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ABSTRACT

A Cloud may be seen as a type of flexible computing infrastimect
consisting of many compute nodes, where resizable congpatin
pacities can be provided to different customers. To fullynkeas

the power of the Cloud, efficient data management is needed to
handle huge volumes of data and support a large number of con-
current end users. To achieve that, a scalable and highghput
indexing scheme is generally required. Such an indexingreeh
must not only incur a low maintenance cost but also suppaoslpa

lel search to improve scalability. In this paper, we presenovel,
scalable B -tree based indexing scheme for efficient data process-
ing in the Cloud. Our approach can be summarized as follows.
First, we build a local B -tree index for each compute node which
only indexes data residing on the node. Second, we organméze t
compute nodes as a structured overlay and publish a portithe o
local B™-tree nodes to the overlay for efficient query processing.
Finally, we propose an adaptive algorithm to select the iphet

BT -tree nodes according to query patterns. We conduct extensi
experiments on Amazon’s EC2, and the results demonstrate th
our indexing scheme is dynamic, efficient and scalable.

1. INTRODUCTION

There has been an increasing interest in deploying a stesege
tem on Cloud to support applications that require massilabga
ity and high throughput in storage layer. Examples of sudh sy
tems include Amazon’s Dynamo [15] and Google’s BigTabld.[13
Cloud storage systems are designed to meet several ebsentia
quirements of data-intensive applications: managegbdlitalabil-
ity, availability, and low latency. Computer nodes that ale-
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namo), or its variant, where key is an arbitrary byte strind galue

is a structured record consisting of a number of named cadumn
(e.g. BigTable, which supports efficient retrieval of vauga a
given key or key range).

However, existing solutions lack of built-in support foceadary
index, a useful feature for many applications. In real woudsers
tend to query data with more than one keys. For example, in an
online video system, such as Youtube, each video could bedsto
in a key-value store with a unique video id as the key and video
formation, including title, upload time and number of vieassthe
value. Although the video can be efficiently retrieved video id,

a common scenario is that the end user wants to find videos with
given titles or within a date range. Current practice to sdhis
problem is to run a MapReduce job that scans the whole dataset
and produces the necessary second indices in an offline toatich

ner. Problems of this approach is that the secondary indegtis
up-to-date and newly inserted tuples cannot be queried thiety

are indexed. For instance, when a new item is inserted intm{®o
Base, that item could be delayed for one day to be seen by. users

This paper presents CG-index (Cloud Global index), a sesamgnd
indexing scheme for Cloud storage systems. CG-index igdedi
for Cloud platform and built from scratch. It is tailored fonline
queries and maintained in an incremental way. It shares rimany
plementation strategies with shared-nothing databa<$is peer-
to-peer computing [14, 20], and existing Cloud storageesyst
[18, 15]. CG-index supports usual dictionary operatiansrt,
delete andlookup), as well as range search with a given key range.

CG-index software consists of two components: a clienahjpr
which is linked with user application and a set of index sesve
which store the index. The CG-index servers operate in adhar

cated from Cloud are maintained as a resource pool and can bepool of compute nodes allocated from Cloud and the indexeserv

dynamically added/removed from the pool as resource desnand
change over time. Datasets are automatically partitioneld-epli-
cated among available nodes for scalability and avaitgbiQuery
efficiency is achieved by either employing a pure key-valatgad
model, where both key and value are arbitrary byte strings @y-
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process can reside in the same physical machine with thagstor
server process. Besides high scalability and availap{lity-index
can be easily integrated into various storage systems fistipigh
throughput and high concurrency. These features are athisy
adopting three techniques: 1) a generic key-pointer reptation,
2) partition aware indexing, and 3) eventual consistency.
CG-index stores each index entry assarhandle pair, wherey,
is the secondary key that will be indexed and handle is artrarpi
byte string which could be used to fetch the correspondihgevia
the Cloud storage system. Throughout this paper, the peimmary
keyis referred to the key stored in key-value store and the ssrta
ondary keyis referred to the key stored in CG-index. This design fa-
cilitates the integration of CG-index with various storaystems.
CG-index treats a handle as an uninterpreted string. Userse-
rialize arbitrary information into a handle. For exampleers can
directly store the primary keys in handles or serialize thimary
keys along with timestamps into handles. The latter casdyigia



cal usage of indexing data in BigTable since each value iiT&ite
is timestamped.

All existing storage systems employ some horizontal paniihg
scheme to store large datasets in a cluster. The idea istibgrar
the dataset into a number of small pieces called data sheth
data shard is a distribution unit and is stored on a unique-com

its SSTable File in GFS and combines the techniques of rasgda
and column-based databases. To reduce the overheadsligsapp
the eventually consistent model, which is also adoptedigrpidper.
HyperTable [4] is an open source implementation of BigTalrle
HDFS. Amazon’s Dynamo [15] is a key-value store for many Ama-
zon's services. It applies the consistent hash functionidibute

puter node. CG-index is designed to be aware of and optimized data among the computer nodes. Similar to Dynamo, Voldemort

for such form of partitioning. Instead of building an index the
whole dataset, CG-index builds a local Bree index for each data
shard called an index shard. The index shard is a distribwtit

in CG-index, which is stored and maintained on a unique index
server. CG-index relies on this index distribution tecleidor de-
sired scalability. Queries are served by searching alifig@iindex
shards. The returned results is a streamghandle pairs. We can
group the handles by their data shard IDs. An optimizatioto is

[6] is a distributed key-value store, which can be scaled large
cluster and provide high throughput. Cassandra [5], Faaébo
distributed key-value store, combines the model of Big&add
Dynamo to support efficient InBox search. Although the under
lying implementation may be different, the common goal &fséa
proposals is to provide techniques that store huge datasetsa
shared-nothing computer cluster or data center. These am@rk
orthogonal to ours. We focus on providing an efficient seeond

retrieve a group of handles from the same data shard in a batchindexing technique over those data storage systems.

mode.
The index server is responsible for serving requests thahia

In [10], a distributed B -tree algorithm was proposed for index-
ing the large-scale dataset in the cluster. THetBee is distributed

data shards indexed by the server. To route queries among theamong the available nodes by randomly disseminating each B

servers, all index servers are organized as a structured@eeer
network, BATON [20]. Each index server maintains connetwio
to its neighbors in the network. It collects some Bee nodes
of its neighbors and thus knows data indexed by other servers
query routing algorithm traverses the network with neighlbtks
and returns alk;-handle pairs. Since each index server only sends
a portion of its local B -tree nodes to neighbors, only the updates
involving the published B-tree nodes trigger the synchronization
process. Therefore, in most cases, index servers updair amd
tries locally, achieving high throughput and concurrerknally, to
obtain required availability and resilience to networktjtiean, we
replicate the data of an index server to multiple serversengal
consistency is adopted to maintain consistency betwedicaisp

The above techniques complete the design of CG-index. Al-
though some implementation techniques applied by CG-ihder
been studied in the literature, adapting them in a Cloudesyst
makes CG-index design unique and challenging. The reseqgfdh
per is organized as follows: Section 2 reviews related wBdction
3 outlines our system architecture. Section 4 and Sectior<$ept
the proposed indexing and tuning algorithms. Section 6 goatlly
validates the effectiveness and efficiency of our proposdéxing
scheme. We conclude in Section 7. The algorithms and thesorem
are listed in the appendix (Section A). We also discuss sdher o
optimizations in the appendix.

