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Abstract. The Cloud is fast gaining popularity as a platform for de-
ploying Software as a Service (SaaS) applications. In principle, the Cloud
provides unlimited compute resources, enabling deployed services to scale
seamlessly. Moreover, the pay-as-you-go model in the Cloud reduces the
maintenance overhead of the applications. Given the advantages of the
Cloud, it is attractive to migrate existing software to this new platform.
However, challenges remain as most software applications need to be
redesigned to embrace the Cloud.
In this paper, we present an overview of our current on-going work in
developing epiC – an elastic and efficient power-aware data-intensive
Cloud system. We discuss the design issues and the implementation of
epiC’s storage system and processing engine. The storage system and the
processing engine are loosely coupled, and have been designed to handle
two types of workload simultaneously, namely data-intensive analytical
jobs and online transactions (commonly referred as OLAP and OLTP
respectively). The processing of large-scale analytical jobs in epiC adopts
a phase-based processing strategy, which provides a fine-grained fault
tolerance, while the processing of queries adopts indexing and filter-and-
refine strategies.

1 Introduction

Data has become an important commodity in modern business where data anal-
ysis facilitates better business decision making and strategizing. However, a sub-
stantial amount of hardware is required to ensure reasonable response time, in
addition to data management and analytical software. As the company’s busi-
ness grows, its workload outgrows the hardware capacity and it needs to be
upgraded to accommodate the increasing demand. This indeed presents many
challenges both in terms of technical support and cost, and therefore the Cloud
becomes a feasible solution that mitigates the pain.

The web applications, such as online shopping and social networking, are
currently the majority of applications deployed in the Cloud. Excellent system
scalability, low service response time and high service availability are required
for such applications, as they are generating unprecedented massive amounts
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of data. Therefore, large-scale ad-hoc analytical processing of the data collected
from those web services is becoming increasingly valuable to improving the qual-
ity and efficiency of existing services, and supporting new functional features.
However, traditional online analytical processing (OLAP) solutions, such as par-
allel database systems and data warehouses, fall short of scaling dynamically
with load and need.

Typically, OLTP (online transaction processing) and OLAP workloads are of-
ten handled separately by separate systems with different architectures – RDBMS
for OLTP and data warehousing system for OLAP. To maintain the data fresh-
ness between these two systems, a data extraction process is periodically per-
formed to migrate the data from the RDBMS into the data warehouse. This
system-level separation, though provides flexibility and the required efficiency,
introduces several limitations, such as the lack of up-to-date data freshness in
OLAP, redundancy of data storage, as well as high startup and maintenance
cost.

The need to dynamically provide for capacity both in terms of storage and
computation, and to support online transactional processing (OLTP) and on-
line analytical processing (OLAP) in the Cloud demands the re-examination of
existing data servers and architecting possibly “new” elastic and efficient data
servers for Cloud data management service. In this paper, we present epiC – a
Cloud data management system which is being designed to support both func-
tionalities (OLAP and OLTP) within the same storage and processing system.
As discussed above, the approaches adopted by parallel databases cannot be di-
rectly applied to the Cloud data managements. The main issue is the elasticity.
In the Cloud, thousands of compute nodes are deployed to process petabyte of
data, and the demand for resources may vary drastically from time to time. To
provide data management service in such environment, we need to consider the
following issues.

1. Data are partitioned among multiple compute nodes. To facilitate different
access patterns, various storage systems are developed for the Cloud. For
example, GFS [20] and HDFS [1] are designed for efficient scan or batch
access, while Dynamo [16], BigTable [12] and Cassandra [25] are optimized
for key-based access. OLAP queries may involve scanning multiple tables,
while OLTP queries only retrieve a small number of records. Since it is costly
to maintain two storage systems, to support both workloads, a hybrid storage
system is required by combining the features of existing solutions.

2. The efficiency and scalability of the Cloud is achieved via parallelism. The
query engine must be tuned to exploit the parallelism among the compute
nodes. For this purpose, we need to break down the relational operators into
more general atomic operators. The atomic operators are tailored for the
cluster settings, which are naturally parallelizable. This approach is adopted
by MapReduce [15], Hive [35], Pig [30], SCOPE [11], HadoopDB [8] and our
proposed epiC system [6]. The query engine should be able to transform a
SQL query into the atomic operators and optimize the plans based on cost
models.
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3. Machine failure is not an exception in the Cloud. In a large cluster, a specific
node may fail at any time. Fault tolerance is a basic requirement for all Cloud
services, especially the database service. When a node fails, to continue the
database service, we need to find the replicas to recover the lost data and
schedule the unfinished jobs of the failed node to others. Indeed, the fault
tolerance issues affect the designs of both the storage layer and the processing
engine of the Cloud data management system.

