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ABSTRACT
It is important to provide efficient execution for ad-hoc data pro-
cessing programs. In contrast to constructing complex declarative
queries, many users prefer to write their programs using procedural
code with simple queries. As many users are not expert program-
mers, their programs usually exhibit poor performance in practice
and it is a challenge to automatically optimize these programs and
efficiently execute the programs.

In this paper, we present UniAD, a system designed to simpli-
fy the programming of data processing tasks and provide efficien-
t execution for user programs. We propose a novel intermediate
representation named UniQL which utilizes HOQs to describe the
operations performed in programs. By combining both procedural
and declarative logics, we can perform various optimizations across
the boundary between procedural and declarative codes. We de-
scribe optimizations and conduct extensive empirical studies using
UniAD. The experimental results on four benchmarks demonstrate
that our techniques can significantly improve the performance of a
wide range of data processing programs.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program Analysis

Keywords
ad-hoc data processing, unified optimization, program analysis

1. INTRODUCTION
Ad-hoc data processing has proven to be a critical component for

a variety of applications such as business intelligence, data mining
and scientific computing. In a typical scenario, a user collects a set
of data and has a list of questions about the data. As many ideas
are hit on by accident, the lack of standard tools forces the user to
write customized program himself to answer his questions.

Since many users are non-experts in programming, a simple but
efficient method is needed for them to describe their tasks. Declar-
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1 LOOP @d_id FROM 0 TO N
2 SELECT o_id INTO @o_id_list[@d_id]
3 FROM order
4 WHERE d_id = @d_id;

Figure 1: An example for optimizing

ative languages are attractive tools as they can abstract away im-
plementation details. Experienced users can write their programs
with little effort and let optimizers choose efficient execution plans.
Many existing data processing systems, such as relational databas-
es, Pig [22] and Hive [28], provide declarative languages to users.
But to achieve the benefits brought by these systems, programmers
have to formulate their problems to specialized paradigms provided
by the systems. These paradigms are usually limited in expressive-
ness and functionality. As many problems targeted by ad-hoc data
processing are very complex, problem formulation in these systems
is not a trivial task [35, 11]. Very often, users feel more comfort-
able writing their programs in procedural languages with embedded
declarative primitives.

Though many systems offer general purpose programming lan-
guages integrated with declarative queries such as PL/SQL and
LINQ [34], we observe that the optimization and execution for the
procedural and declarative parts are still separated in these system-
s. For example, many modern databases allow users to write stored
procedures with procedural extensions to SQL. But the procedural
and declarative parts are executed in different execution engines.
The procedural execution engine treats SQL queries as black boxes
and calls database interfaces to execute the queries.

This separation makes it difficult to optimize programs. Consid-
er the code fragment in Figure 1. If there is an index built on the
attribute d_id, it performs well when executed. But if the index
does not exist, unfortunately the executor will have to sequentially
scan the entire table in each iteration of the loop. The performance
would be significantly degraded due to the redundant table scans.
Neither the program compiler nor the query optimizer can perfor-
m any optimization on the program — the program compiler does
not have the knowledge of indexes while the query optimizer is
unaware of the existence of the loop.

The performance is further hampered in the context of parallel
processing due to the separate execution of procedural and declar-
ative code. With the exponential growth in data size in many ap-
plications, there is an increasing need to process data in parallel.
Although declarative queries can be easily executed in parallel, pro-
cedural code is usually executed sequentially. The benefit brought
about by the parallelism of declarative queries is significantly limit-
ed by the interaction between the procedural code and the declara-
tive queries. After submitting a query, the program has to wait until
the results are returned. Then the program consumes the results by
iterating over the results in sequence and performing computation



on the results. It becomes a bottleneck if the amount of data is big
or the application logic is complex.

To improve the performance of these data processing programs,
programmers have to examine both the procedural code and declar-
ative queries in programs manually. Existing techniques in pro-
gram compilation and query optimization cannot be directly ap-
plied to these programs. Attempts were made to allow automatic
optimizations of such programs. D. Lieuwen et al. developed a
rule-based optimizer to transform loops into joins [19] while R.
Guravannavar et al. proposed to automatically rewrite iteratively
invoked queries [13]. Some other studies focus on identifying the
procedural code which can be translated into SQL queries [32, 33,
4]. The idea behind these attempts is to extract relational condi-
tions from procedural code and construct equivalent SQL queries.
Program performance might benefit from the query optimization in
database systems. But as the relational algebra is unable to match
the expressiveness of procedural languages, much procedural code
cannot be translated into SQL queries and thus the benefits they
gain are limited.

In this paper, we present a new system targeted for ad-hoc data
processing, called UniAD, which stands for Unified execution for
Ad-hoc Data processing. UniAD simplifies the programming of
data processing tasks. Rather than constructing complex queries
for their problems, users can write their programs in a procedural
language with simple queries. User programs can be automatically
optimized by UniAD and achieve good performance even if they
are written poorly.

Unlike existing systems, UniAD takes both the procedural and
declarative logics into consideration and can perform optimization-
s across the boundary between procedural code and SQL queries.
These optimizations were hard to perform before due to the lack
of a uniform representation suitable for the optimization of data
processing programs. UniAD addresses the problem by translat-
ing user programs into a novel intermediate representation called
Unified Query Language (UniQL).

UniQL deploys a simple and expressive mechanism, named High
Order Query (HOQ), to describe used persistent data and performed
operations in programs. HOQs provide a high level description of
how persistent data is processed. SQL queries in programs can be
easily translated into HOQs. Benefits gained from query optimiza-
tion, including the utility of indexes, can be carried out in UniAD.
Moreover, realizing that HOQs are logically equivalent to loops
in procedural code, we can apply loop optimization techniques to
HOQs. As operations described by SQL queries and procedural
code are unified in HOQ, UniAD can find optimization opportu-
nities previously ignored because of the separate optimization of
procedural and declarative code.

UniAD also enables parallel execution of user programs even
when programs are written assuming the sequential execution mod-
el. By combining computation logic with corresponding data in
HOQs, UniAD can execute the computation logic in parallel in the
place where its data resides.

To summarize, the main contributions of our work include:

• We design a new architecture to unify the optimization and
execution of user programs, which are written in procedural
languages with embedded declarative queries.

• We propose a novel intermediate representation that provides
a uniform mechanism to describe data processing tasks in
programs.

• We propose a transformation-based optimizer to automatical-
ly optimize programs. We show that the proposed interme-
diate representation allows concise and efficient implemen-
tation of many optimizations.

• We implement a prototype system and conduct extensive em-
pirical studies on four different benchmarks including TPC-
C [29] and SEATS [27]. We validate that we can achieve sig-
nificant speed-ups for a variety of data processing programs.

The rest of the paper is organized as follows. We first introduce
UniAD’s intermediate representation in Section 2. Then we give
an overview of UniAD and describe how UniAD executes user pro-
grams in Section 3. Details of program translation and optimization
are presented in Section 4 and Section 5 respectively. Some prac-
tical issues in the implementation are discussed in Section 6. We
evaluate our system in Section 7 and discuss related work in Sec-
tion 8. Finally, we conclude the paper in Section 9.

2. HIGHER ORDER QUERY
It’s challenging to optimize programs written in procedural lan-

guages with embedded SQL queries. Procedural code describes
the exact operations performed in a program, whereas SQL queries
provide a high level execution semantics and encapsulate detailed
implementation methods. The encapsulation enables query opti-
mizers to devise optimal execution plans for SQL queries. But
meanwhile, the encapsulation creates a boundary between SQL
queries and procedural code. This boundary makes it challenging
to provide unified optimization and execution for procedural pro-
grams with embedded SQL queries. The problem is another form
of the well-known impedance mismatch problem [20].