2. RELATED WORK

Building scalable data storage systems is the first steprttsva
Cloud computing. These storage systems are always taifored
specific workload. The most important and fundamental gera
system is the distributed file system. Google's GFS [18] dsd i
open source implementation, HDFS [3], are designed to stppo
large-scale data analytic jobs, where datasets are sfdienual-
size chunks. The chunks are randomly distributed over tihe co
puter nodes. Amazon’s Simple Storage Service (S3) [2] ista da
storage service that allows users to store and retrievectsbn
Amazon’s Cloud infrastructure. S3 can be used to suppoft-hig
frequent access over the internet. OceanStore [21], E48diand
Ceph [26] provide peta-bytes of highly reliable storageeyban
support thousands of online users and simultaneous ascesse

tree node to a compute node (also called server node in [IB3.
strategy has two weaknesses. First, although it usestid® based
index, the index is mainly designed for simple lookup quegad

is therefore not capable of handling range queries effilgierio
process a range quef¥; u], it must first locate the leaf node re-
sponsible foi. Then, ifu is not contained by the leaf node, it needs
to retrieve the next leaf node from some compute server baised
the sibling pointer. Such form of retrieval continues utité whole
range has been searched. Second, it incurs high maintenaste
for the server nodes and huge memory overhead in the client ma
chines, as the client node (user’s own PC) lazily replicatethe
corresponding internal nodes.

The work that is most related to ours is RT-CAN [25]. RT-CAN
integrates CAN [23]-based routing protocol and the R-trageld
indexing scheme to support multi-dimensional queries.febght
from RT-CAN, CG-index organizes computer nodes into a BATON
[20] network and builds B-tree indexes to support high thfgut
one-dimensional queries. CG-index is a preliminary worloof
project, epiC [7]. In epiC, we re-implement RT-CAN and CGléx
in a unified indexing framework to support various types aftigs.

3. SYSTEM OVERVIEW

Figure 1 shows the system architecture of our cluster syséem
set of low-cost workstations join the cluster as computepfor
cessing) nodes. This is a shared nothing and stable systemewh
each node has its own memory and hard disk. To facilitateckear
nodes are connected based on the BATON protocol [20]. Naifiely
two nodes are routing neighbors in BATON, we will keep a TGP/I
connection between them. Note that BATON was proposed for a
dynamic Peer-to-Peer network. Itis designed for handlingacdic
and frequent node departure and joining. Cloud computirtifis
ferentin that nodes are organized by the service providemtance
performance. In this paper, the overlay protocols are osgdifor
routing purposes. Amazon's Dynamo [15] adopts the same idea
by applying consistent hashing for routing in clusters. BATis
used as the basis to demonstrate our ideas due to its trdedgpo
Details of BATON can be found in the appendix. Other overlays
supporting range queries, such as P-Ring [14] and P-Grjcc{8]
be easily adapted as well.

Based on above systems, some more sophisticated systems are In our system, data are partitioned into data shards (bas#tko

proposed to support various applications. Most of them age k
value based storage systems. Users can efficiently rethiewéata
via the primary key. BigTable [13] is a distributed storagstem
for managing large-scale structured datasets. BigTablataias

primary key), which are randomly distributed to compute exd
To facilitate search for a secondary key, each compute noiligsb
a B*-tree for the key to index its local data (data shards asdigme
the node). In this way, given a key value, we can efficienttenee
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(a) System Architecture

(b) Distributing B-tree Nodes in Overlay

Figure 1: System Overview

its handle. The handle is an arbitrary byte string which ddé
used to fetch the corresponding value in the Cloud storagiesy
To process queries in the cluster, a traditional schemebnalad-
cast the queries to all the nodes, where local search isrpestb
in parallel. This strategy, though simple, is not cost effitiand
scalable. Another approach is to maintain data partitigiiifor-

mation in a centralized server. The query processor neeld®ko
up the partitioning information for every query. The cehsarver
risks being the bottle-neck.

Therefore, given a key value or range, to locate the correbpo
ing B*-trees, we build a global index (CG-index) over the local
BT -trees. Specifically, some of the locaf Bree nodes (red nodes
in Figure 1) are published and indexed in the remote compdes
based on the overlay routing protocols. Note that to savsttitage
cost, we only store the following meta-data of a publishedtBee
node: (blk, range, keys, ipwhereblk is the disk block number of
the noderangeis the value range of the Btree node (we will dis-
cuss it in the next sectionjgysare search keys in the'Btree node
andip is the IP address of the corresponding compute node. In
this way, we maintain a remote index for the locdl-Bees in each

indexed, its ascendent and descendant nodes will not beedde
Overlay routing protocol allows us to jump to any indexet-Bee
nodes directly. Therefore, we do not need to start the sdesoh
the B"-tree’s root.

Algorithm 1 Cd ndexPubl i sh( N;)

1: N; publishes the root node of its'Btree
2: while truedo
N; checks its published B-tree noden;
if isBeneficialy;.children) then
expand the tree from; by indexingn;’s children
else
if benefit(;)<maintenanceCosi() then
collapse the tree by removing and indexn;’s parent
if necessary
wait for a time

4. THE CG-INDEX

Different from [10], where a global B-tree index is established

compute node. These indexes compose the CG-index in our sys+or all the compute nodes in the network, in our approachheac

tem. Figure 1(a) shows an example of the CG-index, where each
compute node maintains a portion of the CG-index. Figur@ 1(b
gives an example of mapping'Btree nodes to compute nodes in
the overlay. To process a query, we first look up the CG-index f
the corresponding B-tree nodes based on the overlay routing pro-
tocols. And then following the pointers of the CG-index, warch

the local B -trees in parallel.

The CG-index is disseminated to compute nodes in the system.
To improve the search efficiency, the CG-index is fully brgfiin
memory, where each compute node maintains a subset of G&-ind
in its memory. As memory size is limited, only a portion of B
tree nodes can be inserted into CG-index. Hence, we needro pl
our indexing strategy wisely. In this system, we build auaitex-
pansion tree for the B-tree. We expand the Biree from the root
node step by step. If the child nodes are beneficial for theyque
processing, we will expand the tree and publish the childesod
Otherwise, we may collapse the tree to reduce maintenarste co
and free up memory. Algorithm 1 shows the general idea ofrour i
dexing scheme. Initially, the compute node only publisiesrbot
of its local Bt -tree. Then, based on the query patterns and our cost
model, we compute the benefit of expanding or collapsingrée t
(line 4 and line 7). To reduce maintenance cost, we only philfi-
ternal B -tree nodes (we will not expand the tree to the leaf level).
Note that in our expanding/collapsing strategy, if &-Bee node is

compute node has its local'Btree, and we disseminate the local
B -tree nodes to various compute nodes. In this section, wesks
our index routing and maintenance protocols. The indexctele
scheme will be presented in next section. To clarify theesgn-
tation, we usaipper-caseandlower-casecharacters to denote the
compute node and Btree node, respectively.

