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Abstract

Multi-dimensional data indexing has received much at-
tention in a centralized database. However, not so much
work has been done on this topic in the context of Peer-
to-Peer systems. In this paper, we propose a new Peer-to-
Peer framework based on a balanced tree structure overlay,
which can support extensible centralized mapping meth-
ods and query processing based on a variety of multi-
dimensional tree structures, including R-Tree, X-Tree, SS-
Tree, and M-Tree. Specifically, in a network with N nodes,
our framework guarantees that point queries and range
queries can be answered within O(logN) hops. We also
provide an effective load balancing strategy to allow nodes
to balance their work load efficiently. An experimental as-
sessment validates the practicality of our proposal.

1. Introduction

Peer-to-Peer (P2P) systems have become popular for
sharing resources, particularly files, across large numbers
of users. Exact match queries based on identifiers are well
supported in this context. However, shared data such as doc-
uments, music files, and images, are frequently specified as
points in a multi-dimensional data space based on expressed
features. As a result, it is important for P2P systems to pro-
vide efficient multi-dimensional query processing.

Index structures are central to efficient search in database
systems. Multi-dimensional indexes such as the R-tree [8]
and R∗-tree[2], and high-dimensional indexes such as the
M-tree[7] have been well tested and are widely accepted as
robust indexes in centralized systems. Even for P2P sys-
tems, there have been a few proposals to support multi-
dimensional indexing [18, 12, 21, 19]. Most systems sup-
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porting multi-dimensional data indexing in centralized data-
base are based on tree structures, which have many robust
properties such as concurrency, scalability, and adaptivity.
However, construction of such a structure is difficult in a
P2P environment. As such all the P2P multi-dimensional in-
dexing systems referenced above are based on space filling
curve or space partitioning. They do not inherit the proper-
ties of well-tested multi-dimensional hierarchical indexing
structures proposed in the literature.

In this paper, we propose a general framework, called
the Virtual Binary Index (VBI) overlay network, based on a
virtual binary balanced tree structure, which can be used to
support any kind of hierarchical tree structures that has been
designed based on a space containment relationship such as
the R-tree and M-tree. There are two main components in
the framework. The first component is the overlay network
based on a balanced binary tree concept that is inspired by
BATON [10]. However, the binary tree is only virtual, in
that peer nodes are not physically organized in a tree struc-
ture at all. The second component defines abstract methods
for multi-dimensional indexing and is extensible to a vari-
ety of index structures.

Our paper makes the following contributions

• We present a framework that is capable of support-
ing a variety of well-tested multi-dimensional index-
ing methods such as the R-Tree [8], X-Tree [4], SS-
Tree [20], and M-Tree [7] in a P2P system.

• We present search algorithms for point queries and
range queries, bounded in cost by O(logN) hops, de-
fined as the maximum path length of messages re-
quired to solve the problem.

• We present a comprehensive load balancing mecha-
nism so that the framework is adaptive to data and load
distributions.

The rest of the paper is organized as follows: In Section
2 we present related work. In Section 3 we provide back-
ground information about BATON. In Section 4, we intro-
duce our framework and the overlay network. In Section 5,



we explain our index construction and general algorithms
for different indexing schemes. In Section 6 we discuss load
balancing schemes used in our system. Finally, we show the
performance study in Section 7 and conclude in Section 8.

2. Related Work

Multi-dimensional indexing, including high-
dimensional indexing, has received extensive research
attention in the context of centralized databases [5, 6]. In
many of these methods, the data space is hierarchically di-
vided into smaller subspaces (regions), such that the higher
level data subspace contains the lower level subspaces
and acts a guide in searching. Naturally, most such meth-
ods are tree-based. These methods can be data-partitioning
based, where data subspaces are allowed to overlap (eg. R-
tree) or space-partitioning based, where data subspaces are
disjoint (eg. R+-tree [17]). The specific partitioning tech-
nique (whether space-based or data-based) is not material
to our algorithms in this paper, and hence we shall not dis-
tinguish between them.