4. Last but not the least, the Cloud data management system should provide
tools for users to immigrate from their local databases. It should support
a similar interface as the conventional database systems, which enables the
users to run their web services, office softwares and ERP systems without
modification.

Due to the distinct characteristics of OLAP and OLTP workload, the query
processing engine of epiC is loosely coupled with the underlying storage system
and adopts different strategies to process queries from the two different work-
loads. This enables the query process and the storage process to be deployed
independently. One cluster machine can host one or more query processes or
storage processes, providing more space for load balancing.

In epiC, OLAP queries are processed via parallel scans, while OLTP queries
are handled by indexing and localized query optimization. The OLAP execu-
tion engine breaks down conventional database operations such as join into
some primitives, and enables them to run in MapReduce-like or filter-and-refine
phases. The motivation for this design is that, although the widely adopted
MapReduce computation model has been designed with built-in parallelism and
fault tolerance, it does not provide data schema support, declarative query lan-
guage and cost-based query optimization. To avoid the access contention between
the two workloads, we relax the data consistency of OLAP queries by providing
snapshot-based results, which are generally sufficient for decision making.

The rest of paper is organized as follows. Section 2 reviews the efforts of
previous work and discusses the challenges of implementing a database service
in the Cloud. Section 3 presents the design and implementation of our proposed
epiC system for Cloud data management service. We conclude the paper in
Section 4.

2 Challenges of Building Data Management Applications

in the Cloud

In this section, we review related work and discuss how they affect the design of
epiC system.
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2.1 Lessons Learned from Previous Work

Parallel Database Systems Database systems capable of performing data
processing on shared-nothing architectures are called parallel database systems 1.
The systems mostly adopt relational data model and support SQL. To parallelize
SQL query processing, the systems employ two key techniques pioneered by
GRACE [19] and Gamma [18] projects: 1) horizontal partition of relational tables
and 2) partitioned execution of SQL queries.

The key idea of horizontal partitioning is to distribute the tuples of relational
tables among the nodes in the cluster based on certain rules or principles so that
those tuples can be processed in parallel. A number of partitioning strategies
have been proposed, including hash partitioning, range partitioning, and round-
robin partitioning [17]. For example, to partition the tuples in a table T among
n nodes under the hash-partitioning scheme, one must apply a universal hash
function on one or more attributes of each tuple in T in order to determine the
node that it will be stored.

To process SQL queries over partitioned tables, the partition based execution
strategy is utilized. Suppose we want to retrieve tuples in T within a given date
range (e.g., from ’2010-04-01’ to ’2010-05-01’). The system first generates
a query plan P for the whole table T , then partitions P into n subquery plans
{P1, . . . , Pn} such that each subquery plan Pi can be independently processed
by node ni. All the subquery plans apply the same principles by applying the
filtering condition to the tuples stored on the local node. Finally, the intermediate
results from each node are sent to a selected node where a merge operation is
performed to produce the final results.

Parallel database systems are robust, high-performance data processing plat-
forms. In the past two decades, many techniques have been developed to enhance
the performance of the systems, including indexing, compression, materialized
views, result caching and I/O sharing. These technologies are matured and well
tested. While some earlier systems (e.g., Teradata [2]) have to be deployed on
proprietary hardware, recent systems (e.g., Aster [3], Vertica [4] and Greenplum
[5]), can be deployed on commodity machines. The ability of deploying on low-
end machines makes parallel database systems Cloud-ready. To our knowledge,
Vertica and Aster have in fact already released their Cloud editions.