4.1 Indexing Local Bf-tree Nodes Remotely

Given a range, we can locate the BATON node responsible for
the range (the node whose subtree range can fully cover énehse
range). On the other hand, the"Bree node maintains the infor-
mation about the data within a range. This observation pes/us
with a straightforward method to publish™Btree nodes to remote
compute nodes. We employ thaokup protocol in the overlay to
map a B -tree node to a compute node and store the meta-data of
the B"-tree node at the compute node’s memory.

To publish B"-tree nodes into CG-index, we need to generate a
range for each B-tree node. Based on their positions, the-Bee
nodes can be classified into two types: 1) the node is neittger t
left-most nor the right-most node at its level and 2) the rendlits
ancestors are always the left-most or right-most child.

For the first type of nodes, we can generate their ranges based
on the parents’ information. For example, in Figure 2, nods
nodea’s second child. So its range is from the first key to the
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Figure 2: B™-Tree Nodes and Their Index Ranges

second key ofi, namely (12,35). The second type of nodes only
provide an open range (no lower bound or no upper bound). We
use the smallest value and the largest value in current $rbeund
values. To reduce update cost, we slightly increase theerafgr
example, in Figure 2, we use 0 as the lower bound instead of 5,
the actual smallest value. After defining the lower boundsppkr
bound of the tree, we can generate a range for the type 2 nodes
For example, the ranges of nodeand a are (0,100) and (0,45)
respectively. The lower bound and upper bound can be cached i
memory, and updated when new data are inserted into thentzst-

or right-most leaf nodes.

To publish a B -tree node, we first generate its range Then,
based on the BATON routing protocols, we obtain the compute
node N, which is responsible for the lower bound Bf Step by
step, we forward the request to the ancestord/afintil we reach
the one whose subtree range can fully confirThe B' -tree node
is then indexed in that node. For additional details, pleasethe
appendix (section A).

In the cluster system, as the processing nodes are low-ookt w
stations, there may be node failures at any time. Singletdin
failure can be handled by our replication strategy. But waenb-
set of nodes are offline (e.g. a rack switch is down), all oagli
may be lost. To handle such problem, the compute node refsesh
all its published B -tree nodes occasionally.

4.2 Query Processing

Given a range quer§, we need to search the CG-index to locate
the B™-tree nodes whose ranges overlap withWe can simulate
the overlay’s search algorithm to process the query. Algori2
shows a general range search process. Starting from the lowe
bound of @, we follow the right adjacent links to search sibling
nodes until reaching the upper bound@f However, the range
search of many overlays, including BATON's, could be furtbp-
timized. Supposé nodes overlap witlf). The average cost of a
typical range search in BATON is estimated%ang N+k, where
N is the total number of compute nodes in the system.

Algorithm 2 Sear ch(Q = [, u])
1: N;=lookup()
2: perform local search ofv;
3: while N; = N;.right andN;.low < u do
4:  perform local search okV;

The first optimization to the range search algorithm is that i
stead of starting the search from the lower bound, we cahatar
any point inside the range. Suppose the data are uniformsly di
tributed among nodes anll is the total range, this optimization
reduces the average cost of searching a node in a r@nfyem
%logQN-t-ktO%logQ% + k.

The existing analysis ignores the effectkgfwhich in fact dom-
inates search performance in a large-scale overlay netwaska
simple example, in a 10,000-node network, suppose the data a
uniformly partitioned among processing nodgés= 100 if %
0.01. To reduce the latency of range search, the second optimiza-

tion is to increase parallelism. We broadcast the queryeagtb-
cessing nodes that overlaps with the search range in garalle
Finally, the new search algorithm is summarized as:

1. Locate a random processing hode in the search range (opti-
mization 1).

2. Following the parent link, locate the root node of a BATON
subtree, The subtree covers the whole search range.

3. Selectively broadcast the query to the descendants etithe
tree (optimization 2).

4. In each processing node, after receiving the search sgque
do alocal search for the CG-index.

Parallel search algorithm reduces the average cost%rkmgb N+k

to 3 log, <Y +log, N, wherelog, N is the height of the BATON
tree. For detail algorithms, please refer to the appendix.

5. ADAPTIVE TUNING

In this section, we propose our adaptive indexing strategped
on the cost model of overlay routings. Our adaptive schereese
tively indexes local B -tree nodes according to query patterns by
expanding the local B-tree from the root node dynamically.

5.1 Cost Modeling

We now consider the cost of publishing a localBee node in
the network under the adaptive approach. We do so by revigwin
the procedures of query processing and index maintenarereerc
ally, we consider three types of costs: network routing ,cosgal
search cost and index maintenance cost. All the costs aneatstl
approximately. We user and 8 to denote the average cost of a
random 1/O operation and the cost of sending an index message
respectively. As we evaluate CG-index on Amazon’s EC2 §1],
andg are estimated based on the results of [24, 12].

In query processing, we first locate the compute nodes respon
ble for our search key. This incu@@logzN cost in the structured
overlays, wheréV is the total number of nodes in the cluster. After
locating the compute nodes, we retrieve the indexéeti@e nodes
in the CG-index. As the index is fully buffered in memory, theal
retrieval cost can be discarded.

Suppose the height of Btree 7 is h andn is 7°s node with
heighth(n). Then, processing queries via the indexwofill incur
ah(n) cost in the local search. We save a costvOf — h(n)) by
searching from: instead of the root node.

On the other hand, to synchronize the local-Bee index with
the remote one, we need to send index update messages.”The B
tree leaf nodes incur much higher update cost than the gitern
nodes. Assume that the updates happen uniformly amongahe le
nodes. To model the update cost in the local-Bee, we define
the parameters in Table 5.1. On average, the nodes a@f& have
37’” keys. Synchronization is performed when an indexedtie
node splits or merges with other nodes. Thus, we need to dempu
the probability of splitting or merging a nodewith heighth(n).

Table 5.1 Parameters

m BT tree’s order

h height of the node
p1 | probability of insertion
p2 | probability of deletion

This problem can be formalized as a random walk problem with
two absorbing states. The start state i%gétand the two absorbing
states aren and2m, respectively. With probability;, we move to



the state2rm and with probabilityp., we move to the state:. The

random walk problem can be solved by the theorems in [22], and

we obtain the following result:

3m

(P_2 = (P_2 m
. _ P P1 (1)
Psplit = (&)Qm — (& o
P1 p1
3m
(2 — (22)°F
_ P11 Y
Pmerge = (P_2)2m — (P_2)m (2)
p1 p1

where pg,iie and pmerge are the probabilities of splitting the
node and merging the node, respectively. Furthermoredbaise
[22] we can compute the average updates required for tiigger
splitting or merging as:

m(psplit - pmer'ge)

2(p1 — p2) ®)

Ny =

Thus, given the probabilities of updating the child nodes,can
compute the effect to the parent nodes. Iteratively, we stimate
the update probability of nodes at any level,;;: andpmerge Of
the child node equal; andp, of the parent node, respectively. Fi-
nally, suppose there afé updates in a time unit, we can compute
the number of updates for each node in the-tBee. To simplify
the discussion, we usg(n;) to represent the number of update
messages of aBtree noder; (we discard the complex formula of
function g for simplifying the presentation). As it tak@logQ N
hops to notify the corresponding compute node, the total abs
maintainingn; in the remote index ig 8g(n;) log, N. To handle
node failure, multiple replicas are kept to improve the kamlity
of CG-index (replication strategy is discussed in SectipnSip-
pose there ark replicas for an index entry. The cost of maintaining
n; and its replicas ig; 3g(n:) log, N