To address the problem, a uniform representation is needed to
describe the operations in programs. The representation must sat-
isfy the following requirements:

• First, the representation must be expressive and bridge the
gap between procedural code and SQL queries. Relational
algebra is beautiful yet powerful in representing queries on
relations, but it is not capable of describing operations per-
formed in procedural code such as loops and branches.

• Second, the representation must provide enough information
for optimization and execution at a high level. Procedural
code and other low level languages can express operations in
SQL queries. However, because they eliminate the execution
semantics, it is difficult to optimize the programs.

• Third, transformations on the representation must be avail-
able. The availability of transformations allows opportunities
for program optimization.

• Finally, the representation must be as simple as possible. Un-
like the operators provided to users, the representation is used
for program optimization and execution in the system. A
simple representation can reduce the complexity of optimiza-
tion as the optimizer can further simplify various cases.

Some representations were proposed to solve the mismatch be-
tween declarative queries and procedural code [30, 1, 10], but they
are not suitable for optimizing data processing programs. These
representations have their roots in functional languages. Side ef-
fects such as I/O and shared states are eliminated, which makes
it difficult to optimize the procedural code where side effects are
frequently used.

Data-centric programming models have received considerable
attention over the past few years. As one of the most well-known
data-centric programming models, MapReduce was proposed by
Google to simplify parallel data processing. A programmer can
easily build their applications by specifying two relatively simple
basic functions: map and reduce. Despite the simplicity of the
paradigm, many useful computations can be efficiently abstracted.



1 /* selector */
2 ACCESS order WHERE o_w_id = @w_id
3 {
4 /* processor */
5 @total_amount += o_amount;
6 if(o_status == ’ready’)
7 o_delivery_d = current_time;
8 }

Figure 2: An example of HOQ

These data-centric programming models share common charac-
teristics in the manner in which they attach computation to corre-
sponding data. Although these models resemble higher order func-
tions in functional languages [18], user-defined functions are writ-
ten in procedural languages. It provides a simple but expressive
method to describe operations in the programs. By partitioning the
data, application computation can also be executed simultaneously
in the place where the data resides.

Inspired by the simplicity and expressiveness provided by data-
centric programming models, UniAD uses HOQs to describe oper-
ations in the programs. An example of HOQ is given in Figure 2.
Each HOQ consists of a selector and a processor. The selector uses
a WHERE clause to indicate the tuples selected. The statements
below the selector comprise the HOQ’s processor, which describe
the operations performed on each selected tuple. When viewed in
this form, a processor acts as an anonymous function and is bound-
ed to each selected tuple in the HOQ. So a HOQ can be viewed as
a higher-order version of a SQL query, hence its name.

Algorithm 1 HOQ Execution Semantics
1: for each tuple t in table do
2: if t satisfies HOQ’s selector then
3: perform HOQ’s processor on t
4: end if
5: end for

HOQ’s execution semantics is illustrated in Algorithm 1 and is
easy to understand. Once a qualified tuple is selected, the opera-
tions defined in the HOQ’s processor are performed on the tuple.

Using the HOQs, UniQL is an efficient intermediate representa-
tion for programs in UniAD. First, by breaking the encapsulation of
SQL queries and translating SQL queries into HOQs, we can have
a clear and uniform picture about the data used in the programs and
operations performed on the data. Such information can be used to
guide our optimizations.

Second, HOQ is capable of describing a wide variety of execu-
tion plans. It allows us to find efficient execution plans which can-
not be expressed in relational algebra. Consider the operations per-
formed in Figure 2. The code fragment calculates the sum of field
o_amount and for those tuples whose field o_status is ’ready’,
updates their field o_delivery_d to current time. The HOQ in Fig-
ure 2 provides an efficient execution plan to perform these oper-
ations. These operations can be performed by scanning the table
order in one pass. Although many features, such as MERGE and
window functions, have been added into the SQL standard to sup-
port efficient execution plans, it is still impossible to use relational
algebra to express the query described in Figure 2.

Finally, HOQ can facilitate concise and efficient implementation
of many program optimizations. As the selected data is described
in a declarative manner, the executor is free to choose differen-
t methods to fetch data. With the knowledge of physical storage and
available indexes, the executor can fetch data efficiently. Moreover,
note that the HOQ’s execution sequentially iterates over retrieved
data, we can conceptually treat HOQs as loops. Hence, many well-
studied loop optimization techniques can be applied to HOQs.
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Figure 3: System architecture

3. SYSTEM OVERVIEW
In this section, we will introduce the UniAD system and describe

how a program is compiled, optimized and executed in UniAD.
The high-level architecture of UniAD is illustrated in Figure 3.

UniAD deploys a relational data model. User data is structured as
a collection of tables and stored in the underlying storage. UniAD
also allows users to create indexes if needed, and stores the infor-
mation about tables and indexes in the catalog.

The language provided by UniAD is similar to those procedural
languages in modern databases which are extensions to the SQL
language. But UniAD differs from these databases which only pro-
vide execution for SQL queries, in that UniAD provides unified
execution of user programs.

When a user program is passed to UniAD, it is parsed by the
compiler. To enable further optimizations, the compiler translates
the SQL queries in the program into HOQs. For example, the code
fragment in Figure 1 is translated into the following UniQL code:

LOOP @d_id FROM 0 TO N
ACCESS order WHERE d_id = @d_id

@o_id_list[@d_id].append(o_id);

Details of program translation will be described in Section 4.
Program analysis is also applied to the translated program and

the output of the compilation is a directed cyclic graph. An exam-
ple of the graph is illustrated in Figure 4. Nodes in the graph are
statements to be executed and edges show the dependency between
these nodes. There are three types of nodes in the graph, namely
basic blocks, HOQs and loops. They are represented by B, Q and
L in the graph respectively. Branches are translated into conditions
in the edges.

Q L

B Q L

Q Q B

Q

ENTER EXIT

Figure 4: An execution plan graph

The graph represents an execution plan for the program. It is
different from a control flow graph as we allow more than one node
to be executed simultaneously. A node can not be executed until all
nodes directed to it have completed their execution. Loop nodes
are handled as a special case since they lead to cyclic dependencies
in the graph. The nodes directing to a loop node can be divided into
two categories according to whether they are inside the loop’s body
or not. If a node is outside the loop’s body, the loop node cannot



be executed until the node finishes its execution. But once the loop
node has started its execution, it will not depend on the node any
more. It will be re-executed when all the nodes inside its loop body
have finished their execution.

The optimizer in UniAD is invoked to find a better execution plan
for the program. The optimizer consists of a set of transformation
rules. UniAD deploys a greedy heuristic optimization algorithm,
which examines the execution plan graph iteratively and performs
a transformation on the graph if the transformation rule’s condition
is satisfied. The optimizer stops when it cannot find any further
optimization opportunities. For example, realizing that the above
code fragment has to scan the table repeatedly, the optimizer will
interchange the HOQ and loop, and generate the following HOQ:

ACCESS order
LOOP @d_id FROM 0 TO N

IF(d_id == @d_id)
@o_id_list[@d_id].append(o_id);

Since the HOQ can be executed by scanning the table once, the
performance of the original code fragment is improved. We will
introduce the transformation rules used in UniAD in Section 5.

