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ABSTRACT
Moving object indexing and query processing is a well studied re-
search topic, with applications in areas such as intelligent trans-
port systems and location-based services. While much existing
work explicitly or implicitly assumes a deterministic object move-
ment model, real-world objects often move in more complex and
stochastic ways. This paper investigates the possibility of a mar-
riage between moving-object indexing and probabilistic object mod-
elling. Given the distributions of the current locations and veloci-
ties of moving objects, we devise an efficient inference method for
the prediction of future locations. We demonstrate that such pre-
diction can be seamlessly integrated into existing index structures
designed for moving objects, thus improving the meaningfulness of
range and nearest neighbor query results in highly dynamic and un-
certain environments. The paper reports on extensive experiments
on the Bx-tree that offer insights into the properties of the paper’s
proposal.

1. INTRODUCTION
With the proliferation of location tracking and wireless commu-

nication, the management of moving object database has attracted
considerable attention in the database research communityover the
last decade. The state-of-the-art in indexing and query processing
for moving objects has reached a level where technologies have
enabled moving object data management capable of supporting a
wide spectrum of applications, e.g., in areas such as intelligent
transport system and location-based services.

However, most existing work on moving object data manage-
ment explicitly or implicitly assumes deterministic movement pre-
diction models that require moving objects to always reportaccu-
rate locations and velocities to the system. The system thenpredicts
the location of an object until its next update according to some
pre-defined class of functions. Assuming that an object reports its
latest location(x(t0), y(t0)) and velocity(vx(t0), vy(t0)) at time
t0, Equation 1 illustrates a typical linear prediction of the object’s
location for timet > t0.
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Index structures utilize simple predictions such as this tofacili-
tate the efficient processing of timeslice queries as of the current
and near-future times. A key basic assumption underlying this
scheme is that the location and velocity of an object are determin-
istically reported to the server.

Unfortunately, the expectation of high accuracy on location and
velocity measurement is unrealistic in many real-world applica-
tions. Due to the limited accuracy of available positioningsystems,
objects may only be able to report approximate locations or dis-
tributions on their possible locations. Further, real-world objects
such as taxis and private cars often move in complex and stochastic
ways. For example, Figure 1 plots sampled velocities of a school
bus in the Athens metropolitan area during one hour1. From the
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Figure 1: Velocity Distribution of a Bus During One Hour

figure, it can be concluded that the bus changes its velocity fre-
quently. To maintain a valid prediction function in the moving ob-
ject database, the bus is then forced to report its up-to-date position
and velocity frequently. These updates incur high communication
and computation costs.

The root of the problem is the asymmetric information gap be-
tween the object’s real movement and the abstraction used tomodel
its movement in the database. Specifically, current deterministic
movement models are unable to capture the necessary information
on the uncertainty of the moving objects. By introducing uncer-
tainty models into moving object database management, it ispos-
sible to improve the robustness of query results computed over the
predictions of the locations of highly dynamic moving objects, thus
rectifying this problem.

Despite extensive studies in probabilistic databases [1, 4, 6] and
proposals for extensions to moving-object querying [11, 21], it re-
1http://www.rtreeportal.org/



mains unclear how these models can be successfully integrated into
existing moving object database. In particular, existing solutions
exhibit three drawbacks. First, a good uncertain moving-object
model should provide reasonable prediction capabilities with re-
spect to the future motion of objects; in contrast, existingpropos-
als offer limited capabilities in this regard, as only past motion is
indexed while taking uncertainty into account [21]. Second, an un-
certain moving object model is expected to be general enoughto be
applicable to all objects. One approach utilizes frequent behaviors
of the moving object, yielding predictions that are not valid over
objects with unusual movement patterns [11]. Third, to the best
of our knowledge, no uncertain moving object models so far can
be supported seamlessly by the existing infrastructure of database
management system, rendering integration into real systems very
costly.

We present a new framework for query processing over uncertain
moving objects. This framework offers general prediction func-
tionality and ease of integration into current systems. We utilize a
generic movement inference model that infers the location distri-
bution at a specified time according to the current location and ve-
locity distributions. We show that state-of-art moving object index
structures, such as Bx-tree, can be adapted to index these distribu-
tions and answer probabilistic range andk-nearest neighbor queries
in an efficient manner.

The contributions of the paper are summarized as follows.

1. We present a new uncertain moving object model that takes
into account the uncertainties on both location and velocity.

2. We re-formulate traditional queries to apply to uncertain mov-
ing objects.

3. We devise a new movement inference model based on the
new uncertain moving object model.

4. We show how the uncertain moving object model can be in-
corporated into existing index structures.

5. We analyze the performance of the proposed methods with
extensive experimental studies.

The remainder of the paper is organized as follows. Section 2re-
views related work and Section 3 captures the setting and problem
addressed in the paper. Section 4 covers methods for movement
inference. Then Section 5 integrates support for uncertainmoving
objects into a moving-object index structure, and Section 6covers
query processing using the index structure. Section 7 evaluates the
performance of the paper’s proposals, and Section 8 offers conclu-
sions.

2. RELATED WORK
We review in turn related studies on probabilistic models and

indexes for moving objects.

2.1 Models of Uncertain Moving Objects
It is instructive to classify existing uncertain moving-object mod-

els according to two categories.
The first category contains models on uncertain trajectories of

moving objects. The concept of uncertain trajectory was recently
studied in detail by Trajcevski et al. [21]. Considering themeasure-
ment errors when capturing object movement, all object trajectories
are expanded by some predefined parameterǫ. Queries are thus
issued on the expanded trajectories, with the support of effective
indexing techniques. A different model was proposed by Cheng et
al. [6], in which the location uncertainties are updated at every time

point. Range queries and probabilistic nearest neighbor queries are
issued at the current time point also.

The second category applies uncertain prediction models tothe
accurate location and velocity reported by moving objects.For ex-
ample, Jeung et al. [11] employ a prediction model that returns
possible locations of moving objects with varying probabilities.

The existing works are unable to simultaneously address theun-
certainty of location and velocity of moving objects. Therefore,
their inference models rely on the accuracy of the measurements,
and they suffer from costly communication and updates when the
motions of the objects are stochastic in nature.

Range and nearest neighbor queries are prominent for staticun-
certain objects in probabilistic databases [1, 4, 5, 14]. Ina moving-
object database, the uncertainty of an object changes with time. A
predominant approach is to model an uncertain moving objectas
a static object at each time point, thus reusing existing query pro-
cessing algorithms. Cheng et al. [5] use pruning strategieson prob-
abilistic records when computing probabilistic range and nearest
neighbor queries. Kriegel et al. [14] apply Monte-Carlo sampling
on a probabilistic database to retrieve objects with high likelihood
of being the nearest neighbors of query points. Cheng et al. [4]
propose verification methods for nearest neighbor probabilities, by
partitioning the distances into subregions and deriving lower and
upper bound probabilities for the subregions. This type of method
was subsequently improved by refining the partitions depending on
estimates of the costs and benefits of sub-regions [1]. However,
by converting moving objects to static objects at each time point,
a query must be re-evaluated at every time point, resulting in high
query costs.