However, despite the fact that some parallel database systems can be de-
ployed on Cloud, these systems may not be able to take full advantage of the
Cloud. Cloud allows users to elastically allocate resources from the Cloud and
only pay for the resources that are actually utilized. This enables users to design
their applications to scale their resource requirements up and down in a pay-
as-you-go manner. For example, suppose we have to perform data analysis on
two datasets with the size of 1TB and 100GB consecutively. Under the elastic
scale-up scheme, we can allocate a 100 node cluster from Cloud to analyze the

1 In database context, database systems employing shared-memory and shared-disk
architectures are also called parallel database systems. In this paper, we only cover
shared-nothing parallel database systems since Cloud as of now is mostly deployed
on a large shared-nothing cluster.
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1TB dataset and shrink down the cluster to 10 nodes for processing the 100GB
dataset. Suppose the data processing system is linearly scaled-up, the two tasks
will be completed in roughly the same time. Thus, the elastic scale-up capability
along with the pay-as-you-go business model results in a high performance/price
ratio.

The main drawback of parallel database systems is that they are not able
to exploit the built-in elasticity feature (which is deemed to be conducive for
startups, small and medium sized businesses) of the Cloud. Parallel database
systems are mainly designed and optimized for a cluster with a fixed or fairly
static number of nodes. Growing up and shrinking down the cluster requires
a deliberate plan (often conducted by a DBA) to migrate data from existing
configuration to the new one. This data migration process is quite expensive as
it often causes the service to be unavailable during migration and thus is avoided
in most production systems. The inflexibility for growing up and shrinking down
clusters on the fly affect parallel database systems’ elasticity and their suitability
for pay-as-you-go business model. Another problem of parallel database systems
is their degree of fault tolerance. Historically, it is assumed that node failure
is more of an exception than a common case, and therefore only transaction
level fault tolerance is often provided. When a node fails during the execution
of a query, the entire query must be restarted. As argued in [8], the restarting
query strategy may cause parallel database systems not being able to process
long running queries on clusters with thousands of nodes, since in these clusters
hardware failures are common rather than exceptional. Based on this analysis,
we argue that parallel database systems are best suitable for applications whose
resource requirements are relatively static rather than dynamic. However, many
design principles of parallel database systems could form the foundation for the
design and optimization of systems to be deployed in the Cloud. In fact, we have
started to witness the introduction of declarative query support and cost based
query processing into MapReduce-based systems.

MapReduce-based Systems MapReduce [15], developed in Google, is a pro-
gramming model and associated implementation for processing datasets on shared-
nothing clusters. This system was designed as a purely data processing system
with no built-in facilities to store data. This “pure processing engine” design is in
contrast to parallel database systems which are equipped with both processing
engine and storage engine.

Although MapReduce has been designed to be independent of the underly-
ing data storage system, the system makes at least one assumption about the
underlying storage system, namely the data stored in the storage system are
already (or can be) horizontally partitioned and the analytical program can be
independently launched on each data split 2.

2 In this perspective, MapReduce actually shares the same key techniques with parallel
database systems for parallel data processing: 1) horizontal data partitioning and 2)
partitioned execution.
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The MapReduce programming model consists of two user specified functions:
map() and reduce(). Without loss of generality, we assume that the MapRe-
duce system is used to analyze data stored in a distributed file system such
as GFS and HDFS. To launch a MapReduce job, the MapReduce runtime sys-
tem first collects partitioning information of the input dataset by querying the
metadata of the input files from the distributed file system. The runtime sys-
tem subsequently creates M map tasks for the input, one for each partition and
assigned those map tasks to the available nodes. The node which is assigned a
map task reads contents from the corresponding input partition and parses the
contents into key/value pairs. Then, it applies the user-specified map function
on each key/value pair and produces a list of key/value pairs. The intermediate
key/value pairs are further partitioned into R regions in terms of the key and
are materialized as local files on the node. Next, the runtime system collects all
intermediate results and merges them into R files (intermediate results in the
same region are merged together), and launches R reduce tasks to process the
files, one for each file. Each reduce task invokes user specified reduce function
on each key/value list and produces the final answer.

