
The TP-Index: A Dynamic and Efficient Indexing Mechanism for
Temporal Databases

Han Shen Beng Chin Ooi Hongjun Lu

Department of Informat ion Systems and Computer Science
National University of Singapore, Singapore 051 1.

email: {shenh, ooibc, 1uhj)Qiscs.nus.sg

Abstract

To support tempoml operators efficiently, indexing
based on tempoml attributes must be supported. In
this paper, we pmpose a dynamic and eficient in-
dex scheme called the time polygon (TP-index) for
tempoml databases. In the scheme, tempoml data are
mapped into a two-dimensional tempoml space, where
the data can be clustered based on time. The data space
is then partitioned into time polygons where each poly-
gon corresponds to a data page. The time polygon di-
rectory can be organized as a hiemrchical index. The
index handles long dumtion tempoml data elegantly
and eficiently. Our performance analysis indicates
that the time polygon index is efficient both in storage
utilization and query search.

1. Introduction

More recently, it is realized that “time” consti-
tutes an important dimension in the evolution of a
database, and hence historical information which is
useful should be retained in the underlying database.
However, research in temporal databases has largely
been focused on extensions of existing data models for
the proper handling of temporal information. The full
potential of temporal databases, however, can only
be realized if there exist temporal operators which
can enhance the retrieval capabilities of the under-
lying database management system. As with other
databases, efficient indices and storage structures are
necessary to support these operators. So far, a number
of storage techniques have been introduced. Rotem
and Segev[Rot87] proposed that the time dimension
could be viewed as one of the dimensions in a multi-

The work was in part supported by NUS Research Grant
RP910694 and RP910654

dimensional space and hence temporal data could be
organized using a multi-dimensional partition file. But
their approach cannot handle time intervals effectively.
Both Lomet and Salzberg[LoBSO] and Kolovson and
Stonebraker[KoS89] studied the problem with the as-
sumption that historical data are stored separately
from current data in an optical disk, which is more
appropriate in the context of a rollback database. Gu-
nadhi and Segev[GuS93] investigated the methods of
indexing timedependent data within the concept of
a first normal form relational representation of tem-
poral data. Elmasri et al. [EWKSO] proposed a time
index scheme which provides access to temporal data
valid in a given time interval. However, duplications
may exist on some selected time intervals, and thus
degrade the space utilization and query efficiency to
some extent.

In this paper, we map temporal data into data
points in a triangular space. The X dimension of the
space is the time and the Y dimension of the space
is the length of period. Data points in the space
are clustered and partitioned into polygons. Data
points falling within the same polygon are stored in
one page. To efficiently organize these data pages, we
propose an index scheme called the Time Polygon in-
dex (TP-index) to support retrievals for various types
of queries. With such an organization, duplication is
avoided. Further, the index is well suited for append-
only database where the data are inserted to the right
most of the time dimension and are not bounded. A
performance analysis is conducted and the results in-
dicate that the TP-index is an efficient indexing struc-
ture for temporal databases.

The rest of this paper is organized as follows. Sec-
tion 2 defines an interval-spatial tmnsformation which
maps a given time interval to a point in a two-
dimensional temporal space, and analyzes the spatial
representations of different temporal queries in the

1063-638W94 $3.00 0 1994 IEEE
274

temporal space. In Section 3, we describe structure
of the TP-index. Its update algorithms are then pre-
sented in Section 4. Section 5 analyzes the perfor-
mance of the TP-index scheme, and compares with
the time index approach [EWKSO]. We conclude in
Section 6.

2. Temporal Selection as Spatial Search

We represent the time dimension using both dis-
crete time points and time intervals. A time interval,
denoted by [a , b] is defined to be a set of consecutive
equidistant time instants (points), where a is the first
time instant and b is the last time instant of the in-
terval. The time dimension is represented as a time
interval [O,now], where 0 represents the starting time
and now refers to the current time which is continu-
ously increasing.

Temporal data can be viewed as spatial objects in
a multi-dimensional space in which one or more di-
mensions are time dimensions. The following is an
interval-spatial transformation which maps a given
time interval to a point in a two-dimensional temporal
space:
Definition [Interval-spatial transformation]

Let Z be the set of all time intervals [a, b] in the
time dimension [0, now], and P be the set of discrete
time points in the time dimension. The interval-spatial
transformation, denoted by 7, is a function from Z to
P2, such that 7([a, b])= (a, b - a).