After the execution plan for the program is generated, an execu-
tor responsible for the program’s execution will be created. Each
executor consists of a set of worker threads and operations in the
execution plan will be executed by these workers. The executor
maintains a task queue which contains all nodes that can be execut-
ed. At the beginning, only the program’s enter node is put in the
task queue. Each idle worker picks a task from the task queue and
executes the task. To utilize the data parallelism, data is partitioned
and assigned to different workers. HOQs will be decomposed into
a set of instances and executed by corresponding workers.

When a task is completed, the worker examines all the nodes di-
rectly connected to the task. A node will be put in the task queue if
all the nodes connected to it have completed their execution. The
execution of the program is completed when the program’s exit n-
ode is executed.

4. PROGRAM TRANSLATION
When a user program is passed to the compiler, SQL queries in

the program are translated into HOQs. We mainly focus on SQL
queries with standard SQL features such as selection, projection,
join, aggregation, sorting and from clause subqueries. To preserve
the efficiency brought by query optimization, UniAD uses an em-
bedded query optimizer to generate an optimal execution plan for
each SQL query in the program and translates queries into HOQs
according to their execution plans.

The execution plan for an SQL query is usually expressed as a
query plan tree (QPT). Each node in the QPT represents an operator
needed to execute the query along with the method to implemen-
t the operator. Each SQL query can be translated into HOQs by
traversing its QPT in post order and converting each visited opera-
tor according to the operator’s implementation method.

SELECT SUM(l_extendedprice)/7.0 INTO @sum_price
FROM lineitem, part,

(SELECT l_pkey AS aq_pkey,
0.2*AVG(l_quan) AS aq_quan

FROM lineitem
GROUP BY l_pkey) AS avgquantity

WHERE p_brand = ’BRAND#1’
AND p_container = ’LG CASE’
AND p_pkey = l_pkey
AND p_pkey = aq_pkey
AND l_quan < aq_quan;

The above SQL query is a variation of TPC-H Q17 which con-
tains rich SQL features, and we use it as an example to illustrate the
translation. The QPT for the query is illustrated in Figure 5 while
the generated code fragment is illustrated in Figure 6.
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Figure 5: A query plan tree

1 /*NODE 1: Generated HOQ to scan the table*/
2 ACCESS lineitem
3 @ss1_list.append(MAKE_TUPLE(l_pkey, l_quan, ...));
4
5 /*NODE 2: Generated HOQ to scan the table*/
6 ACCESS part
7 WHERE p_brand = ’BRAND#1’
8 AND p_container = ’LG CASE’ {
9 @ss2_list.append(p_pkey);

10 }
11
12 /*NODE 3: Generated HOQ to scan the table*/
13 ACCESS lineitem
14 @ss3_list.append(MAKE_TUPLE(l_pkey, l_quan));
15
16 /*NODE 4: Generated code to perform aggregation*/
17 @agg1_list = ... @ss3_list ... ;
18
19 /*NODE 5: Generated code to perform merge join*/
20 @mjoin_list = ...@ss2_list...@agg1_list...;
21
22 /*NODE 6: Generated code to perform hash join*/
23 @hjoin_list = ...@ss1_list...@mjoin_list...;
24
25 /*NODE 7: Generated code to perform aggregation*/
26 @sum_price = ...@hjoin_list...;

Figure 6: Generated code fragment

Each node in the QPT is labeled with the sequence number of
the visit in post order iteration. Except for the root node, all other
nodes in the QPT have a parent node. Each node’s output is fed
as input to the parent node. We format both input and output of
each node as lists of tuples and use local variables to store these
intermediate results. For example, we store the tuples selected by
Node 1 into @ss1_list, which is then used by Node 6 to produce
@hjoin_list.

There are three leaf nodes in the QPT and they are all scan nodes.
A HOQ will be constructed for each of them by putting the scan
node’s predicate in the selector and creating necessary statements
in the processor. Other nodes in the QPT are internal nodes and
necessary procedural code will be generated to implement these
nodes’ functionality. UniAD maintains a set of code templates and
each operator will be translated into procedural code according to
the method selected by the query optimizer.

A code template for merge join operators is illustrated in Figure
7, which contains five parameters. #ListA and #ListB are two tuple
lists to perform join; #ExprA and #ExprB are expressions in the
join condition, and #OutputList is the result list. To translate the
operator defined in Node 5, we will pass necessary arguments to
the template and generate code.

The translation is in essence similar to query rewriting in databas-
es. Our method resembles the ones proposed in [17, 21], but we
focus on high-level execution semantics. We attempt to keep the
translation process as simple as possible and do not take the data
and instruction locality into consideration. The complexity of the



1 MergeJoin<#ListA, #ExprA, #ListB, #ExprB, #OutputList>
2 SORT #ListA ON #ExprA
3 SORT #ListB ON #ExprB
4 LOOP @i FROM 0 TO #ListA.size()
5 LOOP @j FROM 0 TO #ListB.size()
6 IF(#ExprA < #ExprB)
7 @i++;
8 ELSE IF(#ExprA > #ExprB)
9 @j++;

10 ELSE {
11 #OutputList.append(MAKE_TUPLE(...));
12 @i++;
13 @j++;
14 }

Figure 7: A code template for merge join operator

translation is O(N) where N is the number of relational operators
in the program. As the number of relational operators is limited in a
given program, the translation overhead is considered proportional
to the code size. The code size is generally orders of magnitude
less than the data size, and hence the translation overhead is neg-
ligible. Some intermediate variables and inefficient code will be
introduced by the translation, but they will not degrade the overall
performance as the optimizer can eliminate this inefficient code at
a later stage in our system.

5. OPTIMIZATION
In this section, we present the details of the optimizations per-

formed in UniAD. We focus on those optimizations across the bound-
ary between the procedural and declarative parts. These optimiza-
tions share similar ideas to some techniques in program compila-
tion and query optimization, which however cannot be directly ap-
plied to user programs in UniAD.

We begin with the introduction of our optimizations, using an ex-
ample to illustrate the transformation and its benefits. We then dis-
cuss the prerequisites for the rules that are necessary to ensure that
a program’s results are consistent. To ensure the correctness, we
reduce our transformations to other transformations that are well-
studied in the program analysis field. By applying data dependency
analysis [16] to programs, we check each transformation’s validity
before it is performed. Finally, a formal specification of the opti-
mization rule and required preconditions are given.

5.1 Preliminary Notation
Before we introduce our transformation rules, we shall first de-

scribe the symbols we use in the rules.
An ordered list B = [s1, s2, ..., sn] is used to express a list

of statements in sequence. The operator ⊙ is used to concate-
nate two statement lists. Suppose B1 = [s1, s2, ..., sn],B2 =
[t1, t2, ..., tm], then B1 ⊙ B2 = [s1, s2, ..., sn, t1, t2, ..., tm].
s[a/b] is used to express the statement produced by replacing all

variables named a in statement s by b.
There are four types of statements in translated programs, name-

ly assignments, loops, branches and HOQs.
Assignments are statements assigning expressions to variables.

We use Assign(v, E) to express the statement of the form v = E.
Branches are statements with conditions. We use Branch(C, B)

to express a statement of the form if C do B, where C is the condi-
tion expression and B contains the statements to be executed when
the condition holds.

Loops are statements executed repeatedly. We use Loop(I, B) to
express a loop of the form foreach i in I do B, where I is the iterator
space and B contains the statements executed in each iteration.

HOQs of the form access S do P are expressed by HOQ(S, P)
where S is the selector to filter tuples and P contains the statements
in the HOQ’s processor.

5.2 Extracting Conditions
Predicates in a HOQ’s selector indicate the tuples to be processed

by the HOQ. If only on a subset of selected tuples are processed by
the HOQ, it is, of course, inefficient to fetch unused tuples.