Compared to the parallel database systems, MapReduce system has a few
advantages: 1) MapReduce is a pure data processing engine and is indepen-
dent of the underlying storage system. This storage independence design enables
MapReduce and the storage system to be scaled up independently and thus goes
well with the pay-as-you-go business model. The nice property of the Cloud is
that it offers different pricing schemes for different grades and types of services.
For example, the storage service (e.g., Amazon S3) is charged by per GB per
month usage while the computing service (e.g., Amazon EC2) is charged by
per node per hour usage. By enabling independent scaling of the storage and
processing engine, MapReduce allows the user to minimize the cost on IT in-
frastructure by choosing the most economical pricing schemes. 2) Map tasks
and reduce tasks are assigned to available nodes on demand and the number
of tasks (map or reduce) is independent of the number of nodes in the cluster.
This runtime scheduling strategy makes MapReduce to fully unleash the power
of elasticity of the Cloud. Users can dynamically increase and decrease the size
of the cluster by allocating nodes from or releasing nodes to the Cloud. The
runtime system will manage and schedule the available nodes to perform map
or reduce tasks without interrupting the running jobs. 3) Map tasks and reduce
tasks are independently executed from each other. There are however communi-
cations or dependencies between map tasks or reduce tasks. This design makes
MapReduce to be highly resilient to node failures. When a single node fails dur-
ing the data processing, only map tasks and reduce tasks on the failed node need
to be restarted; the whole job needs not to be restarted.

Even though MapReduce has many advantages, it has been noted that achiev-
ing those capabilities comes with a potentially large performance penalty. Bench-
marking in [31] shows that Hadoop, an open source MapReduce implementation,
is slower than two state of the art parallel database systems by a factor of 3.1 to
6.5 on a variety of analytical tasks and that the large performance gap between
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MapReduce and parallel databases may offset all the benefits that MapReduce
provides. However, we showed that by properly choosing the implementation
strategies for various key operations, the performance of MapReduce can be im-
proved by a factor of 2.5 to 3.5 for the same benchmark [23]. The results show
that there is a large space for MapReduce to improve its performance. Based on
our study, we conclude that MapReduce system is best suitable for large-scale
deployment (thousands of nodes) and data analytical applications which demand
dynamic resource allocation. The system has not been designed to support real
time updates and search as in conventional database systems.

Scalable Data Management Systems Providing scalable data management
has posed a grand challenge to database community for more than two decades.
Distributed database systems were the first general solution that is able to deal
with large datasets stored on distributed shared-nothing environment. However,
these systems could not scale beyond a few machines as the performance degrades
dramatically due to synchronization overhead and partial failures. Therefore it
is not surprising that modern scalable Cloud storage systems, such as BigTable
[12], Pnuts [13], Dynamo [16], and Cassandra [25], abandon most of the de-
signs advocated by distributed database systems and adopt different solutions
to achieve the desired scalability. The techniques widely adopted by these scal-
able storage systems are: 1) employ simple data model 2) separate meta data
and application data 3) relax consistency requirements.

Simple Data Model. Different from distributed databases, most of current
scalable Cloud storage systems adopt a much simpler data model in which each
record is identified by a unique key and the atomicity guarantee is only supported
at the single record level. Foreign key or other cross records relationship are not
supported. Restricting data access to single records significantly enhance the
scalability of system since all data manipulation will only occurred in a single
machine, i.e., no distributed transaction overhead is introduced.

Separation of Meta Data and Application Data. A scalable Cloud data man-
agement system needs to maintain two types of information: meta data and
application data. Meta data is the information that is required for system man-
agement. Examples of meta data are the mappings of a data partition to machine
nodes in the cluster and to its replicas. Application data is the business data
that users stored in the system. These systems make a separation between meta
data and application data since each type of data has different consistency re-
quirements. In order for the system to operate correctly, the meta data must
always be consistent and up-to-date. However, the consistency requirement of
application data is entirely dependent on the applications and varies from ap-
plication to application. As a result, Cloud data management systems employ
different solutions to manage meta data and application data in order to achieve
scalability.

Relaxed Consistency. Cloud data management systems replicate application
data for availability. This design, however, introduces non-negligible overhead
of synchronization of all replicas during updating data. To reduce the synchro-
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nization overhead, relaxed consistency model like eventual consistency (e.g. in
Dynamo [16]) and timeline consistency (e.g. in Pnuts [13]) are widely adopted.
The detailed comparison between current scalable cloud data serving systems on
their supported consistency models and other aspects such as partitioning and
replication strategies can be found in [32].

2.2 How to Manage the Cloud - The Essential of Cloud

In this section, we describe the desired properties of a Cloud data management
system and our design consideration.