2.2 Index Structures for Moving Objects
Given up-to-date locations and velocities of certain moving ob-

jects, traditional moving object indexing structures typically target
range andk-nearest neighbor queries at specified time points.

Most existing solutions for moving object indexing assume alin-
ear movement model. They can be further divided into object par-
titioning and space partitioning solutions. The former utilize multi-
dimensional index structures, typically the R-tree and itsvariants.
The TPR-tree [17] is arguably the earliest attempt in this direction.
Objects are inserted into the index using a time-parameterized ex-
tensions of the traditional R-tree insertion strategy. A later variant,
the TPR∗-tree [20], is similar to the TPR-tree, but, notably, uses
a different insertion algorithm that puts additional efforts into at-
tempting to insert objects at better locations in the index.

To index moving objects with space partitioning, the typical ap-
proach is to partition the entire space into cells. By mapping the
2-dimensional cells into a 1-dimensional sequence by meansof a
space filling curve, the B+-tree can be employed to index the loca-
tions of the moving objects at reference time(s) [3, 8, 9, 15]. Given
a range query, this approach first transforms the query rangeinto
cell sequences using the space filling curve. These sequences are
then issued as queries to the B+-tree structure, with query expan-
sion to account for the linear movement of the objects indexed. For
ak nearest neighbor query, the answer is retrieved by gradually in-
creasing the radius of a range query untilk results are found. Sec-
tion 5.1 provides additional detail on a typical space partitioning
index, the Bx-tree.

Recent benchmark studies [2, 10] compare the performance of
state-of-art moving objects indexes. Techniques that build on the
B+-tree are capable of very good performance, and they offer ease
of integration into real systems that do not support multidimen-
sional structures such as the R-tree. Further, effective locking strate-
gies are available for the B+-tree, which is important in concurrent



environments [18]. Although similar strategies exist for the R-tree
and its variants [12, 13] complex index operations lock nodes for
longer time, which adversely affects throughput [7,8].

While all of the works above employ the linear movement model,
more complex movement models have also been studied. Tao et
al. [19] utilize high-order movement formulas to model the future
location of the moving objects. This model enables the system to
predict the motion more accurately, which can be fully supported
by a modified TPR-tree. Jeung et al. [11] presented another predic-
tion model that relies purely on frequent patterns discovered from
previous trajectories. Their approach finds frequent movement pat-
terns in a collection of object movements and uses these for predic-
tion.

3. UNCERTAIN MOVING OBJECT MODEL
We assume that we are given a population ofn 2D moving ob-

jects,D = {o1, o2, . . . , on}. Following previous studies on mov-
ing object indexing, the time dimension is modeled as a set ofdis-
crete time points,T = {1, 2, . . . , t, . . .}. Given an objectoi, we
useloct

i andvelti to denote the exact location and velocity ofoi at
time t.

We enhance existing certain moving object representationsto
capture uncertain information by recording distributionson loca-
tion and velocity instead of exact values. Specifically, we useLt

i

andVt
i to denote the distributions of location and velocity for ob-

jectoi at timet. Existing certain moving object representations are
special cases of this general representation where the distributions
degenerate to single values in the location and velocity spaces.

With this extension, the moving object database thus storesthe
distribution information of each uncertain moving object.In partic-
ular, each moving objectoi is associated with a tuple

`

Ltr

i ,Vtr

i , tu

´

,
wheretu is the update time for the object andLtr

i andVtr

i are the
location and velocity distributions attu. An update of a moving
object replaces the location and velocity distribution as well as the
update time currently recorded for the object.

By using the distribution information at the update time, the un-
certain moving object database aims to answer queries at anytime
t. This requires a movement inference model for predicting the lo-
cation distribution of an object. Such a model has the following
signature:

F (Ltu

i ,Vtu

i , tu, t) : SL × SV × T × T 7→ SL (2)

In other words, given the location and velocity distributions ofoi

at update timetu, as well as the query timet, the function derives
a new location distribution for objectoi at non-past timet.

Using the inference model, we can reformulate the traditional
range queries andk nearest neighbor queries to apply to a database
of uncertain moving objects. The definitions next follow thecon-
cepts adopted in current probabilistic database research [1,4].

DEFINITION 3.1. Probabilistic Range Query
Given a spatial rangeR, a query timet, and a thresholdθ, the
probabilistic range query returns all uncertain moving objects fal-
ling into R with probability no smaller thanθ at timet, i.e.,{oi ∈
D | Pr(loct

i ∈ R) ≥ θ}.

DEFINITION 3.2. Top-k Probabilistic NN Query (k-PNN)
Given a query locationq and a query timet, the probabilistic near-
est neighbor query returnsk uncertain moving objects with the
highest probabilities of being the nearest neighbor ofq.

The number of uncertain moving objects returned by thek-PNN
query can be less thank, if not enough objects have non-zero prob-
ability of being a nearest neighbor ofq. This happens when an

object’s maximal distance toq is less than the minimal distances
betweenq and all other objects.

While the notions defined above do not rely on how we repre-
sent the distributions, the problem of distribution representation
becomes important when we are to manage these distributionsin
a real database management system. Unfortunately, not all dis-
tributions are amenable to the resulting storage and computational
requirements. To balance the cost of inaccuracy and the easeof rep-
resentation, we adopt a representation scheme that discretizes the
space and velocity domains by means of regular grids. IfB bits are
specified in vector quantization, each dimension is partitioned into
2B intervals of equal length. A grid cell can thus be represented
by a vector of2B bits. Probabilities are assigned to the cells, as-
suming a uniformly distribution in each cell. Thus, the distribution
of the location and velocity is approximated by a sequence ofcells
with non-zero probabilities.

To further simplify the notation, we number the cells in accord-
ing to a space filling curve, e.g., the Z-curve or the Hilbert curve.
Without loss of generality, we employ the Hilbert curve in the rest
of the paper. Based on the numbering of the cells,CL

j denotes the
cell with (Hilbert) numberj in the space domain. Correspondingly,
CV

j denotes the counterpart in the velocity domain. The probability
of an object inCL

j (CV
j ) is Pi(C

L
j ) (Pi(C

V
j )).

Figure 2, exemplifies an uncertain moving objectoi at timet. Its
location and velocity distributions are summarized in Figures 2(a)
and 2(b). Asoi has positive probabilities in 4 cells in the space do-
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Figure 2: Example of an Uncertain Moving Object

main, the location distribution can be written asCL
oi

= {(CL
2 , 0.2),

(CL
3 , 0.5), (CL

4 , 0.1), (CL
8 , 0.2)}, indicating the probabilities of the

objects in the cells. Similarly, the velocity distributionis captured
asCV

oi
= {(CV

9 , 0.7), (CV
12, 0.3)}.

