Privacy Preserving Vertical Federated Learning for
Tree-based Models

Yuncheng Wu', Shaofeng Caif, Xiaokui Xiaof, Gang Chen*, Beng Chin Ooit
TNational University of Singapore IZhejiang University
{wuyc, shaofeng, xiaoxk, ooibc}@comp.nus.edu.sg cg@zju.edu.cn

ABSTRACT

Federated learning (FL) is an emerging paradigm that en-
ables multiple organizations to jointly train a model without
revealing their private data to each other. This paper studies
vertical federated learning, which tackles the scenarios where
(i) collaborating organizations own data of the same set of
users but with disjoint features, and (ii) only one organiza-
tion holds the labels. We propose Pivot, a novel solution for
privacy preserving vertical decision tree training and predic-
tion, ensuring that no intermediate information is disclosed
other than those the clients have agreed to release (i.e., the
final tree model and the prediction output). Pivot does
not rely on any trusted third party and provides protection
against a semi-honest adversary that may compromise m—1
out of m clients. We further identify two privacy leakages
when the trained decision tree model is released in plain-
text and propose an enhanced protocol to mitigate them.
The proposed solution can also be extended to tree ensem-
ble models, e.g., random forest (RF) and gradient boosting
decision tree (GBDT) by treating single decision trees as
building blocks. Theoretical and experimental analysis sug-
gest that Pivot is efficient for the privacy achieved.

PVLDB Reference Format:

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, Beng
Chin Ooi. Privacy Preserving Vertical Federated Learning for
Tree-based Models. PVLDB, 13(11): xxxx-yyyy, 2020.

DOI: https://doi.org/10.14778/3407790.3407811

1. INTRODUCTION

There has been a growing interest in exploiting data from
distributed databases of multiple organizations, for provid-
ing better customer service and acquisition. Federated learn-
ing (FL) [47,48] (or collaborative learning [39]) is an emerg-
ing paradigm for machine learning that enables multiple
data owners (i.e., clients) to jointly train a model without
revealing their private data to each other. The basic idea
of FL is to iteratively let each client (i) perform some local
computations on her data to derive certain intermediate re-
sults, and then (ii) exchange these results with other clients
in a secure manner to advance the training process, until a

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 11

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3407790.3407811

0=

credit card
application model

&

partial features Bank

— -

Fintech partial features

Figure 1: Example of vertical federated learning

final model is obtained. The advantage of FL is that it helps
each client protect her data assets, so as to abide by privacy
regulations (e.g., GDPR [2] and CCPA [1]) or to maintain a
competitive advantage from proprietary data.

Existing work on FL has mainly focused on the horizontal
setting [7,8,47,48,50,53,54,60,75], which assumes that each
client’s data have the same schema, but no tuple is shared by
multiple clients. In practice, however, there is often a need
for vertical federated learning, where all clients hold the same
set of records, while each client only has a disjoint subset of
features. For example, Figure 1 illustrates a digital bank-
ing scenario, where a bank and a Fintech company aim to
jointly build a machine learning model that evaluates credit
card applications. The bank has some partial information
about the users (e.g., account balances), while the Fintech
company has some other information (e.g., the users’ online
transactions). In this scenario, vertical FL could enable the
bank to derive a more accurate model, while the Fintech
company could benefit from a pay-per-use model [67] for its
contribution to the training and prediction.

To our knowledge, there exist only a few solutions [19,40,
45,54,61-63, 65] for privacy preserving vertical FL. These
solutions, however, are insufficient in terms of either effi-
ciency or data privacy. In particular, [40,65] assume that
the labels in the training data could be shared with all par-
ticipating clients in plaintext, whereas in practice, the labels
often exist in one client’s data only and could not be revealed
to other clients without violating privacy. For instance, in
the scenario illustrated in Figure 1, the training data could
be a set of historical credit card applications, and each label
would be a ground truth that indicates whether the applica-
tion should have been approved. In this case, the labels are
only available to the bank and could not be directly shared
with the Fintech company. As a consequence, the solutions
in [40,65] are inapplicable. Meanwhile, [19,45,61-63] assume
that some intermediate results during the execution could
be revealed in plaintext; nevertheless, such intermediate re-
sults could be exploited by an adversarial client to infer the
sensitive information in other clients’ data. The solution
in [54], on the other hand, relies on secure hardware [46]
for privacy protection, but such secure hardware may not
be trusted by all parties [75] and could be vulnerable to

side channel attacks [70]. The method in [51] utilizes se-
cure multiparty computation (MPC) [72], but assumes that
each client’s data could be outsourced to a number of non-
colluding servers. This assumption is rather strong, as it is
often challenging in practice to ensure that those servers do
not collude and to convince all clients about it.

To address the above issues, we propose Pivot, a novel
and efficient solution for vertical FL. that does not rely on
any trusted third party and provides protection against a
semi-honest adversary that may compromise m — 1 out of
m clients. Pivot is a part of our Falcon' (federated learn-
ing with privacy protection) system, and it ensures that no
intermediate information is disclosed during the training or
prediction process. Specifically, Pivot is designed for train-
ing decision tree (DT) models, which are well adopted for
financial risk management [19,45], healthcare analytics [5],
and fraud detection [14] due to their good interpretability.
The core of Pivot is a hybrid framework that utilizes both
threshold partially homomorphic encryption (TPHE) and
MPC, which are two cryptographic techniques that comple-
ment each other especially in the vertical FL setting: TPHE
is relatively efficient in terms of communication cost but
can only support a restrictive set of computations, whereas
MPC could support an arbitrary computation but incurs
expensive communication overheads. Pivot employs TPHE
as much as possible to facilitate clients’ local computation,
and only invokes MPC in places where TPHE is inadequate
in terms of functionality. This leads to a solution that is not
only secure but also highly efficient for vertical tree mod-
els, as demonstrated in Section 7. Specifically, we make the
following contributions:

e We propose a basic protocol of Pivot that supports the
training of both classification trees and regression trees,
as well as distributed prediction using the tree models
obtained. This basic protocol guarantees that each client
only learns the final tree model but nothing else. To our
knowledge, Pivot is the first vertical FL solution that
achieves such a guarantee.

e We enhance the basic protocol of Pivot to handle a more
stringent case where parts of the final tree model need to
be concealed for better privacy protection. In addition,
we propose extensions of Pivot for training several en-
semble tree-based models, including random forest (RF)
and gradient boosting decision trees (GBDT).

e We implement DT, RF, and GBDT models based on
Pivot and conduct extensive evaluations on both real
and synthetic datasets. The results demonstrate that
Pivot offers accuracy comparable to non-private algo-
rithms and provides high efficiency. The basic and en-
hanced protocols of Pivot achieve up to 37.5x and 4.5x
speedup (w.r.t. training time) over an MPC baseline.

2. PRELIMINARIES

2.1 Partially Homomorphic Encryption

A partially homomorphic encryption (PHE) scheme is a
probabilistic asymmetric encryption scheme for restricted
computation over the ciphertexts. In this paper, we utilize
the Paillier cryptosystem [25, 55], which consists of three
algorithms (Gen, Enc, Dec):

"https://www.comp.nus.edu.sg/~dbsystem/fintech/
project/falcon/

e The key generation algorithm (sk,pk) = Gen(keysize)
which returns secret key sk and public key pk, given a
security parameter keysize.

e The encryption algorithm ¢ = Enc(z, pk), which maps a
plaintext x to a ciphertext c using pk.

e The decryption algorithm z = Dec(c, sk), which reverses
the encryption by sk and outputs the plaintext x.

For simplicity, we omit the public key pk in the Enc algo-
rithm and write Enc(z) as [z] in the rest of the paper. Let
z1,x2 be two plaintexts. We utilize the following properties:

e Homomorphic addition: given [z1], [z2], the cipher-

text of the sum is [z1] @ [z2] = [z1 + z2].

e Homomorphic multiplication: given zi1, [z2], the

ciphertext of the product is z1 ® [z2] = [z122].

¢ Homomorphic dot product: given a ciphertext vec-

tor [v] = ([v1],- [vm])T and a plaintext vector & =
(21,+,xm), the ciphertext of the dot product is x®[v] =
(1@ [v1])® @ (Tm ® [Um]) = [T -v].

We utilize a threshold variant of the PHE scheme (i.e.,
TPHE) with the following additional properties. First, the
public key pk is known to everyone, while each client only
holds a partial secret key. Second, the decryption of a ci-
phertext requires inputs from a certain number of clients. In
this paper, we use a full threshold structure, which requires
all clients to participate in order to decrypt a ciphertext.

2.2 Secure Multiparty Computation

Secure multiparty computation (MPC) allows partici-
pants to compute a function over their inputs while keeping
the inputs private. In this paper, we utilize the SPDZ [26]
additive secret sharing scheme for MPC. We refer to a value
a € Zq that is additively shared among clients as a secretly
shared value, and denote it as (a) = ({(a),,"-,(a),,), where
(a), is a random share of a hold by client . To reconstruct a,
every client can send her own share to a specific client who
computes a = (X;2; (a),) mod g. For ease of exposition, we
omit the modular operation in the rest of the paper.

Given secretly shared values, we mainly use the following
secure computation primitives in SPDZ as building blocks:
secure addition, secure multiplication [6], secure division
[16], secure exponential [36], and secure comparison [15,16].
The output of any secure computation is also a secretly
shared value unless it is reconstructed. We refer interested
readers to [4,26] for the detailed constructions. The secret
sharing based MPC has two phases: an offline phase that
is independent of the function and generates pre-computed
Beaver’s triplets [6], and an online phase that computes the
designated function using these triplets.