Amongst P2P systems, CAN [14] can be considered the
first system supporting multi-dimensional data, although
the original intention is to hash data uniformly into multi-
dimensional space such that a certain degree of fault tol-
erance can be guaranteed. Being a structure that has some
similarity with the kd-tree[3] and grid-file[9], CAN can be
used to directly index multi-dimensional data in its natural
space. Most other systems such as [16, 12] use space filling
curves to map multi-dimensional data to one dimensional
data. After that, an overlay network is used to index that
one dimensional data. These works behave poorly when
the data distribution is skewed. pSearch [19], a P2P sys-
tem based on CAN, is proposed for document retrieval in
P2P networks by rotating the dimensions in indexing. Its fo-
cus is on retrieving relevant documents rather than on range
queries. Another system also based on CAN is proposed by
Sahin et al [15] in which the ranges are included into hash
functions. As a result, the system can always return a su-
perset of the range query. However, exact search is highly
inefficient in this system. SkipIndex [21] is based on skip
graph [1], which aims to support high dimensional similar-
ity query. It is based on k-d-tree [3] to partition the data
space, and then maps the data space into skip graph over-
lay network by encoding it into a unique key. However, it
inherits the scaling problems of space filling curves with re-
spect to dimensionality. Furthermore, it cannot guarantee
that data is found within O(logN) steps.

3. Background - BATON

In this section, we briefly describe the recently proposed
overlay network based on the binary tree called BAlanced

Figure 1. BATON structure

Tree Overlay Network (BATON) [10]. An example BA-
TON network is shown in Figure 1, where each peer in the
network maintains one node of the tree. Each node in the
tree is associated with a level and a number. Nodes form
the network by connecting with others via links. Each node
in the tree maintains “links” to its parent, children, adja-
cent nodes, and selected neighbor nodes. Links to selected
neighbors are maintained by two sideways routing tables:
a left routing table and a right routing table. Each of these
routing tables contains links to nodes at the same level with
numbers that are less (respectively greater) than the num-
ber of the source node by a power of 2. The definition of a
balanced tree in BATON is given below for clarity:

Definition 1: A tree is balanced if and only if at any node
in the tree, the height of its two subtrees differ by at most
one. 2

Two important theorems are central to BATON. The first
theorem is used to guarantee the balance of the tree while
the second gives an efficient way to forward requests among
nodes in the network.

Theorem 1: A tree is a balanced tree if every node in the
tree that has a child also has both its left and right routing
tables full.1 2

Theorem 2: If a node x contains a link to another node
y in its left or right routing tables, the parent node of x must
also contain a link to the parent node of y unless the same
node is parent of both x and y. 2

We note that the overlay network proposed in this pa-
per is a balanced binary tree, but is not the same as BA-
TON, in two crucial ways. Firstly, index nodes are mapped
differently into peer nodes from BATON in which each in-
dex node corresponds to a peer. Secondly, the definition of
sideways routing is new since linear ordering between value
ranges at nodes can no longer be assumed as in BATON. As
a result, algorithms for all operations described differ from

1 A routing table is full if none of its valid links is NULL



those in BATON; and in particular the crucial search algo-
rithm is completely different. Nonetheless, the two central
theorems of BATON apply to the VBI-Tree we introduce
below, since they share a similar binary tree structure.

4. VBI-Tree Architecture

4.1. The Overall Framework

The Virtual Binary Index Tree (VBI-Tree) is an abstract
tree structure on top of an overlay network as shown in
Figure 2. The abstract methods defined can support any
kind of hierarchical tree indexing structures in which the
region managed by a node covers all regions managed by
its children. Popular multi-dimensional hierarchical index-
ing structures include the R-tree[8], the X-tree[4], the SS-
tree[20], the M-tree[7], and their variants.

