72

of

 s
tr

in
gs

 (
x

10
3)

Length

IMDB Actor

(a) IMDB Actor

20

40

60

80

100

 1 20 241

Length

IMDB Movie

(b) IMDB Movie

50

150

250

350

 3 14 47

Length

DBLP Author

(c) DBLP Author

5

10

15

20

 1 67 666

Length

DBLP Title

(d) DBLP Title

Fig. 8. String Length Distribution

Dataset Cardinality Size (M) Min. Max. Avg. Var.
Actor 1213391 19 1 72 15 3
Movie 1568885 41 1 240 19 9
Author 2948929 67 3 47 14 4
Title 1158648 84 1 666 67 25

TABLE 3
Statistics of the datasets

Dataset # of Queries Min. Max. Avg. Var.
Actor 100 3 26 15 4
Movie 100 5 59 20 10
Author 100 6 21 14 3
Title 100 1 156 65 27

TABLE 4
String Length Distribution of the Query Workload

6.1 Partitioning Based Indexing
We first evaluate the performance of index construction
for PBI and then analyze the parameters that potentially
affect the performance of PBI. By default, we evaluate
the performance over Actor and Title datasets, and set
N = 2000, θ = 4.

6.1.1 Index Construction
The number of reference strings N varies from 500 to
3000. To properly leverage the quality and the efficiency
of extracting reference strings, |S| and |T | used in Algo-
rithm 3 are set to 20,000 and 4×N , respectively.

 0
 100

 200
 300

 400
 500
 600

 700
 800

 500 1000 1500 2000 2500 3000

T
im

e
(s

)

of reference strings

Actor
Title

(a) Selection of Reference Strings

 0

 200

 400

 600

 800

 1000

 1200

 500 1000 1500 2000 2500 3000

of reference strings

Actor
Title

(b) Partition Assignment

Fig. 9. Index Construction for PBI

As discussed, the index construction of PBI consists of
three stages: (1) selection of reference strings, (2) parti-
tion assignment, and (3) B+-tree construction. Recall that
in stage (1), we first compute the PDF for each string in T
over S, and then sequentially select the reference strings
from T . Besides, in stage (2), each string in dataset S
is assigned to the reference string with the minimum
verification likelihood. Since building the index is an off-
line process, to speedup the construction, we parallelize

stage (1) and (2) so that each process unit takes similar
number of strings in T for stage (1) and S for stage
(2). Specifically, we issue 40 threads to perform stage
(1). Regarding stage (2), we can process the partition as-
signment for each string individually. Hence, we employ
MapReduce [29], which is a widely accepted framework
for distributed computing over shared-nothing clusters,
to do the partition assignment. The configuration of the
cluster can be found in [30]. We use 40 computing nodes,
and each node is configured to run three reduce tasks.
Figure 9(a) plots the selection cost. We can observe that
the cost increases first linearly and then tends to be
quadratic when N varies. Regarding the composition
of the selection cost, the PDF computation increases
linearly while selecting the reference strings increases
quadratically due to the time complexity O(N×|T |×|S|).
When N is small, the PDF computation dominates the
overall cost while selecting the reference strings takes a
growing proportion when N increases. Besides, as the
average length of strings in Title dataset is larger than
that in Actor dataset, the selection cost over Title dataset
is more expensive than that over Actor dataset. Fig-
ure 9(b) plots the partition assignment cost. As expected,
the cost increases linearly when N varies, and the slope
relies on the length of the strings in the dataset. The
time it takes to construct the B+-trees for Actor and
Title datasets is 1.14s and 1.13s respectively, which only
depends on the cardinality of the dataset and remains
constant when N varies.

6.1.2 Effect of Parameters

We first investigate the query performance as a function
of parameter α. Figure 10 plots the results. We observe
that in each case the query performance is the best
when α ≃ θ, and varies slightly using different α, which
makes our approach overall insensitive to this parameter.
Nevertheless, when the query threshold θ varies, the
average query response time increases more and more
rapidly and the time gap of using different α becomes
larger. In general, to approximately achieve the best
performance across different query thresholds θ, we can
select the maximum frequently used θ as α. Hence, in the
remaining experiments, we use α = 4 for Actor, Movie,
Author datasets, and α = 8 for Title dataset.