Another kind of maintenance cost is the republication cést.
mentioned above, to handle unexpected network failuresna c
pute node will periodically republish its local'Btree nodes. Sup-
pose republication happens ev&fyime unit. The cost is estimated
as’ l‘ggj? Ll Finally, suppose there arfg queries overlapping with
the BY-tree node: in a time unit, the total cost of indexing n is:

cost(n) = aQh(n) + %ﬁ(kg(n) + %) logyg N 4)

5.2 Tuning Algorithm

The intuition of our adaptive indexing strategy is to sealaty
publish the local B -tree nodes based on the query distribution.
Initially, only the root node of the B-tree is indexed. However,
publishing the root node of the'Btree does not provide efficient
search, as its range could be big and this may result in reaund
visit of the compute node and local search. To solve thislpmb
we remove the index of the root node and publish the nodeat th
second level (root node’s child nodes) when some child nades
frequently searched over time. The query can then jump ttlirec
to the second level of the local'Btrees. Similarly, if we find that
indexing the nodes is no longer beneficial, we remove the siode
index and publish their parent node instead. With the saiineipr
ple, we can recursively expand or shrink the range beingkedie
and thereby, increasing or reducing the number of index #bde
ing indexed. By doing so, we build a dynamic global index base
on query distribution and an adaptive expansion of the |8cal
trees. To reduce maintenance cost, we only publish intdrial
tree nodes into CG-index. Consider a locdl-Bee in Figure 3, the
shaded nodes will be indexed in the CG-index based on the quer
patterns.

[TT] ato.100]
20 [ T Jer20.50]
[ 11 JfresalZ

d[50.80]
[ 1] ]nrao.s01
[

: [80,100]

1 145.50]

j125,30]

Figure 3: Example of B"-tree Indexing Strategy (shaded nodes
are published in the CG-index)

responsible for a key range for routing purposes in the overlay.

It stores the index for remote™Btree nodes, whose ranges are cov-
ered byR. As a query is routed based on the search range, the
compute node must receive any query that overlaps Ritht can
have a precise description about the query distributidR.iflence,

the compute node has full information to compute the coshef t
current index.

Algorithm 3 and Algorithm 4 generalize our adaptive indexin
strategy. In Algorithm 3, we show how to expand the indexed.tr
In line 1, we collect the query statistics and generate agiam
to estimate the query patterns. We compare the cost of ingexi
BT -tree node to the cost of indexing all its child nodes (ling)54
indexing the child nodes can improve the search performamee
will remove the index of the parent node and publish the iedex
of the child nodes. In this way, we expand the indexed treee Th
indexed B"-tree node should periodically report its cost status (line
9). Based on the reported status, we can decide whetherdapsel
the tree. In Algorithm 4, we show the process of collapsingg W
group the received reports by their parent nodes (line M&H)en
we receive the reports from all the child nodes, we start &duate
the cost of different index strategies (line 3-9). If indexithe par-
ent node can reduce the maintenance cost, we replace theinde
of all the child nodes with the index of the parent node (lir&)6
Both Algorithm 3 and Algorithm 4 are invoked occasionallyuoe
the performance of CG-index.

Algorithm 3 Expand()

1: compute the query histogram H

2: for V B*-tree noden; € S, do
c1 = n;'s current cost
c2 = n;’'s child nodes’ cost
if ca < c1 then
removen; from S,
notify n;'s owner to index the child nodes of
else
statusRepori;)

Algorithm 4 Col | apse(B*+-tree node n;)

/lreceiving a status report from
1. n = n;.parent
2: putn; inn's child list L,
3: If L, isfull then
ca= Y, cost(n;)
Vn;ELn
ce = cost of indexingn
if co < c1 then
remove index of nodes ih,,
notify the owner to index the Btree noden
clearL,

ooeNog A

To guarantee the correctness of tuning approach, the erpans

Given the cost model, the compute node can estimate the costand collapse operation are set to be atomic operations.ifEex-

of a specific indexing strategy. Specifically, the computdenis

pansion operation, if node; tries to replace its index entry with the



entries of its children’s, either all the children’s ensrigre created,
or the expansion operation fails and we keep the old entry.

THEOREM 1. If the expansion and collapse are atomic opera-
tions, the adaptive indexing strategy can provide a corepiesult.

PROOF See the appendix.]

6. MAINTENANCE
6.1 Updating CG-index

In the CG-index, updates are processed concurrently wétftke
To maximize the throughput and improve the scalability, Wepd
the eventual consistent model, which has been adoptediibdied
systems [13]. Two types of updates, lazy update and eagaiteipd
are supported When updates of local-Bee do not affect the cor-
rectness of search results, we adopt lazy update. Othereager
update is applied to perform synchronization as soon astpess

THEOREM 2. In CG-indey, if the update does not affect the key
range of a local B -tree, the stale index will not affect the correct-
ness of the query processing.

PROOF. See the appendix.]

A close observation reveals that only updates in the leftmo
or right-most nodes can violate the key range of a locaiRe.
Given a B"-treeT, suppose its root nodeis. and the correspond-
ing range i/, u]. The index strategy df is actually a partitioning
strategy of[l, u], as 1) each node df maintains a sub-range of
[l,u] and 2) for any value in [, u], there is an indexed node @,
whose key range covets For example, in Figure 3, the root range
[0, 100] is partitioned into sub-ranges {if, 20], [20, 25], [25, 30],
[30, 40], [40, 45], [45, 50], [50, 80] and[80, 100]. Except left-most
and right-most nodes (those nodes responsible for the lbaard
and upper bound of the root range), updates in other nodesntyn
change the way of partitioning. Suppose in Figure 3, noaled j
merge together. The sub-ran@é, 25] and[25, 30] are replaced by
[20, 30]. Regardless of how the root range is partitioned, the query
can be correctly forwarded to the node based on the inder,iéve
the index is stale. Therefore, if the updates do not chargyotier
bound or upper bound of the root range, we adopt the lazy epdat
approach. Namely, we do not synchronize the index with thallo
BT -tree immediately. Instead, after a predefined time thidslad
updates are committed together.

Given two nodes; andn;, lazy updates are processed in the
following ways.

1. If n; is merged withn; and both of them are published into
the CG-index, we replace the index entriesipiindn; with
the index entry of the merged node.

. If n; is merged withn; and only one node (suppose itris)
is published into CG-index, we remove all the index entries
of n;’s child nodes and update;'s index entry as the new
merged one.

. If n; is published into the CG-index and split into two new
nodes, we replace;’s index entry with the index entries of
the new nodes.

In the index entry, two attributes, IP address and block remmb
are used in query processing. Specifically, IP address i$ tse
forward the query to a correct cluster server. And block nemi®
applied to locate the corresponding Bree node when performing
local search. Based on the above analysis, the IP addrdssigsa

correct if the updates do not change the lower bound or upperd

of the B"-tree. However, the block number may be invalid due to
node merging and splitting. In such case, we just start keayc
from the root node.

