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Abstract

Traditionally, indexes have been designed to facilitate
fast retrieval of static objects. Moreover, updates are as-
sumed to be infrequent and hence slow update speed can
be tolerated. However, this assumption does not hold for
new applications fueled by the advancement of GPS, wire-
less technologies and small but powerful digital devices. In
these applications, objects are mobile and to track these ob-
jects their locations have to be updated frequently. Existing
indexes no longer can keep up with the high update rates
while providing speedy retrieval at the same time. There is
a need for novel indexes to be designed for moving objects.
In this paper, we examine various design issues that need to
be addressed to support efficient retrieval of moving objects
with frequent updates.

1 Introduction

With improved accuracy in positioning technologies
such as GPS (global positioning system) and sophisticated
technologies like radars and other communication equip-
ment, it is possible to continuously track moving objects,
be it in the digital battle field or real world. Quick access to
locations of mobile units enables more efficient deployment
of resources and dissemination of information based on lo-
cations. In the commercial front, demand has surged for
applications that track the locations of moving objects like
vehicles, users of wireless devices and even deliveries. By
the time the mobile network bandwidth exceeds 2/2.5G, we
expect to see hundreds of millions of mobile users world-
wide, with their connections almost always on. The main
reasons behind tracking moving objects are to improve the
quality of service and efficiency in resource management.
For example, advertisements can now be pushed to mobile
phones based on the proximity of users, and taxis can be

dispatched quickly to passengers based on their locations
and taxis in the vicinity. In order to provide such services
and to facilitate dynamic queries, we need an efficient and
accurate way of managing the latest positions of moving
objects.

In location-aware mobile services, moving objects such
as consumers with WAP-enabled mobile phone terminals
and personal digital assistants (PDA), and vehicles with
navigation and communication equipment, disclose their
positions. The accuracy is dependent on such disclosure;
otherwise, current locations are predicted based on some
function of time and velocity of the moving objects or some
other conditions such as no-movement of objects. Each dis-
closure will cause an update in the moving object databases.
Due to the size of the database, indexes are required to facil-
itate fast location of objects based on spatial locations and
facilitate retrieval of objects within certain distance from
the query or current moving objects. The index must be
adaptive and dynamic in order to efficiently accommodate
movement of objects in the index structure and yet provide
the expected answer as one would obtain by searching the
database using a sequential scan method.

Moving objects pose new challenges to database sys-
tems. The conventional assumptions that objects are fairly
static and their values are not frequently updated are be-
ing invalidated by the need to capture continuous move-
ment. Frequent updates not only pose the usual contention
problems on hot spots such as system catalog, they require
the underlying indexes to be frequent-update aware and ef-
ficient. To reduce the number of updates on the indexes,
strategies such as expressing the objects’ positions as func-
tion of times, and delaying of updates have been employed.
However, to better reflect dynamic changes in objects’ po-
sitions, existing indexes have to be re-designed to enable
fast updates and new concurrency control mechanisms are
also required. In this paper, we shall review the require-
ment for such applications, and discuss various techniques



that could be used to provide both fast updates and retrieval.
Frequent update is an additional requirement imposed by
moving objects, and fast update is necessary so that the
overall throughput of the index, querying and updating, is
kept high.

The paper is organized as follows. In the next section,
we introduce the representation of moving object positions
and describe the queries posed on systems supporting mov-
ing objects. In Section 3, we have a quick overview on the
problem of indexing moving objects. We then present var-
ious feasible methods in reducing the number of updates
and speeding up updates while providing fast retrieval in
Section 4. We conclude in Section 5.

2 On Representation of Moving Object Posi-
tions and Queries

Let us consider objects that are moving in
�
-dimensional

space. The most straightforward way of handling moving
objects is to treat them as if they are static objects and store
only their currently known positions. To ensure that the
stored positions are up-to-date, moving objects must fre-
quently update their positions. While update overhead is
high, such an approach has two advantages: (1) it allows
one to reuse existing multi-dimensional indexes [3] and
query processing strategies for answering range/window,
proximity and nearest neighbor queries [25]; (2) it reduces
the problem of managing positions of moving objects to a
frequent update problem.