We then study the effect of varying N . To demonstrate
the effectiveness of our proposed partitioning strategy,
we also test an alternative partitioning strategy in which

11

 0
 10

 20
 30
 40

 50
 60

 70
 80

 1 2 3 4

T
im

e
(m

s)

θ

a = 1
α = 2
α = 3
α = 4

(a) Actor

 0
 10

 20
 30
 40

 50
 60

 70
 80

 1 2 3 4 5 6 7 8

θ

a = 1
α = 2
α = 4
α = 8

(b) Title

Fig. 10. Effect of α

 40

 50

 60

 70

 80

 90

 100

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(m

s)

of reference strings

MinDist
PBI

(a) Actor

 0

 20

 40

 60

 80

 100

 100 500 1000 1500 2000 2500 3000

of reference strings

MinDist
PBI

(b) Title

Fig. 11. Effect of N

each string is assigned to the reference string with the
minimum edit distance. We refer to this approach as
MinDist. In MinDist, the reference strings are extracted
randomly. Figure 11 plots the results. For Actor dataset,
increasing the number of partitions results in a decreas-
ing cost of answering queries. Nevertheless, there is an
obvious trend of diminishing returns. This is due to the
fact that the cost of computing the edit distance between
the query and the reference strings becomes comparable
to the cost of verifying candidates, and outweighs the
cost savings from pruning smaller and smaller partitions
(recall that computing is much costlier than verifying).
This is also confirmed in Figure 11(b). For Title dataset,
when we increase the number of partitions, the query
performance degrades. Recall that strings in Title dataset
have much larger average length compared with that
of the remaining three datasets, and computing the edit
distance between the query and the references dominates
the overall cost. We can also observe that PBI can achieve
at lease 30% gain compared with MinDist when the edit
distance computation cost is not the dominant factor.

We also evaluate the effect of using different strategies
to select reference strings by comparing [26] (referred
as MaxVariance) with PBI. Note that we also assign
each object to a single reference string in MaxVariance.
Figure 12 plots the results. We observe that the number
of candidates in MaxVariance is 7–70 times, 1.3–25 times
larger than that in PBI over Actor and Title datasets,
respectively. The main reason is that in MaxVariance,
although for each reference string o, strings close or far
way to o are assigned to o, there still exist many strings
for which we cannot find effective reference strings to
be assigned due to the high dimensionality property of
the string domain. For those strings, the pruning power
degrades significantly. While in PBI, we assign each
string to the reference string that leads to a minimum
verification cost, that’s why PBI performs better than
MaxVariance.

In the rest, we set N = 2000 for Actor, Movie, and

1
2

4

6

8

10

 1 2 3 4

C
an

di
da

te
 s

et
 s

iz
e

(x
10

5)

θ

MaxVariance
PBI

(a) Actor

1

2

3

4

5

6

 1 2 4 8 16

C
an

di
da

te
 s

et
 s

iz
e

(x
10

5)

θ

MaxVariance
PBI

(b) Title

Fig. 12. Effect of Partitioning Strategies

Dataset Bed-Tree Flamingo PBI
Actor 36 3.87 243
Movie 46 6.41 320
Author 84 9.19 356
Title 17 11.42 1204

TABLE 5
Index Construction Time (s)

Author datasets, and N = 500 for Title dataset.

6.2 Comparison With Alternatives
We then evaluate the performance of PBI in comparison
with existing approaches in term of index construction
time, index size, range queries and KNN queries.

6.2.1 Index construction time
Table 5 summarizes the index construction time. We
show the construction time of PBI under the setting
which is described in the previous section. We can
see that Flamingo takes the minimal construction time,
followed by Bed-tree and PBI. Although PBI takes the
maximal construction time, we argue that building the
index is an off-line process, and it can be easily paral-
lelized. The construction time can be reduced by adding
more computing resources.