2.3 Tree-based Models

In this paper, we consider the classification and regression
trees (CART) algorithm [11] with binary structure, while
we note that other variants (e.g., ID3 [58], C4.5 [59]) can
be easily generalized. We assume there is a training dataset
D with n data points {x1,-+,Xx» } each containing d features
and the corresponding output label set Y = {y1, -, yn}-

The CART algorithm builds a tree recursively. For each
tree node, it first decides whether some pruning conditions
are satisfied, e.g., feature set is empty, tree reaches the max-
imum depth, the number of samples is less than a threshold.
If any pruning condition is satisfied, then it returns a leaf
node with the class of majority samples for classification or

https://www.comp.nus.edu.sg/~dbsystem/fintech/project/falcon/
https://www.comp.nus.edu.sg/~dbsystem/fintech/project/falcon/

the mean label value for regression. Otherwise, it determines
the best split to construct two sub-trees that are built recur-
sively. To find the best split, CART uses Gini impurity [11]
as a metric in classification. Let ¢ be the number of classes
and K = {1,-,c} be the class set. Let D be sample set on
a given node, the Gini impurity is:

Ic(D)=1-3, . (p)* (1)

where py, is the fraction of samples in D labeled with class k.
Let F' be the set of available features, given any split feature
j € F and split value 7 € Domain(j), the sample set D can
be split into two partitions D; and D,. Then, the impurity
gain of this split is as follows:

gain=Ic(D) - (w; - Ic(Dy) + wy - Ic(Dy))

=wr Y, ur)? Hwe Y, (Prk)® = Y (P) (2)

where w; = |D;|/|D| and w, = |D,|/|D|, and pir (resp. pri)
is the fraction of samples in D; (resp. D,) that are labeled
with class k € K. The split with the maximum impurity
gain is considered the best split of the node.

For regression, CART uses the label variance as a metric.
Let Y be the set of labels of D, then the label variance is:

n n 2

(D)= B0 - (EF =2 5 (1 5) @
i1 nia

Similarly, the best split is determined by maximizing the

variance gain. With CART, ensemble models can be trained

for better accuracy, e.g., random forest (RF) [10], gradient

boosting decision tree (GBDT) [31,32], XGBoost [18], etc.

3. SOLUTION OVERVIEW
3.1 System Model

We consider a set of m distributed clients (or data owners)
{u1,, um } who want to train a decision tree model by con-
solidating their respective datasets {D1,---, D }. Each row
in the datasets corresponds to a sample, and each column
corresponds to a feature. Let m be the number of samples
and d; be the number of features in D;, where i € {1,---,m}.
We denote D; = {x;:};~; where x;; represents the t-th sam-
ple of D;. Let Y = {y:}i=1 be the set of sample labels.

Pivot focuses on the vertical federated learning scenario
[71], where {D1,, Dy} share the same sample ids while
with different features. In particular, we assume that the
clients have determined and aligned their common samples
using private set intersection [17,49,56,57]. Besides, we as-
sume that the label set Y is held by only one client (i.e., su-
per client) and cannot be directly shared with other clients.

3.2 Threat Model

We consider the semi-honest model [20, 21, 33, 51, 68, 69]
where every client follows the protocol exactly as specified,
but may try to infer other clients’ private information based
on the messages received. Like any other client, no addi-
tional trust is assumed of the super client. We assume that
an adversary A can corrupt up to m — 1 clients and the ad-
versary’s corruption strategy is static, such that the set of
corrupted clients is fixed before the protocol execution and
remains unchanged during the execution.

3.3 Problem Formulation

To protect the private data of honest clients, we require
that an adversary learns nothing more than the data of the

clients he has corrupted and the final output. Similar to
previous work [21,51,75], we formalize our problem under
the ideal/real paradigm. Let F be an ideal functionality
such that the clients send their data to a trusted third party
for computation and receive the final output from that party.
Let 7 be a real world protocol executed by the clients. We
say a real protocol 7 behaviors indistinguishably as the ideal
functionality F if the following formal definition is satisfied.

Definition 1. ([13,23,51]). A protocol securely realizes
an ideal functionality F if for every adversary A attacking
the real interaction, there exists a simulator S attacking
the ideal interaction, such that for all environments Z, the
following quantity is negligible (in \):

|Pr[REAL(Z, A, 7, A) = 1] - Pr[IDEAL(Z, S, F,) = 1]|.0

In this paper, we identify two ideal functionalities Fprr
and Fprp for the model training and model prediction, re-
spectively. In Fprr, the input is every client’s dataset while
the output is the trained model that all clients have agreed
to release. In Fprp, the input is the released model and a
sample while the output is the predicted label of that sam-
ple. The output of Fprr is part of the input of Fprp.
Specifically, in our basic protocol (Section 4), we assume
that the output of Fprr is the plaintext tree model, includ-
ing the split feature and the split threshold on each internal
node, and the label for prediction on each leaf node. While
in our enhanced protocol (Section 5), the released plaintext
information is assumed to include only the split feature on
each internal node, whereas the split threshold and the leaf
label are concealed for better privacy protection.

3.4 Protocol Overview

We now provide the protocol overview of Pivot. The pro-
tocols are composed of three stages: initialization, model
training, and model prediction.

Initialization stage. In this stage, the m clients agree to
run a designated algorithm (i.e., the decision tree model)
over their joint data and release the pre-defined information
(e.g., the trained model) among themselves. The clients
collaboratively determine and align the joint samples. The
clients also build consensus on some hyper-parameters, such
as security parameters (e.g., key size), pruning thresholds,
and so on. The m clients jointly generate the keys of thresh-
old homomorphic encryption and every client u; receives the
public key pk and a partial secret key sk;.

Model training stage. The m clients build the designated
tree model iteratively. In each iteration, the super client
first broadcasts some encrypted information to facilitate the
other clients to compute encrypted necessary statistics at
local. After that, the clients jointly convert those statistics
into MPC-compatible inputs, i.e., secretly shared values, to
determine the best split of the current tree node using se-
cure computations. Finally, the secretly shared best split is
revealed (in the Pivot basic protocol) or is converted back
into an encrypted form (in the Pivot enhanced protocol), for
clients to update the model. Throughout the whole process,
no intermediate information is disclosed to any client.

Model prediction stage. After model training, the clients
obtain a tree model. In the basic protocol of Pivot (Sec-
tion 4), the whole tree is released in plaintext. In the Pivot
enhanced protocol (Section 5), the split threshold on each
internal node and the prediction label on each leaf node are

concealed from all clients, in secretly shared form. Given
an input sample with distributed feature values, the clients
can jointly produce a prediction. Pivot guarantees that no
information except for the predicted label is revealed during
the prediction process.

4. BASIC PROTOCOL

In this section, we present our basic protocol of Pivot.
The output of the model training stage is assumed to be
the whole plaintext tree model. Note that prior work
[19, 40, 45,61-63,65] is not applicable to our problem since
they simplify the problem by revealing either the training
labels or intermediate results in plaintext, which discloses
too much information regarding the client’s private data.

To satisfy Definition 1 for vertical tree training, a straight-
forward solution is to directly use the MPC framework. For
example, the clients can apply the additive secret sharing
scheme (see Section 2.2) to convert private datasets and la-
bels into secretly shared data, and train the model by secure
computations. However, this solution incurs high communi-
cation complexity because it involves O(nd) secretly shared
values and most secure computations are communication in-
tensive. On the other hand, while TPHE could enable each
client to compute encrypted split statistics at local by pro-
viding the super client’s encrypted label information, it does
not support some operations (e.g., comparison), which are
needed in best split determination. Based on these obser-
vations and inspired by [75], we design our basic protocol
using a hybrid framework of TPHE and MPC for vertical
tree training. The basic idea is that each client executes as
many local computations (e.g., computing split statistics) as
possible with the help of TPHE and uses MPC only when
TPHE is insufficient (e.g., deciding the best split). As a
consequence, most computations are executed at local and
the secretly shared values involved in MPC are reduced to
O(db), where b denotes the maximum number of split values
for any feature and db is the number of total splits.

Section 4.1 and Section 4.2 present our training protocol
for classification tree and regression tree, respectively. Sec-
tion 4.3 proposes our tree model prediction method. The
security analysis is provided in Section 4.4.

4.1 Classification Tree Training

In our training protocol, the clients use an mask vector
of size n to indicate which samples are available on a tree
node, but keep the vector in an encrypted form to avoid
disclosing the sample set. Specifically, let & = (@1,+, an)
be an indicator vector for a tree node p. Then, for any
i€ {1,---,n}, a; = 1 indicates that the i-th sample is available
on p, and a; = 0 otherwise. We use [a] = ([aa], -, [an])
to denote the encrypted version of a, where [-] represents
homomorphic encrypted values (see Section 2.1).

Before the training starts, each client initializes a decision
tree with only a root node, and associates the root node
with an encrypted indicator vector [a] where all elements
are [1] (since all samples are available on the root node).
Then, the clients work together to recursively split the root
node. In what follows, we will use an example to illustrate
how our protocol decides the best split for a given tree node
based on Gini impurity.

Consider the example in Figure 2, where we have three
clients u1, u2, and us. Among them, u; is the super client,
and she owns the labels with two classes, 1 and 2. There are
five training samples with three features (i.e., income, age,

[va] = ({1}, [0], [1], [0}, [0])

[v2] = (0], [1], [0], [0], [1]) 2500 Class1
1500 Class 2 11111, 111, fo1. [1.
M L ey @=@UILOLOLOD
Uy (super client)
5000 Class1
2000 Class2
compute Gini ;]
impurity by MPC ; Consider a split value 15000 ;
/ \ on deposit: !
@ @® 0000 | w=(11010) |
20 -u -u s000 | [gul=viOlyil=101] !
2 3 ; :
45 30000 | [gi2]l =vi Oyl =[1] ;
% 12000 | Compute by MPC: |
(Ic(Dy) = (0.5)

55 25000 |

Figure 2: Classification tree training example

and deposit), and each client holds one feature. Suppose
that the clients are to split a tree node p whose encrypted
mask vector is [a] = ([1],[1],[1],[0], [1]), i.e., Samples 1, 2,
3, and 5 are on the node. Then, u; computes an encrypted
indicator vector for each class, based on [«] and her local
labels. For example, for Class 1, u; derives an temporary
indicator vector (1,0,1,1,0), which indicates that Samples
1, 3, and 4 belong to Class 1. Next, u; uses the indicator
vector to perform an element-wise homomorphic multiplica-
tion with [e], which results in an encrypted indicator vec-
tor [v4] = ([1],[0],[1],[0],[0]). This vector indicates that
Samples 1 and 3 are on the node to be split, and they be-
long to Class 1. Similarly, u; also generates an encrypted
indicator vector [v,] for Class 2. After that, u; broadcasts
[v1] and [+v5] to all clients.