Using the location and velocity cell sets as the underlying distri-
bution knowledge, we can apply this knowledge to sets of objects.
Given a set of moving objectsS = {os1

, os2
, . . . , osr

} ⊆ D,
the location cell setCL

S contains all cells in the space domain with
positive probability for at least one objectosi

∈ S, i.e., CL
S =

{CL
j | ∃i (Psi

(CL
j ) > 0)}. Similarly, the possible velocity cells

are represented byCV
S .

Table 1 explains the above use ofPsi
and summarizes the nota-

tion used in the remainder of the paper.
Conventional data management techniques fall short in accom-

modating this model of uncertain moving objects. In the following
three sections, we introduce core components of our query process-
ing framework. First, movement inference provides a methodto
derive the location distribution of an object at any near-future time
from the location and velocity distributions known currently. Sec-
ond, to enable efficient query processing and updates of location
and velocity distributions, we re-use the Bx-tree, which was intro-
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Figure 3: Recursive Movement Inference

duced for indexing certain moving objects. The insertion and dele-
tion algorithms of the Bx-tree are amended for supporting moving
objects with uncertainty. Third, based on the revised indexstruc-
ture, the algorithms for processing possibility range queries and
k-PNN queries are presented.

Notation Explanation
D uncertain moving object set
n the cardinality of object setD
oi one uncertain moving object inD
tu update time of some moving object
tr reference time of the index structure
Ltr

i
location distribution ofoi at timetr

Vtr

i velocity distribution ofoi at timetr
SL location distribution space
SV velocity distribution space
R query range in the spatial space
θ probability threshold of range query
q query point fork-PNN query
k number of objects returned byk-PNN query

Pi(CL
j ) the probability ofoi in location cellCL

j

Pi(CV
j ) the probability ofoi in velocity cellCV

j

S a subset of objects inD
osi

ith object inS

CL
oi

spatial cells with positive probability ofoi

CV
oi

velocity cells with positive probability ofoi

CL
S

spatial cells with positive probability of any object inS
CV

S velocity cells with positive probability of any object inS

Table 1: Notation

4. MOVEMENT INFERENCE
A key component of the paper’s proposals is a method for infer-

ring the location distribution of an uncertain moving object based
on the most recently reported location and velocity distributions.
In this section, we derive two methods, calledRectangle Inference
andMonte-Carlo Simulation, that combine to provide an appropri-
ate inference method. Given a range query, the former estimates
an upper bound on the probability of an object being in the answer,
while the latter is an approximate solution used for the finalveri-
fication in our implementation. The extension of these methods to
supportingk-PNN queries is covered in later sections.

4.1 Rectangle Inference
The rectangle inference method is motivated by the following

observations. Consider the cell covering the rectangular region
CL

3 = [0.25, 0.5] × [0.25, 0.5] in Figure 2(a), in which the ob-

ject oi appears with probability 0.5 at update timetu. The infer-
ence model estimates the distribution of this location information
for the object given that the object’s velocity follows the distribu-
tion in Figure 2(b). Assuming the query timet is later than the
update timetu, we present a simple example on the inference of
the location distribution in Figure 3.

Between timestu and tu + 1, the movement of objectoi fol-
lows the velocity distribution by assumption. With probability 0.7,
the velocity is in the velocity cellCV

9 . If this the case, the move-
ment ofoi along both the x-axis and the y-axis is in the interval
[0, 0.1]. This implies that the location ofoi is in the rectangle
with diagonal corners at(0.25, 0.25) and (0.6, 0.6), with proba-
bility 0.5 × 0.7 = 0.35. Similarly, if the velocity ofoi falls in the
cell CL

12 = [0.1, 0.2] × [0, 0.1], the location ofoi at the next time
point is in the rectangle[0.35, 0.7] × [0.25, 0.6] with probability
0.5 × 0.3 = 0.15.

Figure 3 shows the two rectangles at timetu+1, markedIR1 and
IR2 . Note that the inferred rectangles overlap in the space domain.
To extend the analysis to subsequent time points, it is necessary
to derive new inferred rectangles fromIR1 and IR2 separately,
taking into account the velocity distribution. This leads to four
inferred rectangles at timetu + 2, namely{IR3 , IR4 , IR5 , IR6},
as is shown to the right in the figure.

We formalize rectangle inference as follows. If knowing that ob-
ject oi belongs to aninferred rectangleIR = [IR.l[1], IR.u[1]] ×
[IR.l[2], IR.u[2]] in the space domain with probabilityIR.p at time
t, the following lemma gives a recursive derivation of the inferred
rectangles at timet + 1.

LEMMA 4.1. Given an inferred rangeIR at time t of objectoi

and a velocity cellCV
j ∈ CV

i with positive probability,oi be-
longs to another inferred rectangular regionIR′ with probability
pi(C

V
j ) · IR.p at timet + 1, with diagonal corners at(IR.l[1] +

CV
j .l[1], IR.l[2] + CV

j .l[2]) and (IR.u[1] + CV
j .u[1], IR.u[2] +

CV
j .u[2]).

While the distribution at update time is supposed to be uniform
in the original spatial cells, uniformity is no longer guaranteed in
the inferred cells. To understand why, consider the examplein Fig-
ure 4 for an object moving in 1D. Assume some object is uniform
in the space interval[0, 0.5] and the velocity interval[0, 0.1]. The
spatial distribution of the object at the next time point follows the
grey density function plotted in the figure, which is uniformonly
between 0.1 and 0.5. This phenomenon is due to the boundary ef-
fect of the uniform distributions at the previous time point. Thus,
the inference on the basis of the lemma does not yield a precise lo-
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cation distribution, but only provides an upper bound on theproba-
bility of the moving object falling into a regionR. In other words,
if the inferred rectangle overlaps with the query region, the proba-
bility of the object appearing in the query region is no smaller than
the probability on the inferred rectangle.

While the inference method thus introduces distribution infor-
mation loss, the good news is that Lemma 4.1 does not rely on
the condition of uniform distributions in the space or velocity cells.
This allows us to recursively apply the lemma to construct inferred
rectangles from a reference (update) timetu to any timet > tu.

Algorithm 1 present the details on how inferred rectangles are
used to evaluate the upper bound of an object with respect to a
range query. The algorithm generates inferred rectangles with the
elapse of time. For each rectangleIR

′ generated, line 8 determines
whether it is able to infer any rectangle that overlaps with the query
rangeR at timet, by expanding the region ofIR′ with the maxi-
mum and minimum speeds of the uncertain moving object in both
dimensions. After all inferred rectangles are generated attime t,

Algorithm 1 IR-based Query Verification
(CL

i = {(CL
j , Pi(C

L
j )}, CV

i = {(CV
l , Pi(C

V
l )}, tu, R, t, θ)

1: Calculate the maximum and minimum speeds on the x-axis and the y-
axis, i.e.,{maxX ,maxY ,minX ,minY }.