Scalability There is a trend that the analytical data size is growing exponen-
tially. As an example, Facebook reports that 15TB new data are inserted into
their data warehouse every day, and a huge amount of the scientific data such as
mechanobiological data and images is generated each day due to the advance-
ment in X-ray technologies and data collection tools (as noted in the second
keynote [28] at VLDB 2010). To process such huge amount of data within a
reasonable time, a large number of compute nodes are required. Therefore, the
data processing system must be able to deploy on very large clusters (hundreds
or even thousands of nodes) without much problems.

Elasticity As we argued previously, elasticity is an invaluable feature provided
by Cloud. The ability of scaling resource requirements up and down on demand
results in a huge cost saving and is extremely attractive to any operations when
the cost is a concern. To unleash the power of Cloud, the data processing sys-
tem should be able to transparently manage and utilize the elastic computing
resources. The system should allow users to add and remove compute nodes on
the fly. Ideally, to speed up the data processing, one can simply add more nodes
to the cluster and the newly added nodes can be utilized by the data processing
system immediately (i.e., the startup cost is negligible). Furthermore, when the
workload is light, one can release some nodes back to the Cloud and the clus-
ter shrinking process will not affect other running jobs such as causing them to
abort.

Fault Tolerance Cloud is often built on a large number of low-end, unreliable
commodity machines. As a result, hardware failure is fairly common rather than
exceptional. The Cloud data processing system should be able to highly resilient
to node failures during data processing. Single or even a large number of node
failures should not cause the data processing system to restart the running jobs.

Performance A common consensus in MapReduce community is that scala-
bility can compensate for the performance. In principle, one can allocate more
nodes from the Cloud to speed up the data processing. However this solution is
not cost efficient in a pay-as-you-go environment and may potentially offset the
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benefit of elasticity. To maximize the cost saving, the data processing system
indeed needs to be efficient.

Flexibility It is well accepted that the Cloud data processing system is required
to support various kinds of data analytical tasks (e.g., relational queries, data
mining, text processing). Therefore, the programming model of the Cloud data
processing system must be flexible and yet expressive. It should enable users
to easily express any kinds of data analytical logic. SQL is routinely criticized
for its insufficient expressiveness and thus is not ideal for Cloud data processing
systems. The MapReduce programming model is deemed much more flexible.
The map() and reduce() functions can be used to express any kinds of logic.
The problem of the programming model is that MapReduce has no built-in
facilities to manage a MapReduce pipeline. Due to its simple programming model
(only two functions are involved), all real world data analytical tasks must be
expressed as a set of MapReduce jobs (called a MapReduce pipeline). Hence,
the synchronization and management of jobs in the MapReduce pipeline poses
a challenge to the user.

3 epiC, elastic power-aware data intensive Cloud system

A typical web data management system has to process real-time updates and
queries by individual users, and as well as periodical large scale analytical jobs.
While such operations take place in the same domain, the transactional and peri-
odical analytical processing have been handled differently using different systems
or even hardware. Such a system-level separation naturally leads to the prob-
lems of data freshness and data storage redundancy. To alleviate such problems,
we have designed and implemented epiC, an elastic power-aware data-intensive
Cloud platform for supporting both online analytical processing (OLAP) and
online transaction processing (OLTP).

Figure 1 shows the architecture of epiC system, which is composed of three
main modules, the Query Interface, the Elastic Execution Engine (E3)
and the Elastic Storage System (ES2). The query interface provides a SQL-
like language for up-level applications. It compiles the SQL query into a set of
analytical jobs (for OLAP query) or a series of read and write operations (for
OLTP query). E3, a sub-system of epiC, is designed to efficiently perform large
scale analytical jobs on the Cloud. ES2 is the underlying storage system, which
is designed to provide an always-on data service. In what follows, we shall briefly
introduce the implementation of each module.

3.1 Query Interface and Optimization

Some systems, such as MapReduce [15] and its open source Hadoop [1], provide a
flexible programming model by exposing some primitive functions (e.g. map and
reduce). Users can implement their processing logic via customized functions.
This design facilitates the development of applications, but does not provide an
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Fig. 1. Architecture of epiC

interface for the end-users, who are more familiar with SQL. In epiC, we provide
a SQL-like language (in fact, a subset of SQL) as our query language. Currently,
non-nested queries and nested queries in the where clause are supported. DBMS
users can adapt to epiC without much difficulty.