After receiving [v,] and [+,], each client combines them
with her local training data to compute several statistics
that are required to choose the best split of the current node.
In particular, to evaluate the quality of a split based on Gini
impurity (see Section 2.3), each client needs to examine the
two child nodes that would result from the split, and then
compute the following statistics for each child node: (i) the
total number of samples that belong to the child node, and
(ii) the number of samples among them that are associated
with label class k, for each k € K.

For example, suppose that us considers a split that di-
vides the current node based on whether the deposit values
are larger than 15000. Then, us first examines her local
samples, and divide them into two partitions. The first par-
tition (referred to as the left partition) consists of Samples 1,
2, and 4, i.e., the local samples whose deposit values are no
more than 15000. Meanwhile, the second partition (referred
to as the right partition) contains Samples 3 and 5. Accord-
ingly, for the left (resp. right) partition, us constructs an
indicator vector v; = (1,1,0,1,0) (resp. v, = (0,0,1,0,1)) to
specify the samples that it contains. After that, us performs
a homomorphic dot product between v; and [v,] to obtain
an encrypted number [g;,1]. Observe that ¢;1 equals the ex-
act number of Class 1 samples that belong to the left child
node of the split. Similarly, us uses v; and [+,] to generate
[g1,2], an encrypted version of the number of Class 2 samples
that belong to the left child node. Using the same approach,
usz also computes the encrypted numbers of Classes 1 and
2 samples associated with the right child node. Further,
usz derives an encrypted total number of samples in the left
(resp. right) child node, using a homomorphic dot product
between v; and [«] (resp. v, and [«]).

Suppose that each client computes the encrypted numbers
associated with each possible split of the current node, us-

Algorithm 1: Conversion to secretly shared value

Input: [z]: a ciphertext, Zq: secret sharing scheme space
pk: the public key, {sk;}",: partial secret keys
Output: (z) = ({z),, -, (x),,): secretly shared =
1 for ie[1,m] do
[ri] < u; randomly chooses r; € Zg and encrypts it
u; sends [r;] to ug

[¥

uy1 computes [e] =[z] ®[r1] @ @ [Tm]
e < clients jointly decrypt [e
up sets (xz); =e—-71 mod ¢
for i € [2,m] do
| wisets (z); = —r; mod g

o N O ook

ing the approach illustrated for us above. Then, they can
convert them into MPC-compatible inputs, and then invoke
an MPC protocol to securely identify the best split of the
current node. We will elaborate on the details shortly.

In general, the clients split each node in three steps: local
computation, MPC computation, and model update. In the
following, we discuss the details of each step.

Local computation. Suppose that the clients are to split
a node that is associated with an encrypted mask vector
[a] = ([e1],++s[@n]), indicating the available samples on
the node. First, for each class label k € K, the super client
constructs an auxiliary indicator vector B, = (Bk,1,*, Bk,n),
such that By, = 1 if Sample ¢’s label is k, and 8+ = 0 other-
wise. After that, the super client performs an element-wise
homomorphic multiplication between 3, and [e], obtaining
an encrypted indicator vector [,]. Then, the super client
broadcasts [I'] = Urex {[7x]} to other clients.

Upon receiving [I'], each client u; uses it along with her
local data to derive several statistics for identifying the tree
node’s best split, as previously illustrated in our example. In
particular, let F; be the set of features that u; has, and S;;
be the set of split values for a feature j € F;. Then, for any
split value 7 € S;;, u; first constructs two size-n indicator
vectors v; and v, such that (i) the ¢-th element in v; equals
1 if Sample ¢’s feature j is no more than 7, and 0 otherwise,
and (ii) v, complements v;. Consider the two possible child
nodes induced by 7. For each class k € K, let g, (resp.
gr.k) be the number of samples labeled with class k that
belongs to the left (resp. right) child node. u; computes the
encrypted versions of g; ; and g, using homomorphic dot
products (see Section 2.1) as follows:

[goe] =vio[vi], [grk]=vr ©[vi]. (4)

Let n; (resp. n,) be the number of samples in the left (resp.
right) child node. u; computes [n;] = v; © [a] and [n,] =
v, @[a]. In total, for each split value 7, u; generates 2-|K|+2
encrypted numbers, where |K| = ¢ is the number of classes.

MPC computation. After the clients generate the en-
crypted statistics mentioned above (i.e., [gi,k], [gr.k], [ru],
[nr-]), they execute an MPC protocol to identify the best
split of the current node. Towards this end, the clients first
invoke Algorithm 1 to convert each encrypted number [z]
into a set of shares {(x);}i2;, where (z); is given to u;. The
general idea of Algorithm 1 is from [22,26,75]. We use (z)
to denote that the x is secretly shared among the clients.

After the above conversion, the clients obtain secretly
shared statistics (n;), (n,), {(g1,x), and (g) (for each class
k € K) for each possible split 7 of the current node. Us-
ing these statistics, the clients identify the best split of the
current node as follows.

Algorithm 2: Pivot DT training (basic protocol)

Input: {D;}7,: local datasets, {F;}72;: local features
Y: label set, [a]: encrypted mask vector
pk: the public key, {sk;}7*,: partial secret keys
Output: T: decision tree model
1 if prune conditions satisfied then

2 classification: return leaf node with majority class
3 regression: return leaf node with mean label value
a else

5 the super client computes [['] and broadcasts it

6 for i € [1,m] do

7 for j e F; do

8 for s €[1,]5;4]] do

9 | wi computes encrypted statistics by [T']
10 clients convert encrypted statistics to shares
11 determine the best split identifier (i*,j*,s*)
12 client ¢* computes [a;], [ar] and broadcasts them
13 return a tree with j*-th feature and s*-th split value

that has two edges, build tree recursively

Consider a split 7 and the two child nodes that it induces.
To evaluate the Gini impurity of the left (resp. right) child
node, the clients need to derive, for each class k € K, the
fraction p;r (resp. prx) of samples on the node that are
labeled with k. Observe that

gi,k 9r.k
- (5)

biok=T———5 Prk= .
Tkrer k! Ykrex Grkt

In addition, recall that the clients have obtained, for each
class k € K, the secretly shared values (g;x) and (g,x).
Therefore, the clients can jointly compute (p;) and (prx)
using the secure addition and secure division operators in
SPDZ (see Section 2.2), without disclosing p;x and pr to
any client. With the same approach, the clients use (n;) and
(nr) to securely compute (w;) and (w,), where w; = nlﬁlnr
and w, = ;- Given (pik)s (prk), (wi), and (w,), the
clients can then compute the impurity gain of each split 7
(see Eqn. (2)) in the secretly shared form, using the secure
addition and secure multiplication operators in SPDZ.
Finally, the clients jointly determine the best split using a
secure maximum computation as follows. First, each client
u; assigns an identifier (7,j,s) to the s-th split on the j-th
feature that she holds. Next, the clients initialize four se-
cretly shared values (gain,,,,), (i*), (7}, (s*), all with (-1).
After that, they will compare the secretly shared impurity
gains of all splits, and securely record the identifier and im-
purity gain of the best split in (i*), (5*), (s*), and (gain,,,,),
respectively. Specifically, for each split 7, the clients com-
pare its impurity gain (gain_) with (gain,,,,) using secure
comparison (see Section 2.2). Let (sign) be the result of
the secure comparison, i.e., sign = 1 if gain,. > gain,,,,,
and sign = 0 otherwise. Then, the clients securely up-
date (gain,,,,) using the secretly shared values, such that
gain,, . = gain,, .. - (1 — sign) + gain,_ - sign. The best split
identifier is updated in the same manner. After examining
all splits, the clients obtain the secretly shared best split
identifier ((*),(57),(s*)).
Model update. Once the best split is computed, the clients
reconstruct the identifier (¢*,5*,s*) of the best split. (Recall
that the basic protocol releases the tree model in plaintext.)
Then, the i*-th client retrieves the two indicator vectors v;
and v, for the s*-th split of her j*-th feature. After that,
she executes an element-wise homomorphic multiplication

2 - oo

n] = ([0], [1],[1],
A [n] = ([0], [1], [1], [0], [0])

[m] = (0], [1], [0], [0], [0])
0 z=(211,21)

1) income =300 () age =30 |
@ @ (O aeposi=so0 20Mm =1

(a) Tree model

(b) Prediction

Figure 3: Tree model prediction example with a sample
(age = 25,income = 2500, deposit = 6000): (a) tree model:
colored circles denote internal nodes and gray circles denote
leaf nodes; (b) prediction: clients update a encrypted pre-
diction vector in a round-robin manner.

between v; (resp. v,) and [e], obtaining an encrypted vector
[eu] (vesp. [@r]), which she then broadcasts to other clients.
Note that [o] (resp. []) specifies the samples on the left
(resp. right) child node resulting from the best split.

4.2 Regression Tree Training

For the regression tree, the central part is to compute the
label variance. The MPC computation and model update
steps are similar to those of classification, and hence, we
only present the difference in the local computation step.

By the label variance formula Eqn. (3), the super client
can construct two auxiliary vectors 3; = (yi,-,yn) and
By = (y3,-,52), where the elements in B, are the original
training labels while the elements in 3, are the squares of
the original training labels. Next, she computes element-
wise homomorphic multiplication on B3; (resp. [3,) by
[a], obtaining [v;] (resp. [75]). Then, she broadcasts
[T'] = {[~v1],[v2]} to all clients. Similarly, each client com-
putes the following encrypted statistics for any local split:

[g1]=vio[v], [g2]=vi0[v,] (6)

where [ni],[gi,1],[g1,2] are the encrypted number of sam-
ples, and the encrypted sum of [+;] and [v,] of the avail-
able samples, for the left branch. Similarly, these encrypted
statistics can be converted into secretly shared values and
the best split identifier can be decided based on Eqn. (3).
Algorithm 2 describes the privacy preserving decision tree
training protocol. Lines 1-3 check the pruning conditions
and compute the leaf label if any condition is satisfied. Note
that with the encrypted statistics, these executions can be
easily achieved by secure computations. Lines 5-13 find the
best split and build the tree recursively, where Lines 5-9 are
the local computation step for computing encrypted split
statistics; Line 10-11 are the MPC computation step that
converts the encrypted statistics into secretly shared values
and decides the best split identifier using MPC; and Line
12 is the model update step, which computes the encrypted
indicator vectors for the child nodes given the best split.

