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Abstract 

To support tempoml operators efficiently, indexing 
based on tempoml attributes must be supported. In 
this paper, we pmpose a dynamic and eficient in- 
dex scheme called the time polygon (TP-index) for  
tempoml databases. In the scheme, tempoml data are 
mapped into a two-dimensional tempoml space, where 
the data can be clustered based on time. The data space 
is then partitioned into time polygons where each poly- 
gon corresponds to a data page. The time polygon di- 
rectory can be organized as a hiemrchical index. The 
index handles long dumtion tempoml data elegantly 
and eficiently. Our performance analysis indicates 
that the time polygon index is efficient both in storage 
utilization and query search. 

1. Introduction 

More recently, it is realized that “time” consti- 
tutes an important dimension in the evolution of a 
database, and hence historical information which is 
useful should be retained in the underlying database. 
However, research in temporal databases has largely 
been focused on extensions of existing data models for 
the proper handling of temporal information. The full 
potential of temporal databases, however, can only 
be realized if there exist temporal operators which 
can enhance the retrieval capabilities of the under- 
lying database management system. As with other 
databases, efficient indices and storage structures are 
necessary to support these operators. So far, a number 
of storage techniques have been introduced. Rotem 
and Segev[Rot87] proposed that the time dimension 
could be viewed as one of the dimensions in a multi- 
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dimensional space and hence temporal data could be 
organized using a multi-dimensional partition file. But 
their approach cannot handle time intervals effectively. 
Both Lomet and Salzberg[LoBSO] and Kolovson and 
Stonebraker[KoS89] studied the problem with the as- 
sumption that historical data are stored separately 
from current data in an optical disk, which is more 
appropriate in the context of a rollback database. Gu- 
nadhi and Segev[GuS93] investigated the methods of 
indexing timedependent data within the concept of 
a first normal form relational representation of tem- 
poral data. Elmasri et al. [EWKSO] proposed a time 
index scheme which provides access to temporal data 
valid in a given time interval. However, duplications 
may exist on some selected time intervals, and thus 
degrade the space utilization and query efficiency to 
some extent. 

In this paper, we map temporal data into data 
points in a triangular space. The X dimension of the 
space is the time and the Y dimension of the space 
is the length of period. Data points in the space 
are clustered and partitioned into polygons. Data 
points falling within the same polygon are stored in 
one page. To efficiently organize these data pages, we 
propose an index scheme called the Time Polygon in- 
dex (TP-index) to support retrievals for various types 
of queries. With such an organization, duplication is 
avoided. Further, the index is well suited for append- 
only database where the data are inserted to the right 
most of the time dimension and are not bounded. A 
performance analysis is conducted and the results in- 
dicate that the TP-index is an efficient indexing struc- 
ture for temporal databases. 

The rest of this paper is organized as follows. Sec- 
tion 2 defines an interval-spatial tmnsformation which 
maps a given time interval to a point in a two- 
dimensional temporal space, and analyzes the spatial 
representations of different temporal queries in the 
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temporal space. In Section 3, we describe structure 
of the TP-index. Its update algorithms are then pre- 
sented in Section 4. Section 5 analyzes the perfor- 
mance of the TP-index scheme, and compares with 
the time index approach [EWKSO]. We conclude in 
Section 6. 

2. Temporal Selection as Spatial Search 

We represent the time dimension using both dis- 
crete time points and time intervals. A time interval, 
denoted by [a ,  b] is defined to be a set of consecutive 
equidistant time instants (points), where a is the first 
time instant and b is the last time instant of the in- 
terval. The time dimension is represented as a time 
interval [O,now], where 0 represents the starting time 
and now refers to the current time which is continu- 
ously increasing. 

Temporal data can be viewed as spatial objects in 
a multi-dimensional space in which one or more di- 
mensions are time dimensions. The following is an 
interval-spatial transformation which maps a given 
time interval to a point in a two-dimensional temporal 
space: 
Definition [Interval-spatial transformation] 

Let Z be the set of all time intervals [a, b] in the 
time dimension [0, now], and P be the set of discrete 
time points in the time dimension. The interval-spatial 
transformation, denoted by 7, is a function from Z to 
P2, such that 7([a, b] )=  (a, b - a). 