Inside the query interface module, two controllers, namely OLAP controller
and OLTP controller, are implemented to handle different types of queries and
monitor the processing status. After a query is submitted to epiC, the query
interface first checks whether the query is an analytical query or a simple select
query. In the former case, the query is forwarded to the OLAP controller. It
transforms the query into a set of E3 jobs. The OLAP controller interacts with
E3 to process the jobs. Normally, the jobs are processed by E3 one by one. A
specific processing order of jobs is actually a unique query plan. The OLAP con-
troller employs a cost based optimizer to generate a low-cost plan. Specifically,
histograms are built and maintained in underlying ES2 system by running some
E3 jobs periodically. The OLAP controller queries the metadata catalog of the
ES2 to retrieve the histograms, which can be used to estimate the cost of a spe-
cific E3 job. We iteratively permute the processing order of the jobs and estimate
the cost of each permutation. The one with lowest cost is then selected as the
query plan. Based on the optimized query plan, the OLAP controller submits
jobs to E3. For each job, the OLAP controller defines the input and output (both
are tables in ES2). The processing functions of E3 are auto-generated by the con-
troller. After E3 completes a job, the controller collects the result information
and returns to the user if necessary.

If the query is a simple select query, the OLTP controller will take over the
query. It first checks the metadata catalog of ES2 to get histogram and index
information. Based on the histograms, it can estimate the number of involved
records. Then, the OLTP controller selects a proper access method (e.g. index
lookup, random read or scan), which reduces the total number of network and
disk I/Os. Finally, the OLTP controller calls the data access interface of ES2
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to perform the operations. For more complex queries, the OLTP controller will
make use of histograms and other statistical information, available join strategies
and system loads to generate an efficient query plan, and execute it as in OLAP
query processing. Both OLAP and OLTP controller rely on the underlying ES2

system to provide transactional support. Namely, we implement the transaction
mechanism in the storage level. Detailed descriptions can be found in the Section
3.3.

Besides above optimization, we also consider multi-query optimizations in
both OLAP and OLTP controller. When multiple queries involve the same table,
instead of scanning it repeatedly, we group the queries together and process them
in a batch. This strategy can significantly improve the performance. A similar
approach on MapReduce is adopted in [29].

In addition, since MapReduce [15] has not been designed for generic data
analytical workload, most cloud-based query processing systems, e.g. Hive [35],
may translate a query into a long chain of MapReduce jobs without optimization,
which incurs a significant overhead of startup latency and intermediate results
I/Os. Further, this multi-stage process makes it more difficult to locate per-
formance bottlenecks, limiting the potential use of self-tuning techniques. The
OLAP controller can exploit data locality, as a result of offline low-cost data in-
dexing, to efficiently perform complex relational operations such as n-way joins.
The detailed implementation of these optimization techniques and experimental
results are presented in our technical report [21].

3.2 E3: Elastic Execution Engine

To perform the data analytical tasks (jobs), OLAP controller submits the jobs to
the master node of E3. The master node then distributes the jobs to all available
nodes for parallel execution. Figure 2 describes the overall architecture of E3.

�...

jobs

tasks

master node

compute node

Fig. 2. Architecture of E3

Like MapReduce [15], E3 is also a pure data processing system and is inde-
pendent of the underlying storage systems it operates on. We only assume that
the input data can be partitioned into even sized data chunks and the underlying
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storage system can provide necessary information for the data partitions. This
design should enable users to take full advantage of the flexible pricing schemes
offered by Cloud providers and thereby minimize their operational costs.

Users may choose to write data analytical tasks in Java 3. The core ab-
stractions of E3 are implemented as Java classes and can be used in any Java
programs. The goal of this design is twofolds: 1) By choosing a general program-
ming language such as Java for writing data analytical tasks, E3 enables users
to express arbitrarily complex data processing logic; 2) As E3 jobs are normal
Java programs, users can utilize conventional IDE and profiling tools to debug
and tune the jobs. Compared to the approach of embedding SQL to a general
programming language such as Java for data processing (commonly adopted by
major parallel database systems), this design should significantly increase the
productivity of development as it is difficult to provide a powerful tool to debug
and profile complex SQL. If queries are submitted via the epiC’s query interface,
the query interface will automatically generate the Java codes for each job based
on predefined code templates.