Figure 2. Overall framework

4.2. Overlay Network

As is the case for many centralized indexing methods,
VBI-Tree nodes can be partitioned into two classes: data
nodes (or leaf nodes) and routing nodes (or internal nodes).
Data nodes actually store data while routing nodes only
keep routing information. Like BATON, each routing node
in the VBI-Tree maintains links to its parent, its children,
its adjacent nodes and its sideways routing tables. However
entries in the routing tables do not need to keep informa-
tion about regions covered by neighbor nodes. Instead, each
routing node maintains an “upside table”, with information
about regions covered by each of its ancestors. Addition-
ally, each node needs to keep information about heights of
sub-trees rooted at its children. (This is used for the network
restructuring process (see 6.1)). VBI-Tree construction em-
ploys a parsimony principle which requires that every inter-
nal node have two children. The parsimony principle forces
the total number of nodes in a VBI-tree to be an odd num-
ber, and exactly half of these rounded up, to be data nodes.
In fact, we can establish the following theorem:

Figure 3. VBI-Tree structure

Theorem 3: In an in-order traversal of the VBI-Tree,
data nodes and routing nodes alternate. 2

Theorem 3 follows from the definition of a balanced bi-
nary tree – since any node that has a child must have full
sideways routing tables, at the very least it has a sibling.

Each peer in the network is assigned a pair of VBI-Tree
nodes: a routing node and a data node, in which the data
node is the left adjacent node of the routing node (in the in-
order traversal of the tree). The sole exception is the peer
keeping the right most data node, which does not have a
routing node. Since each peer keeps a routing node and a
data node, and query requests can be forwarded via links
in the routing node, to save space, data nodes do not need
to keep sideways routing tables as well as upside path. The
special peer keeping the rightmost data node, which does
not have a routing node, always forwards requests to the
parent node of the data node for processing. The VBI-Tree
structure is shown in Figure 3. Note that in the figure, nodes
with the same name are stored at the same peer.

4.3. Node Join

A node 2 wanting to join the network must know at least
one node inside the network and sends a JOIN request to
that node. There are two phases in a new node joining the
network. The first phase is to determine where the new
node should join. This is done exactly as in BATON ex-
cept that only routing nodes are used and considered dur-
ing join process. The cost of this step is O(logN), which is
the height of the tree. Details are in Algorithm 1.

After determining a position for the new node, the sec-
ond phase starts. At first, the data node at the position of the

2 Due to the fact that each peer node is associated with only one routing
node and vice versa, we shall simply refer to “routing node” and “peer
node” as “node” when such reference does not cause any confusion.
We stick to the term “data node” as is.



Algorithm 1 Join(node n)
If (Full(LeftRoutingTable(n)) and

Full(RightRoutingTable(n)) and
((LeftChild(n)==null) or (RightChild(n)==null))

Accept new node as child of n
Else

If ((Not Full(LeftRoutingTable(n))) or
(Not Full(RightRoutingTable(n))))

Forward the JOIN request to parent(n)
Else

m=SomeNodesNotHavingEnoughChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Forward the JOIN request to m

Else
Forward the JOIN request to one of its
adjacent nodes

new routing node splits its covered region into two sub re-
gions using node splitting algorithm. After that, a new rout-
ing node is created to replace the data node; two new data
nodes are created and linked as children of the new routing
node; sub regions and data covered by these regions are as-
signed to two new data nodes. Finally, the new routing node
and its left child are given to the new node. The other data
node is given to the correspondence right adjacent routing
node. In case the new node is the first child of its parent, the
parent node increases its height by one and notifies its par-
ent. That parent in turn checks to see if its own height is
increased in consequence, and if yes, notifies its own par-
ent, and so on recursively.

For example, assume that node u wants to join the net-
work and it sends a JOIN request to node b as in Figure 4.
b has its routing tables full and its child slots full, and all its
peers in its routing tables (only c in this case) also have both
child slots full. Therefore b forwards the request to an ad-
jacent node p. (Note that routing and data nodes alternate,
so the adjacent node is really the data node p′, which is lo-
cated at the same peer node as the adjacent routing node p).
At p, because its routing tables aren’t full, it forwards the re-
quest to its parent j, which then forwards the request to n.
At n, its routing tables are full but its doesn’t have any rout-
ing node children. (Data nodes are not considered in this al-
gorithm). So it accepts the new node, as its left child. A new
routing node u is created and the data currently covered by
its corresponding data node n′ is split into two sub-regions,
one is assigned to u′ while the other remains assigned to n′.