4.3 Tree Model Prediction

After releasing the plaintext tree model, the clients can
jointly make a prediction given a sample. In vertical FL, the
features of a sample are distributed among the clients. Fig-
ure 3a shows an example of a released model, where each in-
ternal node represents a feature with a split threshold owned
by a client, and each leaf node represents a predicted label
on that path. To predict a sample, a naive method is to let

(] =vi 0[],

Algorithm 3: Pivot DT prediction (basic protocol)

Input: T: decision tree model, {x;}?;: input sample
pk: the public key, {sk;}7",: partial secret keys

Output: k: predicted label

for i € [m,1] do

[

2 if i ==m then

3 | wi initializes [n] = ([1],--,[1]) with size ¢ + 1
4 if ¢>1 then

5 u; updates [n] using (T, z;)

6 u; sends [n] to u;—1

7 else
8 u; updates [n] using (T, ;)
u; initializes label vector z = (21,, 2t+1)

10 u; computes [k] = z ® [1]

11 clients jointly decrypt [k] by {sk;}7, and return k

the super client coordinate the prediction process [19]: start-
ing from the root node, the client who has the node feature
compares its value with the split threshold, and notifies su-
per client the next branch; then the prediction is forwarded
to the next node until a leaf node is reached. However, this
method discloses the prediction path, from which a client
can infer other client’s feature value along that path.

To ensure that no additional information other than the
predicted output is leaked, we propose a distributed predic-
tion method, as shown in Algorithm 3. Let z = (21, z¢+1)
be the leaf label vector of the leaf nodes in the tree model,
where t is the number of internal nodes. Note that all clients
know z since the tree model is public in this protocol. Given
a sample, clients collaborate to update an encrypted predic-
tion vector [n] = ([1],+,[1]) with size t+1 in a round-robin
manner. Each element in [n] indicates if a prediction path
is possible with encrypted form.

Without loss of generality, we assume that the prediction
starts with u,, and ends with uy. If a prediction path is pos-
sible from the perspective of a client, then the client multi-
plies the designated element in [n] by 1 using homomorphic
multiplication, otherwise by 0. Figure 3b illustrates an ex-
ample of this method. Starting from ws, given the feature
value ‘deposit = 6000’, uz initializes [n] and updates it to
([0],11],[11,[0],[1]), since she can eliminate the first and
fourth prediction paths after comparing her value with the
split threshold ‘deposit = 5000’. Then, us sends [n] to the
next client for updates. After all clients’ updates, there is
only one [1] in [n], which indicates the true prediction path.
Finally, u; computes z®[n] to get the encrypted prediction
output, and decrypts it jointly with all clients.

4.4 Security Guarantees

THEOREM 1. The basic protocol of Pivot securely realizes
the ideal functionalities Fprr and Fprp against a semi-
honest adversary who can statically corrupt up to m—1 out
of m clients.

Proof Sketch. For model training, the proof can be re-
duced to the computations on one tree node because each
node can be computed separately given that its output is
public [42,43]. Since the threshold Paillier scheme [55] is
secure, the transmitted messages in the local computation
and model update steps are secure. Meanwhile, the MPC
conversion [22] and additive secret sharing scheme [26] are
secure, thus, the MPC computation step is secure. Conse-
quently, an adversary learns no additional information from
the protocol execution, the security follows.

For model prediction, an adversary A only view an
encrypted prediction vector [n] updated by the honest
client(s), and the encrypted prediction output [k]. Thus,
no information is learned beyond the decrypted prediction

output, because the threshold Paillier scheme is secure. O

S. ENHANCED PROTOCOL

The basic protocol guarantees that no intermediate in-
formation is disclosed. However, after obtaining the public
model, colluding clients may extract private information of
a target client’s training dataset, with the help of their own
datasets. We first present two possible privacy leakages in
Section 5.1 and then propose an enhanced protocol that mit-
igates this problem by concealing some model information
in Section 5.2. The security analysis is given in Section 5.3.

5.1 Privacy Leakages

We identify two possible privacy leakages: the training la-
bel leakage and the feature value leakage, regarding a target
client’s training dataset. The intuition behind the leakages
is that the colluding clients are able to split the sample set
based on the split information in the model and their own
datasets. We illustrate them by the following two examples
given the tree model in Figure 3.

Ezample 1. (Training label leakage). Assume that us and
us collude, let us see the right branch of the root node. w2
knows exactly the sample set in this branch, say Dage > 30,
as all samples are available on the root node, and he can just
split his local samples based on ‘age = 30’. Then, us can
classify this set into two subsets given the ‘deposit=5000’
split, say Dage > 30 Adeposit < 5000 @1d Dage > 30 A deposit > 50005
respectively. Consequently, according to the plaintext class
labels on the two leaf nodes, colluding clients may infer that
the samples in Dyge > 30 Adeposit < 5000 are with class 2 and
vise versa, with high probability.

Ezample 2. (Feature value leakage). Assume that u; and
uz collude, let us see the path of us — u1 — uz (with red
arrows). Similar to Example 1, u; and us can know exactly
the training sample set on the ‘us’ node before splitting, say
D’. In addition, recall that w; is the super client who has
all sample labels, thus, he can easily classify D’ into two
sets by class, say D] and D3, respectively. Consequently,
the colluding clients may infer that the samples in D5 have
‘deposit < 5000’ and vise versa, with high probability.

Note that these two leakages happen when the clients (ex-
cept the target client) along a path collude. Essentially,
given the model, the colluding clients (without super client)
may infer labels of some samples in the training dataset if
there is no feature belongs to the super client along a tree
path; similarly, if the super client involves in collusion, the
feature values of some samples in the training dataset of a
target client may be inferred.

5.2 Hiding Label and Split Threshold

Our observation is that these privacy leakages can be mit-
igated if the split thresholds on the internal nodes and the
leaf labels on the leaf nodes in the model are concealed from
all clients. Without such information, the colluding clients
can neither determine how to split the sample set nor what
leaf label a path owns. We now discuss how to hide such
information in the model.

For the leaf label on each leaf node, the clients can con-
vert it to an encrypted value, instead of reconstructing its

plaintext. Specifically, after obtaining the secretly shared
leaf label (e.g., (k)) using secure computations (Lines 1-3 in
Algorithm 2), each client encrypts her own share of (k) and
broadcasts to all clients. Then, the encrypted leaf label can
be computed by summing up these encrypted shares using
homomorphic addition. As such, the leaf label is concealed.

For the split threshold on each internal node, the clients
hide it by two additional computations in the model update
step. Recall that in the basic protocol, the best split identi-
fier ((i*),(5%),(s™)) is revealed to all clients after the MPC
computation in each iteration. In the enhanced protocol, we
assume that (s*) is not revealed, and thus the split threshold
can be concealed. To support the tree model update with-
out disclosing s* to the i*-th client, we first use the private
information retrieval (PIR) [68, 69] technique to privately
select the split indicator vectors of s*.

Private split selection. Let n' =|S;;| denote the number
of splits of the j*-th feature of the ¢*-th client. We assume
n' is public for simplicity. Note that the clients can further
protect n’ by padding placeholders to a pre-defined thresh-
old number. Instead of revealing (s*) to the i*-th client, the
clients jointly convert (s*) into an encrypted indicator vec-
tor [A] = ([A1], - [Aw])T, such that A; = 1 when ¢ = s* and
A+ = 0 otherwise, where ¢ € {1,---,n'}. This vector is sent
to the i*-th client for private split selection at local. Let
v 2 (v1,-,v,7) be the split indicator matrix, where v
is the split indicator vector of the ¢-th split of the 7*-th fea-
ture (see Section 4.1). The following theorem [68] suggests
that the ¢*-th client can compute the encrypted indicator
vector for the s*-th split without disclosing s*.

THEOREM 2. Given an encrypted indicator vector [A] =
([A], - A DT such that [Ae+] = [1] and [A¢] = [0] for all
t # s*, and the indicator matriz v o (v1,-, V), then
[ve+] =V Q[A]. O

The notion @ represents the homomorphic matrix multipli-
cation, which executes homomorphic dot product operations
between each row in V' and [A]. We refer the interested
readers to [68] for the details.

For simplicity, we denote the selected [vs+] as [v]. The
encrypted split threshold can also be obtained by homomor-
phic dot product between the encrypted indicator vector [A]
and the plaintext split value vector of the j*-th feature.

Encrypted mask vector updating. After finding the en-
crypted split vector [v], we need to update the encrypted
mask vector [a] for protecting the sample set recursively.
This requires element-wise multiplication between [a] and
[v]. Thanks to the MPC conversion algorithm, we can
compute [a] - [v] as follows [22]. For each element pair
[a;] and [v;] where j € [1,n], we first convert [a;] into
() = ({a)y, -, {@j),,) using Algorithm 1, where (a;), (i €
{1,---,m}) is the share hold by wu;; then each client u; exe-
cutes homomorphic multiplication (a;), ® [v;] = [{ay), - v4]
and sends the result to the i*-th client; finally, the ¢*-th
client can sum up the results using homomorphic addition:

()] =[{as), vl @@ [{a)),, ~vi] = [aj-v;] (7)
After updating [a], the tree can also be built recursively,
similar to the basic protocol.

Secret sharing based model prediction. The prediction
method in the basic protocol is not applicable here as the
clients cannot directly compare their feature values with the

encrypted split thresholds. Hence, the clients first convert
the encrypted split thresholds and encrypted leaf labels into
secretly shared form and make predictions on the secretly
shared model using MPC. Let (z) with size (¢ + 1) denote
the secretly shared leaf label vector, where ¢ is the number
of internal nodes. Given a sample, the clients also provide
the feature values in the secretly shared form. After that,
the clients initialize a secretly shared prediction vector (n)
with size (¢ + 1), indicating if a prediction path is possible.
Then, they compute this vector as follows.