An alternative approach is to model the position of an
object as a function of time, i.e., an object’s position at time�

given by x̄ � ����� ���
	�� ���� ����� ������������ ����� ����� , is modeled as���� ����� ���� ������� � � �"!#����� , where
� is the current velocity of

the object,
� � �  	 �  � �$�������  � � , ��� is the time when the posi-

tion was last recorded, and
�

may be larger than the current
time (now). In this way, an object only needs to update its
position (i.e., new position and velocity vector) whenever
there is a change in its direction or/and speed. This method
not only reduces the number of updates (compared to the
simple method), it also allows the current and anticipated
future positions of a point to be described by 2

�
parameters

-
�

for the spatial dimensions and
�

for the velocity vectors.
As such, more complex queries involving time and future
positions can be supported.

Before we look at the design issues to support moving
objects, it is worth noting that both representations essen-
tially provide only approximate answers to queries. For the
first method, it is possible that an answer may no longer sat-
isfy a query (if the query arrives before its new position is
updated); similarly, it is also possible for an answer to be
missed. On the other hand, the second method relies on the
accuracy of the functions used. It is therefore possible to
have both false positives and negatives as well (especially

for queries that involve future positions). As the second
model has received much attention in the literature [11], we
shall restrict the rest of our discussion to this model.

There are essentially three ways in which we can repre-
sent moving objects.

% As lines in (
�
+1)-dimensional space –

�
spatial dimen-

sions and 1 time dimension. Figure 1(a) shows an ex-
ample of three moving objects in 1-

�
space.

% As points in 2
�
-dimensional space –

�
spatial and

�
ve-

locity dimensions (function parameters:
���� �'&��� � ) Fig-

ure 1(b) shows the three moving objects in Figure 1(a)
when represented in 2

�
space.

% As time-parameterized points in
�
-dimensional space.

A moving object database should be able to answer
queries based on the current, past or future positions of the
objects. Like traditional static multi-dimensional databases,
there are three types of queries, namely range queries, prox-
imity queries and k-nearest neighbor (kNN) queries. Now
we shall define each of these types of queries:

% range queries: “find all objects whose positions fall
within certain given ranges from time

� 	 to
� � ”. Range

queries can be formally expressed with respect to the
database (*) as follows:

+-,/. (0)21 , � ��� .43�5�6$7-8:9<;

where
3�5�6$7-8=9

is a rectangular window range query
and

� 	?> � > � � . Note that if
3�5�6�7-8:9

is de-
noted as @ ACB �ED B�F ( GH>JILK �

) and the position of
an object

,
at time

�
,
, � ��� , is represented as

+ ��BM� ��� ;
( GN>OIPK �

), (
, � ��� .Q3�5�6�7-8:9

) can be as simple as
@ ACBR>S�TBM� ��� > D B�F where G*>SIUK �

. Range query here
is a rectangular window range query, which is how-
ever often called as window range query or window
query. We note that if the time is not specified, then
the query refers to the current time. Referring to the
example in Figure 1, we see that for the first represen-
tation (Figure 1(a)), objects

, � and
,�V

will be returned
as answers for the range query that looks for objects
within [3,5] at time 2. For the second representation,
the same query has to be transformed into the shaded
region in Figure 1(b). The third representation will re-
quire identifying all new positions of the points and
check if they fall in the query region (as we shall see
shortly, there are more efficient ways to perform this).

% proximity queries: “find all objects in the database
which are within a given distance W from a given ob-
ject from

� 	 to
� � ”. This query is commonly known as
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Figure 1. Data representation

similarity range query in multimedia context. It can be
formally expressed as follows:

+-,/. (0) 1 � I � � � 3 � ���� , � ����� > W ;

where
3

is the given query object,
� I � � is the distance

applied, and
� 	/> � > � � . We note that

� I � � is highly
application-dependent, and may have different met-
rics.

% Nearest neighbor (NN) queries: “find an object in the
database which are closest in distance to a given object
from

� 	 to
� � ”. Let

�����
denote sets of moving objects

and � � denote a time interval. The NN query returns
the set

+
(
����� � � � ) ; such that � � � � � @ � 	 ��� � F and I���	�
 ��B��� � ��� . In addition, each point in

�����
is a

nearest neighbor to
3

during all of interval � � . That is,� 	 � ,/. ����� � 7 . (0)�� , � � I � � � , � 3 � > � I � � � 7 � 3 ���
More recently, there are several more complex queries that
have been proposed: reverse NN queries [2], and queries
involving moving query ranges.