The cost of updating routing tables to reflect the exis-
tence of the new node is 6logN of which 2logN is for up-
dating routing tables of the parent node’s neighbors, 2logN
for updating routing tables of the new node’s neighbors and
2logN for setting routing tables for the new node. For up-

Figure 4. A new node joins the network

Figure 5. A leaf node leaves the network

dating height values of sub-trees if their heights change, it
takes maximum logN cost if the updating process propa-
gates from a leaf to the root.

4.4. Node Departure

Similar to node join, only routing nodes are used and
considered for node departure. If a leaf routing node, which
is a routing node without any routing child (or a peer con-
taining a routing leaf node), wishes to leave the network,
and there is no routing node in its routing tables having rout-
ing children, it can leave the network without affecting the
tree balance. In this case, the data node stored at the depart-
ing peer will be merged with its data node sibling. The re-
sult data node will replace the position of the routing node.
For example, assume that a peer containing routing node r
wishes to leave the network as in Figure 5. It’s clear that
node r can leave without affecting the tree balance (note
that only routing nodes are considered here). Thus, the cor-
responding data node r′ is merged with its data node sib-
ling f ′, which later is pulled to replace the position of r.
The cost of this process is 4logN in which 2logN is for
updating routing tables of departure routing node’s neigh-
bors and 2logN for updating routing tables of neighbors of
the departure routing node’s parent. In addition, as in the
case of a node join, a maximum additional logN cost may
be incurred for updating height of sub-trees if there are any
changes due to the node departure.

If a routing node wishing to leave is an internal rout-
ing node or a leaf routing node whose neighbor nodes have
routing node children, it needs to find a replacement that is



a routing leaf node. Algorithm 2 shows how the process of
finding replacement node incurs O(logN) cost. The cost of
updating routing tables to reflect changes is 8logN of which
4logN is for updating routing tables of neighbors of the re-
placement node and its parent, and 4logN for updating rout-
ing tables of neighbors of the departure node and its parent.
Note that upside paths don’t need to be updated in this case
since upside paths only keep covered regions of ancestors,
not physical references to them.

Algorithm 2 FindReplacementNode(node n)
If (LeftChild(n)!=null)

Forward the request to LeftChild(n)
Else If (RightChild(n)!=null)

Forward the request to RightChild(n)
Else

m=SomeNodesHavingChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Forward the request to a child of m

Else
Come to replace the leave node

4.5. Node Failure and Fault Tolerance

Failure recovery in VBI-Tree is identical to that in BA-
TON. When a node is found to be unreachable, a report is
sent to its parent, which is in charge of the recovery process.
The parent of the failed node finds a replacement node if
necessary and can re-establish links through redundant in-
formation at the nodes in its routing tables, and their chil-
dren. Operations executed during the recovery process may
by-pass failed nodes via either the sideways axis by links in
routing tables or the up-down axis by parent-child and ad-
jacent links.

5. Index Construction

Given the overlay network described in the preceding
section, we describe here how to use it to construct a generic
(multi-dimensional) index. The basic idea is to assign a re-
gion of the attribute space to each data node. Each internal
node has associated a region that covers all regions man-
aged by its children. Many known index structures follow
this sort of region assignment – the difference is in the
specifics of how these regions are chosen and split – we al-
low the same set of choices with regard to the specifics. In
this manner, we can create a VBI-R-Tree, a VBI-M-Tree,
a VBI-SS-Tree, etc. Initially, the root is the only data node
and it covers the entire domain. When new nodes join, the

Figure 6. Two dimensional index structure

domain is split into smaller regions as discussed in Section
4.3. When peer nodes leave, regions are consolidated as de-
scribed above in Section 4.4.