E3 provides three core abstractions for users to specify data processing logics.
The first abstraction is Table<K,V> which represents the input dataset as a
key/value data structure. By default, a table is unordered. There is another class
OrderedTable<K,V> represents an ordered table. Tables can be loaded from any
kinds of data sources (e.g., HDFS or databases). An example of loading an input
dataset from HDFS looks like follows 4:

Table<Integer,String> input = load("/root/data", splitter, reader)

In this example, the data are loaded from HDFS to the table object input.
E3 implements the load() function using deferred evaluation. When the code
is executed, nothing happens. The system just initializes a Table object and
populates the object with necessary metadata. The actual data retrieval only
occurs when the data is being processed. The splitter and reader specify how
to split and read data from a given data partition respectively.

The way to process the data in a Table is to call Table.do() function. The
simplest version of this function requires two parameters: grouper and processor.
The grouper specifies a grouping algorithm which groups records according to
the key. The processor specifies the logic to process each group of records that
the grouper produces. Typically, users only need to specify processor as E3 pro-
vides many built-in groupers. However, if the built-in groupers are not sufficient,
users can introduce new groupers by implementing the Grouper interface. The
following code describes how to apply a filter operation on each record of the
input table:

Table<Integer, String> result = input.do(SingleRecGrouper(), Filter())

3 For standard SQL query, users are suggested to use epiC’s query interface, unless
they try to apply special optimization techniques for the query.

4 For clarity, the sample code is an abstraction of the real code
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In the above code, SingleRecGrouper() is a grouper which places each
record of input in a separate group. Filter() denotes the filtering operation
that will be applied to each group of records. In E3, the grouper is the only
primitive that will run in parallel. This design simplifies the implementation
significantly. Furthermore, E3 enforces groupers to be state-less. Therefore, par-
allelizing groupers is straightforward. The runtime system just launches several
copies of the same grouper code on the slave nodes and runs them in parallel.
By default, the number of processes for launching groupers is automatically de-
termined by the runtime system based on the input data size. Users, however,
can override the default behavior by providing a specific task allocation strat-
egy. This is accomplished by passing a TaskAlloc object as the final argument
of Table.do().

The Table.do() function returns a new table object as the result. Users
can invoke Table.do() on the resulting table for further processing if necessary.
There is no limitation on the invocation chain. User can even call Table.do()
in a loop. This is a preferred way to implement iterative data mining algorithms
(e.g., k-means) in E3.

The execution of Table.do() also follows deferred evaluation strategy. In
each invocation, the runtime system just records necessary information in inter-
nal data structures. The whole job is submitted to the master node for execution
when the user calls E3Job.run(). The runtime system merges all the Table.do()
calls, analyzes and optimizes the call graphs and finally produces the minimum
number of groupers to execute.

Compared to MapReduce [15], E3 provides built-in support for specifying and
optimizing data processing flows. Our experiences show that specifying complex
data processing flows using E3 is significantly easier than specifying the same
logic using a MapReduce chain.

3.3 ES2: Elastic Storage System

This section presents the design of ES2, the Elastic Storage System of epiC. The
architecture of ES2 comprises of three major modules, as illustrated Figure 3,
Data Import Control, Data Access Control and Physical Storage. Here
we will provide a brief description of each module. For more implementation
details of ES2 and experimental results, please refer to our technical report [10].

In ES2, as in conventional database systems, data can be fed into the system
via the OLTP operations which insert or update specific data records or via
the data import control module which supports efficient data bulk-loading
from external data sources. The data could be loaded from various data sources
such as databases stored in conventional DBMSs, plain or structured data files,
and the intermediate data generated by other Cloud applications. The data
import control module consists of two sub-components: import manager and
write cache. The import manager implements different protocols to work with
the various types of data sources. The write cache resides in memory and is used
for buffering the imported data during the bulk-loading process. The data in the
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buffer will be eventually flushed to the physical storage when the write cache is
full.

The physical storage module contains three main components: distributed
file system (DFS), meta-data catalog and distributed indexing. The DFS is where
the imported data are actually stored. The meta-data catalog maintains both
meta information about the tables in the storage and various fine-grained statis-
tics information required by the data access control module.

