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ABSTRACT
Some complex problems, such as image tagging and natural lan-
guage processing, are very challenging for computers, where even
state-of-the-art technology is yet able to provide satisfactory accu-
racy. Therefore, rather than relying solely on developing new and
better algorithms to handle such tasks, we look to the crowdsourc-
ing solution – employing human participation – to make good the
shortfall in current technology. Crowdsourcing is a good supple-
ment to many computer tasks. A complex job may be divided into
computer-oriented tasks and human-oriented tasks, which are then
assigned to machines and humans respectively.

To leverage the power of crowdsourcing, we design and imple-
ment a Crowdsourcing Data Analytics System, CDAS. CDAS is a
framework designed to support the deployment of various crowd-
sourcing applications. The core part of CDAS is a quality-sensitive
answering model, which guides the crowdsourcing engine to pro-
cess and monitor the human tasks. In this paper, we introduce the
principles of our quality-sensitive model. To satisfy user required
accuracy, the model guides the crowdsourcing query engine for the
design and processing of the corresponding crowdsourcing jobs.
It provides an estimated accuracy for each generated result based
on the human workers’ historical performances. When verifying
the quality of the result, the model employs an online strategy to
reduce waiting time. To show the effectiveness of the model, we
implement and deploy two analytics jobs on CDAS, a twitter sen-
timent analytics job and an image tagging job. We use real Twitter
and Flickr data as our queries respectively. We compare our ap-
proaches with state-of-the-art classification and image annotation
techniques. The results show that the human-assisted methods can
indeed achieve a much higher accuracy. By embedding the quality-
sensitive model into crowdsourcing query engine, we effectively
reduce the processing cost while maintaining the required query
answer quality.

1. INTRODUCTION
Crowdsourcing is widely adopted in Web 2.0 sites. For exam-

ple, Wikipedia benefits from thousands of subscribers, who con-
tinually write and edit articles for the site. Another example is

Figure 1: Crowdsourcing Application

Yahoo! Answers, where users submit and answer questions. In
Web 2.0 sites, most of the contents are created by individual users,
not service providers. Crowdsourcing is the driving force of these
web sites. To facilitate the development of crowdsourcing appli-
cations, Amazon provides the Mechanical Turk (AMT)1 platform.
Computer programmers can exploit AMT’s API to publish jobs for
human workers, who are good at some complex jobs, such as im-
age tagging and natural language processing. The collective intel-
ligence helps solve many computationally difficult tasks, thereby
improving the quality of output and users’ experience. Figure 1 il-
lustrates the idea of using crowdsourcing techniques to divide up
jobs. CrowdDB [6], HumanGS [19] and CrowdSearch [23] are re-
cent examples of applications on Amazon’s AMT crowdsourcing
platform.

Crowdsourcing relies on human workers to complete a job, but
humans are prone to errors, which can make the results of crowd-
sourcing arbitrarily bad. The reason is two-fold. First, to obtain re-
wards, a malicious worker can submit random answers to all ques-
tions. This can significantly degrade the quality of the results. Sec-
ond, for a complex job, the worker may lack the required knowl-
edge for handling it. As a result, an incorrect answer may be pro-
vided. To address the above problems, in AMT, a job is split into
many HITs (Human Intelligence Tasks) and each HIT is assigned
to multiple workers so that replicated answers are obtained. If con-
flicting answers are observed, the system will compare the answers
of different workers and determine the correct one. For example, in
the CrowdDB [6], the voting strategy is adopted.

The replication strategy, however, does not fully solve the answer
diversity problem. Suppose we want the precision of our image tags
to be 95% and the cost of worker per HIT is $0.01. If we assign
each HIT to too many workers, we will have to pay a high cost.
On the other hand, if few workers provide tags, we will not have
enough clue to infer the correct tags. Given an expected accuracy,
we therefore need an adaptive query engine that guarantees high
accuracy with high probability and incurs as little cost as possible.

1https://www.mturk.com/mturk/welcome



In this paper, we propose a quality-sensitive answering model
for the crowdsourcing systems, which is designed to significantly
improve the quality of query results and effectively reduce the pro-
cessing cost at the same time. This model is the core of our pro-
posed Crowdsourcing Data Analytics System (CDAS). CDAS ex-
ploits the crowd intelligence to improve the performance of differ-
ent data analytics jobs, such as image tagging and sentiment analy-
sis. CDAS transforms the analytics jobs into human jobs and com-
puter jobs, which are then processed by different modules. The hu-
man jobs are handled by the crowdsourcing engine, which adopts
a two-phase processing strategy. The quality-sensitive answering
model is correspondingly split into two sub-models, a prediction
model and a verification model. The sub-models are applied to dif-
ferent phases, respectively.

In the first phase, the engine employs the prediction model to
estimate how many workers are required to achieve a specific accu-
racy. The model generates its estimation by collecting the distribu-
tion of all workers’ historical performances. Based on the model’s
result, the engine creates and submits the HIT to the crowdsourc-
ing platform. In the second phase, the engine obtains the answers
from the human workers and refines them as different workers may
return different results for the same question. To verify the an-
swers from different human workers, the voting strategy is used
in CrowdDB to select the correct one. In the simplest case, each
HIT is sent to n workers (n is odd). A result is assumed to be
“correct” and accepted, if no less than �n

2
� workers return it. The

voting strategy is simple, but is not very effective in the crowd-
sourcing scenario. Suppose we have a set of product reviews and
want to know the opinion of each review. We set the score to ei-
ther “positive”, “negative” or “neutral”. If 30% of the workers vote
“positive”, 30% of the workers vote “negative” and the remaining
workers vote “neutral”, the voting strategy cannot decide which
answer is more trustable. Moreover, even if more than 50% of the
workers vote “negative”, we cannot accept the answer directly –
some malicious workers may collude to produce a false answer. To
improve the accuracy of the crowdsourcing results, CDAS adopts a
probabilistic approach.

First, a verification model is employed to replace the voting strat-
egy. It relies on workers’ past performances (i.e., the workers’ ac-
curacies for historical queries) and combines vote distribution and
workers’ performances. Intuitively, the system is more likely to ac-
cept the answers provided by the worker with a good accuracy. A
random sampling approach is designed to estimate the workers’ ac-
curacies in each job. By applying the probability-based verification
model, we can significantly improve the result quality.

Second, instead of waiting for all the results, the adaptive query
engine provides an approximate result with confidence and refines
it gradually as more answers are returned. This technique has been
designed based on our observation that in AMT, workers finish their
jobs asynchronously. Therefore, it is important to offer the option
of an approximate answer that is gradually improved as more re-
sults are available, instead of letting the user wait for the comple-
tion of the query. This strategy is similar to the traditional online
query processing in philosophy and serves to improve users’ expe-
rience.