Addition (or deletion) of data items is performed as in the
corresponding centralized indexing scheme. However, there
is one issue: when a newly inserted data item at a node has
a value that doesn’t fall into any region covered by a node’s
children, one of the node’s children should be selected to en-
large its covered region. In a distributed system, such an en-
largement can be expensive, involving an update to all up-
side paths of that node’s descendants. To avoid this prob-
lem, we propose the use of discrete data. Discrete data is
defined as data that does not fall into any regions covered
by the node’s children and hence can be stored at a non-leaf
node 3. A routing node can keep discrete data, and only if
the number of discrete data items kept at a routing node ex-
ceeds some threshold is a batch enlargement performed of
the children’s regions. Additionally, we also perform lazy
updating. When the region covered by a node is enlarged,
update messages aren’t sent immediately if the network is
busy: rather they are sent to descendant nodes later when the
network is free. This laziness does not save in the total num-
ber of messages, but simply permits quicker response to a
data insertion that causes discrete data to go beyond thresh-
old, and avoids stressing the network at times of load.

The general index scheme is illustrated in Figure 6. In
this figure, we show the way to map an R-Tree and an M-
Tree in two dimensional space into our framework. We have
chosen the data such in the two cases that the resulting VBI-
Tree is the same for both schemes. There are two discrete
data objects in the figure: one is stored at the routing node
a, the other is stored at routing node c.

5.1. General Point Query Process

For simplicity, we first consider the case where sibling
nodes do not have overlapping regions, to develop Algo-
rithm 3. For a point query issued or received at node n, if

3 This is usually not a good idea in a centralized database since internal
nodes are usually kept in the memory so that size is a constraint, and
high fan-out a more important imperative. But these desiderata do not
apply in P2P systems



the region associated with n covers the point query, then the
search point will be in the tree rooted at n, and hence the re-
quest is either processed at n itself or forwarded to one of its
children. If the region associated with n does not cover the
point query, then n needs to find the nearest ancestor x cov-
ering the point query first by consulting its upside table. Af-
ter that, it forwards the request to a neighbor node y, found
in n’s sideways routing table, situated at the other side of
the tree rooted at x. Now y uses exactly the same algorithm
as n, and continues the search. In order to avoid receiving
back the search message from y when searched data is dis-
crete data stored at the common ancestor x of nodes n and y,
we use the nearest-checked-ancestor parameter, which indi-
cates the parent of the root of the tree to which the search is
to be limited. Initially, this parameter is set to null.

Algorithm 3 PointQuery(node n, point p, nearest-checked-
ancestor a) //without overlapped regions
If (Region(n) covers p)

If (Region(LeftChild(n) covers p)
PointQuery(LeftChild(n), p, LeftChild(n))

Else If (Region(RightChild(n) covers p)
PointQuery(RightChild(n), p, RightChild(n))

Else
LocalSearch(n, p)

Else
For i = 0 to Level(n) - Level(a) - 1

x = Upsidepath(n).get(i)
If (Region(x) covers p)

If (x == a)
LocalSearch(x, p) //finding discrete data

Else
y = get a neighbor node in other side

of the tree rooted at x
If (y!=null)

PointQuery(y, p, x)
Else

PointQuery(Parent(n), p, x)
Break

We illustrate the search process using Figure 7. Sup-
pose node h wants to search a point stored under region cov-
ered by node g in an R-Tree index scheme for two dimen-
sional data. Since the search point isn’t covered by h’s re-
gion, h checks its upside path and discovers that the only re-
gion that covers the search point corresponds to node a. As
a result, h forwards the point query to j, which is its neigh-
bor node on the other side of the subtree rooted at a. Now
j checks its upside path and realizes that the nearest ances-
tor node whose region covers the search point is c. However,
it cannot find a neighbor routing node on the other side of

Figure 7. Point query search

the tree rooted at c. Thus, it forwards the query to its par-
ent f . Finally, f forwards the query to g, which is the desti-
nation routing node, and g forwards the request to the data
node l′.

With the above algorithm, when a node n wants to search
for a point, if the search point is covered by the region of
n the cost of search process is h ≤ logN , where h is the
height of the subtree rooted at n. If the search point is nei-
ther covered by the region of n nor by the region of the root,
by checking the upside path and the routing tables, it takes
only one step to forward the request sideways to a node un-
der control of a subtree whose height is less than the height
of the current search tree by at least one (limited by the
nearest-checked-ancestor parameter). In the last case, if the
search point is covered by the region of the root, it takes
one step to forward the request to an n’s neighbor node. Af-
ter that, the request is forwarded upward to the root, which
take logN steps. As a result, the total cost of search process
is O(logN). Note that the process of forwarding the search
request from a node to its ancestor can be reduced by tak-
ing adjacent links among nodes instead of using only child-
parent links.