Consider the following code fragment:
ACCESS order

IF(w_id == 30)
@cost += price;

As no predicate is given in the HOQ’s selector, the selector has
to scan the entire table sequentially and select all tuples in the table.
Note that the statement ‘@cost+ = price’ is executed only when
the accessed tuple’s attribute w_id is 30. If there is an index built
on the attribute w_id, redundant tuple accesses can be eliminated
by fetching tuples from the index with the condition in the branch
statement. Therefore, the following HOQ is more efficient than the
above one:

ACCESS order WHERE w_id = 30
@cost += price;

The condition ‘w_id == 30’ is now put in the selector and it is
extracted from the common condition of branch statements in the
processor. The transformation is analogous to predicate pushdown
in query optimization while viewed in the program optimization, it
is another form of loop-invariant code motion. To preserve the se-
mantics, the extracted common condition should be loop-invariant
in the HOQ.

The transformation rule can be formalized as follows:

RULE 1 (EXTRACT CONDITIONS). Suppose q = HOQ(S, P)
is a HOQ, P =

[
Branch(Ci,Bi)

]
and CC =

∪
Ci. q can be

transformed to q′ = HOQ(S′, P ′), where S′ = S ∩ CC and P ′ =[
Branch(Ci,Bi)

]
if CC is loop-invariant in the HOQ.

The condition of the branch statement can be eliminated if it’s a
subset of the condition in the selector.

5.3 Fusing HOQs and Loops
Many programs use sequential loops to examine the tuples pro-

duced by declarative queries and perform computation on these tu-
ples one tuple at a time. We can combine the computation per-
formed in the loop with the HOQ and replace the loop and the HOQ
with a new HOQ.

The transformation is a very useful optimization in UniAD. In
combination with dead code elimination, the transformation can
help us remove useless intermediate variables which are introduced
in the translation. Another benefit brought about by the transfor-
mation is that by attaching the computation to selected tuples, it is
possible for us to perform more computation in situ and in parallel.
Besides, the transformation binds the computation with the corre-
sponding data and shields the processing details performed on the
data. As we will see in the later section, the transformation can
help us focus on the selected data and find more opportunities for
optimization.

As each HOQ can be viewed as a loop, the transformation is es-
sentially loop fusion or function composition. It is not always safe
to fuse a HOQ and a loop, dependencies in both the HOQ and loop
have to be examined. Note that the order in which a HOQ is iter-
ated is not preserved, we enhance the requirement by prohibiting
any loop fusion which will lead to loop-carried dependencies in the
combined HOQ. With such a requirement, no loop-carried depen-
dencies will exist in the HOQ then the HOQ can be executed in
parallel safely.

The requirement that no loop-carried dependencies are allowed
in the HOQ is too rigid and as a consequence we will miss many
opportunities for transformation. The requirement can be relaxed
if loop-carried dependencies are caused by commutative operators.



Commutative operators can produce identical results regardless of
the order they are executed. We notice that commutative operators
are common in programs, so it is necessary to provide parallel exe-
cution for these operators. UniAD predefines a set of commutative
operators, such as append and addequal. We can execute these op-
erators in parallel to get partial results and merge partial results to
get a final result.

The transformation rule can be formally specified as follows:

RULE 2 (FUSE HOQS AND LOOPS). Suppose q = HOQ(S,
P) is a HOQ, l = Loop(I, B) is a loop.

[
q, l

]
can be transformed

to
[
q′
]

=
[

HOQ(S, P ′)
]
, where P ′ = P ⊙ B, if the following

conditions are satisfied:
• There exists a one-to-one producer-consumer relationship be-

tween q and l.
• All dependencies in q′ are caused by commutative operators.

A special case of the transformation is that the output of a HOQ
is only one tuple. In such a case, we can also put all statements
consuming the output into the HOQ.

5.4 Merging HOQs
Multiple Query Optimization (MQO) [26] is an efficient method

to improve program performance by sharing common intermedi-
ate results and eliminating redundant tuple accesses. However, we
observe that opportunities to perform MQO are often limited in
practice.

Consider the following code fragment. It is selected from a trans-
action in TPC-C named NewOrder.

SELECT s_quantity INTO @s_quantity
FROM Stock
WHERE s_i_id = @ol_i_id
AND s_w_id = @ol_supply_w_id;

IF(@s_quantity > @ol_quantity)
@s_quantity = @s_quantity - @ol_quantity;

ELSE
@s_quantity = @s_quantity - @ol_quantity + 91;

UPDATE Stock
SET s_quantity TO @s_quantity
WHERE s_i_id = @ol_i_id
AND s_w_id = @ol_supply_w_id;

The program first retrieves the item’s quantity from table stock
and stores the value into @s_quantity. After @s_quantity’s val-
ue is computed in the branch statement, @s_quantity’s value is
written back to the tuple’s field s_quantity by the update state-
ment. Both the SELECT and UPDATE statements have to probe
the table to fetch selected tuples. Given that they actually access
the same tuples, it’s inefficient to select the tuples twice. MQO
can’t be directly used to merge these queries and reduce the redun-
dant table access because MQO cannot deal with the procedural
code.

By translating SQL queries into HOQs, it is easier for us to
merge the queries. We find that the branch statement can be fused
with the first HOQ as it is a consumer of the HOQ. After applying
Rule 2, we get the following code fragment:

ACCESS Stock
WHERE s_i_id = @ol_i_id
AND s_w_id = @ol_supply_w_id {

@s_quantity = s_quantity;
IF(@s_quantity > @ol_quantity)

@s_quantity = @s_quantity - @ol_quantity;
ELSE

@s_quantity = @s_quantity - @ol_quantity + 91;
}
ACCESS Stock
WHERE s_i_id = @ol_i_id
AND s_w_id = @ol_supply_w_id {

s_quantity = @s_quantity;
}

As the two HOQs have the same selector, it is clear that the two
HOQs operate on the same set of tuples. We can combine them by
simply putting statements in their processors together. We get the
following code fragment:

ACCESS Stock
WHERE s_i_id = @ol_i_id
AND s_w_id = @ol_supply_w_id {

@s_quantity = s_quantity;
IF(@s_quantity > @ol_quantity)

@s_quantity = @s_quantity - @ol_quantity;
ELSE

@s_quantity = @s_quantity - @ol_quantity + 91;
s_quantity = @s_quantity;

}

Compared with the original code fragment which has to fetch the
tuples twice, the above HOQ can be executed by fetching the tuples
only once.

We can generalize the transformation by allowing the merging
of any two HOQs that access a common subset of tuples. Branch-
es should be added to make the combined HOQ perform proper-
ly. Given that merging two HOQs is another form of loop fusion,
examinations needed for loop fusion are also required here. The
transformation rule can be formulated as follows:

RULE 3 (MERGE HOQS). Given two HOQs q1 = HOQ(S1,
P1) and q2 = HOQ(S2, P2),

[
q1, q2

]
can be transformed to[

q = HOQ(S,P)
]

where S = S1 ∪ S2 and P =
[
Branch(S1, P1),

Branch(S2, P2)
]

if the following conditions are satisfied:

• S is loop-invariant in both q1 and q2.
• All loop-carried dependencies in q are caused by commuta-

tive operators.

5.5 Prefetching Results
Prefetching is an efficient method to reduce program latency. U-

niAD’s optimizer utilizes prefetching to reduce unnecessary waits
in programs when two HOQs can be executed simultaneously.