The interval-spatial transformation forms the ba- 
sis for transforming a temporal relation to a spatial 
rendition. The spatial rendition obtained provides a 
highly visual representation of the answers to tempo- 
ral queries. 

Consider a database which keeps record of visitors 
to the United States. A residence relation for this 
database is shown in Figure 1. The tuples can be 
mapped to discrete data points in the two-dimensional 
space shown in Figure 2. 

Observe that the spatial rendition in Figure 2 rep- 
resents temporal data with the following constraints: 
(1) any tuple with a starting time U, = a must be 
mapped to a point on the line t = a ;  (2) any tuple 
with an ending time ve = b must be mapped to a point 
on the line t + y = b; (3) any tuple with a time dura- 
tion c must be mapped to a point on the line y = c. 

Obviously, any temporal query can be transformed 
into a spatial search operation in the temporal space. 
Consider the following queries: (a) list all persons who 
entered the country on or before day 1,; (b) list all 
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Figure 1: The residence relation 

’ t  

Figure 2: A spatial rendition of the residence relation 

persons who left the country on or after day tb; (c) 
list all persons who remained in the country for a to- 
tal duration of t ,  or less days. The answers to each 
of these queries can be found by retrieving all data 
points which fall in the regions shown in Figure 3(a), 
(b), and (c) respectively. Furthermore, a temporal 
query with multiple selection criteria can be trans- 
formed into an intersection of the regions correspond- 
ing to the individual selection criterion. For instance, 
the query “List all persons who entered the country 
on or before t ,  and left on or after tb”,  shown in Fig- 
ure 3(d), is simply the intersection of the two regions 
in Figure 3(a) and (b). Similarly, disjunctions of se- 
lection criteria can be modeled as the union of respec- 
tive regions. For example, the query “List all persons 
who entered on or before 1 ,  or remained for t ,  days 
or less” can be answered by retrieving all points in 
the region shown in Figure 3(e). Finally, a degenerate 
instance of such queries corresponds to  selection on 
time points, such as “Find all persons who were in the 
United States on t j ”  corresponds to the search space 
shown in Figure 3(f). 

3. Organization of the T P  Directory 

Once temporal tuples are mapped into data points 
in the two-dimensional temporal space using the 
interval-spatial transformation, the data points should 
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or a line parallel to the time-front (called a time-line). 
We refer to the above two partitions respectively as 
X-partition and time-partition. Two resultant poly- 
gons formed after a partition are called buddies. Dur- 
ing merging phase, only buddies can be merged so 
that the resultant polygon can still have a well-formed 
shape. Figure 5 shows that recursive partitions using 
X-partition and timepartition result in smaller poly- 
gons with the well-formed shapes. The three ratio- 
nales for allowing only X-partition and time-partition 
are: One, the shapes are similar to those of query 
regions; Two, irregular shapes make maintenance and 
testing expensive; Three, the resultant subspaces of an 
X-partition or time-partition still have the well-formed 
shapes. 

h - Y 

'' 

<*> <-> 

Figure 3: Search regions in the temporal space 

be organized such that they can be efficiently retrieved 
based on temporal relationships. In this section, we 
present our strategies for organizing the data space. 

Data points in the triangular space must be parti- 
tioned into groups such that each group can be stored 
in one page. A E+-tree like index structure, called the 
TP-tree is used to index the data items. An internal 
node of the tree has entries of the following format: 

[child-pointer, polygon], 
where child-pointer points to  a child node and polygon 
describes the entire data space of the child node. A 
polygon in an internal node is called an internal bound- 
ing polygon. It encloses other bounding polygons as its 
subspaces. A leaf node of the TP-tree consists of leaf 
entries and a tree pointer pointing to a succeeding leaf 
node. A leaf entry has the form: 

[bucket-pointer, polygon], 
where bucket-pointer points to  a data bucket where 
the data points in the polygon are stored. A polygon 
containing data points is called leaf bounding polygon. 
Internal bounding polygons and leaf bounding poly- 
gons are all constrained to the five well-formed shapes 
illustrated in Figure 4. The formal definitions can be 
found in [SOL93]. 

R -  

Figure 5: Partitions for different leaf bounding polygons 

Throughout this paper, we use m~ and MT to re- 
spectively denote the minimum and maximum number 
of entries allowed in a node of a TP-tree. 