The clients initialize a secretly shared marker (1) for the
root node. Starting from the root node, the clients recur-
sively compute the markers of its child nodes until all leaf
nodes are reached. Then, the marker of each leaf node is
assigned to the corresponding element in (n). After exam-
ining all the nodes, there will be only one (1) element in
(m), specifying the real prediction path in a secret manner.
Specifically, each marker is computed by secure multiplica-
tion between its parent node’s marker and a secure compar-
ison result (between the secretly shared feature value and
split threshold on this node). For example, in Figure 3a,
the split threshold on the root node will be (30) while the
feature value will be (25), and then (1) is assigned to its
left child and (0) to its right child. The clients know noth-
ing about the assigned markers since the computations are
secure. Finally, the secretly shared prediction output can
be readily obtained by a dot product between (z) and (n),
using secure computations.

Discussion. A noteworthy aspect is that the clients can
also choose to hide the feature (j*) by defining n’ as the
total number of splits on the i*-th client, or even the client
(7*) that has the best feature by defining n’ as the total
number of splits among all clients. By doing so, the leak-
ages could be further alleviated. However, the efficiency and
interpretability would be degraded greatly. In fact, there is
a trade-off between privacy and efficiency (interpretability)
for the released model. The less information the model re-
veals, the higher privacy while the lower efficiency and less
interpretability the clients obtain, and vise versa.

5.3 Security Guarantees

THEOREM 3. The enhanced protocol of Pivot securely re-
alizes the ideal functionalities Fprr and Fprp against a
semi-honest adversary who can statically corrupt up to m—1
out of m clients.

Proof Sketch. For model training, the only difference from
the basic protocol is the two additional computations (pri-
vate split selection and encrypted mask vector updating) in
the model update step, which are computed using threshold
Paillier scheme and MPC conversion. Thus, the security fol-
lows. For model prediction, since the additive secret sharing
scheme is secure and the clients compute a secretly shared
marker for every possible path, the adversary learns nothing
except the final prediction output. O

6. EXTENSIONS TO OTHER ML MODELS

So far, Pivot supports a single tree model. Now we briefly
present how to extend the basic protocol to ensemble tree
models, including random forest (RF) [10] and gradient
boosting decision tree (GBDT) [31,32] in Section 6.1 and
6.2, respectively. Same as the basic protocol, we assume
that all trees can be released in plaintext. The extension to
other machine learning models is discussed in Section 6.3.

6.1 Random Forest

RF constructs a set of independent decision trees in the
training stage, and outputs the class that is the mode of the
predicted classes (for classification) or mean prediction (for
regression) of those trees in the prediction stage.

For model training, the extension from a single decision
tree is natural since each tree can be built (using Algo-
rithm 2) and released separately. For model prediction, af-
ter obtaining the encrypted predicted label of each tree, the
clients can easily convert these encrypted labels into secretly
shared values for majority voting using secure computations
(for classification) or compute the encrypted mean predic-
tion by homomorphic computations (for regression).

6.2 Gradient Boosting Decision Trees

GBDT uses decision trees as weak learners and improves
model quality with a boosting strategy [30]. The trees are
built sequentially where the training labels for the next tree
are the prediction losses between the ground truth labels
and the prediction outputs of previous trees.

Model training. The extension to GBDT is non-trivial,
since we need to prevent the super client from knowing the
training labels of each tree except the first tree (i.e., inter-
mediate information) while facilitating the training process.

We first consider GBDT regression. Let W be the number
of rounds and a regression tree is built in each round. Let
Y™ be the training label vector of the w-th tree. We aim
to protect Y by keeping it in an encrypted form. After
building the w-th tree where w € {1,---,W — 1}, the clients
jointly make predictions for all training samples to get an
encrypted estimation vector [Y™]; then the clients can com-
pute the encrypted training labels [Y“*'] of the (w + 1)-th
tree given [Y™] and [Y™]. Besides, note that in Section 4.2,
an encrypted label square vector [y¥*'] is needed, which is
computed by element-wise homomorphic multiplication be-
tween B5*" and [a]. However, B8¥*! is not plaintext here
since the training labels are ciphertexts. Thus, the clients
need expensive element-wise ciphertext multiplications (see
Section 5.2) between [35*'] and [] in each iteration. To
optimize this computation, we slightly modify our basic pro-
tocol. Instead of letting the super client compute [v¥*'] in
each iteration, we now let the client who has the best split
update [v¥*!] along with [] using the same split indicator
vector and broadcast them to all clients. In this way, the
clients only need to compute [v¥*'] using [BY*'] and [«]
once at the beginning of each round, which reduces the cost.

For GBDT classification, we use the one-vs-the-rest tech-
nique by combining a set of binary classifiers. Essentially,
the clients need to build a GBDT regression forest for each
class, resulting in W x ¢ regression trees in total (c is the
number of classes). After each round in the training stage,
the clients obtain c trees; and for each training sample, the
clients make a prediction on each tree, resulting in ¢ en-
crypted prediction outputs. Then, the clients jointly con-
vert them into secretly shared values for computing secure
softmaz (which can be constructed using secure exponen-
tial, secure addition, and secure division, as mentioned in
Section 2.2), and convert them back into an encrypted form
as encrypted estimations. The rest of the computation is
the same as regression.

Model prediction. For GBDT regression, the prediction
output can be decrypted after homomorphic aggregating the
encrypted predictions of all trees. For GBDT classification,

Table 1: Model accuracy comparison with non-private baselines

Dataset | Pivot-DT | NP-DT | Pivot-RF | NP-RF | Pivot-GBDT | NP-GBDT
Bank market 0.886077 | 0.886188 | 0.888619 | 0.890497 | 0.891271 0.892044
Credit card 0.821526 | 0.821533 | 0.823056 | 0.823667 | 0.825167 0.827167
Appliances energy | 212.05281 | 211.45229 | 211.55175 | 211.32113 | 211.35326 210.75291

the encrypted prediction for each class is the same as that for
regression; then the clients jointly convert these encrypted
results into secretly shared values for deciding the final pre-
diction output by secure softmazx function.

6.3 Other Machine Learning Models

Though we consider tree-based models in this paper, the
proposed solution can be easily adopted in other vertical FL
models, such as logistic regression (LR), neural networks,
and so on. The rationale is that these models can often be
partitioned into the three steps described in Section 4.1. As
a result, the TPHE primitives, conversion algorithm, and
secure computation operators can be re-used.

For example, the clients can train a vertical LR model
as follows. To protect the intermediate weights of the LR
model during the training, the clients initialize an encrypted
weight vector, [0] = ([01],+,[0m]), where [6;] corresponds
to the encrypted weights of features held by client i. In each
iteration, for a Sample ¢, each client ¢ first locally aggregates
an encrypted partial sum, say [£;:], by homomorphic dot
product between [6;] and Sample t’s local features x;¢. Then
the clients jointly convert {[&:]}i%; into secretly shared val-
ues using Algorithm 1, and securely aggregate them before
computing the secure logistic function. Meanwhile, the su-
per client also provides Sample t’s label as a secretly shared
value, such that the clients can jointly compute the secretly
shared loss of Sample ¢. After that, the clients convert the
loss back into the encrypted form (see Section 5.2), and each
client can update her encrypted weights [6;] using homo-
morphic properties, without knowing the loss. Besides, the
model prediction is a half component of one iteration in
training, which can be easily computed.

7. EXPERIMENTS

We evaluate the performance of Pivot basic protocol (Sec-
tion 4) and Pivot enhanced protocol (Section 5) on the de-
cision tree model, as well as the ensemble extensions (Sec-
tion 6). We present the accuracy evaluation in Section 7.2
and the efficiency evaluation in Section 7.3.

We implement Pivot in C++ and employ the GMP? li-
brary for big integer computation and the libhes® library
for threshold Paillier scheme. We utilize the SPDZ* library
for semi-honest additive secret sharing scheme. Besides, we
use the libscapi® library for network communications among
clients. Since the cryptographic primitives only support big
integer computations, we convert the floating point datasets
into fixed-point integer representation.

7.1 Experimental Setup

We conduct experiments on a cluster of machines in a local
area network (LAN). Each machine is equipped with Intel
(R) Xeon (R) CPU E5-1650 v3 @ 3.50GHzx12 and 32GB of
RAM, running Ubuntu 16.04 LTS. Unless noted otherwise,

*http://gmplib.org
*https://github.com/tiehuis/libhcs
‘https://github.com/data61/MP-SPDZ
Shttps://github.com/cryptobiu/libscapi

the keysize of threshold Paillier scheme is 1024 bits and the
security parameter of SPDZ configuration is 128 bits.

Datasets. We evaluate the model accuracy using three real-
world datasets: credit card data (30000 samples with 25
features) [73], bank marketing data (4521 samples with 17
features) [52], and appliances energy prediction data (19735
samples with 29 features) [12]. The former two datasets are
for classification while the third dataset is for regression.
We evaluate the efficiency using synthetic datasets, which
are generated with sklearn® library. Specifically, we vary the
number of samples (n) and the number of total features (d)
to generate datasets, and then equally split these datasets
w.r.t. features into m partitions, which are held by m clients,
respectively. We denote d = d/m as the number of features
each client holds. For classification tasks, the number of
classes is set to 4, and only one client holds the labels.

Baselines. For accuracy evaluation, we adopt the non-
private decision tree (NP-DT), non-private random forest
(NP-RF), and non-private gradient-boosting decision tree
(NP-GBDT) algorithms from sklearn for comparison. For
a fair comparison, we adopt the same hyper-parameters for
both our protocols and the baselines, e.g., the maximum tree
depth, the pruning conditions, the number of trees, etc.
For efficiency evaluation, to our knowledge, there is no
existing work providing the same privacy guarantee as Pivot.
Therefore, we implement a secret sharing based decision tree
algorithm using the SPDZ library (namely, SPDZ-DT) as a
baseline. The security parameter of SPDZ-DT is also 128
bits. Besides, we also implement a non-private distributed
decision tree (NPD-DT) algorithm as another baseline to
illustrate the overhead of providing strong privacy.