The interval-spatial transformation forms the ba-
sis for transforming a temporal relation to a spatial
rendition. The spatial rendition obtained provides a
highly visual representation of the answers to tempo-
ral queries.

Consider a database which keeps record of visitors
to the United States. A residence relation for this
database is shown in Figure 1. The tuples can be
mapped to discrete data points in the two-dimensional
space shown in Figure 2.

Observe that the spatial rendition in Figure 2 rep-
resents temporal data with the following constraints:
(1) any tuple with a starting time U, = a must be
mapped to a point on the line t = a ; (2) any tuple
with an ending time ve = b must be mapped to a point
on the line t + y = b; (3) any tuple with a time dura-
tion c must be mapped to a point on the line y = c.

Obviously, any temporal query can be transformed
into a spatial search operation in the temporal space.
Consider the following queries: (a) list all persons who
entered the country on or before day 1,; (b) list all

-
tuple

t l
t2
t4
t7
t8
t10
t l l
t12
t13
t14

-

-

SFO
p4 NY

LA
p5 LA

NY
p7 NY

Figure 1: The residence relation

’ t

Figure 2: A spatial rendition of the residence relation

persons who left the country on or after day tb; (c)
list all persons who remained in the country for a to-
tal duration of t , or less days. The answers to each
of these queries can be found by retrieving all data
points which fall in the regions shown in Figure 3(a),
(b), and (c) respectively. Furthermore, a temporal
query with multiple selection criteria can be trans-
formed into an intersection of the regions correspond-
ing to the individual selection criterion. For instance,
the query “List all persons who entered the country
on or before t , and left on or after tb”, shown in Fig-
ure 3(d), is simply the intersection of the two regions
in Figure 3(a) and (b). Similarly, disjunctions of se-
lection criteria can be modeled as the union of respec-
tive regions. For example, the query “List all persons
who entered on or before 1 , or remained for t , days
or less” can be answered by retrieving all points in
the region shown in Figure 3(e). Finally, a degenerate
instance of such queries corresponds to selection on
time points, such as “Find all persons who were in the
United States on t j ” corresponds to the search space
shown in Figure 3(f).

3. Organization of the T P Directory

Once temporal tuples are mapped into data points
in the two-dimensional temporal space using the
interval-spatial transformation, the data points should

275

or a line parallel to the time-front (called a time-line).
We refer to the above two partitions respectively as
X-partition and time-partition. Two resultant poly-
gons formed after a partition are called buddies. Dur-
ing merging phase, only buddies can be merged so
that the resultant polygon can still have a well-formed
shape. Figure 5 shows that recursive partitions using
X-partition and timepartition result in smaller poly-
gons with the well-formed shapes. The three ratio-
nales for allowing only X-partition and time-partition
are: One, the shapes are similar to those of query
regions; Two, irregular shapes make maintenance and
testing expensive; Three, the resultant subspaces of an
X-partition or time-partition still have the well-formed
shapes.

h - Y

''

<*> <->

Figure 3: Search regions in the temporal space

be organized such that they can be efficiently retrieved
based on temporal relationships. In this section, we
present our strategies for organizing the data space.

Data points in the triangular space must be parti-
tioned into groups such that each group can be stored
in one page. A E+-tree like index structure, called the
TP-tree is used to index the data items. An internal
node of the tree has entries of the following format:

[child-pointer, polygon],
where child-pointer points to a child node and polygon
describes the entire data space of the child node. A
polygon in an internal node is called an internal bound-
ing polygon. It encloses other bounding polygons as its
subspaces. A leaf node of the TP-tree consists of leaf
entries and a tree pointer pointing to a succeeding leaf
node. A leaf entry has the form:

[bucket-pointer, polygon],
where bucket-pointer points to a data bucket where
the data points in the polygon are stored. A polygon
containing data points is called leaf bounding polygon.
Internal bounding polygons and leaf bounding poly-
gons are all constrained to the five well-formed shapes
illustrated in Figure 4. The formal definitions can be
found in [SOL93].

R -

Figure 5: Partitions for different leaf bounding polygons

Throughout this paper, we use m~ and MT to re-
spectively denote the minimum and maximum number
of entries allowed in a node of a TP-tree.

A TP-tree has the following properties:
Propl: The union of all the bounding polygons

described by the entries of a node spans the whole
data space of that node.

Prop2: The root of a TP-tree has at least two
children unless the TP-tree is a one node tree.