On the other hand, some updates in the left-most and rigist-mo
nodes may change the lower bound and upper bound of the B
tree. In that case, the old index entry may generate falsiéiyeos
and false negative in query processing. As an example, seg&y
“0” is removed from nodé in Figure 3,b's key range will shrink
to [5,20]. If applying the old index to process quefy5, 3], the
query will be forwarded to the cluster server, which actuainnot
provide any result. That is, the index generates falseipesitOn
the contrary, suppose a new kéy- 5” is inserted into nodé, the
key ranges ob anda are updated tp-5, 20] and[—5, 100], respec-
tively. If the old index entry is applied to process quéni0, —2],
false negative is generated as the CG-index fails to rettiey data
from some cluster servers. False positive does not vidteteon-
sistence of the result and we adopt lazy update strategyndidn.
False negative is crucial for the consistency. Therefoesapply
eager update strategy to synchronize the index.

In eager update, we first update the indexed nodes (including
their replicas) in CG-index. If all indexed nodes have beec s
cessfully updated, we update the locaiBee nodes. Otherwise,
we roll back the operations to keep the old indexed nodes in CG
index and trigger an update failure event.

THEOREM 3. The eager update can provide a complete result.

PROOF. See the appendix.[]

6.2 Replication

To guarantee the robustness of the CG-index, we create-multi
ple replicas for a cluster server. Replications are peréatin two
granularities. We replicate both the CG-index and locattBee
index. When a cluster server is offline, we can still accesmit
dex and retrieve the data from DFS. The replicas are buitidhas
BATON's replication protocol. Specifically, the index e main-
tained by a BATON node (master replica) are replicated itefts
adjacent node and right adjacent node (slave replicas)tefdre,
each node has 3 replicas (Dynamo [15] keeps 3 replicas tijpica
In Starfish [17], 3 replicas can guarantee 99.9% availgbifithe
compute node is online for 90% of time). The master replica is
used to process queries and the slave replicas are usedkapbac
When a BATON node fails, we apply the routing tables to lodate
adjacent nodes to retrieve the replicas. We first try to acttesleft
adjacent node and if it also fails, we go for the right adjacenle.

In either lazy update or eager update, we need to guarargee th
consistency between the replicas. Suppose BATON féd®main-
tains the master replica of index entf. To updateF, we send
the new version of¢ to V;, which will forward the update to the
living replicas. The corresponding BATON nodes, when néogi
the update request, will keep the new versioroénd respond to
N;. After collecting all the response8]; commits the update and
ask other replicas to use the new index entries.

In BATON, the node occasionally sends ping messages to-ts ad
jacent nodes and nodes in its routing table. That ping messagy
be exploited to detect node failure. If we have not receitediing
response from a specific node fotimes, we assume the node fails
and broadcast the information to all cluster servers. Wheade
fails, its left adjacent node is promoted to be the primanyycdf
both the node and its left adjacent node fail, the right afjaoode
is promoted to be the primary copy.

Each update is assigned a timestamp. When a BATON node
restarts from failure, it asks current master replicas tatyelatest
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updates. By comparing the timestamp of an index entry, laoes
the stale entry with the new one. After that, it declares tahee
master replica of the corresponding index data and stamtinge
the search. Note that, the query processing is resilienbtie’'a
failure as suggested by the following theorem.

THEOREM 4. In BATON, if the adjacent links and parent-child
links are up-to-date, the query can be successfully preckss/en
if some nodes fail or the routing tables are not correct.

PROOF See the appendix.]

7. EXPERIMENT EVALUATION

To evaluate the performance of our system, we deploy it on-Ama
zon's EC2 [1] platform. Details of experiment settings caridund
in the appendix. For comparison purpose, we implement a dis-
triouted B -tree index described in [10]. We use “ScalableBTree”
to denote the index. The ScalableBTree is built on HP’s Siiafo
[11], a distributed file system. As Sinfonia’s code is not |pthp
available?, we use a master server (large instance of EC2 with 7.5
GB of memory and 4 EC2 compute units ) to simulate its behayior
e.g., data locating service and transaction service. |8ta¢ableB-
Tree index, each processing node acts as both client andrserv
Servers are responsible for maintaining the index and tieatsl
are used to generate queries. The ScalableBTree is diffEcen
the CG-Index in that it maintains a large"Bree over the network,
whereas in the CG-Index, each node maintains a small local B
tree. For the ScalableBTree, we create a distributéetBe with
10 million keys. Therefore, the total data size of Scalable® is
less than that of the CG-Index. This is because for a largérBe,

Percent of Insertion
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Figure 9: Cost of Scaling Up/Downsizing

the size of internal nodes may be too large to be cached ali¢ime ¢
(the ScalableBTree index proposes to lazily buffer intemodes in
clients).

7.1 Scalability

Figure 4 shows query throughput under different searchesng
The best performance is achieved for the exact search gse®y. (
When the search range is enlarged, throughput degradesras mo
nodes are involved. Scalability increases when we incréase
number of processing nodes. From Figure 5 to Figure 8, we show
the performance comparison with the ScalableBTree indebetun
different workloads. Figure 5 shows the CG-Index producasim
higher throughput for range queries. In the CG-Index, dfteat-
ing leaf nodes, a query is processed by the localtRes in paral-
lel, while in the ScalableBTree, we cannot apply the palradiarch
algorithm, because the leaf nodes are randomly distribintélde
cluster.

Figure 6 shows the update throughput of the systero@arith-
mic scale). In the CG-Index, the node generates uniform irgesti
for its local B -tree, while in the ScalableBTree index, the node
issues uniform insertions for the distributed #ree. In the CG-
Index, most updates can be processed by nodes locally, decau
we only insert internal B-tree nodes to CG-index, which has few
updates when update follows uniform distribution. Only & fe-
quests, resulting in node splitting or merging, triggermackyoniza-
tion request to the network. In contrast, each insertiomestjin
the ScalableBTree index triggers a network round-trip.nifraer-
nal node is being split or merged, it needs to broadcast thegeh
to every node to update the version table.

In real systems, different types of operations are procksse-

1The authors could not release the codes due to HP's copyrightcurrently. In Figure 7, we generate a mixed workload of exact

concerns.

queries and range queries with selectivity 0.04. We varyptre
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Routing info of H

Right Routing Table atomic operations, the indexing states must satisfy tHewfioig

AG060) 5 : property for a local B-tree7 (suppose its root range is [, u]).
i 1 J e Given a keyk in [l, u], we can find one and only one indexed
B30 | L2 | nit | node of7 in CG-index.
Left Routing Table
G089 n This is because we always replace an indexed node with ahiits
ow——— nodes and vice versa. Therefore, the adaptive indexingggtraan
S X - ~ Right adjacent : D return a complete result in the query processingl
H(0,12) 1(18,25) J(25,38) K(45,50) T |j(75,xn) M(89,100) Ij;:l:dizzeg;:::llll Proof of Theorem 2.
PROOF. In the CG-index, we generate a key range for eath B
Figure 10: A BATON Tree Overlay tree node and publish the node based on the key range. The quer
algorithm also routes the query based on the key range of-an in
APPENDIX dexed node. If the key range is not affected by the update, the
index is still valid, because all queries involving the naslestill
A. APPENDIX sent to the correct node.[]