2: Construct the inferred region setIRS tu
= CL

i .
3: for j from tu + 1 to t do
4: Construct an empty inferred region setIRS j = ∅
5: for eachIR ∈ IRS j−1 do
6: for each(CV

l
, Pi(CV

l
) ∈ CV

i do
7: Construct a new inferred regionIR′ according to Lemma 4.1
8: if IR′.l[1] + minX · (t − j) ≤ R.u[1]

IR′.u[1] + maxX · (t − j) ≥ R.l[1]
IR′.l[2] + minY · (t − j) ≤ R.u[2]
IR′.u[2] + maxY · (t − j) ≥ R.l[2] then

9: InsertIR′ into IRS j

10: Sum = 0
11: for eachIR ∈ St do
12: Sum = Sum + IR.p
13: if Sum ≥ θ then
14: Return TRUE
15: Return FALSE

their probabilities are summed up and compared with the threshold
θ. If it is no smaller thanθ, the moving object may possibly belong
to the range query result; otherwise, it is discarded.

A query timet that is smaller than the update timetu may be
allowed. To support verification with such times, a scheme isde-
ployed where the velocity domain is reversed. For example, ave-
locity cell CV

9 = [0, 0.1] × [0, 0.1] is reversed to the symmetric
cell CV

3 = [−0.1, 0] × [−0.1, 0]. Having reversed the domain,
the previous algorithm can be used with query timet replaced by
2tu − t.

4.2 Monte Carlo Simulation
Monte Carlo simulation is a randomized method that simulates

the motion of an uncertain moving object between timetu and a

query timet. Again, we first assume that the query timet is after
time tu.

The Monte Carlo simulation procedure is summarized in Algo-
rithm 2. Given an error rateǫ and a system-specified confidenceδ,

Algorithm 2 Monte Carlo Query Verification
(CL

i = {(CL
j , pi(C

L
j )}, CV

i = {(CV
l , pi(C

V
l )}, tu, R, t, θ, ǫ, δ)

1: Clear Success CounterSC = 0
2: CalculateN = 2 ln(1/δ)/ǫ2θ
3: for sample a numberl from 1 to N do
4: Randomly pick a locationloc depending on the location distribution

of oi at update timetu
5: for time pointz from tu + 1 to t do
6: Randomly pick a velocityvel depending on the velocity distribu-

tion of oi

7: loc = loc + vel
8: if loc ∈ R then
9: SC = SC + 1

10: if SC ≥ θN then
11: Return TRUE
12: Return FALSE

the algorithm first calculates a simulation numberN that indicates
how many simulation steps are necessary. In each step, the algo-
rithm picks one location based on the location distributionof the
object at update timetu. The movement of the object is then simu-
lated from timetu + 1 to the query timet. At each time point, the
algorithm selects the velocity of the object following the velocity
distribution. The object moves to its next location according to the
selected velocity. After finishing the motion simulation between
timest − 1 andt, the algorithm determines whether the object is
within the query regionR. If so, the success counterSC is incre-
mented by 1. The object is included in the result if the total times
of success during the simulation is no less thanθN .

By the following lemma from sampling theory, the algorithm has
high probability of determining whether an object is in the result of
a probabilistic range query with high confidence if the sampling
numberN is sufficiently large [16].

LEMMA 4.2. WhenN ≥ 2 ln(1/δ)/ǫ2θ, Algorithm 2 discovers
objects with probability no less than(1 − ǫ)θ in query rangeR at
timet, with confidence no less than1 − δ.

When the query timet is earlier thantu, a similar technique to
that of reversing the velocity domain is adopted, which facilitate
the inference of probabilities of the objects in the query range.

5. MOVING OBJECT INDEXING
With movement inference in place, we proceed to cover the in-

dex structure for uncertain moving objects that enables querying
and update. The basic structure for uncertain moving objects fol-
lows the Bx-tree, developed for certain moving objects [3,8,9]. We
first cover the principles underlying the Bx-tree, then integrate our
uncertain moving object model with the Bx-tree.

5.1 The Standard Bx-Tree
The Bx-tree [8] is the first proposal for using the B+-tree to index

moving objects. It applies a procedure that maps a 2D moving
point object represented as a linear function to a point location in
1D space. This point is then indexed by a B+-tree.

The Bx-tree assumes that object locations are updated at least
everyT time units, and it partitions the time dimension into inter-
vals of lengthT . Each interval has a so-called reference time that
belongs to the interval. A logical sub-tree, with a consecutive key



range, is maintained for each interval. An object is inserted into
the sub-tree with the interval that overlaps with the object’s update
time. This is done as follows: First, the position of the object’s lin-
ear function as of its interval’s reference time is determined. Sec-
ond, this 2D point location is mapped to a 1D location by means
of a Hilbert curve. To enable the Hilbert curve, the space in which
the objects move is discretized by means of a regular grid. Third,
the 1D location is prefixed by an identifier of the object’s logical
sub-tree.

An update of an object first deletes the old entry and then inserts
the new entry into the sub-tree with the interval that overlaps the
update time. Observe that due to the assumption about updates,
only two sub-trees contain objects at any point in time. Whenob-
jects are updated, they disappear from old sub-trees and areinserted
into the most recent sub-tree.

To process a range query, the query is applied to each sub-tree
in turn. For a sub-tree, the query range is expanded so that ittakes
into account the reference time used in the sub-tree and the max-
imum velocity of all the objects. This way, the enlarged query is
guaranteed to retrieve all objects that may qualify for the query, in
addition to some false positives. The enlarged query regionis in-
tersected with the Hilbert curve, which results in a sequence of 1D
range queries. These are then issued against the index. The results
for all sub-trees are combined, and filtering is applied to eliminate
false positives.

5.2 Structure for Uncertain Moving Objects
Following the standard Bx-tree, we partition the time domain

into equal-length intervalsT and assume that each object is up-
dated at least once during any such interval. At each point intime,
the index maintains a logical sub-tree for two consecutive inter-
vals. Figure 5 illustrates the logical sub-trees and the idea of time
partitioning. Sub-treesBT0 andBT1 are responsible for moving
objects with updates during odd and even time intervals, respec-
tively. Specifically,BT0 (BT1) stores all objects updated during
intervals[2jT, (2j + 1)T ) ([(2j + 1)T, (2j + 2)T )) for j > 0.
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Figure 5: Index Rollover Operation

All objects in a sub-treeBTl (l ∈ {0, 1}) are indexed as of a
reference timetr in the time interval of the sub-tree. If an object’s
update time is different from the reference time of the sub-tree, the
inference method is run to transform the object’s distributions to
the reference time.