To evaluate our model and the performance of CDAS, we im-
plement two practical crowdsourcing jobs, a twitter sentiment an-
alytics (TSA) job and an image tagging (IT) job. In TSA job, we
submit a set of movie titles as our queries and try to find the opin-
ions of Twitter users. In IT job, we use the images of Flickr as the
queries and ask the human workers to choose the correct tags. We
will show the effectiveness of our crowdsourcing engine based on
the quality-sensitive answering model in the experimental section.

Figure 2: CDAS Architecture

The remainder of the paper is organized as follows. In Section
2, we present the architecture of CDAS, and introduce the appli-
cations implemented over CDAS. In Section 3, we introduce our
prediction model for estimating a proper number of workers for
each job. To improve the result accuracy, a probability-based ver-
ification model is proposed in Section 4, which can be extended
to support online processing. We evaluate the performance of our
models in CDAS in Section 5, and discuss some related work in
Section 6. We conclude the paper in Section 7.

2. OVERVIEW
In this section, we introduce the architecture of our Crowdsourc-

ing Data Analytics System, CDAS, and discuss how to implement
applications on top of CDAS.

2.1 Architecture of CDAS
CDAS is the system that exploits the crowdsourcing techniques

to improve the performance of data analytics jobs. The core differ-
ence between CDAS and the conventional analytics systems lies in
the processing mechanism. CDAS employs human workers to as-
sist the analytics tasks, while other systems rely solely on computer
systems to answer the queries. Figure 2 shows the architecture of
CDAS. CDAS consists of three major components: job manager,
crowdsourcing engine and program executor. The job manager
accepts the submitted analytics jobs and transforms them into a
processing plan, which describes how the other two components
(crowdsourcing engine and program executor) should collaborate
for the job. In particular, the job manager partitions the job into two
parts, one for the computers and one for the human workers. For
example, in human-assisted image search, the human workers are
responsible for providing the tags for each image, while the image
classification and index construction are handled by the computer
programs. In most cases, the two parts interact with each other dur-
ing processing. The program executor summarizes the results of
crowdsourcing engine, and the engine may change its job schedule
due to the requests of program executor.

The crowdsourcing engine processes human jobs in two phases.

1. In the first phase, the engine generates a query template for
the specific type of human jobs. The query template follows
the format of the crowdsourcing platform, such as AMT, and
should be easily understood by human workers. The en-
gine then translates each job from the job manager into a set
of crowdsourcing tasks and publishes them into the crowd-
sourcing platform. To reduce the crowdsourcing cost, the en-
gine employs a prediction model, which estimates the num-
ber of required human workers for a specific task based on
the distribution of workers’ performance.



Figure 3: Query Template

2. In the second phase, the human workers’ answers are re-
turned to the crowdsourcing engine, which combines the re-
sults and removes the ambiguity. A verification model is de-
veloped to select the correct answer based on the probability
estimation.

Sometimes, the human tasks need to disclose some sensitive data
to the public. We design a privacy manager inside the engine to
address the problem. The privacy manager may adaptively change
the formats of the generated questions for human workers. It may
also reject some workers for a specific task.

The performance of crowdsourcing engine is determined by the
two models, the prediction model and verification model. We shall
introduce the two models in the following sections and discuss the
implementation of two practical applications, a twitter sentiment
analytics (TSA) job and an image tagging (IT) job, to validate the
performance of our models.

2.2 Deploying Applications on CDAS
In this section, we use the TSA job as a running example to show

how to deploy an application on CDAS. TSA job is typically pro-
cessed using machine learning and information retrieval techniques
[2][22]. However, as shown in the experimental section, CDAS can
achieve a much higher accuracy than some of these traditional ap-
proaches for the TSA job.

In the TSA job, the query is formally defined as follows.

DEFINITION 1. Query in TSA
The query in TSA follows the format of (S,C,R, t,w), where S
is a set of keywords, C denotes the required accuracy, R is the
domain of answers, t is the timestamp of the query and w is the
time window of the query.

For example, suppose the user wants to know the public opinions
for iPhone4S from Oct-14-2011 to Oct-23-2011, the correspond-
ing query can be expressed as: Q=({iPhone4S, iPhone 4S}, 95%,
{Best Ever, Good, Not Satisfied}, Oct-14-2011, 10). The answer
to the query consists of two parts. The first part is the percentage
of each opinion and the second part comprises the reasons. For
the above query, one possible answer is that most people perceive
iPhone4S is a good product thanks to the features of Siri and iOS
5, while a smaller but significant number of people are not satisfied
with its display and battery performance.

Table 1: Users’ Opinion on iPhone4S
Opinions Percentages Reasons
Best Ever 60% Siri, iOS 5, Performance

Good 10% Siri, 1080P
Not Satisfied 30% iPhone4, Display, Battery

The query definition of TSA is registered in the job manager,
which then generates the corresponding processing plan. The pro-
gram executor is responsible for retrieving the twitter stream and
checking whether the query keyword (S = iPhone4S in above ex-
ample) exists in a tweet. The candidate tweets are fed to the crowd-
sourcing engine, which will generate a query template as shown in
Figure 3.

When the crowdsourcing engine collects enough tweets in its
buffer, it starts to generate the HIT (Human Intelligence Task). In
particular, it creates an HTML section (bounded by <div> and
</div>) for each tweet using the query’s template. For all the
tweets in the buffer, we concatenate their HTML sections to form
our HIT description. Therefore, one HIT in the TSA job contains
questions for multiple tweets about the same product, movie, per-
son or event.

The HIT is then published into the AMT for processing. Algo-
rithm 1 summarizes the two-phase query processing in the crowd-
sourcing engine (note that Algorithm 1 describes the general query
processing strategy, not just for the TSA job). In the preprocessing,
the engine generates a HIT job for the tweets using the query tem-
plate (line 1-6). In the first phase, it applies the prediction model
to estimate the number of workers required to satisfy the prede-
fined accuracy (line 7). In the second phase, it submits the HIT to
AMT and waits for the answers (line 8-10). The verification model
is used to select the correct answers. In line 7, Q.C denotes the
accuracy requirement specified by query Q.

Algorithm 1 queryProcessing ( ArrayList<Tweet>
buffer, Query Q )
1: HtmlDesc H= new HtmlDesc()
2: for i = 0 to buffer.size-1 do
3: Tweet t = buffer.get(i)
4: HtmlSection hs = new HtmlSection(Q.template(), t)
5: H .concatenate(hs)
6: HIT task = new HIT(H)
7: int n=predictWorkerNumber(Q.C)
8: submit(task, n)
9: while not all answers received do

10: verifyAnswer()

In Algorithm 1, the two models direct the whole procedure of
query processing, which are also the focus of this paper and will be
presented in the following sections.