3 Indexing Moving Objects

Recent advances in hardware technology have reduced
the access times of both memory and disk tremendously.
However, the ratio between the two still remains at about 4
to 5 orders of magnitude. Hence, optimizing the number of
disk I/Os remains important. Further, the indexes are often
used as the filtering step in reducing the number of objects
that need to be evaluated in main memory, and hence reduc-
ing the computational cost. This calls for the use of orga-
nizational methods or structures known as indexes to locate

Spatial indexes for indexing mobile objects

Indexing current locations Indexing past locations

Indexing based on starting point
  and velocity

indexing locations of moving objects

Figure 2. Moving object indexing

data of interest quickly and efficiently. Many indexes have
been proposed for multi-dimensional databases and, in par-
ticular, for spatial databases. However, these indexes have
been designed mainly to speed up the retrieval, in applica-
tions where queries are relatively much more frequent than
updates. This is being invalidated by new location-based
applications in which the number of spatial objects are typ-
ically points that are movable. These moving objects pose
new challenges to spatial data management and the design
of indexes. The workload in such a system is characterized
by high index update loads and frequent queries.

Figure 2 shows the various directions in indexing mobile
objects and some of the proposals made. Indexing mobile
objects can be divided into 2 main categories: indexing cur-
rent locations of spatial objects and indexing historical lo-
cations of spatial objects. The first category can be further
divided into two sub-categories: (1) Using functions to ap-
proximate movement and (2) indexing locations of moving
objects.
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Figure 3. Updates of nodes due to moving objects

3.1 The R-tree as the Base Index

In the last two decades, many multi-dimensional index
structures have been proposed [25]. Among them, the R-
trees are the most popular which is a hierarchical, height-
balanced index structure. The R-trees have leaf nodes and
internal nodes with entries in leaf node pointing to objects
and entries in internal nodes pointing to other internal or
leaf nodes (see Figure 3). The information contained in an
R-tree is thus hierarchically organized and every level in the
tree provides more detail than its ancestor level. The search
process in an R-tree is very different from that in a B-tree
due to the lack of ordering and the possible overlap among
keys. To find all rectangles intersecting a given range the
search process has to descend all subtrees that intersect or
fully contain the range specification. When a new key has
to be inserted in an R-tree, one attempts to descend to the
geometrically optimal leaf by picking at each level the sub-
tree with the optimal bounding rectangle. In contrast to the
B-trees, the R-trees have to recursively update the ancestor
MBRs if a leaf’s MBR changes. Splitting a node also de-
viates noticeably from the B-tree pattern. The R-tree will
partition the key sequence according to its layout strategy

and it is impossible to completely avoid any overlap after
split.

If we simply apply the R-tree technique to index the lo-
cations of moving objects, readjusting the entire index is
inevitable. For example, the movement of )+*-, in Figure 3
from one leaf node to another leaf node will cause the split
of the destination leaf node. That is, a split may cause a split
of a leaf node which may propagate all the way up to the
root. Likewise, it may cause an underflow in a source leaf
node, and re-insertions may be necessary. Even if there are
no node splitting and merging, frequent movement of ob-
jects can retard the performance of the index, as the nodes
have to locked when the nodes are accessed and MBRs ad-
justed. Take object ).*0/ for example, its short movement
will cause the nodes and MBRs along two paths to be ad-
justed. Such adjustments are expensive in view of the large
numbers of updates that are continuously issued. As a re-
sult, the original R-tree technique is not directly suitable for
such purposes. However, due to its robustness in handling
spatial objects, the R-tree and its variants provide a good
basis for extension for supporting moving objects. We shall
use the R-tree as the basis for discussion; the ideas are how-
ever suitable for most hierarchical indexes.



3.2 Indexing historical movement

The historical movement of objects can be represented
by their trajectories, i.e., line segments of their positions
over time. Figure 4 shows an example. Clearly, an R-tree
can be used to index the trajectories. While a single MBR
suffices to bound the entire trajectory of an object, it is more
efficient to split the trajectories into segments. However,
because the end points are not bounded, and large MBRs
contain dead space as well as lead to significant overlaps,
R-tree has been shown to be very inefficient.