Consider the following code fragment:
Q1: ACCESS customer WHERE c_name = @c_name

@c_id = c_id;
IF(@c_id == 0)

Q2: ACCESS frequentflyer WHERE ff_name = @c_name
@c_id = ff_c_id;

The code fragment retrieves a customer’s id by its name. It first
probes the table customer to find the customer’s id. If the cus-
tomer’s id is not found in the table customer, it then proceeds to
probe the table frequentflyer.

In the above code fragment, Q2 cannot be executed until Q1’s
result is returned. When the condition in the branch statement is
satisfied, we have to scan table customer and frequentflyer in
sequence. The program latency is t1 + t2, where t1 and t2 are the
time to execute Q1 and Q2 respectively.

As the execution of Q2 does not depend on Q1’s result, we can
execute Q2 speculatively and use an variable to prefetch Q2’s re-
sult. If the condition in the branch statement is satisfied, we will use
the prefetched result, without probing the table frequentflyer a-
gain.

The following is the transformed code fragment:
ACCESS customer WHERE c_name = @c_name

@c_id = c_id;
ACCESS frequentflyer WHERE ff_name = @c_name

@prefetch_c_id = ff_c_id;
IF(@c_id == 0)

@c_id = @prefetch_c_id;

Since the two HOQs can be executed simultaneously, the pro-
gram latency of the above code fragment is max(t1, t2), which is
less than the original one.

We use def(B) to refer to the variables defined in the statement
list B. Then the formal transformation rule is given as follows:



RULE 4 (PREFETCH RESULT). Given two HOQs q1 = HOQ(S1,
P1) and q2 = HOQ(S2, P2), a branch b = Branch(C,

[
q2

]
).[

q1, b
]

can be transformed to
[
q1
]
⊙ B1 ⊙

[
q′2
]
⊙ B2, where B1 =[

Assign(v′, v)
]
, q′2 = HOQ(S2,

[
s[v/v′] | s ∈ P2 ∧ v ∈ def(P2)]

), B2 =
[

Branch
(
C, [ Assign(v, v′) | v ∈ def(P2) ]

) ]
if q2 can

be executed simultaneously with q1.

The transformation may lead to unnecessary execution when the
branch statement’s condition is not satisfied. In practice, we only
choose to apply the transformation when the speculatively executed
HOQ can be merged with previous HOQs.

5.6 Interchanging Loop and HOQ
Recall the code fragment in Figure 1. By translating the SQL

query into a HOQ, we get the following code fragment:
LOOP @d_id FROM 0 TO N

ACCESS order WHERE d_id = @d_id
@order_list[@d_id].append(o_id);

If there is no index built on the attribute d_id, the executor will
sequentially scan the table at each iteration of the loop. The redun-
dant table scans will degrade the performance significantly. Given
that the HOQ is logically also a loop, we can interchange the HOQ
and the loop and get the following code fragment:

ACCESS order
LOOP @d_id FROM 0 TO N

IF(d_id == @d_id)
@order_list[@d_id].append(o_id);

The loop now is nested in the HOQ. Though the complexity of
the code fragment is unchanged, the above code fragment elimi-
nates the redundant table scans and can be executed with only one
table scan.

As in the case of program optimization, loop interchange may
reorder the endpoints of a dependency, which will lead to an invalid
transformation. We should check the dependencies in the loop and
ensure the safety of the transformation.

The transformation can be specified as follows:

RULE 5 (INTERCHANGE HOQS AND LOOPS). Suppose l =
Loop(I,

[
q
]
) is a loop and q = HOQ(S, P) is a HOQ. l can be

transformed into q′ = HOQ(∅,
[
l′
]
]), where l′ = Loop(I, Branch(S,

P)) if the following conditions are satisfied:

• No indexes are available for S.
• Endpoints of all dependencies in q are not reordered in l′.

5.7 Flattening Nested Loops
Though Rule 5 provides a transformation to optimize the code

fragment in Figure 1, we can execute the code fragment more effi-
ciently.

We begin with the code fragment in Figure 1. Due to the logical
equivalence of HOQs and loops, we can express the HOQ nested
in the loop in the loop format:

LOOP @d_id FROM 0 TO N
FOREACH t IN order

IF(t.d_id == @d_id)
S: @order_list<@d_id>.append(t.o_id);

The value of field o_id is fetched in S if the branch statement’s
condition is satisfied. Using the idea described in Section 5.5, we
can speculatively prefetch the field’s value into a hash map and
assign the value in the map to @order_list[@d_id]. Then we get:

LOOP @d_id FROM 0 TO N
FOREACH t IN order

@o_id_map<t.d_id>.append(t.o_id);
IF(t.d_id == @d_id)
@order_list[@d_id] = @o_id_map<@d_id>;

Note that we store the value in @o_id_map < t.d_id > but
access the value by @o_id_map < @d_id >. It is allowed as we
only access the value when t.d_id == @d_id.

As there does not exist any cycle of dependencies in the loop
on table order, we can split the loop and get the following code
fragment:

LOOP @d_id FROM 0 TO N
L1: FOREACH t IN order

@o_id_map<t.d_id>.append(t.o_id);
L2: FOREACH t IN order

IF(t.d_id == @d_id)
@order_list[@d_id] = @o_id_map<@d_id>;

The loop on table order now splits into two loops inside the out-
er loop, namely L1 and L2. The variables inside L1 are all invariant
in the outer loop, hence we can put L1 outside the outer loop. The
branch statement inside L2 is also invariant in L2, we can directly
remove L2. Finally, we get the following code fragment:

ACCESS order
@o_id_map<d_id>.append(o_id);

LOOP @d_id FROM 0 TO N
@order_list[@d_id] = @o_id_map<@d_id>;

Both the original code fragment and the code fragment optimized
by Rule 5 contain nested loops and their complexity is O(N ∗M) if
the table’s size is M . If @o_id_map is a hash map, both insert and
search operations on the map are performed in O(1) generally. The
complexity of the code fragment above is O(max(M,N)), which
is much better than both of its counterparts.

This transformation rule provides a more efficient optimization
on programs than Rule 5, but it is limited as it can only deal with
HOQs with equality predicates. It can be easily understood when
explained in the context of joins. The original code fragment actu-
ally implements an equi-join between a temporary table {@d_id}
and the table order using nested loop join. The intuition behind the
transformation is that we choose to implement the equi-join using
hash join instead.

Both loop fission and loop-invariant code motion are used in the
transformation. Their safety will be taken into consideration when
the transformation is applied. To split the loop on table order, the
statements in the HOQ should not contain any cycles of dependen-
cies. Besides, both the variable @order_list[@d_id] and the ex-
pression @d_id should also be invariant in the loop on table order.
Otherwise, we cannot delete the loop L2.

The transformation can be described as follows:

RULE 6 (FLATTEN NESTED LOOPS). Suppose l = Loop(I,
[
q
]
)

is a loop and q = HOQ(c=e, P) is a HOQ, v is a variable defined
in P and c is a column .

[
l
]

can be transformed into
[
q′, l′

]
where

q′ = HOQ(∅, {s[v/map<c>]|s ∈ P}) and l′ = Loop(I, [Assign(v,
map<e>)]), if the following conditions are satisfied:

• No indexes are available for c = e.
• There is no cycle of dependencies in P .
• v and e are loop-invariant in q.

6. IMPLEMENTATION DETAILS
In this section, we will discuss some practical issues in the sys-

tem implementation and introduce our methods for addressing these
issues.

6.1 Heap Synchronization
When a HOQ is executed in parallel, the HOQ will be sent to all

corresponding worker threads and an instance of the HOQ will be
executed in each worker thread.