Metrics. For model accuracy, we measure the number of
samples that are correctly classified over the total testing
samples for classification; and the mean square error (MSE)
between the predicted labels and the ground truth labels
for regression. For efficiency, we measure the total running
time of the model training stage and the prediction running
time per sample of the model prediction stage. In all ex-
periments, we report the running time of the online phase
because SPDZ did not support the offline time benchmark
for the semi-honest additive secret sharing protocol.

7.2 Evaluation of Accuracy

In terms of accuracy, we compare the performance of the
proposed decision tree (Pivot-DT), random forest (Pivot-
RF) and gradient boosting decision tree (Pivot-GBDT) al-
gorithms with their non-private baselines on three real world
datasets. In these experiments, the keysize of threshold Pail-
lier scheme is set to 512 bits. We conduct 10 independent
trials of each experiment and report the average result.

Table 1 summarizes the comparison results. We can notice
that the Pivot algorithms achieve accuracy comparable to
the non-private baselines. There are two reasons for the
slight loss of accuracy. First, we use the fixed-point integer
to represent float values, whose precision is thus truncated.

Shttps://scikit-learn.org/stable/

http://gmplib.org
https://github.com/tiehuis/libhcs
https://github.com/data61/MP-SPDZ
https://github.com/cryptobiu/libscapi
https://scikit-learn.org/stable/

800
= ~i Pivot-Basic 800 —8 Pivot-Basic
= -®- Pivot-Basic-PP £ —®- Pivot-Basic-PP
€600 - pior-nnances E600| - Pivot-ennanced
2 A Pivot-Enhanced-PP o —A- Pivot-Enhanced-PP
£ £
= 400 i 400
=4 o
£ £
200 £ 200
S £
= — [
0
2 3 4 6 8 10 0 5k 10k 50k 100k 200k
m n
(a) Training time vs. m (b) Training time vs. n
80
— 8007 -m pivot-Basic ™ —B- Pivot-RF-Classification
< @ PivotBasic-pP 3 —8— Pivot-GBDT-Classification
€ @~ Pivot-Enhanced £ 607 —@— Pivot-RF-Regression
; 600 —A- Pivot-Enhanced-PP g —&— Pivot-GBDT-Regression
E —
F 400 F 40
= o
£ £
£ 200 £ 20
o ©
| — e
0 0
2 3 4 5 6 2 4 8 16 32

w
(e) Training time vs. h (f) Training time vs. W

Training Time (min)

Prediction Time (ms)

400 400
= Pivot-Basic = - Pivot-Basic
-®- Pivot-Basic-PP é -@- Pivot-Basic-PP
3001 —- Pivot-Enhanced £ 3001 -~ Pivot-Enhanced
—A- Pivot-Enhanced-PP [0) —A- Pivot-Enhanced-PP
1S
i= 200
()]
£ -
£
©
=
=
0

120

5 15 30 60
d

(¢) Training time vs. d

60 160
~@- Pivot-Basic m —— Pivot-Basic
-~ Pivot-Enhanced 1S -~ Pivot-Enhanced
—¥— NPD-DT "0 1201 —¥ NPD-DT
40 —— £
£
- 80
20 =
(9]
5 40
o
0 S o
2 3 4 6 8 10 2 3 4 5 6

m
(g) Prediction time vs. m (h) Prediction time vs. h

Figure 4: Effect of parameters in decision tree models

Second, Pivot has only implemented the basic algorithms,
which are not optimized as the adopted baselines.

7.3 Evaluation of Efficiency

In terms of efficiency, we evaluate the training and
prediction time of Pivot with the two protocols (namely
Pivot-Basic and Pivot-Enhanced) in Section 7.3.1 and Sec-
tion 7.3.2, by varying the number of clients (m), the number
of samples (n), the number of features of each client (d), the
maximum number of splits (b), the maximum tree depth (h),
and the number of trees (W) for ensemble methods.

We employ parallelism with 6 cores for threshold decryp-
tion of multiple ciphertexts, which is observed to be the most
time-consuming part in Pivot. The secure computations us-
ing SPDZ are not parallelized because the current SPDZ
cannot express parallelism effectively and flexibly. These
partially parallelized versions are denoted as Pivot-Basic-PP
and Pivot-Enhanced-PP, respectively. The comparison with
the baselines is reported in Section 7.3.3. Table 2 describes
the ranges and default settings of the evaluated parameters.

7.3.1 Evaluation on Training Efficiency

Varying m. Figure 4a shows the performance for varying
m. The training time of all algorithms increases as m in-
creases because the threshold decryptions and secure com-
putations need more communication rounds. Pivot-Basic
always performs better than Pivot-Enhanced since Pivot-
Enhanced has two additional computations in the model up-
date step, where the O(n) ciphertexts multiplications dom-
inate the cost. Besides, we can see that Pivot-Enhanced-PP
that parallelizes only the threshold decryptions could reduce
the total training time by up to 2.7 times.

Varying n. Figure 4b shows the performance for varying n.
The comparison of the Pivot-Basic and Pivot-Enhanced is
similar to Figure 4a, except that the training time of Pivot-

Table 2: Parameters adopted in the evaluation

Parameter | Description | Range | Default
m number of clients [2,10] 3

n number of samples [6K,200K] | 50K

d number of features [5,120] 15

b maximum splits [2,32] 8

h maximum tree depth | [2,6] 4

w number of trees [2,32] -

Basic increases slightly when n goes up. The reason is that,
in Pivot-Basic, the cost of encrypted statistics computation
(proportional to O(n)) is only a small part of the total train-
ing time; the time-consuming parts are the MPC conversion
that requires O(cdb) threshold decryptions. The training
time of Pivot-Enhanced scales linearly with n because of the
threshold decryptions for encrypted mask vector updating
are proportional to O(n).

Varying d,b. Figure 4c-4d show the performance for vary-
ing d and b, respectively. The trends of the four algorithms
in these two experiments are similar, i.e., the training time
all scales linearly with d or b since the number of total splits
is O(db). In addition, the gap between Pivot-Basic and
Pivot-Enhanced is stable as d or b increases. This is be-
cause that d does not affect the additional costs in Pivot-
Enhanced, and b only has small impact via private split
selection (i.e., O(nb) ciphertext computations) which is neg-
ligible comparing to the encrypted mask vector update.

Varying h. Figure 4e shows the performance for varying
h. Since the generated synthetic datasets are sampled uni-
formly, the trained models tend to construct a full binary
tree, where the number of internal nodes is 2" — 1 given the
maximum tree depth h. Therefore, the training time of all
algorithms approximately double when h increases by one.

Varying W. Figure 4f shows the performance for varying
W in ensemble methods. RF classification is slightly slower
than RF regression as the default c is 4 in classification com-
paring to 2 in regression. GBDT regression is slightly slower
than RF regression, since additional computations are re-
quired by GBDT to protect intermediate training labels.
Besides, GBDT classification is much longer than GBDT
regression because of two overheads. One is the one-vs-the-
rest strategy, which trains W = ¢ trees. The other is the
secure softmax computation on ¢ encrypted predictions for
every sample in the training dataset, which needs additional
MPC conversions and secure computations.

7.3.2 Evaluation on Prediction Efficiency

Varying m. Figure 4g compares the prediction time per
sample for varying m. Results show that the prediction time
of Pivot-Enhanced is higher than Pivot-Basic, because the
cost of secure comparisons is higher than the homomorphic

3000 1600
= —i- Pivot-Basic = B Pivot-Basic
E —#— Pivot-Enhanced = —— Pivot-Enhanced
£ —#— SPDZ-DT £1200! <+ spozor
QE) 200071 =% NPD-DT o —¥— NPD-DT

£
= = 800
21000 2
£ £ 400
o °
= [=
0 2 3 4 6 8 10 0'5k 10k 50k 100k 200k

m n
(a) Training time vs. m (b) Training time vs. n

Figure 5: Comparison with baselines

computations. Besides, the prediction time of Pivot-Basic
increases faster than that of Pivot-Enhanced as m increases.
The reason is that the communication round for distributed
prediction in Pivot-Basic scales linearly with m; while in
Pivot-Enhanced, the number of secure comparisons remains
the same, the increasing of m only incurs slight overhead.

Varying h. Figure 4h compares the prediction time per
sample for varying h. When h = 2, Pivot-Enhanced takes
less prediction time because the number of internal nodes
(i.e. secure comparisons) is very small. Pivot-Basic out-
performs Pivot-Enhanced when h > 3 and this advantage
increases as h increases for two reasons. Firstly, the num-
ber of internal nodes is proportional to 2" — 1. Secondly, as
described in Figure 4g, the number of clients dominates the
prediction time of Pivot-Basic; although the size of the pre-
diction vector also scales to h, its effect is insignificant since
the size is still very small, leading to stable performance.

7.3.3 Comparison with Baseline Solution

We compare the Pivot protocols with the baselines SPDZ-
DT and NPD-DT. For NPD-DT, we report the training time
for varying m and n in Figure 5a-5b, and the prediction
time per sample for varying m and h in Figure 4g-4h. In
all the evaluated NPD-DT experiments, the training time is
less than 1 minute, and the prediction time is less than 1
ms. Nevertheless, the efficiency of NPD-DT is at the cost
of data privacy. For SPDZ-DT, since it is not parallelized,
we adopt the non-parallelized versions. We omit the com-
parison of prediction time, because the model prediction of
SPDZ-DT is similar to that of Pivot-Enhanced. We compare
with SPDZ-DT for varying m and n.

Varying m. Figure 5a shows the comparison for varying m.
When m = 2, Pivot-Enhanced and SPDZ-DT achieve simi-
lar performance. However, the training time of SPDZ-DT
increases much faster as m increases because almost every
secure computation in SPDZ-DT requires communication
among all clients while most computations in Pivot proto-
cols can be executed locally. We can notice that Pivot-Basic
and Pivot-Enhanced can achieve up to about 19.8x and 4.5x
speedup over SPDZ-DT, respectively.