Several methods have been proposed to index histori-
cal locations of spatial objects [10, 19, 9]. Specifications
and framework for efficient indexing in spatio- temporal
databases can be found in [24] and [9] respectively. In
particular, the work in [19] proposes a B-tree based scheme,
TB-tree, that strictly preserves trajectories, i.e., leaf nodes
in the index contain segments belonging to one trajec-
tory. This can improve the performance of trajectory-based
queries that require segments of the same trajectories to be
retrieved.

t

x

(x1,y1,t1)

(x2,y2,t2)
(x3,y3,t3)

(x4,y4,t4)

y

Figure 4. Approximating trajectories using
MBRs

3.3 Indexing current and future movement

More recent works have focused on indexing techniques
that can facilitate queries on future positions of points
[7, 21]. Chon [7] stores the projected trajectories of the po-
sitions of points and stores them using a regular grid struc-
ture. While this speeds up query processing, it requires du-
plicating an object across all grids that it intersects. As a
result, any update becomes costly.

The time-parametric tree (TPR-tree) [21] is an R-tree
based index where the location of a moving point is rep-
resented by a reference position and a corresponding ve-
locity vector. In TPR-tree, the coordinates of the bounding
rectangles are functions of time. Thus, they are capable of
following the objects as they move, and updates are kept
to a minimum. Figure 5 illustrates the time-parametrized
rectangles in TPR tree. We note that the velocities associ-
ated with each edge corresponds to the maximum velocity
of points in that direction. The TPR-tree considers the loca-
tions of moving points as well as their velocity vector when
splitting nodes. In particular, since the bounding rectangles
may become very large leading to significant overlaps, there
is a need to “tighten” them during updates or search.

Figure 5. Time-parametric rectangles in a
TPR-tree

Kollios et al. [13] an indexing scheme based on parti-
tion trees, in which a linear function is used to represent the
movement of objects. A line is mapped into a point in the
dual plane which facilitates indexing in spatial databases.
However, this duality transformation causes a typical rect-
angle query to become a polygon, making queries difficult
to execute. Agarwal et al. [1] also proposed various effi-
cient indexing schemes based on duality and with ways of
answering approximate KNN queries.

All these proposals could not substantially reduce update
cost in reality because of the difficulty in finding a sophis-
ticated and robust way of representing moving objects in
the real dynamic world. Besides, they may not yield better
query performance than the conventional R-tree for current
locations.

4 Handling of Fast Updates

Existing database systems have not been designed to
handle continuously changing data such as location of mov-
ing spatial objects. In order to represent moving objects in



the database, the location of moving objects must be contin-
uously updated. Frequent updates incur both system perfor-
mance and wireless communication overhead. Hence, loca-
tions are represented as function of time to reduce update
cost and the imprecise problem caused by the fact that loca-
tion updates are usually initiated by moving objects them-
selves. Nevertheless, comparatively, the frequency of up-
dates is still much higher than what we experience in con-
ventional databases. In this section, we outline various
strategies that either have been proposed or could be used
to alleviate frequent update problems.

4.1 Concurrency Controls

Several concurrency control algorithms have been pro-
posed to support concurrent operation on multi-dimensional
index structures. Similar to those of the B-trees, they can
be categorized into lock coupling and linking algorithms.
The techniques of lock coupling, breadth-first search, lock
and scope were supports concurrency control algorithms on
the original R-tree structure [6, 18]. They only release the
lock on the current node when the lock on the next node to
traverse is granted for query operations. For update opera-
tions, multiple locks need to be hold simultaneously when
node split and MBR change occur, which significantly de-
teriorates the throughput of the concurrency control algo-
rithm. To solve lock-coupling problem, the linking algo-
rithms were proposed in [14, 15, 12, 22]. These methods
lock one node most of the time for search operation and only
employs lock-coupling when splitting the node or propagat-
ing the MBR change.