P r o m : Each node has between mT to MT entries
unless it is the root of a TP-tree.

Prop4: Any bounding polygons described by the
entries within one node do not overlap.

Props: Each polygon described by an entry of a
node adopts one well-formed shape.

Figure 4: Five well-formed shapes of bounding polygons

A polygon has to be partitioned when the entries
in it overflows. Partitioning can be performed by in-
troducing a line parallel to X-axis (called an X-line),

276

Prop1 ensures that there is no dead space in an in-
ternal bounding polygon which is not covered by its
enclosed polygons. Prop4 guarantees that only one
path needs to be traversed in order to search for a
data point in the temporal space. Prop5 guarantees
that all the internal and leaf bounding polygons have
well-formed shapes. The structure of a TP-tree is il-
lustrated in Figure 6.

entry whose data space (a polygon) intersects with the
query region, its subtree is traversed.

Aleorithm: Search

f

4.2. Insertion

Search (P , 9)
Input: q - query region;

p - pointer to a node in a TP-tree, initially to the root node.

for each entry e in the node pointed by p do
if e is a leaf entry whose data space is a polygon B then

if t satisfies the search conditions then
for each data point t in B do

add t to the answer;
elae

if INTERSECT(e.polygon, q) # null then
Search(e.child-pointer, q)

end Search

To insert a data point, its temporal attribute is used
to search for the leaf entry pointing to a data bucket
where the data point should be put into. Then, the
data point is inserted into the data bucket pointed by
the entry. If it overflows, the corresponding bounding
polygon is partitioned into two buddy subspaces and
the data points are distributed accordingly.

Algorithm: Insert

Insert (p, d)
Input: d - data point to be inserted;

p - pointer to a node in a TP-tree, initially to the root node.

for the entry e in the node pointed by p whose
e.polygon contains the position of d do

if e is a leaf entry whose data space is polygon B then
insert data point d into B ;
if B overflows then Split(B);

else Insert(e.child-pointer, d);
end Insert

Figure 6: A TP-tree
4.3. Splitting

4. Operations

In this section, we present the algorithms for ac-
cessing and updating a TP-tree.

4.1. Searching

Temporal search in the transformed space is similar
to spatial search in a spatial data structure [Ooi90].
Descending the tree from the root node, for each data

After insertion, a data bucket may overflow and
split is needed. This can be performed by partition-
ing the corresponding leaf bounding polygon into two
buddy polygons, and distributing the data points into
the two resultant polygons. The selection of an X-
partition or a time-partition is based on whether a
partition can evenly distribute the data points into
two subspaces. Furthermore, to ensure good cluster-
ing, a bounding polygon with almost equal intervals
along the X-line and the time-line is preferred.

Algorithm: Split

277

Spli t (B)
Input: B - a leaf bounding polygon corresponding to

an overflowed da ta bucket.

X-partition(B, I,, xn1, '"2) t o obtain an X-line I,
which divides the polygon B into two subspaces with
znl and xn2 numbers of da ta points;
Time-partition(B, I t , t n l , tn2) to obtain a time-line I t

which divides the polygon B into two subspaces with
tn l and tn2 numbers of da t a points;
if lznl - rn2l approximately equals t o ltnl - tn2l then

choose a partition which generates evener
intervals in ita subspaces S1 and S2

choose a partition which more evenly distributes
the data points in its subspaces S1 and S2;

else

record the buddy relationship between S1 and S2;
creat a new leaf entry ere.. and set e,.,.poIygon t S2;
for each parent node P having an entry e whose e.polygon is E do

modify e by e.poIygon t S I ;
if one more entry of P is needed to accommodate crew then

add the entry elcu into P ;
if P has more than MT entries t h e n

Internal-partition(P) t o partition the
internal bounding polygon of P

end Split

The algorithms X-part it ion and Time-part it ion
respectively introduce an X-line and a time line to di-
vide a leaf bounding polygon into two subspaces with
almost same number of data points in each. Due to
space constraint, we will not outline the algorithms
here.