A roll-over is invoked at time2jT ((2j + 1)T ), to reconstruct
the sub-treeBT1 (BT0) to switch to a new time interval[(2j +
1)T, (2j + 2)T ) ([(2j + 2)T, (2j + 3)T )) from the previous in-
terval [(2j − 1)T, 2jT ) ([2jT, (2j + 1)T )). Since each object by
assumption is updated once in any interval of lengthT , the sub-tree

becomes empty before being replaced. This assumption can bere-
moved by forcing updates of all objects that remain in the sub-tree
at destruction time.

When an object with location distributionLtu

i and velocity dis-
tributionVtu

i is updated at timetu, each location cell with non-zero
probability forLtu is indexed separately. The example shown in
Figure 2 has 4 such cells. Specifically, the non-zero cells inthe
space domain are indexed along with the probability and the com-
plete information on the velocity distribution.

To avoid redundant data records, the exact information on an
object, including its location distributionLtu

i , velocity distribution
Vtu

i , and update timetu, are stored in a data file. Leaf entries in
the B+-tree reference the corresponding object records in that file.

Similar to the Bx-tree, the velocity information on the objects
in the index is kept together with each logical subtree in themodi-
fied index. In particular, for each subtree, a main-memory 2Dhis-
togram of the maximum and minimum velocities of all objects is
maintained and updated at every insertion. Note that the deletion
operation does not alter the velocity bounds maintained in the his-
tograms, due to the excessive cost on updating them by findingthe
objects with the maximum or minimum velocities. The detailsof
the velocity histogram can be found elsewhere [8].

5.3 Index Update
When an uncertain moving object is to be updated at timetu, all

leaf entries referencing the object are removed first, and new refer-
ences are inserted based on the updated information of the object
using Algorithm 3.

To insert an uncertain moving object, the system first identifies
the sub-tree in which to insert the object. The system then estimates
the location probability distribution for the object at thesub-tree’s
reference timetr, by running the IR-based inference method from
Section 4. While Algorithm 1 tests the probability that a moving
object qualifies for a range query, it can also be extended easily to
discover the spatial cells with non-zero probabilities of the object
at the reference timetr.

Specifically, as summerized in Algorithm 3, for an insertion, the
system first infers the distribution of the object at the reference time
tr based on the location distributionCL

i , velocity distributionCV
i ,

and the update timetu (Lines 1–2). Then all spatial cells with non-
zero probabilities are extracted in a cell setCS (Line 3). Finally,
for each such cell, a leaf entry is inserted that references the record
of the object in the data file (Lines 4–5). The insertion operation
follows the standard strategy used in the Bx-tree, enabling reuse of
the B+-trees in commercial databases.

Algorithm 3 Insertion (Location CellsCL
i , Velocity CellsCV

i , up-
date timetu, sub-treeBTi)
1: Get the reference timetr of the sub-treeBTi

2: Generate inferred rectangles at timetr by Algorithm 1 with CL
i , CV

i
andtu

3: Find all spatial cells that overlap with the inferred rectangles and store
them in cell setCS

4: for each cellCL
j ∈ CS do

5: Insertoi’s reference into the cellCL
j indexed inBTi

The deletion procedure for the index is similar to the insertion in
Algorithm 3. Specifically, the system first locates the record of the
object in the data file and gets the location and velocity distribution
of the object at the update timetu. Then the deletion performs by
executing the same steps (Line 1-4) as in Algorithm 3, exceptthat
the cell is deleted from the index (Line 5). Due to space constraints,
we omit the details on the implementation of deletion.



5.4 Velocity-Based Partitioning
The efficiency of the query processing depends on the minimum

and maximum speeds of the objects, which are maintained at the
roots of the sub-trees. In our uncertainty model, the velocity of
each moving object covers a range in the velocity domain, leading
to larger query expansions and worse pruning effectiveness.

Motivated by the location partitioning technique in the ST2B-
tree [3], we propose a velocity-based partitioning method to de-
crease query expansion. As in the ST2B-tree, a sub-treeBTj is par-
titioned intoK logical sub-treesBTj1, . . . , BTjK , each of which
is used to index the moving objects in a specified velocity range.

The ST2B-tree applies density-based clustering to partition the
space domain intoK parts. We are unable to follow the same
strategy for our velocity partitioning, for two reasons. First, the
ST2B-tree indexes velocities that are exact points in the velocity
space. With uncertain moving objects, each velocity is represented
by a distribution, rendering any direct clustering of them impos-
sible. Second, the purpose of the space domain partitioningis to
find regions with similar moving-object densities. In our case, we
partition the velocity space to decrease the query expansion during
query processing, which is decided by the tightness on the velocity
bounds. If we useVelocity Minimal Bounding Rectangles(VM-
BRs) to denote the minimal rectangles in the velocity space cover-
ing the distributions of all uncertain moving objects, it isimportant
to reduce the volume of the VMBRs recorded on each logical sub-
treeBTjl.

When constructing a sub-treeBTj , the system needs to initialize
the VMBRs of itsK sub-tree partitions. A new moving objectoi to
be inserted intoBTj is assigned to the sub-tree partitionBTjl that
minimizes the enlargement of the VMBRs among all sub-trees.To
achieve tight bounds on the VMBRs, we borrow the idea underly-
ing the R-tree’s split strategy. We use the velocity ranges of exactly
K moving objects sampled from the previous sub-tree as the initial
VMBRs of the new sub-tree’s partitions. Specifically, the greedy
selection method in Algorithm 4 is adopted to pick these seeds of
thek partitions. An objectoi is randomly selected from the sample.

Algorithm 4 Select Seeds(Moving object set sampleD′, number
of sub-tree paritionsK)
1: Empty seed setS
2: Randomly pick an objectoi from D′

3: Insertoi into S
4: for j from 2 toK do
5: Pick the objectoi ∈ D′ − S, with maximal VMBR enlargement

w.r.t. any seed inS
6: Initialize the VMBRs of the sub-tree with the velocity ranges of the

objects inS

In the followingK − 1 iterations, the new object with the largest
VMBR expansion with respect to the currently selected ones is cho-
sen as a seed. The algorithm stops with exactlyK moving objects,
whose velocity ranges are recorded at the roots of the sub-tree par-
titions.

6. QUERY PROCESSING
We proceed to cover in turn the processing of probabilistic range

queries andk-PNN query.

6.1 Probabilistic Range Query
Recall from Section 3 that a probabilistic range query specifies a

probability thresholdθ, a spatial rangeR, and a timet and retrieves
all objects that belong toR at timet with probabilityθ. To process

this query, we employ a two-step method that comprises a growing
step and a verification step.