In UniAD, each program’s heap is shared among all worker thread-
s executing the program. As a HOQ can access free variables that
are defined outside their lexical scope, worker threads might access
shared data simultaneously when executing the HOQ. Though data
dependency analysis ensures that the operations performed on the
data do not conflict with each other, contention is still possible in



practice. The contention may arise from the explicit updates on a
loop iterator or implicitly when an element is inserted into a map.

One method to address the problem is to use a fine-grained lock-
ing mechanism to ensure strictly exclusive access to shared data.
But this method is too costly and performance might be harmed.
It also reduces the parallelism as threads might be queued when
performing updates on shared data.

Another method to solve the problem, which is borrowed from
many programming languages that support closures, is to create a
referencing environment for each executing instance of the HOQ
and copy all variables into the environment which the HOQ in-
stance will use in the execution. By doing this, the execution of
each instance is completely independent as their heaps are separat-
ed. This method requires an accurate analysis of the free variables
used in the execution to avoid unnecessary data copies. It is not triv-
ial as the data that an instance will access cannot be easily known
before it is executed.

Local 

Heap

Worker 

Thread
Shared Heap

Direct Read

Local Read

Local Write

Combine

Figure 8: Heap synchronization

UniAD adopts the idea of contention detection proposed in [5],
and modifies it to avoid contention between different threads in our
implementation. The method is illustrated in Figure 8.

We create a local heap for each worker thread. When the worker
thread needs to read a variable’s value, it first probes the value in
its local heap. If the variable does not reside in the local heap,
then the worker proceeds to probe it from the shared heap. Recall
that each instance of the same HOQ does not rely on the outputs
of other instances, outputs of the worker thread will be buffered
in its local heap. After all instances of the HOQ are completed,
their outputs will be pulled out from local heaps and merged into
the shared heap. Additional computation will be needed for those
variables whose values are produced by commutative operators.

6.2 Consistent Execution
UniAD allows different programs executing concurrently by de-

ploying the two-phase locking (2PL) protocol. Each program per-
forms as a transaction in a database. Before accessing a tuple, the
program must hold the locks associated with it and held locks are
released when the program completes its execution. The locking
protocol can solve the problem of synchronizing access to shared
data, but inconsistent execution may still happen in UniAD.

Consider the following HOQ:
ACCESS item WHERE quantity < @threshold

quantity -= @delta;

For each tuple whose quantity is less than @threshold, its
value of quantity is subtracted by @delta. Suppose tuples are
fetched using a B+-Tree index built on the attribute quantity. As
the tuple’s entry in the index will also be updated when its value
of quantity is updated, a tuple might be revisited and be fetched
more than once, which will lead to incorrect results.

Concurrency control mechanisms, including the locking proto-
col, do not help solve the problem as the problem is not caused by
concurrent accesses of different programs. The problem is due to
the inconsistent snapshots seen at each iteration of the HOQ. Dur-
ing the execution of a HOQ, the HOQ’s processor will be invoked
each time a qualified tuple is selected. Each qualified tuple should

be selected only once in the execution. But the updates performed
in the processor may violate the requirement.

The problem is similar to the problem caused by performing up-
dates within a sensitive cursor in stored procedures. Most databas-
es solve it by materializing the set of data used for the cursor and
storing the entire set in a temporary table. It is not efficient if a
large number of tuples are fetched.

UniAD solves the problem by storing multiple versions of the
same tuple. In UniAD, each tuple has a version number TV . Uni-
AD maintains a number CV to record the number of writes which
have been processed. When an update is performed on a tuple, a
new version of the tuple will be created. The value of CV is in-
cremented and its value will be used as the new tuple’s TV . When
a HOQ is to be executed, it first gets the current value of CV and
stores it into QV . Only those tuples whose TV is less than the HO-
Q’s QV are visible to the HOQ. Since those tuples produced during
the HOQ’s execution must have a larger TV than the HOQ’s QV ,
they will not be processed by the HOQ.

The mechanism is similar to a timestamp-based implementation
of Multi-version Concurrency Control (MVCC), except in the stan-
dard implementation of MVCC, a new tuple produced by a HOQ
would be visible to the program immediately. However in UniAD,
the tuple cannot be seen by the program until the HOQ’s execution
is completed.

7. EVALUATION
In this section, we present the experimental evaluation of our

UniAD system. The evaluation consists of two parts. We first eval-
uate the benefits brought by the optimization techniques in Section
7.1, followed by the capability of UniAD to execute the programs
in parallel in Section 7.2. All the experiments are performed on a
CentOS-5.5 server with 48GB RAM and two Intel E7-4807 proces-
sors, each of which contains six cores clocked at 1.86GHz.

7.1 Evaluation on Program Optimization
We first evaluate how effectively UniAD can optimize the us-

er programs. The programs from four different benchmarks are
adopted in the experiments: TPC-C [29], SEATS [27], PageRank
and TF-IDF. They together represent a variety of programs for da-
ta processing, e.g., online transaction processing and data analytic
applications.

For the tables in the experiments, only a unique hash index is cre-
ated on the primary key by default. Accesses by the primary keys
can be performed in constant time on average while other accesses
have to scan the entire table. Also, to eliminate the influence of lock
conflicts, only one worker thread is used to execute the programs
in this set of experiments.

7.1.1 Effect on TPC-C
TPC-C models an order processing system and consists of five

short-running transactions. We implement these transactions ac-
cording to the sample programs in [29] and use them in our exper-
iments. We compare the performance of the original and the opti-
mized execution plans for each transaction by measuring the trans-
action’s average latency at different scale factors. Note that, the
execution time of an optimized program includes the code transla-
tion cost which is negligible compared with overall latency. The
total size of tables on disk is about 70MB per scale factor.

The latency of each transaction while varying the number of
warehouses is shown in Figure 9. The results illustrate that three
of the five transactions, namely New Order, Payment and Delivery,
benefit from the optimization of UniAD significantly. Not surpris-
ingly, the performances of transactions Stock Level and Order Sta-
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Figure 9: Performance of transactions in TPC-C
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Figure 10: Performance of transactions in SEATS

tus are comparable, because these two transactions are quite simple
without much optimization space, e.g., Order Status transaction-
s include table scans nested in the loop but they access the table
orderline by primary keys.

The performances of New Order and Payment transactions are
improved by the reduction of tuple accesses. Both of them include
updates to a small number of keys in the system. To update a tuple,
the transaction first extracts the tuple’s value from the table, com-
putes its new value and updates the tuple with the new value. As
the select and update statements are executed separately, two index
accesses are needed to perform an update. By applying Rule 3, U-
niAD can merge the operations performed on the same tuple and
the number of I/O operations is reduced.

The performance of Delivery transactions is significantly im-
proved by avoiding the table scan nested in a loop. The Delivery
transactions use a loop to process a batch of orders and some state-
ments inside the loop access the table using partial keys. As only
a hash index is built for each table in the experiment and the hash
index does not support searches by the partial keys, sequential table
scans are needed to execute these statements. By applying Rule 5,
UniAD can share common table scans and Figure 9(e) shows that
the optimized program yields remarkable improvement.

The results are quite interesting as TPC-C transactions are writ-
ten by database experts. However, Delivery transactions exhibit
poor performance when no indexes are available. It implies that
even for those experts in data processing, without knowledge of the
underlying storage, may also write programs which exhibit poor
performance in practice. It is impractical for the programmers to
write different programs for different data sets, and hence an auto-
matic program optimization method is highly preferred.