6.2.2 Index size
Table 6 summarizes the index size. We can observe that
Flamingo have the largest index sizes (about 6 times of
the data size). On the other hand, PBI almost has the
smallest index size, followed by Bed-tree. Note that the
index size of PBI only relies on the cardinality of the
dataset, not the length of the strings, while that of the
other approaches rely on both.

6.2.3 Range Queries
Figure 13 plots the average response time as a function of
query threshold θ. The results show that PBI outperforms
the other approaches on all datasets regardless of θ.
When θ is small (1 and 2), both Flamingo and Bed-
tree perform better than EXH. However, the performance
of Bed-tree degrades rather dramatically as θ increas-
es. The performance of Flamingo over the first three
datasets degrades smoothly when θ varies from 1 to
3, but dramatically when θ varies from 4 to 6. It even
performs worse than EXH when θ varies from 5 to 6. To
identify why, we show the average candidate set size and

12

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6

T
im

e
(m

s)

θ

EXH
Bed-tree

Flamingo
PBI

(a) IMDB Actor

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6

θ

EXH
Bed-tree

Flamingo
PBI

(b) IMDB Movie

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 1 2 3 4 5 6

θ

EXH
Bed-tree

Flamingo
PBI

(c) DBLP Author

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8

θ

EXH
Bed-tree

Flamingo
PBI

(d) DBLP Title

Fig. 13. Average Response Time for Range Queries

0

2

4

6

8

10

12

 1 2 3 4 5 6

C
an

di
da

te
 s

et
 s

iz
e

(x
10

5)

θ

EXH
Bed-tree

Flamingo
PBI

True Results

(a) IMDB Actor

0
2

4
6
8

10
12

14
16

 1 2 3 4 5 6

θ

EXH
Bed-tree

Flamingo
PBI

True Results

(b) IMDB Movie

0

5

10

15

20

25

30

 1 2 3 4 5 6

θ

EXH
Bed-tree

Flamingo
PBI

True Results

(c) DBLP Author

0

2

4

6

8

10

12

 1 2 3 4 5 6 7 8

θ

EXH
Bed-tree

Flamingo
PBI

True Results

(d) DBLP Title

Fig. 14. Average Candidate Set Size for Range Queries

0

5

10

15

20

25

30

 1 2 3 4 5 6

of

 I/
O

s
(x

10
00

)

θ

Bed-tree
Flamingo

PBI

(a) IMDB Actor

0
2
4
6
8

10
12
14
16
18

 1 2 3 4 5 6

θ

Bed-tree
Flamingo

PBI

(b) IMDB Movie

0

10

20

30

40

50

60

 1 2 3 4 5 6

θ

Bed-tree
Flamingo

PBI

(c) DBLP Author

0

2

4

6

8

10

12

 1 2 3 4 5 6 7 8

θ

Bed-tree
Flamingo

PBI

(d) DBLP Title

Fig. 15. Average Number of I/Os for Range Queries

0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

T
im

e
(s

)

K

EXH
Bed-tree

Flamingo
PBI

(a) IMDB Actor

0

0.4

0.8

1.2

1.6

2.0

2.4

1 2 4 8 16

K

EXH
Bed-tree

Flamingo
PBI

(b) IMDB Movie

0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

K

EXH
Bed-tree

Flamingo
PBI

(c) DBLP Author

0

5

10

15

20

25

1 2 4 8 16

K

EXH
Bed-tree

Flamingo
PBI

(d) DBLP Title

Fig. 16. Average Response Time for KNN Queries

Dataset Data Size Bed-Tree Flamingo PBI
Actor 19 36 116 46
Movie 31 63 206 57
Author 43 93 286 98
Title 75 155 397 41

TABLE 6
Index size (MB)

average number of I/Os for each experiment in Figure
14 and Figure 15, respectively. We can observe that,
basically, the maximum number of strings that need to
be verified is EXH, followed by Bed-tree. The reason, as
already argued in [13], is that the effectiveness of string
orders are negatively affected when the average length
of the strings is short. When θ is small, the number of
strings that need to be verified is rather similar using
Flamingo and PBI. However, when θ varies from 4 to 6,

the number of verified strings using Flamingo increases
significantly. For Flamingo, on one hand, a large θ leads
to a large number of strings that need to be verified; on
the other hand, this approach results in false negatives
for many queries when θ is large, and a sequential
scan is required in this case. Due to random accesses to
the data file, the I/O cost degrades rather dramatically
for Flamingo when the number of candidates is large
(over the first three datasets). The I/O cost for Bed-tree
increases smoothly for the datasets with short strings
while degrades rather dramatically for the datasets with
long strings.