In the growing step, the system constructs a candidate object list
consisting of objects that may have at least probabilityθ of being
in rangeR at time query range a timet. This is accomplished
by issuing the range query on the index, retrieving all cellswhose
movement may satisfy the range query. Since the object id and
pointer to the physical storage are kept in the leaf nodes, a list of
candidate ids can be produced. An object may be included in the
result due to several cells. This redundancy is removed by checking
whether an identical id has already been added to the candidate list
when retrieving a moving object from a leaf node.

In the verification step, two algorithms are employed in order.
The IR-based verification (Algorithm 1) is run first as a filterbe-
cause of its high efficiency. Objects that pass the filter are subjected
to Monte-Carlo simulation verification (Algorithm 2). The objects
that also pass this filter are added to the result set. The procedure
for range queries is summarized in Algorithm 5.

Algorithm 5 Range Query Search(Query rangeR, query timet,
probability thresholdθ, index treeTr )
1: Clear result setRS and construct a candidate id listCL by retrieving

the ids of all objects with all spatial cells inTr that satisfy the range
query

2: for each objectoi ∈ CL do
3: if oi passes the IR-based verificationthen
4: if oi passes the Monte-Carlo verificationthen
5: Add oi to the results setRS
6: Return all objects inRS as the result

6.2 k-PNN Query
In index structures for certain moving objects, ak-nearest neigh-

bor query retrievesk objects with minimal distance to a query point
q at query timet. The query can be processed by issuing a se-
ries of range queries centered atq with a radiusr that is gradu-
ally increased0 towards∞ until exactlyk objects are found. This
method falls short for thek-PNN query on uncertain moving ob-
jects because the locations of the moving objects are no longer sin-
gle points.

Compared with existingk-PNN query processing on static prob-
abilistic databases [1, 4], it is more difficult to answer thek-PNN
query on uncertain moving objects because the optimizationtech-
niques proposed in previous works rely on an oracle that can arbi-
trarily retrieve the probability of objects in any distanceinterval. In
uncertain moving object databases, unfortunately, the computation
of the exact distribution of an object at query time is very expen-
sive.

We proceed to propose an algorithm that depends only on the
results of a series of range queries, each of which is a circular region
centered at query pointq. Since queries with smaller regions are
expected to have the lower computation costs, the queries are issued
in order of increasing radius, thus reducing the I/O and CPU costs.
A pair of a lower and an upper bound probability is maintainedfor
each object. The algorithm terminates when thekth highest lower
bound probability is larger than the upper bound probability of any
other object.

Before delving into the details of the algorithm, the exact nearest
neighbor probability of an uncertain moving objectoi is defined
based on its spatial distribution at query timet. Given a queryq,
we usePC(oi, q, r) to denote the probability ofoi belonging to
the circle centered atq with radiusr, and we usePR(oi, q, r1, r2)
to denote the probability ofoi belonging to the ring centered atq
with radius betweenr1 andr2 (r1 ≤ r2).



Figure 6 depicts the distributions of three moving objectso1, o2,
ando3 at query timet. The notationPR(o1, q, 2ǫ, 3ǫ) is the proba-
bility that objecto1 is located in the ring between2ǫ and3ǫ of query
q. In the figure, the probability is0.6. The circlePC(o1, q, 3ǫ) can
be expressed asPR(o1, q, 0, ǫ)+PR(o1, q, ǫ, 2ǫ)+PR(o1, q, 2ǫ, 3ǫ) =
0 + 0.2 + 0.6 = 0.8.

PR(o1,q,2ε,3ε)=0.6

PR(o1,q,ε,2ε)=0.2 PR(o1,q,3ε,4ε)=0.2

PR(o2,q,2ε,3ε)=0.6

PR(o2,q,3ε,4ε)=0.3

PR(o2,q,3ε,4ε)=0.7

PR(o3,q,2ε,3ε)=0.1

o1

o2

o3

ε
PC(o1,q,2ε)=0.2     PC(o1,q,3ε)=0.8     PC(o1,q,4ε)=1

PC(o2,q,2ε)=0        PC(o2,q,3ε)=0.6     PC(o2,q,4ε)=0.9

PC(o3,q,2ε)=0        PC(o3,q,3ε)=0.1     PC(o3,q,4ε)=0.8

Figure 6: Examplek-PNN Query

Thus, the exact nearest neighbor probability can be calculated
as [1,4]:

NNP i =

Z ∞

r=0

∂PC(oi, q, r)

∂r

Y

j 6=i

(1 − PC(oj , q, r)) dr

This equation is hard to compute precisely, but can be approx-
imated by replacing the integral with a summation that splits the
space into rings.

ANNP i =
∞

X

l=1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫl))

Algorithm 6 processes thek-PNN query. For each uncertain
moving objectoi, the algorithm maintains a lower boundlowi, an
upper boundupi, as well as an accumulated probabilityacci on the
probability of oi being the nearest neighbor. With the increase of
the query radius fromǫ(m − 1) to ǫm for some positive finished
iteration numberm, the algorithm updates the lower bound, the
upper bound, and the accumulated probabilities according to the
following lemma.

LEMMA 6.1. For any positive integerm, we have the lower bound
and upper bound onANNP i as follows:

ANNP i ≥
m

X

l=1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫl))

ANNP i ≤
m

X

l=1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫl)) +

Y

j

(1 − PC(oj , q, ǫm))

Algorithm 6 k-PNN Query (Query locationq and result sizek)

1: Constructupi, lowi, andacci for each objectoi

2: Set radiusr = 0 and clear result setRS
3: while stopping condition is not reacheddo
4: Increment radiusr by ǫ
5: Issue a probabilistic range query centered atq with radiusr

and probability threshold0
6: Updateacci for anyoi in the range query result
7: Updateupi andlowi according to Lemma 6.1
8: Putk objects with highest lower bound probabilities intoRS
9: if the smallestlowi in RS is higher than theupj of all ob-

jectsoj 6∈ RS then
10: Set stopping condition to TRUE
11: if acci = 1 for anyoi then
12: Set stopping condition to TRUE
13: Return all objects inRS as the result

PROOF. Based on the definition ofANNP i, we can derive:

ANNPi =

m
X

l=1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫl)) +

∞
X

l=m+1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫl))

Since both parts are positive, we reach the lower bound by elim-
inating the second part from the equation. In addition, since 1 −
PC(oi, q, ǫl) ≤ 1−PC(oi, q, ǫm) for anyl ≥ m, the second part
can be upper bounded as:

∞
X

l=m+1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫl))

≤

∞
X

l=m+1

PR(oi, q, ǫ(l − 1), ǫl)
Y

j 6=i

(1 − PC(oj , q, ǫm))

= (1 − PC(oi, q, ǫm))
Y

j 6=i

(1 − PC(oj , q, ǫm))

=
Y

j

(1 − PC(oj , q, ǫm))

This completes the proof of the lemma.