7.1.2 Effect on SEATS
SEATS is an open source workload from the well-known H-

Store project. It models an airline ticketing system and has been
widely applied recently [9]. There are six transactions in the work-
load, namely Delete Reservation, Find Flight, Find Open Seat, New
Reservation, Update Customer and Update Reservation. A data set
generated by the standard utility is used in the experiments and the
size of tables on disk is about 130MB per scale factor.

Figure 10 shows the effect on the performance of unoptimized
and optimized programs by varying the scale factor. The result
shows that UniAD is able to find optimization opportunities for five
of the six transactions and significantly improve the performance of
four transactions.

To update a customer’s information, the Update Customer trans-
action has to probe the table customer first. The unoptimized trans-

action has to read two tuples and update one tuple. By merging the
two table scans on the table customer, the optimized program is
able to perform the update without another table scan. As a result,
only two tuple fetches are needed and the latency of Update Cus-
tomer transactions is reduced to about 2/3 of the original latency.

For New Reservation and Update Reservation transactions, U-
niAD achieves a 2x speedup over the unoptimized programs. A
New Reservation transaction reserves an empty seat for a customer
while an Update Reservation transaction updates a customer’s seat
to a new one. To ensure correctness, both transactions have to check
whether (1) the required seat is available and (2) the customer does
not have another seat on the flight. These conditions are checked in
sequence — the second condition is checked only if the first condi-
tion is satisfied. The unoptimized programs hence have to scan the
table reservation twice. UniAD observes that the second condi-
tion can be checked together with the first one. By applying Rule
4 and Rule 3, UniAD can check the conditions simultaneously and
thus eliminate the redundant table scan.

The Find Flight transaction finds available flights between two
cities. The transaction first gets the nearby airports for the departure
and arrival cities and then iterates over the nearby airports to find
available flights. Given a nearby airport, a sequential table scan
on the table flight is needed to find available flights. Similar to
Delivery transactions, the performance of Find Flight transactions
is degraded by the nested table scan. UniAD can eliminate the
nested table scan and hence improve the performance.

UniAD can also find optimization opportunities in Delete Reser-
vation transactions. Table scans on the table customer can be
merged and the number of tuples a transaction accesses is reduced.
But the benefit gained from the optimization is limited. It is be-
cause Delete Reservation transactions access the table customer
by primary keys while they have to sequentially scan the table
reservation. In comparison with all the tuple accesses in the
transactions, the tuple access we reduced is negligible.

7.1.3 Effect on PageRank
PageRank is a link analysis algorithm, which is used in many

Web applications, and we use it as a representative of data min-
ing programs to evaluate the effectiveness of UniAD. As PageRank
cannot be easily expressed in SQL, many programmers choose to
implement it in a procedural language with SQL queries. In [25],
the author gave an implementation of PageRank (shown in Figure
11), which is used in our experiments.

In addition to the original program and the program optimized
by the UniAD optimizer, a hand-optimized program is also used in
the experiment. The hand-optimized program retrieves each node’s



1 SELECT url INTO @url_list,
2 score INTO @score_list
3 FROM page;
4 LOOP @i FROM 0 TO @url_list.size()
5 {
6 SELECT from_url INTO @from_url_list
7 FROM link
8 WHERE to_url = @url_list[@i];
9

10 @score = 0.15*@score_list[@i];
11 LOOP @j FROM 0 to @from_url_list.size()
12 {
13 SELECT score INTO @from_score
14 FROM page
15 WHERE url = @from_url_list[@j];
16
17 SELECT COUNT(to_url) INTO @from_cnt
18 FROM link
19 WHERE from_url = @from_url_list[@j];
20
21 @score += @from_score / @from_cnt * 0.85;
22 }
23 UPDATE page
24 SET score = @score
25 WHERE url = @url_list[@i];
26 }

Figure 11: The PageRank program used in the experiment

score and outdegree at the beginning of the program, and hence the
program can get each node’s score and outdegree without scanning
tables, which is the most optimal implementation.

Data Set Nodes Edges

wiki-Talk 2,394,385 5,021,410
soc-pokec 1,632,803 30,622,564
cit-Patents 3,774,768 16,518,978

web-Google 875,713 5,105,039
LiveJournal 4,847,570 68,993,773
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Figure 12: PageRank Performance
We evaluate the performance of UniAD on the pagerank pro-

grams with various datasets, the details of which are illustrated
in Figure 12(a). These data sets are downloaded from the SNAP
project 1. The results are shown in Figure 12(b). Since the execu-
tion of the original program cannot be completed in six hours on
the data sets which is much slower than the other two competitors,
the results of the original program are omitted in Figure 12(b) for
clarity.

The main cause of the original program’s poor performance is
the table scans nested in the loops. For each node in the graph,
the program first retrieves the nodes pointing to it using the select
statement. Then for each retrieved node, the program gets its score
and outdegree using the statements. The procedure is repeated for
each node. As a node may point to more than one node, its score
and outdegree will be retrieved repeatedly.

Rule 6, Rule 2 and Rule 3 are used to optimize the original pro-
gram in UniAD. By applying Rule 6, the statements in the nested
loops are moved out of the loops. After that, shared table scans and
corresponding loops are combined according to Rule 2 and Rule
3. To apply Rule 6, hashing maps along with the insert and search
operations are introduced in the programs. Each node’s score and
outdegree are stored in the maps and values in the maps are used
in the following statements. It resembles the method used in the
hand-optimized program to improve the performance, but it is au-
tomatically constructed by the optimizer in UniAD. Because the
1http://snap.stanford.edu

1 SELECT COUNT(DISTINCT(doc_id)) INTO @doc_cnt
2 FROM corpus;
3
4 SELECT DISTINCT(word_id) INTO @word_list
5 FROM corpus;
6
7 SELECT doc_id, SUM(frequency) INTO @doc_term_freqs
8 FROM corpus;
9

10 LOOP @i FROM 0 TO @word_list.size() {
11 @word_id = @word_list[@i];
12
13 SELECT COUNT(doc_id) INTO @doc_freq
14 FROM corpus WHERE word_id = @word_id;
15
16 @idf = @doc_freq / @doc_cnt;
17
18 SELECT doc_id INTO @doc_inc_word_list
19 FROM corpus WHERE word_id = @word_id;
20
21 LOOP @j FROM 0 TO @doc_inc_word_list.size() {
22 @doc_id = @doc_inc_word_list[@j];
23
24 SELECT SUM(frequency) INTO @term_freq
25 FROM corpus
26 WHERE doc_id = @doc_id and word_id = @word_id;
27
28 @tf = @term_freq / @doc_term_freqs[@doc_id];
29 @tfidf = @tf * @idf;
30 }
31 }

Figure 13: The TF-IDF program used in the experiment
insert and search operations performed in maps are also introduced
in UniAD, which is the cost overhead, the hand-optimized program
outperforms the optimized program.

Nevertheless, although the user program is not properly written,
it can be efficiently executed in UniAD, yielding a comparative per-
formance to the hand-optimized program.

7.1.4 Effects on TF-IDF
Term Frequency-Inverse Document Frequency (TF-IDF) is a clas-

sic method to measure a term’s relevance to a document, which is
popularly used in many information retrieval systems.
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Figure 14: TF-IDF performance
In the experiment, we implement the program shown in Figure

13 to calculate the TF-IDF value of each term-document pair in the
corpus. The input corpus used is randomly generated and stored
in the table whose schema is (word_id, doc_id, frequency). The
number of words is fixed to 1,000 and the number of documents
is 10,000 per scale factor. We also build a B+-Tree index on the
attribute word_id. We again measure the performances of the o-
riginal program, the program optimized by UniAD and the hand-
optimized program, and the results are presented in Figure 14.