Partitioning a leaf bounding polygon may cause
an internal bounding polygon to be partitioned. As
shown in Figure 7, when a leaf bounding polygon W
is partitioned into subspaces H and GI the entry cor-
responding to W in the node N is also split into two
entries. If N has more than MT entries, it has to
be split into two nodes N I and N z , and the inter-
nal bounding polygon S is partitioned into SI and
Sz. The entry pointing to N in the parent node P is
also replaced by two corresponding entries. Because
an internal bounding polygon encloses subspaces of
polygons, we may not be able to find an X-line or a
time-line that can evenly partition the enclosed poly-
gons without any overlap. This problem can be solved
if we allow a node to have more than one parent'. The
entry whose bounding polygon has been cut by a par-
tition line appears as entries in both new resultant
nodes. For instance, in Figure 7(e)(f), a time-line di-
viding S into 5'1 and Sz also cuts the subspace F into
F' and F". To avoid poor storage efficiency, we al-
low N I and N2 to have entries pointing to the same

'at the lowest level, a d a t a bucket can have more t han one leaf
nodes which have entries pointing t o the bucket

bucket for polygon F . For efficiency reason, a par-
tition line cutting through subspaces is used only if
the algorithm cannot find an X-line or time-line that
roughly partitions the entries.

(e) Intemd bowding S k dl- into S1 and 82

Data buck- Dmnbudretlor
w o n F

Figure 7: Partitioning a n internal bounding polygon

The internal partition algorithm is described as fol-

Algorithm: Internal-partition

lows.

Internal-par t i t ion(P)
Input: P - a node which has U number of entries (U > MT)

Par1 :
for each existing X-line which goes through the
data space S of P do

calculate the numbers of the enclosed polygons
in the two subspaces divided by the X-line, and
record the numbers by z n l and zn2 respectively;

among these X-lines, choose one which generates the
smallest 01 = l zn l - ""21;

for each existing time-line which goes through the
data space S of P do

Par2 :

calculate the numbers of the enclosed polygons

in the two subspaces divided by the time-line, and
record the numbers by t n l and tn2 respectively;

among these timelines, choose one which generates
the smallest u2 = l tnl - tn2l;

choose a partition line from Par1 and U t 0 1

else choose a partition line from Par2 and U t 0 2 ;

Par3 :

if u1 5 u2 then

if U > threshold then

for each existing X-line or time-line that
partially goes through the dataspace S do

virtually extend it to go through the whole space
of S, it divides S into two subspaces with n l and n2
numbers of enclosed polygons respectively;

choose the line that generates the smallest
I n 2 - n l l a n d (~ i + n 2 - ~) ;

S is divided into SI and S2 by a chosen partition
line, record S1 by a node N I and S2 by a node N2;
for each parent node P P of P do

for the entry e in P P pointing to P , e.polygon t S I ;
add one entry encr into P P , e,.,.polygon t S2;
if P P has more than MT entries then

if P P is the root node then
introduce a new root node NA with N I
and N2 as its children

else Internal-partition(PP) to propagate
the partition upwards

end Internal-partition

4.4. Deletion Algorithm

To delete a data point, a TP-tree is traversed to
search for the leaf entry that points to a data bucket
containing the data point. Deletion may cause a
bounding polygon to underflow. To improve the fill
rate, entries contained in an underflowed polygon are
merged into its buddy polygon, and merging may
propagate upward till the root.

Algorithm: delete

delete(d)
Input: d - data point to be deleted.

search for the entry e of a leaf node N that contains
the location of d , S t e.polygon, delete d from S ;
Merge:
if S has less than mT entries then

insert the remaining entries into S’s buddy S E ;
enlarge the buddy S E t o cover the dataspace S;
if S B overtlows then aplit(SB) ;
remove the entry e from the node N ;
if N has less than m~ entries then

repeat from Merge with S being replaced
by the polygon of N ;

end delete

4.5. Reorganization of the TP-tree As Time In-
creases

Because of the nature of temporal databases, most
updates occur in an append mode. Insertions of new
tuples occur mostly in increasing time value.

Our partitioning strategies and the algorithms de-
signed have the advantage of easy incremental reor-
ganization as time increases. When the current time
increases from the old time point now1 to the new time
point nowz, the temporal space expands as shown in
Figure 8. A leaf entry enew corresponding to the ex-
panded bounding polygon Snew of C-shape is intro-
duced. If the root node NO of the TP-tree has less
than MT entries, then enew is added into N O . If NO
has MT entries, one new root NA is introduced to the
TP-tree with two children No and N n e w (N n e w con-
tains the new leaf entry e n e w) . For those temporal
data points which have the duration until now2, shift
them into Snew in the new TP-tree following the same
procedure of inserting data points in a TP-tree.