3. PREDICTION MODEL

3.1 Economic Model in AMT
The prediction model is designed to ensure high-quality answers

and to reduce cost. It is highly related to how the crowdsourcing
platform charges the requesters. Therefore, we first briefly intro-
duce the economic model of AMT.

In AMT, a HIT is published and broadcasted to all candidate
workers. Any candidate worker can accept the task. Thus, if n an-
swers for a HIT are required, from the point of view of CDAS, there
will be n random workers providing the answers. AMT charges
CDAS for each HIT using the following rules:

1. Every worker is paid a fixed amount of money mc.

2. CDAS pays a fixed amount of money ms per worker to the
AMT system for each HIT.

Therefore, we spend (mc+ms)n for each HIT. Take query Q =
(S,C,R, t, w) in TSA as an example, if we get K available tweets



for each time unit, the cost of processing Q is (mc +ms)nKw. In
our predication model, the number of workers is correlated to the
required accuracy C. We use function g to denote the relationship
between C and n. Consequently, the query cost can be represented
as (mc+ms)wK×g(C). Before we present the technical details,
we summarize the notations used in the paper in Table 2.

Table 2: Table of Notations
U the set of workers
ui the i-th worker
n the number of workers
Pn

2
the probability of at least �n

2
�

workers provide the correct answer
A the set of accuracy of workers
ai the accuracy of worker ui

μ the mean value of worker accuracy
f(ui) the answer provided by worker ui

Ω the observation of distribution of answers
P (r|Ω) the probability of answer r being correct

under the observation Ω
m the number of all possible answers
ci the confidence of worker ui

ρ(ri) the confidence of answer ri

3.2 Voting-based Prediction
Given n (n is odd) answers from workers U = {u1, u2, ..., un},

the voting strategy accepts an answer if at least �n
2
� workers return

the same answer. While the voting strategy guarantees that no other
answers have more votes of being the correct answer, it however
does not address the problem of how to select n.

To address the above problem, we propose a voting-based pre-
diction model. Given an accuracy requirement, the prediction model
estimates the number of workers required. That is, the goal of the
prediction model is to derive the function g for each query. We
prove in Section 4 that the model can also produce a bound for our
probability-based verification approach.

3.2.1 A Conservative Estimation
We compute the probability that at least �n

2
� workers provide

the correct answer. We use Pn
2

to denote the probability. Suppose
the accuracy of all n workers are A = {a1, a2, · · · , an}, where
the accuracy means the probability of a worker providing a correct
answer. By the definition of Pn

2
, we have the following equation:

Pn
2
=

∑
U⊆U,|U|��n

2
�

(
∏
ui∈U

ai

∏
uj �∈U

(1− aj))

U denotes a subset of user set U with size no smaller than �n
2
�. The

above equation enumerates all the possible cases that the correct
answer can be obtained by voting.

The workers of a HIT can be considered as random workers from
AMT. Let μ denote the mean value of the workers’ accuracy. We
have the following theorem to compute the expectation of the prob-
ability that at least �n

2
� workers return the correct answer:

THEOREM 1. If workers answer the queries independently,

E[Pn
2
] =

n∑
k=�n

2
�

(
n

k

)
μk(1− μ)n−k

PROOF. As all workers are randomly picked, ai and aj are in-
dependent for any i �= j. Similarly, ai and 1−aj are also indepen-
dent. Thus,

E[Pn
2
] = E[

∑
U⊂U,|U|��n

2
�

(
∏
ui∈U

ai

∏
uj �∈U

(1− aj))]

= E[
n∑

k=�n
2
�

(
∑

U⊂U,|U|=k

(
∏
ui∈U

ai

∏
uj �∈U

(1− aj)))]

=
n∑

k=�n
2
�

(
∑

U⊂U,|U|=k

(
∏
ui∈U

E[ai]
∏
uj �∈U

E[(1− aj)]))

We have E[ai] = μ and E[1−ai] = 1−μ. Therefore, E[Pn
2
] can

be computed as:

E[Pn
2
] =

n∑
k=�n

2
�

(
∑

U⊂U,|U|=k

(
∏
ui∈U

μ
∏
uj �∈U

(1− μ)))

=
n∑

k=�n
2
�

(
∑

U⊂U,|U|=k

μk(1− μ)n−k)

=

n∑
k=�n

2
�

(
n

k

)
μk(1− μ)n−k

For a given query, we require E(Pn
2
) to be no less than a given

accuracy C, i.e., E(Pn
2
) � C. Furthermore, we derive a lower

bound of E(Pn
2
) that can be easily computed as follows.

THEOREM 2. E[Pn
2
] � 1− e−2n(μ− 1

2
)2

PROOF. By Chernoff Bound,
n∑

k=�n
2
	+1

(
n

k

)
μk(1− μ)n−k

� 1− e−2n(μ− 1
2
)2

Moreover, for any odd n, we have

�
n

2
�+ 1 = �

n

2
�

Therefore,

E[Pn
2
] =

n∑
k=�n

2
�

(
n

k

)
μk(1− μ)n−k

=
n∑

k=�n
2
	+1

(
n

k

)
μk(1− μ)n−k

� 1− e−2n(μ− 1
2
)2

By requiring 1− e−2n(μ− 1
2
)2

� C, we guarantee that E[Pn
2
] �

C (i.e., the expected accuracy of the query result is no less than C).
Consequently, we obtain a sufficient condition for the quality of the
crowdsourcing query engine:

THEOREM 3. Given required accuracy C and the mean value
of workers’ accuracy μ, choosing

n �
− ln(1− C)

2(μ− 1
2
)2

workers ensures the expected accuracy of the crowdsourcing result
no less than C.

Note that n is an odd integer, so the minimum value of n is
2�− ln(1−C)

4(μ− 1
2
)2

�+ 1.



3.2.2 Optimization with Binary Search
Setting n to 2�− ln(1−C)

4(μ− 1
2
)2

� + 1 ensures the expected accuracy of
results. However, it is well known that Chernoff Bound provides a
tight estimation only for a large enough n. In some HITs, only a
few workers participate in processing. Therefore, Theorem 3 gen-
erates a conservative estimation that may cause too many workers
to be involved. To address this problem, we use Theorem 3 as an
upper bound and apply a binary search algorithm (on odd numbers)
to find a tighter estimation, i.e. the minimum odd n that satisfies
E[Pn

2
] � C.