6.2.4 KNN Queries

For reference, Table 7 shows the average maximum edit
distances of the K nearest neighbors for all queries
in each experiment. Figure 16 plots the KNN query

13

0

2

4

6

8

10

12

14

1 2 4 8 16

C
an

di
da

te
 s

et
 s

iz
e

(x
10

5)

K

EXH
Bed-tree

Flamingo
PBI

(a) IMDB Actor

0

5

10

15

20

25

30

1 2 4 8 16

K

EXH
Bed-tree

Flamingo
PBI

(b) DBLP Author

Fig. 17. Average Candidate Set Size for KNN Queries

0

5

10

15

20

25

30

1 2 4 8 16

of

 I/
O

s
(x

10
00

)

K

Bed-tree
Flamingo

PBI

(a) IMDB Actor

0

5

10

15

20

25

30

1 2 4 8 16

K

Bed-tree
Flamingo

PBI

(b) DBLP Author

Fig. 18. Average Number of I/Os for KNN Queries

performance as a function of K. From the figure, we
can observe that PBI performs the best among all the
approaches over the first three datasets. In particular,
when K = 16, PBI performs 2-3 times faster than
Flamingo, 2-12 times faster than EXH, and 3-19 times
faster than Bed-tree. Although Flamingo performs better
than PBI when K ≥ 8 over Title dataset, as we can
see in Table 8, Flamingo starts to omit partial results.
An interesting observation is that the performance of
all techniques over Title dataset seems to deteriorate
significantly (more than 10 seconds) when K ≥ 2. This is
because for Title dataset, the average length and variance
of the strings are large. In this case, issuing a range query
with a small threshold often returns no results. Thus, in
order to identify K results, a large threshold is required,
which results in many iterations and increased cost (see
Table 7). We also show the average candidate set size
and I/O cost in Figure 17 and Figure 18, respectively.
Due to space limitations, we do not show the results for
Movie and Title datasets. In general, EXH has the largest
candidate set size, followed by Bed-tree, Flamingo, PBI.
This finding is not surprising since PBI can answer KNN
queries progressively and any string in the candidate set
is probed at most once. Notice that in Flamingo, a string
might be traversed across multiple iterations. The I/O
cost for PBI and Bed-tree increases rather smoothly for
all the datasets. Due to random accesses to the data file,
the I/O cost of Flamingo deteriorate significantly.

6.2.5 Scalability
We now investigate the scalability of four approaches in
term of answering range queries where θ = 4. We enlarge
the Actor dataset by 5 times and 10 times as follows:
(1) we first extract distinct first names and distinct last
names. Specifically, there are 147,775 different first names
and 368,338 last names; (2) we then randomly select
first name and last name to combine an actor name;

Dataset K=1 K=2 K=4 K=8 K=16
Actor θ = 0 θ = 2.5 θ = 3.5 θ = 4.0 θ = 4.3
Movie θ = 0 θ = 0.25 θ = 1.4 θ = 4.8 θ = 8.1
Author θ = 0 θ = 0.4 θ = 0.8 θ = 1.5 θ = 2.1
Title θ = 0 θ = 27 θ = 31 θ = 32 θ = 34

TABLE 7
Average Edit Distances of the K th NN.

Dataset K=1 K=2 K=4 K=8 K=16
Actor 0 0 0 0.01 0.22
Movie 0 0 0 0.04 2.5
Author 0 0 0 0.03 0.19
Title 0 0 0 0.24 5.47

TABLE 8
Average Number of Lost Results in Flamingo

(3) we generate other 4 * 1213391 and 9 * 1213391
strings, respectively. From Figure 19, we can see that
both running time and the candidate set size of all the
four approaches increases linearly when we enlarge the
data size. Due to the same reasons discussed above, PBI
performs the best, followed by Flamingo, Bed-tree, and
EXH While PBI and Flamingo generate the minimum
number of candidates, followed by Bed-tree, and EXH.