Varying n. Figure 5b shows the comparison for varying
n. Both Pivot-Enhanced and SPDZ-DT scale linearly to n
and SPDZ-DT increases more quickly than Pivot-Enhanced.
When n is small (e.g., n = 5K), the three algorithms achieve
almost the same performance. While when n = 200K, Pivot-
Basic and Pivot-Enhanced are able to achieve about 37.5x
and 1.8x speedup over SPDZ-DT.

8. FURTHER PROTECTIONS

This section extends Pivot to account for malicious adver-
saries (in Section 8.1), and to incorporate differential privacy
for enhanced protection (in Section 8.2).

8.1 Extension to Malicious Model

In the malicious model, an adversary may arbitrarily de-
viate from the protocol to launch attacks. To prevent the
malicious behaviors, a typical solution is to let each client
prove that she executes the specified protocol on the correct
data step by step. If a client deviates from the protocol or
uses incorrect data in any step, other clients should be able
to detect it and abort the execution.

For this purpose, we extend Pivot using zero-knowledge
proofs (ZKP) [22,24] and SPDZ with authenticated shares
[26,41]. Specifically, ZKP enables a prover to prove to a
verifier that a specific statement is true, without conveying
any secret information. We adopt the the X-protocol [24] for
ZKP, and mainly utilize three of its building blocks: proof
of plaintext knowledge (POPK) [22], proof of plaintext-
ciphertext multiplication (POPCM) [22], and proof of ho-
momorphic dot product (POHDP) [75]. Meanwhile, SPDZ
ensures malicious security using the information-theoretic
message authentication code (MAC) [26,41], which also sup-
ports the secure computation building blocks that we men-
tioned in Section 2.2. Specifically, for a value a € Zq4 in
SPDZ, its authenticated secretly shared form is denoted as
<a> = ((a>17 " (a)m7 (5)17 Y <5)m’ <A>17 " (A>m) Client i is
given the random share (a),, the random MAC share (9),,
and the fixed MAC key share (A),, such that the MAC rela-
tion 6 = a- A holds. The MAC-related shares ensure that no
client can modify (a), without being detected. In what fol-
lows, we discuss how we extend the classification tree train-
ing basic protocol (from Section 4.1) to handle malicious
adversaries; the extensions of other protocols are similar.

Commitment. Before training, each client commits its
local data by encrypting and broadcasting it to other clients,
e.g., the pre-computed split indicator vectors v, and v, for
each split, and the label indicator vector 3, of each class k
that belongs to the super client. Each client uses POPK to
prove that she knows the plaintext of the committed data
(e.g., [v1], [vr], [Bi])- These commitments will be used for
ZKP verification during the whole process.

Model training. First, the super client initializes [«]
with [1] and broadcasts it. Other clients can then ver-
ify its correctness by invoking threshold decryption since
the initial a is public. In the local computation step, the
super client computes [v,] using an element-wise homo-
morphic multiplication between 8, and [a] and broadcasts
it, and proves its correctness using POPCM. In addition,
each client proves that she computes the encrypted statistics
(e.g., [u] = vi ® [a]) correctly using POHDP. In the MPC
computation step, we modify Algorithm 1 for malicious se-
curity by letting each client ¢ do the following [22, 75]:

e Broadcast [r;] together with POPK (Line 3);
e Compute [e] and invoke threshold decryption (Line 4);

e Broadcast [z;] together with POPK for committing her
own share (Lines 6-8).

In addition, before computing with SPDZ, the clients ver-
ify that the authenticated shares are valid and match the
converted encrypted value [75]. The remainder of SPDZ
computations are malicious secure, and the best split iden-
tifier can be found and revealed. In the model update step,
the client who has the best split computes [ay] (resp. [ar])
using an element-wise homomorphic multiplication between
v; (resp. v,) and [a], which can be proved by POPCM. The

pruning condition check and leaf label computation can be
proved in a similar manner. If any ZKP or MAC is incorrect,
the protocol is aborted.

8.2 Incorporating Differential Privacy

We can incorporate differential privacy (DP) [20, 28,37,
38,60, 66] to provide further protection, ensuring that the
released model (even in the plaintext form) leaks limited in-
formation about each individual’s private data in the train-
ing dataset. In a nutshell, a computation is differentially
private if the probability of producing a given output is not
highly dependent on whether a particular sample is included
in the input dataset [28,60]. Formally, a function f satisfies
e-DP, if for any two datasets D and D’ differing in a single
sample and any output O of f, we have

Pr[f(D)eO] <e*-Pr[f(D') € O]. (8)

The parameter € is the privacy budget that controls the
tradeoff between the accuracy of f and the degree of privacy
protection that f offers.

In our case, f trains a tree model with multiple iterations,
where a node is built in each iteration. Existing work [29]
has presented DP algorithms for such model training, and
it works by making the following three steps noisy:

1. When checking whether the current node p should be
split, it uses a noisy version of the sample number on p;

2. When choosing a split for p, it selects the split from a
probability distribution over all possible splits, instead
of choosing the one with the maximum impurity gain;

3. When deciding the leaf label for a leaf node p, for each
label class k € K, it uses a noisy version of the number
of samples on p that are labeled k, instead of using the
exact number.

We incorporate the above DP solution into Pivot by imple-
menting the three noisy steps in an MPC manner. In what
follows, we briefly explain the implementation of classifica-
tion tree training in our basic protocol.

On the one hand, for Step 1 mentioned above, the clients
first compute an exact encrypted sample number [7] by ho-
momorphicly aggregating [a], and convert it into secretly
shared (71) (see Section 4.1). Then, the clients jointly add
a secretly shared noise to (1), ensuring that Step 1 is noisy.
The noise should be i.i.d. and follow a Laplace distribution
whose parameter is public and related to €, according to the
Laplace mechanism [29]. To this end, the clients sample a se-
cretly shared uniformly random value within a specific range
using the primitive in SPDZ [3,26]; and transform it into a
secretly shared noise that follows a given Laplace distribu-
tion using inverse transform sampling [27,64]. The transfor-
mation will be executed by SPDZ computations, such that
the plaintext of the noise is not revealed to any client. Fol-
lowing the same approach, the clients can make Step 3 noisy.

On the other hand, for Step 2, the clients first compute
the secretly shared impurity gains for the set S of all pos-
sible splits, as described in Section 4.1. Then, the clients
need to securely sample a split from a probability distribu-
tion over S, such that each split 7 € S has a probability
% in the secretly shared form, where gain,
is the impurity gain of 7, and (is a public parameter that
relates to e. This sampling approach is referred to as the
exponential mechanism [29]. To securely perform this sam-
pling procedure, the clients construct |\S| sub-intervals within

({0),(1)) according to the secretly shared cumulative dis-
tribution of the above probabilities. Next, they sample a
secretly shared value uniformly at random from ((0), (1)),
and find the sub-interval that the value falls into using SPDZ
computations. The sampled sub-interval follows the above
probability distribution [27,35], and thus satisfies the expo-
nential mechanism. After that, the split that corresponds
to the sampled sub-interval is revealed as the best split.

The integration of DP with the enhanced protocol is the
same as the basic protocol. The resulting protocol provides
an additional layer of protection as an adversary needs to re-
verse the concealed model before obtaining the differentially
private decision tree.

9. RELATED WORK

The works most related to ours are [19,40,45,61-63,65] for
privacy preserving vertical tree models. None of these solu-
tions, however, achieve the same privacy guarantee as our
solution. They disclose either the super client’s labels [40,65]
or intermediate results [19,45,61-63], which compromise the
client’s data privacy.

Meanwhile, several general techniques are applicable to
our problem, but they may suffer from privacy deficiency or
inefficiency. Secure hardware (e.g., Intel SGX [46]) protects
client’s private data using secure enclaves [54,74]. However,
it relies on trusted third party and is vulnerable to side chan-
nel attacks [70]. Secure multiparty computation (MPC) [72]
could provide a strong privacy guarantee, but training ma-
chine learning models using generic MPC frameworks is ex-
tremely inefficient [75]. The tailored MPC solutions (e.g.,
[51,53]) based on non-colluding servers are problematic in
practice since it is difficult to convince the clients. [75] also
uses a hybrid framework of TPHE and MPC, but it mainly
focuses on linear models in horizontal FL, while our work
addresses tree-based models in vertical FL. and further con-
siders the privacy leakages after releasing the tree model.

Finally, there are a number of works on collaborative pre-
diction [9,21, 34, 44] that consists of two parties where the
server holds the private model and the client holds private
data. However, these solutions cannot be directly adopted
in our problem. Although [19,45] consider the same scenario
as ours, their methods disclose the prediction path.

10. CONCLUSIONS

We have proposed Pivot, a privacy preserving solution
with two protocols for vertical tree-based models. With
the basic protocol, Pivot guarantees that no intermediate
information is disclosed during the execution. With the en-
hanced protocol, Pivot further mitigates the possible pri-
vacy leakages occurring in the basic protocol. To our best
knowledge, this is the first work that provides strong privacy
guarantees for vertical tree-based models. The experimental
results demonstrate Pivot achieves accuracy comparable to
non-private algorithms and is highly efficient.

ACKNOWLEDGEMENTS

We thank Xutao Sun for his early contribution to this work.
This research is supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 3 under MOEs official
grant number MOE2017-T3-1-007.

11.
1]

2]

3]

[4]

8]

[9]

[10]
[11]

[12]

[14]

[15]

[16]

[17]

[20]

REFERENCES

California consumer privacy act. bill no. 375 privacy:
personal information: businesses.
https://leginfo.legislature.ca.gov/. 2018-06-28.
Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of
natural persons with regard to the processing of
personal data and on the free movement of such data,
and repealing directive 95/46/ec (general data
protection regulation). oj, 2016-04-27.
data61/mp-spdz: Versatile framework for multiparty
computation. https://github.com/data61/mp-spdz.
Accessed: 2019-11-25.

T. Araki, A. Barak, J. Furukawa, M. Keller,

Y. Lindell, K. Ohara, and H. Tsuchida. Generalizing
the SPDZ compiler for other protocols. In CCS, pages
880-895, 2018.

A. T. Azar and S. M. El-Metwally. Decision tree
classifiers for automated medical diagnosis. Neural
Computing and Applications, 23(7-8):2387-2403, 2013.
D. Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, 1991.