A worry with a tree-structured overlay network is that the
small number of nodes near the root will have to do dispro-
portionately more work. However, such a case doesn’t hap-
pen in our algorithm since search requests are forwarded
up only if the recipient node itself has discrete data rele-
vant to the query, and so has to be consulted; or the current
node has no correspondence neighbor node to forward the
request so that what would have been a sideways forward-
ing has to be kicked up a level. In the latter case, the node
has to be a leaf node, which far enough away from the root.

So far, we have discussed the point query search al-
gorithm without overlapping regions. However, most
multi-dimensional indexing schemes allow regions asso-
ciated with index nodes to overlap. Due to this, queries
may be forwarded to multiple nodes instead of only one
node. We use the same mechanism in our framework. Be-
cause the point query search can be considered as a special
case of range query search in which the range query ra-
dius is 0, we skip a walkthrough of this algorithm, and
move on to range queries.



5.2. General Range Query Process

This section gives a general algorithm for range query
processing. The search range algorithm is described in Al-
gorithm 4. Obviously, one now seeks nodes with regions
that intersect the query region rather than contain the query
point. Since many nodes may intersect with a given query
region, the request may be forwarded to multiple nodes. For
example, assume that in an R-Tree index scheme for two di-
mensional data, node h wants to search a region as in Fig-
ure 8. At first, h executes the query locally as its covered re-
gion intersects with the searched region. After that, it tries
to forward the query to other nodes. Since d′ is a child of
h and its region intersects with the searched region, d′ is
forwarded the query. Because all of h’s ancestors intersect
with the searched region, h forwards the query to i, j, which
are neighbor nodes located on the other side of the subtree
rooted at d and a. h also forwards the request to its parent d
because it can not find a neighbor node located on the other
side of the subtree rooted at b. Thereafter, the request is for-
warded to e from d, to g from j through f . Finally, at desti-
nation nodes i, e, and j, the query is forwarded to both data
nodes b′, r′ and l′, and routing nodes b, c for discrete data.

Algorithm 4 RangeQuery(node n, search-region r, nearest-
checked-ancestor a)
If (Region(n) ∩ r != ø)

LocalSearch(n, r)
If ((Region(LeftChild(n)) ∩ r != ø)

and (The search request is not sent from LeftChild(n))
RangeQuery(LeftChild(n), r, LeftChild(n))

If ((Region(RightChild(n)) ∩ r != ø)
and (The search request is not sent from RightChild(n))
RangeQuery(RightChild(n), r, RightChild(n))

For i = 0 to Level(n) - Level(a) - 1
x = UpsidePath(n).get(i)
If (Region(x) ∩ r != ø)

If (x == a)
If (No Region(Children(x) covers the whole r)

LocalSearch(x, r)
Else

y = get a neighbor node in other side
of the tree rooted at x
If (y!=null)

RangeQuery(y, r, x)
Else

RangeQuery(Parent(n), r, x)

Consider a node x that issues a range query r and for
each node y whose region intersects with r. If y is a descen-
dant of x, the search request is always forwarded downward
to reach y. If y is an ancestor of x, at first the request is for-

Figure 8. Range query search

warded to a neighbor node z of x, which is on the other
side of the tree rooted at y. After that, z checks and real-
izes that no children of y covers the whole r. Thus, z for-
wards the request to y via child-parent links. In the last case,
if y is neither descendant nor ancestor of x, y must fall into
a subtree rooted at z, which is an ancestor of x and z’s re-
gion must intersect with r. As a result, the request is for-
warded to a neighbor node t, which is on the other side of
the tree rooted at z. This process continues until y is either
ancestor or descendant of the node receiving the searched
request. In consequence, the algorithm is guaranteed to for-
ward the query request to all nodes intersecting with the
searched region. Even though this algorithm is a little dif-
ferent from the point query search algorithm without over-
lapped regions because at each step a search request may
be forwarded to multiple nodes, the cost of the search algo-
rithm is still kept at O(logN) hops since these requests are
forwarded in parallel.