Algorithm 2 binarySearch(double C)
//C is the required accuracy
1: int s = 1, int e = 2�− ln(1−C)

4(μ− 1
2
)2

�+ 1

2: while s < e do
3: int m = 2� s+e

4
+ 1

2
� − 1

4: int Em=computeExpectedProb(m)
5: if Em � C then
6: e = m
7: else
8: s = m+ 2
9: return e

Algorithm 3 computeExpectedProb(int x)

1: double E=0, δ=μx

2: for int i=x to �x
2
� do

3: E = E + δ
4: δ = δ × (1−μ)i

μ(x−i+1)

5: return E

Algorithm 2 shows the idea of binary search. We initialize the
domain of n to be [1, 2�− ln(1−C)

4(μ− 1
2
)2

�+ 1] (line 1). At each step, we
compute the expected accuracy of using m workers (line 4), until
we reach the minimum m that satisfies the accuracy requirement.
Algorithm 3 illustrates the process of computing the expected ac-
curacy. Its correctness is based on the fact that

(
n

k−1

)
/
(
n

k

)
=

k/(n − k + 1). Obviously, the time complexity of Algorithm 3
is O(n). Therefore, we can get a tighter bound of the number of
workers required using Algorithm 2 in O(n log n) time.

3.3 Sampling-based Accuracy Estimation
In the previous two prediction models, we rely on the statistics

of workers’ accuracy distribution. However, not all crowdsourcing
platforms provide such information due to the privacy issue. Even
if some platforms provide certain statistics, they cannot be directly
used as workers’ accuracy. For example, AMT system records the
approval rate of each worker. Approval rate shows the percentage
of answers approved by the requester. However, we have observed
that the approval rate is not consistent with the accuracy of the
worker in CDAS. There are two main reasons. First, the worker’s
accuracy may vary widely across jobs. Second, some requesters
set automatic approval for all answers without verification. The
difference of approval rate and accuracy is studied through experi-
ments. To resolve the above problem, we design a sampling-based
approach. Specifically, for a registered query, we randomly embed
m questions, whose ground truth are known beforehand. These
questions are used as our testing samples to estimate the workers’
accuracy.

Here we use TSA application to illustrate the sampling method.
As mentioned previously, each HIT contains the questions of B
tweets. To get unbiased results, we randomly inject αB samples

Algorithm 4 doSampling(HIT H)
1: WorkerSet U=H .getWorkers()
2: Double[] rate = new Double[U .size]
3: whileH .nextQuestion() �= null do
4: Question q = H .getNextQuestion()
5: if q is a testing sample then
6: for i = 0 to U .size do
7: Worker u = U .get(i)
8: if u.getAnswer(q)==q.groundTruth then
9: rate[i] = rate[i] + 1

αB.size

into a HIT. In other words, each HIT has αB testing samples and
(1− α)B new tweets. In our current implementation, α and B are
set to 0.2 and 100, respectively. We evaluate the effect of sampling
rate α in our experiments, and the results confirm that even a low
sampling rate can produce an acceptable estimation.

In the sampling process, CDAS collects the accuracy of partici-
pating workers. Algorithm 4 shows the procedure. After the sam-
pling, the statistics are used in both the prediction model and the
verification model.

4. VERIFICATIONMODEL
In the voting-based verification, if more than half of the work-

ers return the same answer, the query engine will accept it as the
correct answer. Despite the fact that our predication model tries to
guarantee that at least half of the workers submit the correct an-
swer, the voting-based verification occasionally fails to provide an
answer.

For a specific question, different workers may provide different
answers, and in some cases, no answer gets an agreement above
50%. Moreover, the voting strategy assumes that all the workers
provide the correct answer with the same probability, which is not
true as the accuracy of different workers varies a lot and the work-
ers with higher accuracy are more trustable. In this section, we
propose a probability-based verification method to determine the
best answer.

4.1 Probability-based Verification
Probability-based verification tries to evaluate the quality of an-

swers through workers’ historical performances (i.e. accuracy).
In particular, given the probability distribution of workers’ perfor-
mances, we apply the Bayesian theorem to estimate the accuracy
of each result. We adopt and extend the approach proposed in the
data fusion [4] for integrating conflicting results in the CDAS.

Suppose a HIT is answered by n workers {u1, u2, · · · , un} with
accuracy {a1, a2, · · · , an}. We define function f(ui) to represent
the answer provided by worker ui. Based on Bayesian analysis,
the probability of a specific answer r̄ ∈ R being the correct an-
swer given the observation of the answer’s distribution Ω (i.e. the
answers provided by n workers) can be computed as:

P (r̄|Ω) =
P (Ω|r̄)P (r̄)

P (Ω)

=
P (Ω|r̄)P (r̄)∑

ri∈R P (Ω|ri)P (ri)

Suppose the size of the answer domain |R| = m. Without a priori
knowledge, each answer ri ∈ R appears with equal probability of
1
m

. Then the above equation can be transformed into:

P (r̄|Ω) =
P (Ω|r̄)∑

ri∈R P (Ω|ri)
(1)



Let r̄ be the correct answer. The probability for worker uj pro-
viding the correct answer is aj (i.e. accuracy). Without any pri-
ori knowledge, each incorrect answer provided by uj appears with
equal probability 1−aj

m−1
. Therefore, P (Ω|r̄) can be computed as:

P (Ω|r̄) =
∏

f(uj)=r̄

aj

∏
f(uj) �=r̄

1− aj

m− 1
(2)

Combining Equation 1 and 2, we have

P (r̄|Ω) =

∏
f(uj)=r̄ aj

∏
f(uj) �=r̄

1−aj

m−1∑
ri∈R(

∏
f(uj)=ri

aj

∏
f(uj) �=ri

1−aj

m−1
)

=

∏
f(uj)=r̄

(m−1)aj

1−aj∑
ri∈R(

∏
f(uj)=ri

(m−1)aj

1−aj
)

(3)

For ease of illustration, we define the Worker Confidence for an
answer as follows.

DEFINITION 2. Worker Confidence
Let aj be the accuracy of worker uj . The confidence cj of worker
uj is defined as:

cj = ln
(m− 1)aj

1− aj

= ln(m− 1) + ln
aj

1− aj

From the above definition, we can see that high-accuracy workers
will get large confidence values. This is consistent with the intu-
ition that workers with higher accuracy are more trustable.

Based on the definition of worker confidence and the equation 3,
we define the Answer Confidence as below.

DEFINITION 3. Answer Confidence
The confidence of an answer r̄ equals to the probability of r̄ being
the correct answer:

ρ(r̄) = P (r̄|Ω) =
e
∑

f(uj )=r̄ cj∑
ri∈R(e

∑
f(uj )=ri

cj )
(4)

In our CDAS, the answer with the highest confidence is accepted
as the final result. In fact, the confidence of an answer represents
a variant of voting, where ecj is used as the weight for worker
uj . Apparently, the worker with a higher confidence gets more
weight. To speed up the computation of P (r̄|Ω), we cache the
value ln

aj

1−aj
for each known worker.