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 5 10

T
im

e
(m

s)

Multiplication Factor

EXH
Bed-tree

Flamingo
PBI

(a) Time

0

2

4

6

8

10

12

 1 5 10

C
an

di
da

te
 s

et
 s

iz
e

(x
10

6)

Multiplication Factor

EXH
Bed-tree

Flamingo
PBI

(b) Candidate Set Size

Fig. 19. Scalability

6.2.6 Summary of New Findings
• There does not exist a single approach that can

outperform the others for all settings, while in most
cases, PBI performs the best.

• Flamingo works efficiently when θ is small. How-
ever, its performance degrades significantly and is
even worse than that of EXH when θ is large.
Besides, it may lead to false positives for answering
KNN queries.

• Bed-tree degenerates to partially sequential scans of
the tree when the average length of strings in the
dataset is short.

• No approach works well for KNN queries on
datasets with very long strings. In fact, we argue
that in this case using other similarity measures, like
Jaccard or cosince, might be able to extract more
meaningful results (see the average edit distance of
the 2th NN over Title dataset is 27 while the average
length of strings is 67).

7 CONCLUSION
In this paper, we propose partitioning based approaches
that employ the B+-trees to answer both range and KNN

14

queries. We demonstrate that optimal partitioning of the
dataset is an NP-hard problem. Hence, we propose a
heuristic approach for extracting the reference strings
greedily and design an optimal partition assignment
scheme to minimize the candidate set size. Through ex-
tensive experiments over four real datasets, in compari-
son with state-of-the-art techniques, we demonstrate that
our proposed approach provides superior performance
for most cases in term of index size, query response time,
average candidate set size, and I/O cost.

ACKNOWLEDGMENTS

The work in this paper was in part supported by the
Singapore Ministry of Education Grant No. R-252-000-
454-112. Xiaoyong Du was partially supported by NSF
China Grant 61170010.

REFERENCES

[1] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, and D. Sri-
vastava, “Benchmarking declarative approximate selection pred-
icates,” in SIGMOD, 2007, pp. 353–364.

[2] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik, “Example-
driven design of efficient record matching queries,” in VLDB,
2007, pp. 327–338.

[3] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukr-
ishnan, and D. Srivastava, “Approximate string joins in a database
(almost) for free,” in VLDB, 2001, pp. 491–500.

[4] C. Li, B. Wang, and X. Yang, “Vgram: Improving performance of
approximate queries on string collections using variable-length
grams,” in VLDB, 2007, pp. 303–314.

[5] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms
for approximate string searches,” in ICDE, 2008, pp. 257–266.

[6] R. Vernicaand and C. Li, “Efficient top-k algorithms for fuzzy
search in string collections,” in KEYS ’09: Proceedings of the First
International Workshop on Keyword Search on Structured Data, 2009,
pp. 9–14.

[7] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin, “Efficient exact
edit similarity query processing with the asymmetric signature
scheme,” in SIGMOD Conference, 2011, pp. 1033–1044.

[8] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: an
adaptive framework for similarity join and search,” in SIGMOD
Conference, 2012, pp. 85–96.

[9] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-based
indexing for efficient approximate string search,” in ICDE, 2009,
pp. 604–615.

[10] A. Behm, C. Li, and M. J. Carey, “Answering approximate string
queries on large data sets using external memory,” in ICDE, 2011,
pp. 888–899.

[11] S. Ji, G. Li, Li, and J. Feng, “Efficient interactive fuzzy keyword
search,” in WWW, 2009, pp. 371–380.

[12] S. Chaudhuri and R. Kaushik, “Extending autocompletion to
tolerate errors,” in SIGMOD, 2009, pp. 707–718.

[13] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava, “Bed-
tree: an all-purpose index structure for string similarity search
based on edit distance,” in SIGMOD, 2010, pp. 915–926.