Sinceacci = PC(oi, q, ǫl), the probability in the ringPR(oi, q,
ǫ(l − 1), ǫl) is the difference between the new accumulated proba-
bility and the previous one. Thus, the new lower and upper bound
probabilities can be updated as implied by the formulas above. The
algorithm stops if the lowest lower bound probability of thetop-k
objects is larger than the upper bound probabilities of all other ob-
jects or if the accumulated probability of some objectoi reaches 1.

Recall the example of the uncertain moving objects in Figure6.
Table 2 lists the statuses of the objects after iterations 2–4. Since
no object has positive probability in the circle around query q, the
first iteration is not interesting. In the second iteration,objecto1

has probability0.2 in the ring; the probability ofo1 being nearest
neighbor is thus at least0.2 by the lower bound rule in Lemma 6.1.
The upper bound probabilities of other two objects are both 0.8
because the algorithm has no idea of their distributions so far. In
the third iteration, the algorithm further tightens the bounds after
observing the probabilities of the objects in the new ring. Another
iteration is still necessary, since the upper bound ofo3 is larger than



Iteration Object acci upi lowi

Iteration 2
o1 0.2 0.2 1
o2 0 0 0.8
o3 0 0 0.8

Iteration 3
o1 0.8 0.524 0.596
o2 0.6 0.108 0.18
o3 0.1 0.08 0.152

Iteration 4
o1 1 0.528 0.528
o2 0.9 0.108 0.108
o3 0.8 0.08 0.08

Table 2: Algorithm Running on Figure 6

the lower bound ofo2. This is resolved after the fourth iteration in
which o1 is found to be outside the circle with zero probability.

7. EMPIRICAL STUDY
In Section 7.1, we discuss the settings of the experiments. In

Section 7.2, we compare the motion prediction effectiveness of the
certain and uncertain moving object models. In Section 7.3,we
study the performance of the range query andk-PNN query.

7.1 Experimental Settings
We generate synthetic data sets to test the effectiveness and effi-

ciency of the paper’s proposal. Objects move in a 100 km x 100 km
work square. The objects are initially distributed uniformly in this
space. The directions and speeds of the objects are subsequently
generated randomly at each each time point. To simulate a real
environment, the objects are divided into 5 classes with different
maximum speedV max

i : 30, 60, 90, 120, 150 km/hour.
Assuming that the velocities of the objects rely on the traffic con-

ditions at their locations, the generated velocities follow a func-
tion that depends on the population of the objects’ current neigh-
borhoods. Specifically, given an objectoi, we count the number
counti of objects appearing in a range of 6 km ofoi. A reference
speedVi = max{0, V max

i −0.2×counti} is calculated. Given the
reference speed, a Gaussian distributionN(µ, σ) (it is re-sampled
if meeting a negative sample value) is adopted to model the uncer-
tainty on the speed, withµ = Vi andσ = Vi/9.

If an object is about to leave the work square, a reverse direction
is taken to keep it from exiting the square. After the velocity of the
moving object is decided, 10 other velocity samples are taken to
approximate the velocity distribution. The velocity cellsof the ob-
ject are determined by counting the sample velocities falling in the
cells. The location distribution at the next time point is also gen-
erated with the velocity samples, by simulating the location with
these velocities. By default, the spatial dimensions and velocity
dimension is represented by 7 and 3 bits, respectively.

In the study, we vary the data generation parameters as well as
the index structure settings. In particular, we list the tested param-
eters and settings in Table 3, where the default values are shown in
bold.

In the experiments, we consider the algorithms introduced in
Section 6 for answering probabilistic range queries andk-PNN
queries. We emphasize that although query processing techniques
for probabilistic databases have been proposed, these do not match
well our setting. Most of them utilize operators that retrieve prob-
abilities for arbitrary distance intervals to a query point. To make
this possible in our setting, the complete spatial distributions of all
moving objects at the query time must be generated before begin-
ning the query processing, which incurs very high CPU and I/O
costs.

All code used in our experiments is written in C++. The page

Parameter Setting

Max Update Time (sec.) 120
Number of objects(K) 100, 200, 300, 400, 500
θ in range query 0.1, 0.15,0.2, 0.25, 0.3
Range query length (km) 1, 1.5,2, 2.5, 3
Query time (sec) 10, 20,30, 40, 50
k in k-PNN Query 10, 2040, 80, 160
K in velocity partition 2,3,4,5,6,7,8
number of bits on spatial dimension 5, 6,7, 8, 9
number of bits on velocity dimen-
sion

2, 3, 4, 5

Table 3: Experimental Parameters and Settings

size is fixed at 4KB, and a 50-page LRU buffer is used. All experi-
ments are conducted on a PC with a 2.33GHz Core2 Duo CPU and
3.25GB of memory, running Windows XP.

7.2 Certainty Versus Uncertainty
In the next experiments, we validate the robustness of motion

prediction results for the uncertain moving object model when com-
pared to a traditional certain model. Only range queries areconsid-
ered, since thek-PNN query is not comparable to a conventional
k-NN query on a certain model. A simple linear motion functionis
adopted as the certain model. It uses the average velocity and loca-
tion from the distribution of uncertain moving objects at a reference
time.

Assume that at querying timet, the correct answer to a range
queryR is a subset of moving objects,S ⊆ D, while the uncer-
tain model (or certain model) returns an answer setA. We report
the recall and precision of these answers, i.e.,|S∩A|

|S|
and |S∩A|

|A|
, re-

spectively. The impact of three parameters are tested, including the
probability thresholdθ, hte querying time from the reference time,
and the length of the range query.
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Figure 7: Threshold θ vs. Prediction Error

In Figure 7, we evaluate the influence of the probability thresh-
old θ. Since it does not affect prediction with exact location and
velocity, recall and precision remain constant in the certain model.
The uncertain model, on the other hand, obtains a lower recall and
a higher precision as the threshold is increased. This is dueto the
shrinkage on the query result in the uncertain model. From the fig-
ure, we can conclude that the uncertain model provides more robust
results than the certain model, showing an advantage for recall. The
precision of the uncertain model is also competitive with that of the
certain model. Whenθ reaches 0.3, the uncertain model is better
than the certain model on both measurements.

In Figure 8, we present the results of varying the range query
size. Again, the uncertain model provides results with the best re-
call, which is almost 0.8 when the query size is larger than 1.5 km.
Both models exhibit an increasing precision with the expansion of
the range queries. The precision loss incurred by the adoption of
the uncertain model is always less than 10%.
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Figure 8: Query Size vs. Prediction Error

We also consider the query processing costs of the two models
for varying range query sizes. The figure shows that the uncertain
model incurs higher I/O cost than the certain model, i.e., 70% to
90% higher. This is because data pages have a higher fan-out for the
certain model than for the uncertain model; these are about 150 and
25, respectively. In addition, a query retrieves more objects with
the uncertain model than with the certain model. Thus the query
processing I/O with the uncertain model is expected to be much
higher than for the certain model. However, since object records are
saved in data pages in random order, each object retrieval performs
a random access. This leverages the negative effect of a smaller
fan-out and explains why the difference of I/O costs betweentwo
models is less than expected.