Due to the existence of the index on word_id, the program in
Figure 13 is a good implementation of the TF-IDF algorithm. But
we still observe that the optimized program can achieve up to 40%
performance promotion against the original one. By examining the



execution plan generated by the UniAD optimizer, we find that the
select statements in line 13 and line 18 are merged, which elimi-
nates the redundant tuple accesses.

The hand-optimized program exhibits a better performance as
it scans the corpus table to calculate each term’s document fre-
quency. As all words are listed in the @word_list, index accesses
are thus eliminated. Our optimizer is not able to perform such opti-
mizations as it does not know the number of words in the @word_list.

7.2 Evaluation on Parallelism
By analyzing the user programs, UniAD is able to extract log-

ic computation that can be combined with data manipulation. The
extracted logic computation might be executed in different worker
threads simultaneously and the performance is improved by paral-
lel processing. In this set of experiments, we evaluate the benefits
gained from parallel program execution in UniAD. We vary the
number of worker threads in the executor and measure the perfor-
mance of PageRank and K-Means respectively.

We first run the PageRank program on the LiveJournal graph.
To exploit data parallelism, the graph is partitioned into different
partitions by hash partitioning. The number of partitions is equal
to the number of worker threads and each partition is assigned to
a worker thread. We measure the performance of PageRank with
different numbers of worker threads and the results are plotted in
Figure 15(a).
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Figure 15: Parallel performance

At the beginning, with the increased number of worker threads,
the execution time for PageRank improves sharply. As the number
of threads continues to increase, the performance remains steady
and the execution time is reduced from 871s to 231s, achieving a
speedup of 278%.

We evaluate K-Mean’s performance with various numbers of
centroids. In each step of K-Means, each node has to calculate its
distance with all the centroids. The computation can be combined
with the node and be executed in parallel. Thus, the amount of
computation that is executed in parallel is proportional to the num-
ber of centroids. The performances of these configurations while
varying the numbers of centroids are illustrated in Figure 15(b). We
notice that the performance with more centroids benefits more from
parallel execution. The execution time with 48 centroids can be re-
duced to approximate 1/3 of its original execution time while the
execution time with 192 centroids is reduced to approximate 1/4.

The results exhibit that the benefits gained by parallel execution
is limited by the synchronization overhead. For example, when ex-
ecuting a HOQ in PageRank, each node’s information is gathered
and written to each thread worker’s local heap. When the HO-
Q’s execution is completed, the data stored in the local heap will
be flushed into the shared heap. The procedure is similar to the
shuffling phase in MapReduce. As the number of worker thread-
s increases, the amount of computation performed in each worker
thread is reduced as well. However, the synchronization overhead
remains the same and it finally overwhelms the benefits brought by
the parallelism.

8. RELATED WORK
UniAD is closely related to many research areas including par-

allel data processing, programming languages, and compiler opti-
mization. We briefly review the related work in this section.

Data processing systems. How to improve programming pro-
ductivity is one of the most critical issues in computer science.
Many data processing systems have been constructed to enable pro-
grammers to efficiently process data with little effort.

Relational databases have been massively successful over the
past decades. Their success lies in the usage of SQL and query
optimization. Users can write their tasks using SQL queries and
the database can find an efficient method to execute the task. But
one problem with SQL is that it is too limited to support various ap-
plications [34]. Many users have to construct very complex queries
for their tasks. Object-oriented databases attempt to overcome the
limitations of the relational databases by providing flexible data
models and powerful development facilities, but they usually lack
a suitable framework for query optimization [12, 6].

MapReduce [7] has emerged as a popular programming model
for parallel data processing recently. It simplifies the development
of distributed parallel applications. However, it is also criticized
for its reduced functionality, considerable amount of programming
efforts and lack of automatic optimization. To make MapReduce
easier to use, a number of high-level languages have been devel-
oped, including Hive [28] and Pig [22].

These data processing systems all separate the execution of pro-
cedural and declarative parts in programs, which makes them fal-
l somewhere between expressiveness brought by procedural lan-
guages and efficiency brought by declarative languages. By per-
forming automatic optimizations across different abstractions and
unifying the execution, UniAD benefits from both features of pro-
cedural and declarative programming.

Optimizations by program analysis. Some researchers pro-
posed to apply program analysis to improve performance of data
processing programs. Extracting declarative queries from impera-
tive code has been thought to be an efficient method to improve the
performance as transformed programs might benefit from the query
optimization based on the relational algebra. The method is appli-
cable for both database [19, 32, 33, 4] and MapReduce programs
[14, 15]. Though these attempts try to minimize the gap between
the procedural and declarative logic, the benefits they gain are lim-
ited as relational algebra is unable to match the expressiveness of
procedural languages.

Other works target the applications executed in multi-tier archi-
tectures. Guravannavar et al. [13] and Cheung et al. [3] proposed
different methods to reduce the overhead incurred by the commu-
nication between the applications and databases, i.e., rewrite the
iteratively invoked queries into a batch form [13], and partition
database programs into separate parts and execute some parts in
the databases [3]. Chavan et al. [2] and Ramachandra et al. [23]
studied the transformation methods to reduce the program latency
by prefetching the query results.

Uniform program representation. There exist many prior stud-
ies in providing uniform intermediate representations for database
programs. Some of them, such as structural recursion [1] and monoid
comprehension [10], have their roots in functional programming
languages. They obtain many nice properties from functional pro-
gramming, e.g., they are able to abstract away detailed computation
logic while retaining expressive power. But they are not suited for
optimizing data processing programs as they eliminate side effects
caused by I/O and shared states in programs, which makes it hard
to capture the I/O efficiency of programs and limits the expression
of flexible execution plans.



The other approaches include translating SQL queries into im-
perative code or machine code [24, 17, 21, 31, 8]. Program perfor-
mance can be improved due to better data and instruction locality
and the reduction of unpredictable branches. Compared with their
studies, we focus on higher level optimizations and consequent-
ly we can find optimization opportunities which are ignored when
programs are translated into low level code.

9. CONCLUSION
In this paper, we have presented a new system for ad-hoc data

processing called UniAD. UniAD was specifically designed to sim-
plify the programming of ad-hoc data processing tasks. Users can
write their programs in procedural languages with simple queries,
without the need to construct complex queries. UniAD benefit-
s from both procedural and declarative programming by unifying
the optimization and execution of user programs. We proposed a
novel intermediate representation named UniQL to describe user
programs. By translating user programs into HOQs, UniAD can ef-
ficiently optimize and execute user programs. We also proposed a
set of optimization rules and demonstrated their efficiency through
a comprehensive experimental study.

Note that, UniAD is not aimed to replace the existing data pro-
cessing systems, such as Hadoop and Pregel. UniAD targets ad-hoc
data processing, where the users have a relatively small set of data
at hand and want to conduct a set of tests on the data immediately.
UniAD frees the users from formulating their problems and think-
ing about the efficiency of their programs, by providing efficient
execution for their programs even when they are poorly written.
Once users decide to deploy a program as a standard tool, they can
carefully optimize the program and run the program in a more effi-
cient data processing system such as Hadoop.

There are several directions for future development of UniAD to
provide better performance and user experience. Currently, Uni-
AD deploys a rule-based optimizer and we would like to design a
cost-based optimizer to provide more efficient optimizations. Oth-
er ongoing research involves extending the functionality of UniAD
to facilitate a distributed environment.
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