We can prove that using Theorem 1 to estimate the number of
workers required also produces a quality bound for our probability-
based verification approach.

THEOREM 4. If E[Pn
2
] � C and let r̄ be the correct answer,

we have that our probability-based verification model returns r̄ as
the result with a probability no less than C.

PROOF. Based on Theorem 1,

E[Pn
2
] =

n∑
k=�n

2
�

(
n

k

)
μk(1− μ)n−k

� C

Namely, the expected number of workers, who provide the correct
answer, is larger than n

2
with a probability larger than C. The con-

fidences of all workers are independent and identically distributed

(i.i.d.), because the accuracies of the workers are i.i.d. Let Ec de-
note the mean value of workers’ confidences. As a result, the total
number of expected votes for answer r̄ is

E[
∑

f(uj)=r̄

cj ] =
∑

f(uj)=r

E[cj ]

= Ec · |{uj |f(uj) = r}|

>
n

2
Ec

Note that in Equation 4, all answers share the same denominator.
The value of P (r̄|Ω) is proportional to e

∑
f(uj )=r̄ cj . Thus, r̄ is the

answer with the largest expected confidence and is returned as the
result in expectation. Otherwise, if another answer r′ has a larger
expected probability than r̄, i.e.,

E[P (r′|Ω)] > E[P (r̄|Ω)]

Therefore,

E[
∑

f(uj)=r′

cj ] > E[
∑

f(uj)=r̄

cj ] >
n

2
Ec

We will have

E[
∑

f(uj)=r′

cj ] + E[
∑

f(uj)=r̄

cj ] > nEc

In fact, the sum of workers’ confidences is equal to the sum of
confidences for every answer:

nEc = E[
∑

ri∈Rp

(
∑

f(uj)=ri

cj)]

This results in a contradiction that the sum of confidences of r̄ and
r′ exceeds the sum of all confidences. Therefore, our probability-
based verification model returns r̄ as the result with a probability
no less than C.

The only unknown parameter in Equation 4 is m, the size of R.
We can simply set m = |R|. However, in our experimental study,
we have found that not all answers in R are picked by the workers.
For example, if a question asks a worker to rank a product based on
some tweets and the score ranges from 0 to 100, the scores will fol-
low a very skewed distribution. Some low-probability answers are
never selected, but they do reduce the weight of a correct answer.
Thus, we need to select a good m to prune the noise.

After a HIT completes, the crowdsourcing engine gets k distinct
answers for a specific question from n workers (k ≤ n). In this
observation, we select k distinct answers among m possible ones.
The probability of this selection can be computed as (mk )

mk . Suppose
this is not a very rare observation and the probability of this obser-
vation is larger than ε (e.g., we prune the low-probability noise).
The following lemma provides a lower bound for m.

LEMMA 1. m >
k − 1

Hk−1 − (k − 1)(kε)
1

k−1

, whereHk =
k∑

i=1

1
i

is the k-th Harmonic number.



PROOF.

ε <

(
m

k

)
mk

=
1

mk

m(m− 1) · · · (m− k + 1)

k(k − 1) · · · 1

=
1(1− 1

m
)(1− 2

m
) · · · (1− k−1

m
)

k · 1 · · · (k − 1)

=
1

k
(1−

1

m
)(
1

2
−

1

m
) · · · (

1

k − 1
−

1

m
)

�
1

k
(

1

k − 1
(

k−1∑
i=1

(
1

i
−

1

m
)))k−1

=
1

k
(
Hk−1

k − 1
−

1

m
)k−1

Derived from the above equation, we have

(kε)
1

k−1 <
Hk−1

k − 1
−

1

m

Therefore

m >
1

Hk−1

k − 1
− (kε)

1
k−1

=
k − 1

Hk−1 − (k − 1)(kε)
1

k−1

For a large k, the above lower bound is too loose. Instead, we
propose a tighter lower bound for m:

LEMMA 2. m >
k − 1

1− εk

ek

PROOF. From Lemma 1, we have

ε <

∏k

i=1(1−
i− 1

m
)∏k

i=1 i

Therefore,

ln ε <
k∑

i=1

ln
1− i−1

m

i

Obviously,
k∑

i=1

ln
1− i−1

m

i
> k ln

1− k−1
m

k

By setting k ln
1− k−1

m

k
> ln ε, we get a tighter bound:

m >
k − 1

1− εk

ek

THEOREM 5.

m > max{
k − 1

Hk−1 − (k − 1)(kε)
1

k−1

,
k − 1

1− εk

ek

}

PROOF. Directly from Lemma 1 and 2.

In our verification, we set ε to 0.05 based on Fisher’s exact test
[5], which is widely adopted in practice. We then use Theorem 5 to
estimate the value of m.

We now give an example in TSA to show the benefit of apply-
ing our probability-based verification model. Table 3 shows the

Table 3: An Example of Workers’ Answers
Movie Title Green Latern

Tweet Oh. My. GOD. “Green Lantern” movie is
terrible. Like, “Lost In Space” movie terrible.

Worker ID w1 w2 w3 w4 w5

Accuracy 0.54 0.31 0.49 0.73 0.46
Answer pos pos neu neg pos

Table 4: Results of Verification Models
pos neu neg Answer

Half-Voting 3 1 1 pos
Majority-Voting 3 1 1 pos
Verification 0.329 0.176 0.495 neg

example. Five workers with different accuracies provide three dif-
ferent answers, namely Positive, Neutral and Negative. The results
of the three verification models are shown in Table 4. Both the
Half-Voting model and the Majority-Voting model choose Positive
as the results since three workers out of five provide the answer
Positive. However, our verification model can correctly choose
Negative as the result because the worker answering Negative has
a much higher accuracy. As a result, our verification model gets
more accurate answers than the other two voting-based models.

4.2 Online Processing
The workers submit their answers asynchronously in the AMT

and CDAS has to wait for sufficient number of answers to be sub-
mitted. As a consequence, query response time in CDAS (and other
crowdsourcing systems for that matter) is expected to be longer
than that of non-crowdsourcing systems. To alleviate such a prob-
lem and also to improve users’ experience, we adopt online pro-
cessing techniques in CDAS. Instead of waiting for all workers to
complete their tasks, CDAS provides an approximate result based
on the answers received so far. As we have previously discussed,
uncertainty and approximation cannot be avoided in crowdsourcing
systems, which makes online processing a perfect fit for the query
processing in CDAS.