Figure 8: Increase n o w from now1 to now2

5. Performance Analysis

In this section, we study the performance of the pro-
posed TP-index scheme. We also compare the perfor-
mance of the TP-index with the time index [EWKSO].

5.1. Storage Efficiency

First, we analyze the storage cost for the TP-index.
Let ST be the total number of data pages (buck-

ets) used for storing N number of data points, S$
be the number of pages used for storing the index
structure of TP-tree, and S& be the number of data
pages used for storing data points in data buckets.
We use 4K bytes for the page size, 32 bytes for a
pointer p , and 8 bytes for a coordinate. According to
Figure 9, (A,Zl,Yl,Z4), (B,Zl,YI,C4), (C , t l , Y l , Z 4) ,

(D , ~ I , Y I , z ~ , ~) , and (E , I I , Y I , Z ~ , ~) are respectively
sufficient to represent polygons of shape A, B, C, D,
and E. So we need at most pol = 1 + 4 x 8 = 33 bytes
to represent a bounding polygon. The maximum num-
ber of entries in one node is: MT(P + pol) + p = 4 K ,
i.e., MT = 62.

279

Figure 9: Internd representations for five type polygons

For N number of data points, if we assume that
each data bucket stores M ~ l n 2 number of data points
on the average, then $. = am' . If we suppose
a TP-tree with height h~ is ln2 full on the average,
then

[" l
9i [MT$n221 1' + & + * . * + (MTIn2) l h !r-' 11

[M$nZ] r M ~ L 2 - 1 1 M In2

M In2
Thus: ST [M&22] [MTTnZ-l] + [A]

Now, we analyze the storage cost for the time in-
dex [EWKSO]. For explanation purpose, we call a B+-
tree in the time index BI-tree. Assume the same sys-
tem parameters as those of the TP-index, the max-
imum number of entries in a node of a BI-tree is:
M ~ (p + 1) + p = 4K, i.e., ME w 100. We also assume
that all bucket entries corresponding to the same leaf
node is clustered together whenever possible.

Let SE be the total number of pages used for storing
N temporal tuples by the time index approach. SE =
9i + $&, where 9i is the number of pages required
by the BI-tree, and Si refers to the number of pages
needed to store all the bucket entries.

We assume that the arrival of temporal tuples is a
Poisson process, and hence inter-arrival time is e x p e
nentially distributed with mean 1/A. Let X be the
Poisson random variable which represents the number
of temporal tuples arriving in a unit time with mean
value A. The duration of each tuple is assumed to be
uniformly distributed over the interval [0,2p]. Obvi-
ously, the size of the BI-tree depends on the number of
distinct indexing points in BP (refer to [EWKSO]).
lBPl can be approximated by 2Ne-X. Assuming that
the nodes in the BI-tree is In2 full on the average,
the number of leaf nodes is given by [S I . Thus,

We estimate .the ' number of entries in the leading
bucket of each leaf node by the expected number of
arrivals in a period p , which yields the value pA. The
number of incremental e tries f r e h leaf no e is:
(M~ln2)A. Hence, $& =
Consequently,

x FAtzA1nq

S E = Msln2 ([MEf;;?l] + [p A t ~ ~ A 1 n 2 1)
The above expression suggests that even for a fixed

N, the storage requirements of the time index varies
with the characteristics of the temporal tuples. Unlike
the time index, the TP-index is not dependent on the
characteristics of the temporal data. This is due to
the fact that each temporal tuple is represented only
once as a data point in the two-dimensional temporal
space. In addition, the TP-tree index approach incurs
less space than the BI-tree index approach. Figure 10
shows the results obtained from a simulation study in
which N is kept constant at 100000. The results con-
firm our analysis: space cost for the TP-index remains
very low, and also remains constant with no regard for
p or A. The space cost for the time index, on the other
hand, fluctuates as a function of both of these parame
ters, and the cost is higher than that of the TP-index.

Figure 10: Space utilization

5.2. Query Efficiency

In this subsection, we examine the search perfor-
mance of the proposed TP-index scheme against the
Elmasri's time index.

We analyze a query type which is best supported
by the time index, i.e., queries retrieving all temporal
tuples whose starting time is between time a and time
b. It can be accomplished by (i) traversing the BI-tree
to locate the leaf node containing time point a, and
(ii) following the sequential links between leaf nodes
and retrieving all incremental entries in the buckets,
right up to time point 6. Let QE be the number of
page accesses needed to answer the query. We assume
that a is a randomly selected time point from interval
[O,now], and the length of the interval b - a is an
exponential random variable with mean y. We can
obtain: Q E [-GI x [l + P * + z X 1 n 2] (refer to
[SOL931 for the derivation process). As can be seen,
the cost is effected by the temporal features p , y, and
A.