The radically different linking approach was originally
for B-trees [17]. Instead of avoiding possible conflicts by
lock-coupling, the tree structure is modified so that the
search process has the opportunity to compensate for a
missed split. The crucial addition is the rightlink, a pointer
going from every node to its right sibling on the same level.
When a node is split and a new right sibling is created, it
is inserted into the rightlink chain directly to the right of
the old one. The effect is that all nodes at the same level
are chained together through the rightlinks. Searching in
a B-link tree can therefore be done without lock-coupling.
When descending to a node that was split after examining
the parent, the search process discovers that the highest key
on that node is lower than the key it is looking for and cor-
rectly concludes that a split must have taken place. For
an insertion process, if the leaf has to be split, it can also
avoid lock-coupling when installing a new entry in the par-
ent [20]. As soon as the page has been split and the new
right sibling inserted into the rightlink chain, the insertion
process can drop the lock on the leaf that was overflowing
and then acquire a lock on the parent, possibly moving right
to compensate for concurrent splits and splitting up the tree

recursively. This linking strategy offers very high concur-
rency because search and insertion processes only need to
lock one node at a time.

The main obstacle to the use of linking mechanism is
the lack of linear ordering among the keys in the multi-
dimensional index structures. To overcome this problem,
the R-Link trees [14] was proposed to provide high con-
currency operations on the R-trees through a rightlink-style
approach. They assign logical sequence numbers (LSNs)
to each node and entry, which are similar to timestamps in
that they monotonically increase over time but are not syn-
chronous with any real-time clock. The node entries and
the search and insert algorithms are designed so that these
LSNs can be used to make correct decisions about how to
move through the tree. An R-Link tree is basically a stan-
dard R-tree with two key differences. First, all of the nodes
on any given level are chained together in a singly-linked
list via rightlinks. Second, the main structural addition is
an LSN in each node that is unique with the tree. These
LSNs give us a mechanism for determining when an opera-
tion’s understanding of a given node is obsolete. Each entry
in a node consists of a key rectangle, a pointer to the child
node and the LSN that it expects the child node to have. If
a node has to be split, the new right sibling is assigned the
old node’s LSN and the old node receives a new LSN. A
process traversing the tree can detect the split even if it has
not been installed in the parent by comparing the expected
LSN, as taken from the entry in the parent node, with the
actual LSN.

In the above algorithm, each entry of internal nodes has
extra information to keep the LSNs of child nodes and re-
duces the storage utilization, which may degrade the query
performance. Consequently, an extension for concurrency
control was proposed to deal with the extra information
problem, called Concurrent GiST (CGiST) [15]. CGiST ex-
tends every node with a node sequence number (NSN) and
a rightlink and uses these to detect splits. The NSN is taken
from a tree-global, monotonically increasing counter vari-
able. During a node split, this counter is incremented and
its new value assigned to the original node; the new sibling
node receives the original node’s prior NSN and rightlink.
In general, a traversing operation can now detect a split
by memorizing the global counter value when reading the
parent entry and comparing it with the NSN of the current
node. If the latter is higher, the node must have been split
and the operation follows rightlinks until it sees a node with
an equal or smaller NSN. When we split a node, we must
lock its parent node, split the node, set NSN and increase
the tree-global counter. So multiple locks must be hold for
split operations, which may delay the concurrent queries. It
improves on the R-link tree design by eliminating the space
overhead in internal index entries, but this overhead is neg-
ligible. For a 4K bytes pages, the fanout of the R-tree can be



more than 160 (2D objects), thus the space overhead is only
around 1%. On the contrary, to make CGiST work properly,
it must lock the parent before the node split, which reduces
the degree of concurrency significantly.

So far, we can see that the linking techniques also need
to request multiple locks exclusively for split and MBR
change. Some mechanisms were proposed to improve the
concurrency based on them. In [12], the authors proposed
a new linking scheme, which employed a new approach for
MBR modification, called top-down index region modifi-
cation (TDIM). This scheme performs MBR modification
from top down by operating on at most one node along the
insertion path for most insertions. TDIM combines MBR
modification with tree traversal and avoids locking of nodes
from multiple levels of the tree at the same time. Also the
MBR modification is done in a piecemeal fashion without
excluding query access, queries are not blocked except dur-
ing node split. Additionally, they proposed a split algo-
rithm, named copy based concurrent update (CCU). The ba-
sic idea of CCU is to split the node in a local copy. Queries
are free to access the original node while the split is process-
ing. The content of the original node is changed after the
split in local copy completes. Thus queries only block dur-
ing the copy back. The main disadvantage of TDIM is that it
does not supports the delete operation. To locate the delete
object, we need to traverse multiple path to get the object
and we do not sure which node we access is the ancestor of
target object. Additionally, even we know the ancestor, we
still can not decide whether we can shrink the certain MBR.
For CCU, extra spaces are needed for split and each split
incurs garbage node, which increases the complexity of the
algorithms.