To resolve the uncertainty, we extend the techniques of data fu-
sion [4][14] to estimate the answer’s confidence. However, the
same approach cannot be directly applied to the online process-
ing in CDAS, as in the crowdsourcing systems, the human workers
compete for the tasks and CDAS does not have the profile (i.e. ac-
curacy) for a specific user until he/she returns the answer. In our
case, the accuracy of the answer provided by an unseen worker can
only be estimated by the distribution of all workers’ accuracies.

4.2.1 Finding the Correct Answer Online
We apply Equation 4 to continuously update the probability of

each received answer. Suppose a HIT is assigned to n workers and
the query engine receives answers from n′ (n′ < n) workers. Un-
like Equation 4, in this case, we only receive a partial observation
Ω′ for the answer distribution. For the remaining n − n′ workers,
we have no idea about what answers they may provide. Let s de-
note a possible answer set by the remaining workers and we use S
to represent all the possible s.

Let A = {an′+1, an′+2, ..., an} be the accuracies of the remain-
ing n−n′ workers. As we do not know the identities of the remain-
ing n − n′ workers, we consider all the possibilities. We use A to
represent all the possible permutations of A. The confidence of an
answer r being the correct one can be estimated as the expected
probability P (r|Ω′, s) over S and A, i.e.,

ρ(r) = Es∈S,A∈A[P (r|Ω′, s)]



The following theorem shows that Equation 4 can be applied to
compute ρ(r).

THEOREM 6. Assume that workers process the query indepen-
dently and the answers are submitted in a random order. ρ(r) =
P (r|Ω′)

PROOF. Based on the assumption, we have:

ρ(r) = Es∈S,A∈A[P (r|Ω′, s)]

= EA∈A[Es∈S [P (r|Ω′, s)]]

In fact, the answer set of the remaining workers s does not affect
the computation of the above equation. As shown in [14],

Es∈S [P (r|Ω′, s)] = P (r|Ω′)

The computation of ρ(r) can be further simplified as:

ρ(r) = EA∈A[Es∈S [P (r|Ω′, s)]]

= EA∈A[P (r|Ω′)]

= P (r|Ω′)

Theorem 6 shows that the confidence of a partial result can also
be computed by Equation 4. Therefore, we select the answer with
maximal confidence as our correct answer.

4.2.2 Early Termination
When the current answers are good enough, we can terminate

the HIT to reduce cost. The major challenge of early termination
is how to measure the quality of the current results. Intuitively, we
can stop accepting answers from new workers as soon as we are
sure that the current result r will not change by the answers we
choose to forgo.

In particular, let r1 and r2 be the best and second best answers
based on their confidence, respectively. We have P (r1|Ω

′) >
P (r2|Ω

′). Let (u1, u2, ..., un) be the set of workers. Suppose n′

workers have submitted answers and n − n′ answers remain un-
filled. Assume an answer set s = {f(ui) = r2|n

′ + 1 � i � n}.
Using similar techniques in paper [14], we can prove the theorem
of minimal possible value of P (r1|Ω) and the maximal possible
value of P (r2|Ω):

minP (r1|Ω) = P (r1|Ω
′, s) (5)

maxP (r2|Ω) = P (r2|Ω
′, s) (6)

Note that minP (r1|Ω) and maxP (r2|Ω) are related to the ran-
dom variables an′+1, an′+2, · · · , an. In our algorithm, we use
the expected value of minP (r1|Ω) and maxP (r2|Ω), namely,
EA∈A[minP (r1|Ω)] and EA∈A[maxP (r2|Ω)]. However, it is dif-
ficult to compute the expected values directly. Therefore, in prac-
tice, we use the approximate values of EA∈A[minP (r1|Ω)] and
EA∈A[maxP (r2|Ω)]. We assume every remaining worker has the
same accuracy E[ai] and use it in the Equation 5 and 6. Empirical
results show that the approximations work well in practice.

We propose three different strategies as the termination condi-
tion:

MinMax EA∈A[minP (r1|Ω)] > EA∈A[maxP (r2|Ω)]

MinExp EA∈A[minP (r1|Ω)] > P (r2|Ω
′)

ExpMax P (r1|Ω
′) > EA∈A[maxP (r2|Ω)]

Figure 4: Reviews for Kung Fu Panda 2

MinMax guarantees that the answer output by our system is stable
when the termination condition is achieved. However, it is too con-
servative. MinExp and ExpMax can terminate the processing much
earlier, but may lead to low-quality results. We study the effect of
the three strategies in our experiments.

Algorithm 5 onlineProcessing(Question q)
1: Set answer=new Set()
2: Map< Answer, float > result= new Map()
3: while not all answers are returned do
4: Answer A = getNextAnswer(q)
5: answer.add(A)
6: Set distinctAnswer = getDistinctAnswer(answer)
7: for i = 0 to distinctAnswer.size-1 do
8: Answer A= distinctAnswer.get(i)
9: float confidence = computeConfidence(A)

10: result.put(A, confidence)
11: if canTerminate(result) then
12: break
13: return result

Algorithm 5 outlines the online processing strategy adopted in
CDAS. The query engine continuously updates the confidence of
each answer (line 3-13) until the termination condition is satisfied.
We apply Equation 4 to estimate the confidence of each answer
(line 9) and apply one of the three termination strategies to decide
whether to stop the processing (line 11).

4.3 Result Presentation
In the onlineProcessingAlgorithm (Algorithm 5), if there

is an answer that meets the termination condition, online processing
will stop and CDAS will accept the answer. Otherwise, if none of
the answers is good enough, CDAS will update the confidence of
each answer according to Equation 4.

We take queries in TSA as an example to illustrate the result pre-
sentation. Given a list of tweets t1, t2, ..., tN , let function hti(r)
return the score of answer r for tweet ti. hti(r) is defined as fol-
lows:

hti(r) =

⎧⎨
⎩

1 if r is accepted for ti
0 if another answer is accepted
ρti(r) none of the answers are accepted



The percentage of answer r is then computed as 1
N

∑N

i=1 hti(r).
Moreover, we generate a set of keywords as reasons for each an-
swer r. These keywords are the most frequent keywords submitted
by the workers who have provided the answer r. The results are
updated as new tweets are being streamed into TSA.

Figure 4 shows the online processing interface of TSA for the
review results of Kung Fu Panda 2. It summarizes Twitter users’
opinions into three categories. The time window of the query is set
to 12 minutes and in the elapsed time (4 minutes), 20 tweets are
fed to TSA, among which 70% of tweets say Kung Fu Panda 2 is
a good movie. TSA updates the result upon new tweets arriving.
Users can click an answer to expand the view. TSA will list the
corresponding tweets for the answer. The tweets are sorted based
on timestamps from the newest to the oldest. The user can also
check the progress of the current running HIT.