A TP-tree has the following properties: 
Propl: The union of all the bounding polygons 

described by the entries of a node spans the whole 
data space of that node. 

Prop2: The root of a TP-tree has at least two 
children unless the TP-tree is a one node tree. 

P r o m :  Each node has between mT to MT entries 
unless it is the root of a TP-tree. 

Prop4: Any bounding polygons described by the 
entries within one node do not overlap. 

Props:  Each polygon described by an entry of a 
node adopts one well-formed shape. 

Figure 4: Five well-formed shapes of bounding polygons 

A polygon has to be partitioned when the entries 
in it overflows. Partitioning can be performed by in- 
troducing a line parallel to X-axis (called an X-line), 
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Prop1 ensures that there is no dead space in an in- 
ternal bounding polygon which is not covered by its 
enclosed polygons. Prop4 guarantees that only one 
path needs to be traversed in order to  search for a 
data point in the temporal space. Prop5 guarantees 
that all the internal and leaf bounding polygons have 
well-formed shapes. The structure of a TP-tree is il- 
lustrated in Figure 6. 

entry whose data space (a polygon) intersects with the 
query region, its subtree is traversed. 

Aleorithm: Search 

f 

4.2. Insertion 

Search ( P ,  9 )  
Input: q - query region; 

p - pointer to a node in a TP-tree, initially to the root node. 

for each entry e in the node pointed by p do 
if e is a leaf entry whose data space is a polygon B then 

if t satisfies the search conditions then 
for each data point t in B do 

add t to the answer; 
elae 

if INTERSECT(e.polygon, q )  # null then 
Search(e.child-pointer, q )  

end Search 

To insert a data point, its temporal attribute is used 
to search for the leaf entry pointing to a data bucket 
where the data point should be put into. Then, the 
data point is inserted into the data bucket pointed by 
the entry. If it overflows, the corresponding bounding 
polygon is partitioned into two buddy subspaces and 
the data points are distributed accordingly. 

Algorithm: Insert 

Insert (p, d) 
Input: d - data point to be inserted; 

p - pointer to a node in a TP-tree, initially to the root node. 

for the entry e in the node pointed by p whose 
e.polygon contains the position of d do 

if e is a leaf entry whose data space is polygon B then 
insert data point d into B ;  
if B overflows then Split(B); 

else Insert(e.child-pointer, d); 
end Insert 

Figure 6: A TP-tree 
4.3. Splitting 

4. Operations 

In this section, we present the algorithms for ac- 
cessing and updating a TP-tree. 

4.1. Searching 

Temporal search in the transformed space is similar 
to spatial search in a spatial data structure [Ooi90]. 
Descending the tree from the root node, for each data 

After insertion, a data bucket may overflow and 
split is needed. This can be performed by partition- 
ing the corresponding leaf bounding polygon into two 
buddy polygons, and distributing the data points into 
the two resultant polygons. The selection of an X- 
partition or a time-partition is based on whether a 
partition can evenly distribute the data points into 
two subspaces. Furthermore, to ensure good cluster- 
ing, a bounding polygon with almost equal intervals 
along the X-line and the time-line is preferred. 

Algorithm: Split 
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Spli t (B)  
Input: B - a leaf bounding polygon corresponding to  

an overflowed da ta  bucket. 

X-partition(B, I,, xn1, '"2) t o  obtain an X-line I, 
which divides the polygon B into two subspaces with 
znl and xn2 numbers of da ta  points; 
Time-partition(B, I t ,  t n l ,  tn2) to obtain a time-line I t  

which divides the polygon B into two subspaces with 
tn l  and tn2 numbers of da t a  points; 
if lznl - rn2l approximately equals t o  ltnl - tn2l then 

choose a partition which generates evener 
intervals in ita subspaces S1 and S2 

choose a partition which more evenly distributes 
the data  points in its subspaces S1 and S2; 

else 

record the buddy relationship between S1 and S2; 
creat a new leaf entry ere.. and set e,.,.poIygon t S2; 
for each parent node P having an entry e whose e.polygon is E do 

modify e by e.poIygon t S I ;  
if one more entry of P is needed to  accommodate crew then 

add the entry elcu into P ;  
if P has more than MT entries t h e n  

Internal-partition(P) t o  partition the 
internal bounding polygon of P 

end Split 

The algorithms X-part it ion and Time-part it ion 
respectively introduce an X-line and a time line to di- 
vide a leaf bounding polygon into two subspaces with 
almost same number of data points in each. Due to 
space constraint, we will not outline the algorithms 
here. 