Proof of Theorem 3

Al . BATON Overlay . . PrROOF If no node fails, the eager update strategy can guarantee
In this paper, BATON is applied to organize the compute nodes the CG-index is consistent with local'Btree. If the node respon-

Detailed description of BATON protocols can be found in [20} sible for the indexed node fails, we cannot update all repliaf the
BATON, each node is responsible for a key range, and each nodeCG-index node successfully. Therefore, the eager updditeaep
maintains routing pointers to predecessor, successa@nparhild the old CG-index nodes and the local Bree node. The index is

and sibling nodes. The BATON form of indexing is similar irirép still consistent. If the node responsible for local free fails after
to that of the B-tree. If we travel the BATON tree in an inorder g|| CG-index replicas are updated, the CG-index may not lne co

manner, we end up searching the key range sequentially. sistent with local index. However, it only triggers falsesjtive.
In Figure 10, we show a BATON overlay, where dotted lines Therefore, the query processing is still correc]

connect the routing neighbors and we mark the key range &f eac

BATON node. Specifically, the nodes #’s left or right routing Proof of Theorem 4.

table areH's sibling nodes with a distant & to H (0 < z < PROOF. In BATON, when a node joins the system, it obtains
H.level — 1). To lookup a specific key, the node will first check its adjacent links and parent-child links directly fromdtmntacting
its own range. If the key is bounded by the range, it will do-alo node, while its routing neighbors are obtained via a stzdtilon
cal search. Otherwise, it will search its left or right rowgitable process. The routing neighbors are used to facilitate théng.

to locate a node most close to the key and forward the reqaest t However, without them, BATON can still route queries based o
the node. If no such routing node exists, the lookup requést w adjacent/parent-child links. Even if we route the queryelasn

be forwarded to the parent, child or predecessor/successte. an inconsistent routing link, we can correct the routingcpss
In BATON, the search cost and maintenance cost are bounded byVia adjacent/parent-child links. If adjacent links or prehild
O(log, N) hops, whereN is the number of nodes. A more effi-  links are incorrect due to node joining, the routing procesisfail.

cient variant of BATON (BATON* [19]) reduces the search ctist ~ However, in Cloud system, node will not frequently join oave

O(log, N) with a larger fan-oub at the expense of incurring much  the system. []

more maintenance overheads. Therefore, we use BATON in this .

paper. To support the range index, we only need to slightgrek A3 _Algo”thms o ) )

the BATON overlay by recording the subtree range of eachriate Algorithm 5 shows the publication process in BATON. We first

node. obtain the compute node responsible for the lower boundedBth
The compute node acts as a BATON node in the overlay. Using tré€ node based on the BATON routing protocols (line 1). Then

the following interfaces (Table A.1) provided by BATON, warc ~ Step by step, we forward the request to the upper level noués u

organize the cluster system as a BATON overlay and search theWe reach the one whose subtree range can fully contain the B

index based on the routing protocols. tree node’s range. In line 4, the compute node stores the dagsa
of remote B"-tree node in the disk and buffers it in memory. The
Table A.1 BATON Interface stored information can be used to process queries. In lirersd6
join(IP) Join the BATON network 10, we tag the nodes with two values, indicating whether thezy
leave() Leave the BATON network should be forwarded to the parent node (e.g. the parent nodess
lookup(key) Lookup for the node responsible for the key an index node whose range overlaps with the child node).
store(key, value) Publish a value using the key Algorithm 6 shows our parallel search algorithm. We first find
remove(key) Remove the values with a specific key a node that can fully contain the search range (lines 1-3jcfu
tion lookup([l, u]) returns a compute node that overlaps with the
A.2 Proofs search rangd, u]. As discussed in section 4, instead of returning

the node responsible for the lower bound of the range, werretu
node that overlaps with the search range. This optimizaédaces
PROOF The adaptive indexing algorithm starts from publish- the overhead of routing. Then, we broadcast the query medsag
ing the root node of each local™Btree. The initial state of the  the nodes within the subtree (line 4-7). The broadcast ryessare
CG-index provides a correct snapshot of the local indexesha sent to the nodes in parallel. After a node receives the kearc
root nodes represent an overview of the locat-Bees. The initial quest, it starts searching its local CG-index. Besides dae litself,
state can be changed to different indexing states via eigranad we need to search the possible results in the ancestor findes§-
collapse operations. If both expansion and collapse dperare 10). Finally, the index search result (a set of indexed noflgsis

Proof of Theorem 1.



Algorithm 5 Publ i sh(n)

/In is a BT -tree node for indexing
1: N;=lookup.low)
2: while TRUE do

3. if N;.subtree containgylow, n.up)then
4: storen at V;
5: if n’s range overlaps withV;'s right subtreghen
6: tagSet(V;.rightchild)
7: break
8: else
9: if N;.parent!=nullthen
10: Update the tag value o¥;
11: Ni=NZ—.parent
12: else
13: break

returned to the query sender. Algorithm 7 shows the broagcas
cess. The broadcasting is processed in a recursive way.dlicee
the network overheads, only the nodes within the searcheraily
receive the query (e.g. we do not invoke the broadcast dhgori
for the subtrees outside the search range).

Algorithm 6 Par al | el Sear ch(Q = [I,u])

N;=lookup({, u])

: while N;’s subtree range cannot contahdo

N; = Ni.parent

. if N;.leftchild.subtree overlaps with then

broadcasty; .leftchild, @ = [I, u])

. if N;.rightchild.subtree overlaps with then
broadcasty; .rightchild, Q = [I, u])

while N;’s tag values in the search rande
local search onV; and put the indexed nodes overlapping
with @ into setS,
N; = N,.parent

. forwardS, to query requestor

oNouRwbhER

ol
o

Algorithm 7 Br oadcast (conput e node N;,

1: local search ov;

2: if N, is not leaf nodehen

if V;.leftchild.subtree overlaps wit) then
broadcasty; .leftchild, @ = [I, u])

if IV;.rightchild.subtree overlaps with then
broadcasty;.rightchild, @ = [I, u])

Q=[l,u])

Suppose each BATON node can shafdytes memory and each
B*-tree node’s index entry requirds bytes, we can only support
up to ! indexed nodes. If the corresponding compute nodes have
enough memory for storing the child nodes’ index, the indebdilt
successfully. Otherwise, index replacement is triggered.

Algorithm 8 generalizes the index replacement process.if-he
dex replacement happens when a netvtBee node is inserted into
CG-index. If there are more memory for the incoming nodes, we
just accept it and notify the requester (line 2-4). Spedificket S,,
be the nodes in local CG-index. The Bree nodes irf,, can be
classified into two types. Supposg € S,, andn,, is n;’s parent
node. Ifn, € S,, andn; does not have sibling nodes H, re-
placingn; with n,, cannot reduce the storage loadMf. Thus,n;
is not a candidate for index replacement. By removing supb ty
of nodes fromS,,, we get a candidate séf, (line 7-11). The new
BT -tree noden is inserted intaS,,, and we rank the nodes iff,
based on the query histogram (line 12). bein(S;,) be the node
with the least rank. Ifnin(S;,) = n, N; rejects the index request
for the new node: (line 13-14). Otherwise; replacesnin(S;,)
with n in its index and triggers a tree collapse (line 16-17).