5. PERFORMANCE EVALUATION
To evaluate the effectiveness of the quality-sensitive answering

model in CDAS, we developed two crowdsourcing applications, a
twitter sentiment analytics (TSA) job and an image tagging (IT)
job. We present the comprehensive experimental results over TSA,
and due to the space constraint, we shall only provide the compar-
ison with an online image tagging toolkit for the IT application.
The results for the other experiments over IT exhibit similar trends
to those of TSA.

By default, our approach applies the probability-based verifica-
tion model (denoted as Verification) to select the best answer. For
comparison, the Half-Voting and Majority-Voting models are used
as two alternative verification approaches. Suppose n (n is odd)
workers are employed for a particular task. In the Half-Voting
model, the answer ri is accepted only if no less than n

2
workers

return it as their answers. In the Majority-Voting model, let v(ri)
denote the votes for answer ri. The answer ri is accepted if for any
other answer rj , v(ri) > v(rj).

5.1 Application 1: TSA
We deploy TSA on AMT and use 200 movie titles as our queries.

The selected titles are the most recent movies listed in IMDB (Inter-
net Movie Database). The query follows the format of Q=({movie
name}, accuracy requirement, {Positive, Neural, Negative}, Oct-
1-2011, 1 day). Namely, the queries are processed against one-day
tweets. For each HIT, 30 workers are employed to perform the re-
view categorization task. We manually check each of the reviews
to generate our ground truth.

5.1.1 Crowdsourcing vs. SVM Algorithm
We first show the advantages of crowdsourcing techniques over

computer programs. We compare the results of TSA with LIB-
SVM2. To build an automatic classification model using LIBSVM,
tweet reviews about five movies are selected as the test data, and
tweets about the rest 195 movies are used as training data. After a
stream of tweets passes the filters of TSA, we also send it to LIB-
SVM and collect the corresponding results. We then compare the
results against our ground truth. In TSA, we vary the number of
workers from 1 to 5. Figure 5 shows the accuracies of both sys-
tems for five movies, each with 200 tweet reviews. In most cases,
TSA can achieve a higher accuracy than LIBSVM, even if only one
worker is employed. This indicates that humans are much better at
natural language understanding than machines. For such tasks, if
high accurate results are required, crowdsourcing is a promising
approach.
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

5.1.2 Accuracy Analysis
In TSA, we first apply Theorem 1 to estimate the number of

workers required. This is a conservative estimation. To reduce cost,
binary search is used to refine the estimation. Figure 6 compares
the conservative estimation with the refined estimation generated
by the binary search. We change the user required accuracy from
0.65 to 0.99 and find that the refined estimation is less than half of
the conservative estimation. In the remaining experiments, we use
the refined estimation to determine the number of workers required
for each HIT.

We next present the accuracy for the three verification models,
namelyHalf-Voting,Majority-Voting and our proposed Probability-
based Verification model. Figure 7 shows that when the number
of workers increases, we can get a higher accuracy. Among the
three verification models, our probability-based approach achieves
a much higher accuracy than the other two. When 29 workers are
employed, the probability-based model improves the accuracy to
0.99. This verifies the benefit of considering workers’ historical
performance.

We proceed to investigate the effectiveness of the three verifi-
cation models with respect to a user required accuracy. Figure 8
shows the result. When the requester specifies a required accuracy,
TSA estimates the number of workers needed to achieve that ac-
curacy. The real accuracy is computed by comparing the workers’
answers with the ground truth. The red line in the figure denotes
the user required accuracy. We observe that the probability-based
verification model always provides a satisfactory result while the
results of the other two models are below the required accuracy in
most cases.

We can observe that the accuracy of the Half-Voting model is
worse than our estimation. The reason is as follows. First, the
estimated number of workers ties to users’ mean accuracy. The
mean accuracy used in the prediction model is an overall accuracy,
which is collected across various questions. However, for some
difficult questions, workers’ accuracies could be much lower. As
a result, the number of workers needed in voting models is more
than the estimated number. For example, the following tweet about
movie The Last Airbender expresses a positive opinion whereas
most workers classify it into the negative category because of the
word “sucks”.

My nephew just said that Avatar: The Last Airbender
sucks... I’m disowning him.

The second reason can be explained based on the results of Fig-
ure 9 and Figure 10. Figure 9 shows the percentage of tweets with
no answers in the two voting-based models. In some cases, the
Half-Voting and Majority-Voting models fail to provide a result as
none of the answers is discriminative (All answers get no more than
half votes or more than one answers get the same number of votes).
When the number of workers increases, Majority-Voting can solve
the tie more easily. However, for the Half-Voting strategy, there
are still about 15% of the tweets that cannot obtain answers with
more than half the amount of votes. In Figure 10, when we vary
the number of tweet reviews, we observe that the percentage of
no-answer reviews is fairly stable. This phenomenon indicates that
the reviews with non-discriminative answers are almost uniformly
distributed among all reviews.

5.1.3 Online Processing
One advantage of our crowdsourcing engine is its ability in sup-

porting online processing. It can provide an approximate result
without waiting for all the workers to finish their jobs. Specifically,
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TSA will generate an initial result as soon as the first answer is re-
turned. Then it will gradually refine the results as more answers
arrive until the termination condition is satisfied. This allows us to
terminate a HIT and cap the processing cost3.

One interesting observation in our experiments is that the ac-
curacy of the approximate result varies significantly for different
answer arriving sequences. Figure 11 shows the accuracy of the
same HIT under four different answer sequences. The red line is
the user-required accuracy 0.94. Sequence 4 results in a low start-
ing accuracy because the first two workers of sequence 4 provide
incorrect answers. Therefore, in online processing, we must up-
date the confidence of the current result dynamically based on the
answers received as early termination may potentially degrade the
accuracy.

We evaluate the three termination strategies as discussed in Sec-
tion 4.2.2. Figure 12 shows the effect of early termination on the
number of workers. The red line denotes the estimated number of
workers via our refined prediction model. The MinMax strategy
generates the most conservative estimation, but it still reduces the
number of workers by 20%. The ExpMax strategy is the most ag-
gressive one, which can save more than 50% of workers. In Figure
13, we show the accuracies of the different termination strategies.
The x-axis is the accuracy requirement specified by the user and
the y-axis is the real accuracy measured against the ground truth.
We can see that theMinMax and ExpMax strategies satisfy the user
required accuracy (denoted as red line) in all cases while MinExp
fails to meet the requirement at a few points. In view of the need for
reducing the number of workers while maintaining good accuracy,
we propose to adopt the ExpMax termination strategy.