In [22], the authors proposed a concurrency control
method to minimize the query delay. To avoid the query de-
lay by MBR updates, they introduced partial lock coupling
(PLC) technique. The PLC technique increases concur-
rency by using lock coupling only in case of MBR shrinking
operations that are less frequent than MBR expansion oper-
ation. To reduce the query delay by split operation, they
optimize exclusive latching time on a split node. The weak-
ness of PLC is that the x-lock is hold during the propaga-
tion, and the algorithm did not provide phantom protection.
Additionally, this algorithm is based on CGiST, and it must
lock the parent of split node before the split; hence multiple
locks need to be hold.

Concurrent access to data through a multi-dimensional
indexes introduces the problem of protecting query range
from phantom update. The CGiST method [15] uses a mod-
ified predicate locking mechanism to provide phantom pro-
tection over Generalized Search Trees. In [4], the dynamic
granular locking (DGL) approach was proposed to phan-
tom protection in R-trees. DGL method dynamically parti-
tions the embedded space into lockable granules that adapt

to the distribution of objects. They define the lowest level
BRs of the R-tree as the lockable granules. Since the R-
tree partitions may not cover the entire embedded space,
they present an additional structure that partitions the non-
covered space into a set of granules referred to as external
granules. Following the principles of granular locking, each
operation requests locks on enough granules to guarantee
that any two conflicting operations request conflicting locks
on at least one granule in common. They also proposed
two locking strategies, the “cover-for-insert and overlap-
for-search policy and the “overlap-for-insert and cover-for-
search” policy. The DGL approach addressed phantom pro-
tection problem in multi-dimensional access methods and
granular locks can be implemented more efficiently com-
pared to predicate locks, but DGL may offer lower degree
of concurrency because of its complexity. Additionally,
DGL must integrate with other methods to form the com-
plete concurrency control algorithm for multi-dimensional
access.

Elsewhere [8], we introduce a new concurrency control
algorithm for the R-trees, which is designed to support fast
and frequent updates. The purpose of the concurrency con-
trol algorithms of index is to provide high throughput for
frequent update. And the key criteria for concurrency con-
trol algorithm is the degree of parallelism. The previous
work showed that the main factors which block the other
concurrent operation and hence decrease the concurrency of
index are MBR modification propagation and node split of
update operations. Our algorithm reduces the query block-
ing overhead to address these two problems. Additionally,
we propose an optimistic search algorithm to speed up the
processing of query.

4.2 Function of Time

Recall that object positions are being modeled as func-
tions of time to minimize updates. Modeling object posi-
tions as functions of time enables the ”tentative near-future”
positions be approximated. The database will only need
to be updated when the parameters of the linear function
change or the objects move beyond a bound, e.g. the ve-
hicle changes direction or stops moving. The objects may
report their parameter values when their actual positions de-
viate from the last reported positions by certain threshold.
One main problem is that each individual object has a dif-
ferent function of movement and agility and that function
always changes unpredictably. For example, a vehicle can
never maintain constant velocity in a traffic-congested city.
In fact, the speed can vary from 0 to 55 mph in a matter
of seconds. The same goes for tracking enemy aircraft and
missiles that can change direction, speed or even destina-
tions while on the move. Either we have a more sophisti-
cated and robust way of representing the movement of mov-



ing objects, e.g. using complex polynomial functions with
intelligent predictions or we are faced with an enormous
amount of updates. However, the approximation provides
additional degree of accuracy since objects may move since
the last update and before the next update on the database.

4.3 Lazy Updates

Movement of objects in the database causes deletion and
insertion of objects, and consequently, node merging and
splitting. For objects that do not move out from the present
MBR, no deletion is necessary although a deletion and rein-
sertion may provide a more efficient structure. Object

�
in

Figure 6 is a case in point, where a deletion and reinser-
tion will definitely make the coverage of the current node
smaller. For applications whose objects do not move far out
from the current MBR, such as object ) in Figure 6, an
enlarged MBR could be used. The level at which MBRs are
to be enlarged is a decision between query performance and
update cost. While enlarging MBRs reduces updates, the
enlarged MBRs may overlap more and cause the subtree to
be traversed unnecessarily.