6. Load Balancing

There are two load balancing schemes in VBI-Tree. The
first scheme is simple, the overloaded node tries to do load
balancing with its children if it is an internal routing node,
or with its sibling if it is a data node. Since this scheme is
not sufficient to deal with a very skewed data set, we pro-
pose the second scheme. In the second scheme, an internal
routing node always does load balancing only with its chil-
dren. However, if it is a leaf data node, it tries to do load
balancing with its sibling first. If its sibling is also over-
loaded, then it finds a lightly loaded data node via neighbor
links as in BATON. The lightly loaded node leaves its cur-
rent position and rejoins as a child of the overloaded node to
share the work load. This scheme can quickly redress global
imbalances in load, but it can cause the binary tree to be-
come unbalanced in depth: network restructuring is there-
after used to rebalance the tree.

6.1. Network Restructuring

When a node receives a message from its child to update
its height, by comparison with the height of the other child,



(a) LL Rotation (b) LR Rotation

(c) RR Rotation (d) RL Rotation

Figure 9. Network Restructuring

a node can know if its subtree is still balanced. If the sys-
tem becomes unbalanced, network restructuring is started,
by the node that detects this, using rotation operators as in
the AVL tree [11]. There are four ways to rebalance the tree
as shown in Figure 9.

In the LL Rotation and RR Rotation, two nodes are re-
quired to recalculate their covered regions. As in Figure 9a
and 9c, a needs to recalculate the minimum region covering
T2 and T3 first. After that, b recalculates the minimum re-
gion covering T1 and a. No data movement is required ex-
cept for discrete data locally stored at a and b. Similarly,
in the LR Rotation and RL Rotation, shown in figure 9b
and 9d, first b and a recalculate the minimum region cover-
ing T1 and T2, T3 and T4. Then, c recalculates the mini-
mum region covering b and a. Finally, discrete data stored
at a, b, and c is appropriately reallocated. After getting new
covered regions, these regions need to be updated in the up-
side tables at descendant nodes. As in the case of enlarging
covered regions due to data insertion, lazy updating can be
used. For a network restructuring involving n nodes, n mes-
sages are required to do updating. Additionally, each node
also needs to notify their new neighbor nodes about changes
which takes O(logN) cost. As a result, a network restruc-
turing involving n nodes requires O(n × logN + n) ef-
fort. The more the nodes participating in the restructuring
process, the more the cost of restructuring. However, the
probability of the rotation process involving n nodes expo-
nentially decreases with n. The amortized cost of an update
can be shown to be just O(logN).

7. Experimental Study

We built a peer-to-peer simulator to evaluate the perfor-
mance of our proposed system over large-scale networks.
For each experiment in a multi-dimensional space, 100000
data objects are inserted into a network of 10000 nodes.
Against this system, 1000 point queries, 1000 range queries,

and 1000 kNN queries are executed. Using the VBI frame-
work, we implemented the M-tree [7]. A well known P2P
system supporting multi-dimensional data - CAN [14] - is
used for comparison.

7.1. Performance of Point Queries

Figure 10(a) shows the average and maximum number of
hops required to find the result for point queries in different
dimensions. The result shows that the VBI-Tree performs
independent of dimensionality. CAN achieves good perfor-
mance only for a large number of dimensions. This may ap-
pear counter-intuitive at first, but it is due to the number of
neighbors for each node in CAN going up with the number
of dimensions, along with an increase in the size of rout-
ing tables. Figure 10(b) shows the increase in average num-
ber of search hops with increasing network size. CAN is ex-
ecuted in 5, 10, and 20 dimensional space.

7.2. Performance of Range Queries

Figure 10(c) shows the average number of hops required
to find the result for range queries in different dimensions
with different radius sizes. As in the case of point query
processing, the result in VBI-Tree is only affected by the
size of the network. It is not affected by change of dimen-
sion or radius size. In contrast, CAN requires more hops for
processing when the size of range queries is bigger.