The query processing time for the uncertain model is about 5–9
times longer than for the certain model due to the additionalcompu-
tation (i.e., rectangle inference and Monte Carlo simulation). With
the uncertainty model, throughput is 20–40 sequential queries per
second.
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Figure 9: Query Time vs. Prediction Error

Figure 9 tests the query time parameter, which is measured asthe
number of seconds since the last update of the objects. Surprisingly,
recall and precision are affected only by the query time. Even when
predicting locations 50 seconds after the update time, the recall of
the uncertain model is still at 0.75, meaning that 75% of the correct
answers are captured with the uncertain model.

Again, we examine the query processing costs for the two mod-
els. The findings in Figure 9(c)-9(d) mirror those shown in Fig-
ure 8.

7.3 Efficiency Tests
We proceed to study the performance of the index without ve-

locity partitions (NP-tree) and with velocity partitions (VP-tree).
First, Figures 10 and 11 cover the effects of the number of velocity
partitions in the VP-tree on range andk-PNN query performance.
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Figure 10: Velocity Partitions vs. Range Query Efficiency
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Figure 11: Velocity Partitions vs.k-PNN Query Efficiency
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Figure 12: Range Query Size vs. Efficiency

The figures report average I/O and CPU costs while varying the
number of velocity partition from 2 to 10. The best overall per-
formance for range queries is obtained when using more than 7
velocity partitions. With velocity partitions, we maintain velocity
ranges at the roots of the logical sub-trees. This yields reduced
query enlargements.

A query needs to search all velocity sub-tree partitions. When
increasing the number of partitions beyond 7, the query processing
costs starts increasing slightly. This is because the costsof the in-
creased number of sub-tree traversals start to offset the benefit of
the reduced query enlargement.



Next, we compare the VP-tree and the NP-tree. Figures 12–15
report on the performance of range andk-PNN queries when vary-
ing the range query size, the parameterk, and the query time. The
velocity-based partitioning in the VP-tree yields the bestperfor-
mance of both types of queries and under all the parameter settings
considered.
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Figure 13: k-PNN Query Sizek vs. Efficiency
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Figure 14: Query Time vs. Range Query Efficiency

Figure 12 shows the average range query cost when using the two
tress and varying the query size from 1 km to 3 km. As expected,
the cost increases with the query size.
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Figure 15: Query Time vs.k-PNN Query Efficiency

Figure 13 concerns thek-PNN query performance when varying
the numberk of requested nearest neighbors candidates from 10 to
160. As expected, the I/O and CPU costs increase when using both
indexing methods. However, the VP-tree incurs the lowest costs.

Next, we consider the query processing performance when vary-
ing the query time from 10 to 50 seconds after the last update of
the objects. The costs for the range query andk-PNN query are
shown in Figure 14 and Figure 15, respectively. We find that asthe
query time increases, both the I/O and CPU costs increase. This is
natural, as a larger query time yields a larger query expansion. As
before, the VP-tree outperforms the NP-tree.

Figure 16 shows the average numbers of times IR-based verifica-
tion and Monte-Carlo verification are invoked during the process-
ing of a query. Monte-Carlo verification is computational costly,
while IR-based verification incurs significantly lower cost. Fig-
ure 16 shows that IR-based verification is executed about 700(for

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.30.250.20.150.1

ex
ec

ut
io

n 
tim

es

threshold θ

IR-based Verification
Monte-Carlo Verification

(a) varyingθ

 0

 1000

 2000

 3000

 4000

 5000

16080402010

ex
ec

ut
io

n 
tim

es

k-PNN query size k

IR-based Verification
Monte-Carlo Verification

(b) varyingk-PNN query sizek

Figure 16: IR-Based vs. Monte-Carlo Verification

range queries, varyingθ) and 4000 (fork-PNN queries, varying
k) times. Due to the resulting filtering of candidates, the costly
Monte-Carlo verification is executed less than 100 times forrange
queries and about 1,000 times fork-PNN queries.
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Figure 17: Number of Bits in the Spatial Dimension vs. Update
Efficiency
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Figure 18: Number of Bits in the Spatial Dimension vs. Range
Query Efficiency

7.4 Partition Granularity
Our indexing approach relies on a grid partitioning of the lo-

cation and velocity spaces of the moving objects. The granular-
ity of this partitioning is expected to affect the index performance.
In all the previous experiments, the location and velocity spaces
were partitioned using a fixed granularity, namely 27 and 23, re-
spectively. We proceed to investigate the performance implications
of different partitioning granularities.

We first consider the location space. The partitioning granularity
is represented by the number of bits used to generate the partition-
ing and the space filling curve. For example, if the number of bits
is 5, the space is partitioned into25 × 25 cells. Figures 17 and 18
show that when the number of bits is 7, both trees exhibit the best
update costs. With fewer bits, the update cost is higher because
each cell contains a large number of objects. With more bits,the
uncertainty region of an object is partitioned into more cells, which
incurs additional key insertions and deletions. Therefore, the I/O
and CPU costs per update increase when more bits are added. As
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Figure 19: Number of Bits in the Velocity Dimension vs. Update
Efficiency
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Figure 20: Number of Bits in the Velocity Dimension vs. Range
Query Efficiency

for range queries, using more bits yields smaller cells. Thus, a
query retrieves fewer false positives, which reduces the query cost.

Figures 19 and 20 show the effects of varying the number of bits
used for partitioning the velocity space.

The I/O costs decrease for both updates and queries as more bits
are used. With a finer partitioning of velocity space, the uncertain
velocity of objects fall into more cells, each of which represents
a smaller velocity range. The resulting more accurate information
for doing movement inference yields tighter inferred rectangles that
intersect with fewer spatial cells. Thus, fewer key insertions and
deletions occur during updates, and less data is accessed during
query processing. In contrast, the CPU costs increases slightly with
more bits. Although the I/O counts decrease with more bits, more
computation is needed during movement inferencing.

8. CONCLUSION
While the indexing of the current positions of moving objects has

received substantial attention, the majority of previous proposals
assume that the position of an object is represented by a near-past
position or by a linear function of time based on an exact near-past
position and velocity. In contrast, this paper makes the realistic as-
sumption that the current and near-future position of an object is to
be determined from a near-past position and velocity for which only
a stochastic distribution is known. Thus, positions are uncertain.
The paper presents techniques that enable the efficient inferencing
of current and near-future uncertain locations from past uncertain
velocity and location information. Further, the paper demonstrates
how it is possible to index the resulting uncertain moving objects
by means of an adapted Bx-tree. And it provides techniques for
processing probabilistic range and nearest neighbor queries. An
empirical study offers insight into pertinent design properties of
the paper’s proposals, demonstrating their practicality.
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