ε

ε

ε

ε

A

B

Figure 6. Extended MBR

4.4 Buffering Strategies

Work on buffer management has progressed from the de-
sign of replacement policies that are based on stochastic
measures to the design of more sophisticated approaches
that integrate additional domain knowledge such page ref-
erence patterns and external domain hints to obtain more in-
telligent buffering schemes. The main objective of buffer-
ing is to reduce expensive I/O cost. The reduction in I/O
operations results in higher throughput as both update and
retrieval operations can be executed more efficiently. In
[5], a buffer replacement strategy for hierarchical indexes
based on index traversal pattern has been shown to improve

buffer hit rate and reduce I/O cost. For many applications,
the movements of objects are constrained by factors such as
area of service and transportation network. Such constraints
cause certain patterns of movements to form and hence may
cause the objects to be moved around within certain subtree.
A replacement strategy can then be designed to exploit such
patterns of movements. For a given subtree which has fre-
quent updates, the subtree becomes more likely to be kept
in the buffer due to its access pattern, or can be cached on
purpose for speedy updates.

Most modern servers come with fast caches to speed up
computation, and the recent focus has been on the effective
utilization of the L2 cache to minimize cache misses. This
is because a L2 cache miss incurs more than 200 processor
clocks when data is required to be fetched from the slower
but larger capacity RAM or conventional buffer (as com-
pared to only 2 processor clocks for a L1 cache hit). The
objective of exploting L2 cache is similar to that of buffer,
except now that we have smaller cache lines, and hence to
fully exploit L2 cache, indexes have to be tuned with page
structures that fit into cache lines whose sizes are usually
32-128 bytes. Such page structure does not map directly
into the disk-based structure, therefore mapping is required,
which may not be straight forward or even feasible depend-
ing on the index structure.

4.5 Use of Auxiliary Structures

Since moving objects have to be identified by identifiers,
the update can be done based on the identifier rather than
spatial location. To support fast location of moving objects
in the spatial index, a secondary indexing structure such as
hash-table can be maintained to provide a direct link be-
tween the object and the leaf page in spatial index that con-
tains the object [16]. Without a secondary index, location of
moving object has to be based on the last location recorded
in the database, and the search for the object within the spa-
tial index is much slower than a direct lookup using a sec-
ondary index. However, in order to provide fast update, a
backward or parent pointer has to be maintained such that
the tree can be adjusted should the moving object be re-
moved from the current node. An example is illustrated in
Figure 7. While adjusting on the way up, identification of
the right subtree for re-insertion due to the new location can
be performed concurrently. If the objects are not moving
too far away from the current location, re-insertion is likely
to be within the same subtree before reaching the root. To-
gether with the use of enlarged MBR, updates could be lo-
calized to some subtrees to reduce traversal and locking of
nodes.

Song and Roussopoulos [23] proposed a hashing based
method to reduce update costs. Though simple and intu-
itive, it is difficult to support the various types of queries
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Figure 7. Use of a secondary structure

(KNN, RNN, spatial joins) mentioned earlier on. Further-
more, overflow pages can seriously deteriorate performance
as all pages need to be searched, made worse if we have a
skewed or Gaussian distributed data.

5 Conclusion

The demand for tracking the locations of moving objects
is fueled by the advancement of GPS, wireless technologies
and small but powerful digital devices. Spatial indexes that
have been typically designed to index static objects and fa-
cilitate fast retrieval may not be efficient for indexing mov-
ing objects where updates are frequent. Fast update is not
an objective contradictory to fast retrieval – it is an added
requirement on indexes for moving objects. Assuming that
the base index is already providing fast retrieval, which has
been the objective all this while, the index now has to mini-
mize the number of nodes being locked and updated so that
the overall throughput remains acceptable. In this paper, we
examined various design issues and techniques in design-
ing indexes for supporting fast retrieval of moving objects
based on spatial location and proximity, and frequent up-
dates. Most techniques discussed are complementary and
can be used in parallel to achieve the objective of fast re-
trieval and update.
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