A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B.
Calo. Analyzing federated learning through an
adversarial lens. In ICML, pages 634—643, 2019.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone,
H. B. McMahan, S. Patel, D. Ramage, A. Segal, and
K. Seth. Practical secure aggregation for
privacy-preserving machine learning. In CCS, pages
1175-1191, 2017.

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser.
Machine learning classification over encrypted data. In
NDSS, 2015.

L. Breiman. Random forests. Machine Learning,
45(1):5-32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and regression trees. 1984.

L. M. Candanedo, V. Feldheim, and D. Deramaix.
Data driven prediction models of energy use of
appliances in a low-energy house. Energy and
Buildings, 140:81-97, 2017.

R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136-145, 2001.

S. Cao, X. Yang, C. Chen, J. Zhou, X. Li, and Y. Qi.
Titant: Online real-time transaction fraud detection
in ant financial. PVLDB, 12(12):2082-2093, 2019.

O. Catrina and S. de Hoogh. Improved primitives for
secure multiparty integer computation. In SCN, pages
182-199, 2010.

O. Catrina and A. Saxena. Secure computation with
fixed-point numbers. In FC, pages 35-50, 2010.

H. Chen, K. Laine, and P. Rindal. Fast private set
intersection from homomorphic encryption. In CCS,
pages 1243-1255, 2017.

T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In SIGKDD, pages 785—794, 2016.
K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and

Q. Yang. Secureboost: A lossless federated learning
framework. CoRR, abs/1901.08755, 2019.

A. R. Chowdhury, C. Wang, X. He,
A. Machanavajjhala, and S. Jha. Crypt?:

Crypto-assisted differential privacy on untrusted
servers. In SIGMOD, pages 603—-619, 2020.

M. D. Cock, R. Dowsley, C. Horst, R. S. Katti,

A. C. A. Nascimento, W. Poon, and S. Truex. Efficient
and private scoring of decision trees, support vector
machines and logistic regression models based on
pre-computation. IJEEE TDSC, 16(2):217-230, 2019.
R. Cramer, I. Damgard, and J. B. Nielsen. Multiparty
computation from threshold homomorphic encryption.
In EUROCRYPT, pages 280299, 2001.

R. Cramer, I. B. Damgrd, and J. B. Nielsen. Secure
multiparty computation and secret sharing. 2015.

I. Damgard. On o-protocol. In Lecture Notes, 2010.

I. Damgard and M. Jurik. A generalisation, a
simplification and some applications of paillier’s
probabilistic public-key system. In Public Key
Cryptography, pages 119-136, 2001.

I. Damgard, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, pages 643-662, 2012.

L. Devroye. Non-Uniform Random Variate
Generation. Springer, 1986.

C. Dwork and A. Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211-407, 2014.
A. Friedman and A. Schuster. Data mining with
differential privacy. In SIGKDD, pages 493-502, 2010.
J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting.
Annals of Statistics, 28:2000, 1998.

J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics,
29:1189-1232, 2000.

F. Fu, J. Jiang, Y. Shao, and B. Cui. An experimental
evaluation of large scale GBDT systems. PVLDB,
12(11):1357-1370, 2019.

C. Ge, L. F. Ilyas, and F. Kerschbaum. Secure
multi-party functional dependency discovery. PVLDB,
13(2):184-196, 2019.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter,
M. Naehrig, and J. Wernsing. Cryptonets: Applying
neural networks to encrypted data with high
throughput and accuracy. In ICML, pages 201-210,
2016.

J. Goldstick. Introduction to statistical computing,
statistics 406, notes - lab 5. Lecture Notes,
Department of Statistics, 2009.

J. F. Hart. Computer Approzimations. Krieger
Publishing Co., Inc., Melbourne, FL, USA, 1978.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of differentially private
histograms through consistency. PVLDB,
3(1):1021-1032, 2010.

X. He, A. Machanavajjhala, C. J. Flynn, and

D. Srivastava. Composing differential privacy and
secure computation: A case study on scaling private
record linkage. In CCS, pages 1389-1406, 2017.

B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep
models under the GAN: information leakage from
collaborative deep learning. In C'CS, pages 603-618,
2017.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Y. Hu, D. Niu, J. Yang, and S. Zhou. FDML: A
collaborative machine learning framework for
distributed features. In SIGKDD, pages 2232-2240,
2019.

M. Keller, E. Orsini, and P. Scholl. MASCOT: faster
malicious arithmetic secure computation with
oblivious transfer. In CCS, pages 830842, 2016.

Y. Lindell and B. Pinkas. Privacy preserving data
mining. In CRYPTO, pages 36-54, 2000.

Y. Lindell and B. Pinkas. Secure multiparty
computation for privacy-preserving data mining. J.
Priv. Confidentiality, 1(1), 2009.

J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious
neural network predictions via minionn
transformations. In CCS, pages 619-631, 2017.

Y. Liu, Y. Liu, Z. Liu, J. Zhang, C. Meng, and

Y. Zheng. Federated forest. CoRR, abs/1905.10053,
2019.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In HASP, page 10, 2013.
H. B. McMahan, E. Moore, D. Ramage, and B. A.

y Arcas. Federated learning of deep networks using
model averaging. CoRR, abs/1602.05629, 2016.

H. B. McMahan, D. Ramage, K. Talwar, and

L. Zhang. Learning differentially private recurrent
language models. In ICLR, 2018.

C. A. Meadows. A more efficient cryptographic
matchmaking protocol for use in the absence of a
continuously available third party. In IEEE S&P,
pages 134-137, 1986.

L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov.
Exploiting unintended feature leakage in collaborative
learning. In IEEFE S& P, pages 691-706, 2019.

P. Mohassel and Y. Zhang. Secureml: A system for
scalable privacy-preserving machine learning. In IFEE
S& P, pages 19-38, 2017.

S. Moro, P. Cortez, and P. Rita. A data-driven
approach to predict the success of bank telemarketing.
Decision Support Systems, 62:22-31, 2014.

V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge
regression on hundreds of millions of records. In IEEFE
S& P, pages 334-348, 2013.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,

S. Nowozin, K. Vaswani, and M. Costa. Oblivious
multi-party machine learning on trusted processors. In
USENIX Security Symposium, pages 619-636, 2016.
P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT, pages 223-238, 1999.

B. Pinkas, T. Schneider, G. Segev, and M. Zohner.
Phasing: Private set intersection using
permutation-based hashing. In USENIX Security
Symposium, pages 515530, 2015.

B. Pinkas, T. Schneider, and M. Zohner. Scalable

private set intersection based on OT extension. ACM
Trans. Priv. Secur., 21(2):7:1-7:35, 2018.
J. R. Quinlan. Induction of decision trees. Mach.

Learn., 1(1):81-106, Mar. 1986.
J. R. Quinlan. C4.5: Programs for machine learning.

Morgan Kaufmann Publishers Inc., 1993.

R. Shokri and V. Shmatikov. Privacy-preserving deep
learning. In C'CS, pages 1310-1321, 2015.

J. Vaidya and C. Clifton. Privacy-preserving decision
trees over vertically partitioned data. In DBSec, pages
139-152, 2005.

J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S.
Patterson. Privacy-preserving decision trees over
vertically partitioned data. TKDD, 2(3):14:1-14:27,
2008.

J. Vaidya, B. Shafiq, W. Fan, D. Mehmood, and

D. Lorenzi. A random decision tree framework for
privacy-preserving data mining. IEEE TDSC,
11(5):399-411, 2014.

C. R. Vogel. Computational Methods for Inverse
Problems, volume 23 of Frontiers in Applied
Mathematics. STAM, 2002.

K. Wang, Y. Xu, R. She, and P. S. Yu. Classification
spanning private databases. In AAAI pages 293-298,
2006.

N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui,

H. Shin, J. Shin, and G. Yu. Collecting and analyzing
multidimensional data with local differential privacy.
In ICDE, pages 638-649, 2019.

D. J. Wu, J. Zimmerman, J. Planul, and J. C.
Mitchell. Privacy-preserving shortest path
computation. In NDSS, 2016.

Y. Wu, K. Wang, R. Guo, Z. Zhang, D. Zhao,

H. Chen, and C. Li. Enhanced privacy preserving
group nearest neighbor search. IEEE TKDE, 2019.
Y. Wu, K. Wang, Z. Zhang, W. Lin, H. Chen, and
C. Li. Privacy preserving group nearest neighbor
search. In EDBT, pages 277-288, 2018.

Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In IEEE S& P, pages 640-656,
2015.

Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated
machine learning: Concept and applications. ACM
TIST, 10(2):12:1-12:19, 2019.

A. C. Yao. Protocols for secure computations
(extended abstract). In FOCS, pages 160-164, 1982.
I. Yeh and C. Lien. The comparisons of data mining
techniques for the predictive accuracy of probability of
default of credit card clients. Expert Syst. Appl.,
36(2):2473-2480, 20009.

W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and 1. Stoica. Opaque: An oblivious and
encrypted distributed analytics platform. In NSDI,
pages 283-298, 2017.

W. Zheng, R. A. Popa, J. E. Gonzalez, and 1. Stoica.
Helen: Maliciously secure coopetitive learning for
linear models. In IEEE S& P, pages 915-929, 2019.

	Introduction
	Preliminaries
	Partially Homomorphic Encryption
	Secure Multiparty Computation
	Tree-based Models

	Solution Overview
	System Model
	Threat Model
	Problem Formulation
	Protocol Overview

	Basic Protocol
	Classification Tree Training
	Regression Tree Training
	Tree Model Prediction
	Security Guarantees

	Enhanced Protocol
	Privacy Leakages
	Hiding Label and Split Threshold
	Security Guarantees

	Extensions to OTHER ML MODELS
	Random Forest
	Gradient Boosting Decision Trees
	Other Machine Learning Models

	Experiments
	Experimental Setup
	Evaluation of Accuracy
	Evaluation of Efficiency
	Evaluation on Training Efficiency
	Evaluation on Prediction Efficiency
	Comparison with Baseline Solution

	Further Protections
	Extension to Malicious Model
	Incorporating Differential Privacy

	Related Work
	Conclusions
	References