Partitioning a leaf bounding polygon may cause 
an internal bounding polygon to be partitioned. As 
shown in Figure 7, when a leaf bounding polygon W 
is partitioned into subspaces H and GI the entry cor- 
responding to W in the node N is also split into two 
entries. If N has more than MT entries, it has to 
be split into two nodes N I  and N z ,  and the inter- 
nal bounding polygon S is partitioned into SI and 
Sz. The entry pointing to N in the parent node P is 
also replaced by two corresponding entries. Because 
an internal bounding polygon encloses subspaces of 
polygons, we may not be able to find an X-line or a 
time-line that can evenly partition the enclosed poly- 
gons without any overlap. This problem can be solved 
if we allow a node to have more than one parent'. The 
entry whose bounding polygon has been cut by a par- 
tition line appears as entries in both new resultant 
nodes. For instance, in Figure 7(e)(f), a time-line di- 
viding S into 5'1 and Sz also cuts the subspace F into 
F' and F". To avoid poor storage efficiency, we al- 
low N I  and N2 to have entries pointing to the same 

'at  the lowest level, a d a t a  bucket can have more t han  one leaf 
nodes which have entries pointing t o  the  bucket 

bucket for polygon F .  For efficiency reason, a par- 
tition line cutting through subspaces is used only if 
the algorithm cannot find an X-line or time-line that 
roughly partitions the entries. 

(e) Intemd bowding S k dl- into S1 and 82 

Data buck- Dmnbudretlor 
w o n  F 

Figure 7: Partitioning a n  internal bounding polygon 

The internal partition algorithm is described as fol- 

Algorithm: Internal-partition 

lows. 

Internal-par t i t ion(  P )  
Input: P - a node which has U number of entries (U > MT) 

Par1 : 
for each existing X-line which goes through the 
data  space S of P do 

calculate the numbers of the enclosed polygons 
in the two subspaces divided by the X-line, and 
record the numbers by z n l  and zn2 respectively; 

among these X-lines, choose one which generates the 
smallest 01 = l zn l  - ""21; 

for each existing time-line which goes through the 
data  space S of P do 

Par2 : 

calculate the numbers of the enclosed polygons 



in the two subspaces divided by the time-line, and 
record the numbers by t n l  and tn2 respectively; 

among these timelines, choose one which generates 
the smallest u2 = l tnl  - tn2l; 

choose a partition line from Par1 and U t 0 1  

else choose a partition line from Par2 and U t 0 2 ;  

Par3 : 

if u1 5 u2 then 

if U > threshold then 

for each existing X-line or time-line that 
partially goes through the dataspace S do 

virtually extend it to go through the whole space 
of S, it  divides S into two subspaces with n l  and n2 
numbers of enclosed polygons respectively; 

choose the line that generates the smallest 
I n 2 - n l l a n d ( ~ i + n 2 - ~ ) ;  

S is divided into SI and S2 by a chosen partition 
line, record S1 by a node N I  and S2 by a node N2;  
for  each parent node P P  of P do 

for the entry e in P P  pointing to P ,  e.polygon t S I ;  
add one entry encr into P P ,  e,.,.polygon t S2; 
if P P  has more than MT entries then 

if P P  is the root node then 
introduce a new root node NA with N I  
and N2 as its children 

else Internal-partition(PP) to propagate 
the partition upwards 

end Internal-partition 

4.4. Deletion Algorithm 

To delete a data point, a TP-tree is traversed to 
search for the leaf entry that points to a data bucket 
containing the data point. Deletion may cause a 
bounding polygon to underflow. To improve the fill 
rate, entries contained in an underflowed polygon are 
merged into its buddy polygon, and merging may 
propagate upward till the root. 