To guarantee atomic indexing, if the node receives a refatt n
fication, we will roll back the index (keep the current inddxede
and remove the newly built index).

Algorithm 8

conput e node N;)

/In is a new node to be indexed &t
1. S, = N;'s index set

| ndexRepl ace(B™-tree node n,

2: if S, is not full then

3. acceptin S,

4:  notify the sender with success

5: else

6: S, ={n}

7:  for Vn; € S, do

8: if getsiblingg;, S»)==null then

9: np = n;'s parent
10: if N;.range cannot covet,.rangethen
11: S =S/ U {TLJ}
12:  rank nodes ir%;, by query histogram
13:  if min(S,;,) == nthen
14: rejectn and notify the sender
15: else
16: removemnin(S;,) and triggers a tree collapse
17: notify the sender with success

A.4 Details of Tuning Algorithm

Let S,, represent the remote'Btree nodes indexed at the com-
pute nodeN;. Then, in a time period dfy, N; records a query set
S, for S,,. Based onS,, we can estimate the cost of the current
indexing strategy and perform some optimization. For this p
pose, we build a query histogram at each compute node. Bgsica
supposeV;’s subtree range ig;, u;], we partition the range intb
equal-length cells. Thus, celkovers the rangg i) (”1)(]:‘“1 ).
Given a queryy € Sy, suppose there arecells mvolved ing, we
increase the counter of these cellsig).yFinaIIy, we get a counter
arrayH = {co, c1, ..., ck—1 } for the query distribution.

Given an indexed B-tree noden;, we can compute its query

cost by searchingl . Let R; denote the histogram cells overlapping
with n;. The current cost of; is estimated as:

h(n;) 3 Cx-l-g(kg(nz')-i-

TER;

cost(n;) = o

Q)

1
f)logz N

As mentioned before, we have two alternative indexing styias:
indexing the child nodes of; and indexing the parent node wof.
Let n;; represent:;’s child node. Suppose; hasm, child nodes,
the strategy of indexing the child nodes incurs a cost of:

(h(

mo—1

Z Cot = ( Z kg(nij +T)log2N

zER;

cost(n;.c)

(6)
Supposer; hasm; sibling nodes, the strategy of indexing the par-
ent node incurs a cost of:

h(n;)+1)
((722%

i=0z€R;

cost(n;.p) = =(kg(n;.p) + %)loggN

(7

Equation 5 and 6 can be computed by the node’s local infor-

mation while Equation 7 needs information from the siblingles.
Figure 3 illustrates a possible indexing strategy in thésyswhere
the shaded rectangles represent thetBe nodes being indexed. If
node: wants to estimate the cost of indexing its parénit needs
to obtain the query distribution from its sibling nogeGiven that
node: does not know the details of its siblings, it is difficult to

collect the necessary information. An alternative is tdemtlthe



status of the child nodes in the parent node, e.g., nogeriodi-
cally checks the status of nodendj. As nodef is not indexed,
the “pull” scheme is not applicable. Instead, we use the Hpus
method. The indexed Btree nodes will periodically report their
query distribution information to the compute node thatdies
their parent’s range. After collecting all the informatjdghe com-
pute node decides on the indexing strategy. If it can savelgos
indexing the parent B-tree node, the compute node will issue a
process to delete all indexes about the chilt-teee nodes and
notify the corresponding compute node to publish the parest
node.

The major cost of the adaptive approach is the cost of reyprti
the status of the child nodes. To reduce overhead, we prapose
efficient optimization. As observed from Figure 3, naddoes not
have efficient information to change the indexing stratemyess
all its child nodes, ¢, d ande are indexed. Based on Theorem 5,
only nodes, 7, k andl need to report the status to their parents. We
therefore greatly reduce the communication cost.

THEOREM 5. The indexed B tree node needs to report its sta-
tus to the parent node, i.f.f. none of its siblings has an>ede
descendant node.

PROOF. In the tuning algorithm, the B tree node n is indexed
in the network if it does not have an indexed descendant nbde.
all sibling nodes do not have an indexed descendant nodtheall
siblings are indexed. Hence, the parent node can receivetsep
from all the child nodes to decide whether to change the iimgex
strategy. [

A.5 System Optimizations

To further improve the performance of CG-index, we propose
three optimizations. Routing buffer is used to reduce theimg
overhead of the overlay. Selective expansion is used taeethe
maintenance overheads of CG-index. And single local seiarch
proposed to reduce the index search cost.

A.5.1 Routing Buffer

Locating a specific key in the overlay incurs a costgtoga V),
whereN is the total number of nodes in the overlay. To reduce rout-
ing cost, we apply a buffering approach. In a successtilup(key)
operation in the overlay, the compute node responsiblenfok ¢y
will notify the requester about its key range and IP addrédse
requester, once receiving the information, will store thg kange
and IP address in its routing buffer. The routing buffer imsited
to s entries and is maintained with the LRU strategy. In the fu-
ture routing process, the node will check both its routirgeand
routing buffer. The node nearest to the search key is selete
the next hop. As the network is stable in Cloud systems, the ro
ing buffer can efficiently reduce the routing overheads.r&fi¢he
routing buffer is not consistent with the network, the quean be
routed to the destination based on the routing table. Tactidte
stale routing buffer, the sender attaches the expectethdtsh in
the message. The receiver will check its status againsiiieceed
one. And it will notify the sender to update its routing buft is
not the expected receiver.

A.5.2 Selective Expansion

VA7 2 10.201150.100]

[bro2o [ ] ]
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Figure 11: Example of Selective Expansion Strategy

c[2050] | | ldrso.80] | [ ]e[80.100]

each node can support up to 100 child nodes. If most quernies fo
on a small number of child nodes, we can save the indexingogost
only publishing the corresponding nodes.

In Algorithm 3, we compare the cost of indexing the currerdeno
with the cost of indexing all the child nodes. As a matter of fehe
order of B"-tree may be quite large. Indexing all the child nodes is
not necessary and incurs too much overhead. In Figure 3psapp
the queries focus on the range [20, 50], we do not need to itidex
nodesb, d ande. Instead of indexing all the child nodes, we only
select the beneficial ones for indexing.

Figure 11 shows the selective expansion tree of Figure Gdn t
selective expansion strategy, the parent node is kept imtiex if
not all of its child nodes are indexed. For example, in Figlie
nodea is responsible for the ranges of its three none-indexedi chil
nodesp, d ande.

Given an indexed B-tree noden; with m child nodes (denoted
as{n;;|0 < j < m — 1}), we define ann-element vectol’ =
{vo, ..., ym—1}. v; is 1, if the noden;; is selected to be indexed.
Otherwiseyp; is 0. We can compute the indexing cost for a specific
V.

The optimal solution is to find a vectdf that can minimize the
above cost. Using brute force to search the solution is raattizal
as there ar@™ possibilities. If we further consider memory size,
the optimal indexing problem is reduced to a 0-1 knapsack-pro
lem. Instead of searching for the optimal solution, we usienple
but efficient heuristic method.