7.3. Performance of kNN Queries

In this experiment, we implemented a simple kNN query
algorithm. In this algorithm all points that fall within a pre-
defined radius are returned. If the total number of returned
points is still less than the number specified, the search dis-
tance is increased incrementally until enough points are re-
turned. We set the initial radius small enough so that too
many points are never returned at first. The result are shown
in Figure 10(d) shows that both CAN and VBI-tree increase
average number of hops slightly when the number of re-
quested nearest neighbor nodes is increased from 10 to 20.
Other characteristics are similar to previous experiments.

7.4. Cost of updating upside path versus Cost of
search

Discrete data are an innovation in VBI Tree, and were in-
troduced to reduce the cost of updating upside path tables.
However, discrete data increases the cost of search queries.
In this experiment, we vary the limit on the size of discrete
data allowed at each internal (routing) node. Figures 10(e)
and 10(f) show that when we increase this value, the aver-
age number of messages required for updating upside paths



(a) Average and maximum hops in different di-
mensions

(b) Average hops in different network size (c) Average hops to find range query results

(d) Average hops to find kNN query results (e) Average messages for updating upside paths (f) Average hops for searching queries

(g) Average additional number of messages re-
quired in case of skewed data distribution

(h) Size of load balancing process (i) Workload distribution among nodes

Figure 10. Cost of point query search (a, b), range query search (c), kNN query search (d); The effect
of varying the number of maximum discrete data (e, f); The effect of load balancing (g, h)

decreases but the number for search increases. Depending
on the system, we should adjust the size of discrete data.

7.5. Effect of load balancing

Figure 10(g) shows the average additional number of
messages required to do load balancing and network re-
structuring in case of skewed data distribution compared to
uniform data distribution. The result shows that the addi-
tional cost required for doing load balancing and network
restructuring is not much, around 1 message for every 1000
insertion/deletions. This cost is so low because most of the
time, network restructuring only involves a small number of
nodes as shown in Figure 10(h).

7.6. Workload distribution

To evaluate the workload in case of skewed data distrib-
ution, we tested the network with two sets of data: one uni-

form and the other skewed. The skewed data set is generated
using a Zipfian distribution with parameter 1.0. Figure 10(i)
shows that the distribution of data stored at nodes is not very
sensitive to data skew in the case of VBI-Tree whereas CAN
is highly sensitive to such skew. With the Zipfian data set in
CAN, approximately 80% of data is stored at only 10% of
nodes. (Note that all preceding experiments were run with
uniform data sets and so represent a best case for CAN. Our
relative performance would be even better if we used real
data with skew). This experiment explains why the origi-
nal CAN uses DHTs for data distribution, which makes it
only suitable for point queries .

7.7. Access load

Figure 11 shows access load of nodes at different levels,
measured in terms of the average number of messages re-
ceived at a node in each level. Level 0 is the root, high num-



Figure 11. Access load for nodes at levels

bered levels are leaves. In case of insert operation, the re-
sult shows that higher level (closer to leaf) nodes always
have higher work load. This is due to updates to the up-
side tables: nodes closer to the leaf have more entries in
these tables and so are more likely to have to update these.
In the case of search, the load is more evenly distributed,
with slightly higher load at levels just above the leaves. In
no case is there a bottleneck at nodes close to the root.

8. Conclusion

We have described VBI-Tree, a framework based on a bi-
nary balanced tree structure, which can support both point
queries and range queries over high dimensional space ef-
ficiently. This framework can be used to implement a va-
riety of hierarchical region-based index structures, includ-
ing M-tree, R-tree, R*-tree, X-tree, etc., in a peer-to-peer
system. Experimental evidence supports the effectiveness of
this framework. Our contributions include:

• A virtual binary overlay network that is a significant
modification of BATON.

• Introduction of discrete data as a mean to minimize
update costs and novel P2P search algorithms that ac-
count properly for such discrete data.

• An AVL-tree like rotation scheme for rebalancing the
virtual binary tree when needed, leading to effective
load balance even with highly skewed data.
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