Algorithm: delete 

delete(d) 
Input: d - data  point to be deleted. 

search for the entry e of a leaf node N that contains 
the location of d ,  S t e.polygon, delete d from S ;  
Merge: 
if S has less than mT entries then 

insert the remaining entries into S’s buddy S E ;  
enlarge the buddy S E  t o  cover the dataspace S; 
if S B  overtlows then aplit(SB) ; 
remove the entry e from the node N ;  
if N has less than m~ entries then 

repeat from Merge with S being replaced 
by the polygon of N ;  

end delete 

4.5. Reorganization of the TP-tree As Time In- 
creases 

Because of the nature of temporal databases, most 
updates occur in an append mode. Insertions of new 
tuples occur mostly in increasing time value. 

Our partitioning strategies and the algorithms de- 
signed have the advantage of easy incremental reor- 
ganization as time increases. When the current time 
increases from the old time point now1 to the new time 
point nowz, the temporal space expands as shown in 
Figure 8. A leaf entry enew corresponding to the ex- 
panded bounding polygon Snew of C-shape is intro- 
duced. If the root node NO of the TP-tree has less 
than MT entries, then enew is added into N O .  If NO 
has MT entries, one new root NA is introduced to the 
TP-tree with two children No and N n e w  ( N n e w  con- 
tains the new leaf entry e n e w ) .  For those temporal 
data points which have the duration until now2, shift 
them into Snew in the new TP-tree following the same 
procedure of inserting data points in a TP-tree. 

Figure 8: Increase n o w  from now1 to now2 

5. Performance Analysis 

In this section, we study the performance of the pro- 
posed TP-index scheme. We also compare the perfor- 
mance of the TP-index with the time index [EWKSO]. 

5.1. Storage Efficiency 

First, we analyze the storage cost for the TP-index. 
Let ST be the total number of data pages (buck- 

ets) used for storing N number of data points, S$ 
be the number of pages used for storing the index 
structure of TP-tree, and S& be the number of data 
pages used for storing data points in data buckets. 
We use 4K bytes for the page size, 32 bytes for a 
pointer p ,  and 8 bytes for a coordinate. According to 
Figure 9, (A,Zl,Yl,Z4), (B,Zl,YI,C4), ( C , t l , Y l , Z 4 ) ,  

( D , ~ I , Y I , z ~ , ~ ) ,  and ( E , I I , Y I , Z ~ , ~ )  are respectively 
sufficient to represent polygons of shape A, B, C, D, 
and E. So we need at most pol = 1 + 4 x 8 = 33 bytes 
to represent a bounding polygon. The maximum num- 
ber of entries in one node is: MT(P + pol) + p = 4 K ,  
i.e., MT = 62. 
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Figure 9: Internd representations for five type polygons 

For N number of data points, if we assume that 
each data bucket stores M ~ l n 2  number of data points 
on the average, then $. = am' . If we suppose 
a TP-tree with height h~ is ln2 full on the average, 
then 

[ " l  
9i [MT$n221 1' + & + * . * +  (MTIn2) l h  !r-' 11 

[M$nZ] r M ~ L 2 - 1 1  M In2 

M In2 
Thus: ST [M&22] [MTTnZ-l] + [A] 

Now, we analyze the storage cost for the time in- 
dex [EWKSO]. For explanation purpose, we call a B+- 
tree in the time index BI-tree. Assume the same sys- 
tem parameters as those of the TP-index, the max- 
imum number of entries in a node of a BI-tree is: 
M ~ ( p + 1 )  + p  = 4K, i.e., ME w 100. We also assume 
that all bucket entries corresponding to the same leaf 
node is clustered together whenever possible. 

Let SE be the total number of pages used for storing 
N temporal tuples by the time index approach. SE = 
9i + $&, where 9i is the number of pages required 
by the BI-tree, and Si  refers to the number of pages 
needed to store all the bucket entries. 