In fact, the cost of indexing a child node can be considered to

comprise two parts. First, the indexing benefit of query pssing
is computed as:

benefit(n;) —a— Z Ca

TET;

®)

Then, the cost of maintenance is estimated as:

costm(nij) = 2 (ko(nij) + ) logy N ©)
A greedy heuristic method is to index the child node if its dfén

is greater than its maintenance cost until memory is fullisTan
provide us with a good enough indexing plan. Algorithm 9 skiow
the selective expansion scheme. The parent node decideésexnhe

to index each specific child node individually. If a child moib
indexed, the parent node needs to be split (line 6).[Let:;] and
[l;;,us;] represent the ranges of the parent nadeand its child
noden;;, respectively. After indexing node;;, we split the range

of n; into [I;,1;;] and [us;, u;]. We remove the current index of

n; and insert two new index entries based on the new ranges. The
insertion of the new index entries must be atomic. If it faile to

The adaptive scheme can effectively tune the index based onmemory limitation, we roll back the indexing operation aretg

query distribution. It expands the™Btree step by step. Heavily
queried nodes have a high probability of being publishedwHo
ever, if the query distribution is skewed, we do not need taliph
every child nodes. In B-tree, the order of nodes are always set to
a large value (based on the disk block size). In our expetisnen

the old index. In an extreme case, if all child nodes are beiaéfi
to indexing, the selective expansion scheme evolves irgdtith
expansion scheme.

In the selective expansion scheme, we keep a record of how the
B*-tree is indexed in the owner node. We generateral@ngth



Algorithm 9 Sel ecti vel yExpand()

1: compute the query histogram H

2: for V B*-tree noden; € S,, do
for ¥n;'s child n;; do
if n;;’s benefit is greater than its casten
indexn;;
split the index range of;
if n; does not have an indexed descendhah
if n;'s benefit is less than its costen
removen;'s index
statusReporty;)

CoxNOUAW

bitmap for each B-tree node, wheren is the order of the tree.
If the subtree rooted ath child has been expanded for indexing,
we mark theith bit of the bitmap to 1. Based on the bitmap, the
owner node can help collapse the tree if necessary. Algorit@
shows the collapse operation for the selective collapsgéesty. On
receiving an index removal notification, the owner node kbehe
corresponding bitmap and combines the index entries ifsszrg.
First, it searches for the index entries that can be combividd
the removed child index (lines 4 to 7). Lé&t:,j) denote the in-
dex entry for the range fronth child to jth child. The removed
child index are combined with the left or right adjacent xa@s-
tries (lines 8-14).

Algorithm 10 Sel ecti vel yCol | apse(BT-tree node n;)
IIrecieve the status report from node

1: map=;’s parent bitmap

2: if map[i]==1then

3:  mapli]=0, x=i,y=i

4:  while x-1> 0 and map[x-1]==@o

5: x=x-1

6:  while y+1<m and map[y+1]==Q@o

7 =y+1

8. if x!=i and y!=ithen

9: combine I(x,i-1),1(i,i) and I(i+1,y) into 1(x,y)
10: else

11: if x!=i then

12: combine I(x,i-1) and I(i,i) into 1(x,i)
13: else

14: combine I(i+1,y) and I(i,i) into 1(i,y)

Index replacement can be handled in the same way as the full

expansion case. As a matter of fact, the selective expassiategy
reduces the cost of index replacement. As child nodes asxéud
individually in the selective expansion strategy, onces itécided
that a B"-tree node is to be removed from the index, we do not
need to find and remove all its siblings. The selective expans
strategy makes our adaptive indexing scheme more flexible.

A.5.3 Single Local Search

The adaptive indexing scheme allows us to process quertbs wi
indexed B"-tree nodes. After locating the indexed Bree nodes,
we forward the query to the corresponding local-Bees to com-
plete data retrieval. Given a que€y = [I,u], let S, be the set
of indexed B"-tree nodes returned by Algorithm 6. We group the
nodes inS; by their owners. Suppos$,(V;) denote the B-tree
nodes from the compute nod€;. We need to accesd;’s local
B*-tree based on the Btree nodes irS,(N;). A close analysis
reveals that only one node B)(1V;) is required to be accessed.

In a B™-tree, to retrieve the data within a continuous range, we
first locate the leaf node responsible for the lower boundhef t
search range. Then, we scan the corresponding leaf noded-by f
lowing the leaf nodes’ links. All the involved internal nadeeside

in the path from the root to the first searched leaf node. Therot
internal nodes, though overlapping with the search rangenat
searched. This observation motivates an optimization.

LEMMA 1. For a range quen@ = [l,u], the indexed B-tree
nodes from the same compute naddg(e.g. Sy(N;)) involved in
the query can be sorted into a continuous range based on their
responsible ranges.

PrROOF Our adaptive indexing scheme guarantees that there is
no overlap between the'Btree nodes’ responsible ranges, and that
for any search point in the domain, there is an indexéet®e node
whose responsible range contains it. Thus, nodég (iV;) can be
sorted into a continuous range based on their ranges.

LEMMA 2. For arange quen@ = [I, u] and the B -tree node
set involvedS, (N; ), we sort the nodes i (N;) by their ranges.
Only the first B -tree node inS, (V;) triggers a local search.

PrOOF. Directly derived from Lemma 1 and the'Btree’s search
algorithm. O

Given a specific quer®) = [/, u] and an indexed B-tree node
nq, the compute node can decide whether to issue a lotair&
search based on Theorem 6.

THEOREM 6. The B"-tree noden; with range[l;, u;] incurs a
local search for querny) = [I,u], only ifl; < 1Al < u; or n; is
the left-most node of its level and< I; A l; < u;.

A.6 Experiment Settings

The compute unit (small instance) in EC2 is a virtual servién w
a 1.7 GHz Xeon processor, 1.7 GB memory and 160 GB storage.
Compute units are connected via a 250 Mbps network. Our sys-
tem is implemented in Java 1.6.0. Table A.6 lists the expemim
settings. In our system, each node hosts 500k tuples. The tup
format is(key, string). Thekey is an integer key with the value
in the range ofl0, 10°] and thestring is a randomly generated
string with 265 bytes. The data are sorted by the keys anchgrbu
into 64M chunks. Therefore, each compute node hosts twokshun
We generate exact queries and range queries for the keyfiarei
distribution. When the skew factor is 0, the queries areaunify
distributed. The major metrics in the experiment are quemyugh-
put and update throughput. Based on the reports of [24, 2ker
3 =05 (the random disk read is slower than TCP/IP message
sending).

Table A.6 Experiment Settings

Name Default Value
node number 256
memory size 1M
use routing buffer false
skew factor (sf) 0.8
default selectivity (s) 0.04
adaptive period 10 sec

In our implementation, the page size of the local-Bee is set
to 2K and the maximal fan-out is about 100. Before the exper-
iments begin, we load 500K keys into each local-Bee. The
total number of tuples therefore varies from 8 million to 188-
lion. We use a simulator to act as clients. The processingsod
receive queries from the simulator continuously. Aftergassing
one query, a node will ask the simulator to obtain a new query.
Thus, users’ queries are processed in parallel. In eachriengr,
1000N queries are injected into the system, whaté the number
of nodes in the system. Each experiment is repeated for 1&stim
and we take the average result.