3In AMT, we can cancel a HIT when we detect that the answers
are good enough. By doing so, we do not need to pay workers who
have yet submitted their answers.

5.1.4 Effect of Sampling
TSA verifies the answers using the probability-based verification

model, which relies on workers’ historical performance. The AMT
system records an approval rate for each worker, which implies
his accuracy in general. However, the workers’ approval rates are
not public due to privacy concerns. To collect the statistics, we
publish 500 HITs requiring workers to fill in their approval rate. We
also compute the workers’ accuracies of answering TSA queries.
We observe the distribution of their approval rate in AMT is very
different from that of real accuracy in TSA, as shown in Figure 14.
The reasons are two-fold. On one hand, there are various types
of tasks in AMT and it is natural that people cannot be experts
in all domains. On the other hand, some requesters set automatic
approval for all workers without checking the answers. This results
in a high average approval rate in AMT. Therefore, we adopt a
sampling approach to estimate workers’ accuracy.

Given n works, we compute their accuracies Aj = {aj
1, a

j
2,

..., aj
n} under a sampling rate j%. We vary the sampling rate and

plot the mean accuracy μj and average absolute error errj in Fig-
ure 15, where μj and errj are defined as follows:

μj =
1

n

n∑
i=1

aj
i , errj =

1

n

n∑
i=1

|aj
i − a100

i |

As shown, both mean accuracy and average error are stable when
the sampling rate is higher than 10%. More precisely, mean accu-
racy remains nearly constant and average error approaches 0.

We also study the effect of sampling rate on accuracy in our
verification model. Figure 16 plots the result. We vary the sam-
pling rate from 5%, 10% to 20% and compare the result to 100%-
sampling accuracy. The red line represents the user required ac-
curacy. We can see that the verification has a better accuracy with
a higher sampling rate. When the user required accuracy is lower
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than 0.75, all sampling rates are satisfactory. The result meets all
of the user required accuracy only with a sampling rate no less than
20%. Moreover, the accuracy under 20% sampling rate has only
a small gap compared to that under 100% sampling. We use 20%
sampling rate in all of our verification experiments.

5.2 Application 2: IT
In this experiment, we evaluate our model in the context of image

tagging application. We use 100 Flicker images as our queries. For
each image, we give a set of candidate tags and let 30 workers to
choose the related ones. The candidate tags include Flicker tags
and some embedded noise tags.

Again, we first show the advantages of crowdsourcing over the
applications on dealing with image tagging task. We compare our
result with ALIPR4. ALIPR[13] is an automatic image annotation
system which applies 2-D Hidden Markov model and clustering
techniques. The accuracy comparison result is shown in Figure 17.
We use 5 groups of images. Each group contains top 20 Flicker
images returned by a tag. The figure clearly shows the accuracy gap
between ALIPR and crowdsourcing approach. ALIPR achieves its
best accuracy 30% on tag sun and has only 12.6% accuracy on tag
apple, whereas in our crowdsourcing system, we can reach more
than 80% even with only one worker employed.

We next study the effectiveness of our model. Recall that our
model first estimates the number of workers for a specified accu-
racy requirement and then applies a probability-based model to ver-
ify the result. Figure 18 shows the accuracy achieved with respect
to the user required accuracy. As before, the red line denotes the
user required accuracy. It can be seen from the figure that our model
can always satisfy user’s requirement.

4http://alipr.com/

6. RELATED WORK
The emergence of Web 2.0 systems has significantly increased

the applicability and usefulness of crowdsourcing techniques. A
complex job can be split into many small tasks and assigned to
different online workers. Amazon’s AMT and CrowdFlower5 are
popular crowdsourcing platforms. Studies show that users exhibit
different behaviors in such micro-task markets [11]. A good incen-
tive model is required in task design [10].

Recently, crowdsourcing has been adopted in software devel-
opment. Instead of answering all requests with computer algo-
rithms, some human-expert tasks are published on crowdsourcing
platforms for human workers to process. Typical tasks include im-
age annotation [21][18], information retrieval [1][8] and natural
language processing [3][12][17]. These are tasks that even state-of-
the-art technologies cannot accomplish with satisfactory accuracy,
but could be easily and correctly done by humans.

Crowdsourcing techniques have also been introduced into the
database design. Qurk [16][15] and CrowdDB [6] are two exam-
ples of databases with crowdsourcing support. In these database
systems, queries are partially answered by AMT platform. Our
system, CDAS, adopts a similar design. On top of the crowdsourc-
ing database, new query languages, such as hQuery [20], have been
proposed, which allows users to exploit the power of crowdsourc-
ing. Other database applications, such as graph search [19], can be
enhanced with crowdsourcing techniques as well.

One main obstacle that prevents enterprise-wide deployment of
crowdsourcing-based applications is quality control. Human work-
ers’ behaviors are unpredictable, and hence, their answers may be
arbitrarily bad. To encourage them to provide high-quality answers,
monetary rewards are required. Munro et al. [17] showed how to
design a good incentive model to optimize workers’ participation
5http://crowdflower.com/
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and contributions. Ipeirotis et al. [9] presented a scheme to rank
the qualities of workers while Ghosh et al. [7] tried to accurately
identify abusive content. Unlike previous efforts, in this paper, we
have designed a feasible model that balances monetary cost and ac-
curacy, and proposed a crowdsourcing query engine with quality
control. One of the main challenges of our query engine is how
to integrate the conflicting results of human workers. The similar
problem has been well studied in the data fusion systems, for exam-
ples [4][14]. We extended the models proposed in [4][14] to select
and verify the crowdsourcing results in our CDAS.

7. CONCLUSION
Crowdsourcing techniques allow application developers to har-

ness the natural expertise of human workers to perform complex
tasks that are very challenging for computers. However, as humans
are prone to errors, there is no guarantee for the results of crowd-
sourcing. In this paper, we introduced the quality-sensitive answer-
ing model in our Crowdsourcing Data Analytics System, CDAS.
The model guides the query engine to generate proper query plans
based on the accuracy requirement. It consists of two sub-models,
the prediction model and the verification model. The prediction
model estimates the number of workers required for a specific task
while the verification model selects the best answer from all re-
turned ones. To improve users’ experience, when verifying the re-
sults, our model embraces online processing techniques to update
answers gradually. By adopting the models, CDAS can provide
high-quality results for different crowdsourcing jobs. In this pa-
per, we have implemented a twitter sentiment analytics job and an
image tagging job on CDAS. We used real Twitter data and Flickr
data as our queries. Amazon Mechanical Turk was employed as our
crowdsourcing platform. The results show that our proposed model
can provide high-quality answers while keeping the total cost low.
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