We assume that the arrival of temporal tuples is a 
Poisson process, and hence inter-arrival time is e x p e  
nentially distributed with mean 1/A. Let X be the 
Poisson random variable which represents the number 
of temporal tuples arriving in a unit time with mean 
value A. The duration of each tuple is assumed to be 
uniformly distributed over the interval [0,2p]. Obvi- 
ously, the size of the BI-tree depends on the number of 
distinct indexing points in BP ( refer to [EWKSO]). 
lBPl can be approximated by 2Ne-X. Assuming that 
the nodes in the BI-tree is In2 full on the average, 
the number of leaf nodes is given by [ S I .  Thus, 

We estimate .the ' number of entries in the leading 
bucket of each leaf node by the expected number of 
arrivals in a period p ,  which yields the value pA. The 
number of incremental e tries f r e h leaf no e is: 
(M~ln2)A. Hence, $& = 
Consequently, 

x FAtzA1nq 

S E =  Msln2 ([MEf;;?l] + [ p A t ~ ~ A 1 n 2 1 )  
The above expression suggests that even for a fixed 

N, the storage requirements of the time index varies 
with the characteristics of the temporal tuples. Unlike 
the time index, the TP-index is not dependent on the 
characteristics of the temporal data. This is due to 
the fact that each temporal tuple is represented only 
once as a data point in the two-dimensional temporal 
space. In addition, the TP-tree index approach incurs 
less space than the BI-tree index approach. Figure 10 
shows the results obtained from a simulation study in 
which N is kept constant at 100000. The results con- 
firm our analysis: space cost for the TP-index remains 
very low, and also remains constant with no regard for 
p or A. The space cost for the time index, on the other 
hand, fluctuates as a function of both of these parame 
ters, and the cost is higher than that of the TP-index. 

Figure 10: Space utilization 

5.2. Query Efficiency 

In this subsection, we examine the search perfor- 
mance of the proposed TP-index scheme against the 
Elmasri's time index. 

We analyze a query type which is best supported 
by the time index, i.e., queries retrieving all temporal 
tuples whose starting time is between time a and time 
b.  It can be accomplished by (i) traversing the BI-tree 
to locate the leaf node containing time point a, and 
(ii) following the sequential links between leaf nodes 
and retrieving all incremental entries in the buckets, 
right up to time point 6. Let QE be the number of 
page accesses needed to answer the query. We assume 
that a is a randomly selected time point from interval 
[O,now], and the length of the interval b - a is an 
exponential random variable with mean y. We can 
obtain: Q E  [-GI x [l + P * + z X 1 n 2 ]  (refer to 
[SOL931 for the derivation process). As can be seen, 
the cost is effected by the temporal features p ,  y, and 
A. 
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Let us analyze the query cost of the TP-index now. 
We denote by QT, the number of pages needed to re- 
trieve all temporal data points corresponding to the 
same query. This temporal query is mapped into a 
spatial search. The expected number of data points is 
bounded by AT. Approximately, [&I number of 
leaf nodes are searched. To search for one leaf node in 
the TP-tree, h~ number of pages is traversed, where 
hT is the height of the TP-tree, h~ [ log(MTln2)N].  
Consider the time for the associated buckets as well, 
then QT is given by I&] x (1 + h ~ )  

Figure 11 depicts the search performances of the 
time index and the TP-index with pA = 600,7 = 1000 
and N = 5000000. When the mean arrival rate in- 
creases, the performance of the TP-index degrades 
slightly. However, the result is based on a conservative 
assumption that hT number of pages are traversed for 
each leaf node. For range queries, the number of pages 
searched for each leaf node on the average is much less 
than hT because a query region is usually covered by 
neighbouring leaf bounding polygons linked by suc- 
ceeding tree pointers in leaf nodes. Hence, once a leaf 
node is found, the succeeding leaf nodes can be found 
by the pointers, there is no need to search each leaf 
node from the root. 

Im , I 
so 
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Figure 11 : Search performances of the  TP-index and the 
time index 

TP-index approach supports other query types 
with a single type of region search, while the time 
index approach has to scan the entire database. Some 
detailed analysis can be found in [SOL93]. 

As a summary, the TP-index is an efficient index 
scheme in terms of space efficiency and search effi- 
ciency. We are now conducting some experiments on 
the time index [EWKSO], the R-tree [Gut841 and our 
TP-index to further compare the performance. 

6. Conclusion 

Most existing indices are not appropriate for index- 
ing temporal data. In this paper, we addressed the 
mapping of temporal data into data points in a two- 
dimensional temporal space and, proposed a dynamic 
and efficient time index called the time polygon index 
(TP-index). The data are clustered based on tempo- 
ral characteristics and are organized in a B+-tree like 
index called the TP-tree. The performance analysis 
indicates that the TP-index is efficient in both stor- 
age requirement and query retrieval. 
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