280

Let us analyze the query cost of the TP-index now.
We denote by QT, the number of pages needed to re-
trieve all temporal data points corresponding to the
same query. This temporal query is mapped into a
spatial search. The expected number of data points is
bounded by AT. Approximately, [&I number of
leaf nodes are searched. To search for one leaf node in
the TP-tree, h~ number of pages is traversed, where
hT is the height of the TP-tree, h~ [log(MTln2)N].
Consider the time for the associated buckets as well,
then QT is given by I&] x (1 + h ~)

Figure 11 depicts the search performances of the
time index and the TP-index with pA = 600,7 = 1000
and N = 5000000. When the mean arrival rate in-
creases, the performance of the TP-index degrades
slightly. However, the result is based on a conservative
assumption that hT number of pages are traversed for
each leaf node. For range queries, the number of pages
searched for each leaf node on the average is much less
than hT because a query region is usually covered by
neighbouring leaf bounding polygons linked by suc-
ceeding tree pointers in leaf nodes. Hence, once a leaf
node is found, the succeeding leaf nodes can be found
by the pointers, there is no need to search each leaf
node from the root.

Im , I
so

110

Figure 11 : Search performances of the TP-index and the
time index

TP-index approach supports other query types
with a single type of region search, while the time
index approach has to scan the entire database. Some
detailed analysis can be found in [SOL93].

As a summary, the TP-index is an efficient index
scheme in terms of space efficiency and search effi-
ciency. We are now conducting some experiments on
the time index [EWKSO], the R-tree [Gut841 and our
TP-index to further compare the performance.

6. Conclusion

Most existing indices are not appropriate for index-
ing temporal data. In this paper, we addressed the
mapping of temporal data into data points in a two-
dimensional temporal space and, proposed a dynamic
and efficient time index called the time polygon index
(TP-index). The data are clustered based on tempo-
ral characteristics and are organized in a B+-tree like
index called the TP-tree. The performance analysis
indicates that the TP-index is efficient in both stor-
age requirement and query retrieval.

Acknowledgements

The authors would like to thank to Mr. Cheng
Hian Goh for his joining to the discussion on the draft
version of this paper.

References

[EIWW] R. Elmasri and G. Wuu, “A Temporal Model and
Query Language For Temporal Databases,” Proc. 6th Int’l.
Conf. On Data Engineering, pp. 7 6 8 3 , 1990.

[EWKSO] R. Elmasri, G. T . J. Wuu, and Y. J. Kim, “The Time
Index: An Access StructureFor Temporal Data,” 16th Int’l.
Conf. On Very Large Data Bases, pp. 1-12, 1990.

[Gut841 A. Gu t tman , “€3-tree: A Dynamic Index Structure For
Spatial Searching,” Proc. A C M SIGMOD Int’l. Conf. On
Management Of Data, pp. 47-57, 1984.

[GuS93] H. Gunadhi and A. Segev, Efficient Indexing Meth-
ods For Temporal Relations,” IEEE Trans. On Knowledge
and Da ta Eng., 5, 3, pp. 496509, 1993.

[KoS89] C. Kolovson and M. Stonebraker, “Indexing Struc-
tures Techniques For Historical Databases,” IEEE 5th Int’I.
Conf. On Data Engineering, pp, 127-137, 1989.

[LoBSO] D. B. Lomet and B. Salzberg, “The HB-Tree: A Mul-
t iat tr ibute Indexing Method With Good Guaranteed Per-
formance,” A C M Trans. On Database Systems, 15, 4, pp.
625-658, 1990.

[Ooi90] B. C. Ooi, Eficient Query Processing I n Geographic
Information Systems, Lecture Notes in Computer Science
471, Springer-Verlag, 1990.

[Rot871 D. Rotem and A. Segev, “ Physical Organization Of
Temporal Data,” Proc. Int’l. Conf. On Data Eng., pp. 454-
466, 1987.

[SOL931 H. Shen, B. C. Ooi, and H. J. Lu, “ The TP-Index: A
Dynamic and Efficient Indexing Mechanism for Temporal
Databases,” Technical Report No. TRC6/93, Department
of Information Systems and Computer Science, National
University of Singapore, 1993.

281