[14] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish, “Indexing the
distance: An efficient method to knn processing,” in VLDB, 2001,
pp. 421–430.

[15] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “idis-
tance: An adaptive b+-tree based indexing method for nearest
neighbor search,” ACM Trans. Database Syst., vol. 30, no. 2, pp.
364–397, 2005.

[16] C. de la Higuera and F. Casacuberta, “Topology of strings: median
string is np-complete,” Theor. Comput. Sci., vol. 230, no. 1-2, pp.
39–48, 2000.

[17] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in ICDE, 2006, p. 5.

[18] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity
joins,” in VLDB, 2006, pp. 918–929.

[19] G. Li, D. Deng, J. Wang, and J. Feng, “Pass-join: A partition-based
method for similarity joins,” PVLDB, vol. 5, no. 3, pp. 253–264,
2011.

[20] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity
predicates,” in SIGMOD, 2004, pp. 743–754.

[21] M.-S. Kim, K. young Whang, J.-G. Lee, and M. jae Lee, “n-
gram/2l: A space and time efficient two-level n-gram inverted
index structure,” in VLDB, 2005, pp. 325–336.

[22] G. Li, S. Ji, C. Li, and J. Feng, “Efficient fuzzy full-text type-ahead
search,” VLDB J., vol. 20, no. 4, pp. 617–640, 2011.

[23] D. Deng, G. Li, J. Feng, and W.-S. Li, “Top-k string similarity
search with edit-distance constraints,” in ICDE, 2013, pp. 925–936.

[24] L. Jin, C. Li, and S. Mehrotra, “Efficient record linkage in large
data sets,” in DASFAA, 2003, pp. 137–146.

[25] L. Jin, C. Li, and R. Vernica, “Sepia: estimating selectivities
of approximate string predicates in large databases,” VLDB J.,
vol. 17, no. 5, pp. 1213–1229, 2008.

[26] J. Venkateswaran, D. Lachwani, T. Kahveci, and C. M. Jermaine,
“Reference-based indexing of sequence databases,” in VLDB,
2006, pp. 906–917.

[27] W. J. Masek and M. Paterson, “A faster algorithm computing
string edit distances,” J. Comput. Syst. Sci., vol. 20, no. 1, pp. 18–31,
1980.

[28] M. S. Waterman, Introduction to computational biology - maps,
sequences, and genomes: interdisciplinary statistics. CRC Press, 1995.

[29] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in OSDI, 2004, pp. 137–150.

[30] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” PVLDB, vol. 5, no. 10,
pp. 1016–1027, 2012.

Wei Lu is a research fellow at NUS, Singapore.
He received his Ph.D degree in computer sci-
ence from Renmin University of China in 2011.
His research interest includes query processing
in the context of spatiotemporal, cloud database
systems and applications.

Xiaoyong Du is a professor at Renmin Uni-
versity of China. He received his Ph.D. degree
from Nagoya Institute of Technology in 1997.
His research focuses on intelligent information
retrieval, high performance database and un-
structured data management.

Marios Hadjieleftheriou received the electri-
cal and computer engineering diploma in 1998
from the National Technical University of Athens,
Greece, and the PhD degree in computer sci-
ence from the University of California, Riverside,
in 2004. He has worked as a research associate
at Boston University. Currently, he is working
for AT&T Labs Research. His research interests
include in the areas of databases and data man-
agement in general.

Beng Chin Ooi eng Chin Ooieng Chin OoiBis a
distinguished Professor of Computer Science at
the National University of Singapore (NUS). He
obtained his BSc (1st Class Honors) and PhD
from Monash University, Australia, in 1985 and
1989 respectively. Beng Chin’s research inter-
ests include database system architectures, per-
formance issues, indexing techniques and query
processing, in the context of multimedia, spatio-
temporal, distributed, parallel, P2P, and Cloud
database systems and applications. Beng Chin

is the recipient of ACM SIGMOD 2009 Contributions award, a co-winner
of the 2011 Singapore President’s Science Award, the recipient of
2012 IEEE Computer Society Kanai award and 2013 NUS Outstanding
Researcher Award. He is a fellow of the ACM and IEEE.