The data access control module is responsible for performing data ac-
cess requests from the OLTP/OLAP controller and the E3 engine. It has two
sub-components: data access interface and data manipulator. The data access
interface parses the data access requests into the corresponding internal repre-
sentations that the data manipulator operates on and chooses a near optimal
data access plan such as parallel sequential scan or index scan or hybrid for
locating and operating on the target data stored in the physical storage module.

Now, we briefly introduce the implementation of ES2 in various aspects in-
cluding data model, data partitioning scheme, load-adaptive replication, trans-
action management and secondary indexes.

Data Model. We adopt the widely accepted relational data model. Al-
though this model has been said to be an overkill in Cloud data management
and is replaced by the more flexible key-value data model for systems such as
BigTable [12], Dynamo [16] and Cassandra [25], we observe that all these systems
are transaction-oriented with heavy emphasis on the handling of OLTP queries.
On the other hand, systems that focus on ad-hoc analysis of massive data sets
(i.e., OLAP queries), including Hive [35], Pig [30] and SCOPE [11], are sticking
to the relational data model or its variants. Since we aim to provide effective
and efficient supports for both OLTP and OLAP queries and multi-tenancy in
the future, we choose the relational model for our storage system.
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Data Partitioning. ES2 has been designed to operate on a large cluster of
shared-nothing commodity machines. Consequently, ES2 employs both vertical
and horizontal data partitioning schemes. In this hybrid scheme, columns in
a table schema that are frequently accessed together in the query workload
are grouped into a column group and stored in a separate physical table. This
vertical partitioning strategy facilitates the processing of OLAP queries which
often access only a subset of columns within a logical table schema. In addition,
for each physical table corresponding to a column group, a horizontal partitioning
scheme is carefully designed based on the database workload so that transactions
which span multiple partitions are only necessary in the worst case.

Load-adaptive Replication. Cloud services need always-on (24×7) data
provision, which can be achieved via data replication. A straightforward repli-
cation approach is to replicate all data records in the system with the same
replication level. However, if the replication level is set to too high, the sys-
tem storage and the overhead to keep them consistent can be considerably high.
Additionally, the data access pattern in web applications is often skewed and
changes frequently. Therefore, we develop a two-tier load-adaptive replication
strategy to provide both data availability and load balancing function for ES2.

In this replication scheme, each data record is associated with two types of
replicas - namely secondary and slave replicas - in addition to its primary copy.
The first tier of replication consists of totally K copies of data inclusive of the
primary copy and its secondary replicas. The objective of this replication tier is
to facilitate the data reliability requirement (K is typically set to small values).
At the second tier, frequently accessed records are associated with additional
replicas, called slave replicas, as a way to facilitate load balancing for the “hot”
queried data. When a primary copy or secondary replica faces a flash crowd
query, it will create slave replicas (which become associated with it) to help
resolve the sudden surge in the workload. The two-tier load-adaptive replication
strategy incurs much less replication costs, which include the storage cost and
consistency maintenance cost, than the approach replicating all data records at
high replication level, and it can efficiently facilitate load balancing at the same
time.

For Cloud data management service, we have to meet the service level agree-
ment (SLA) on various aspects such as service availability and response time.
Therefore, synchronous replica consistency maintenance is not suitable due to
the high latency for write operations, especially when there are storage node
failures or when storage nodes are located in distributed clouds [9]. Instead, we
employ the asynchronous replication method in ES2. In particular, the primary
copy is always updated immediately, while the update propagation to secondary
replicas can be deferred until the storage node has spare network bandwidth.
Although this optimistic replication approach guarantees low end-user latency,
it might entail other problems such as “lost updates” due to different types of
machine failures. For instance, when the primary copy crashes suddenly, there
is a possibility that the modification to this copy gets lost because the update
has not been propagated to other secondary copies. In ES2, we adopt the write-
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ahead logging scheme and devise a recovery technique to handle the problem
of “lost updates”. In this manner, ES2 guarantees that updates to the primary
copy are durable and eventually propagated to the secondary copies.

Transaction Management. In the Cloud context, the management of
transactions is a critical and broad research problem. MegaStore [7] and G-
Store [14] have started to provide transactional semantics in Cloud storages
which guarantee consistency for operations spanning multiple keys clustered in
an entity group or a key group. In [26], it has been proposed that Cloud stor-
ages can be designed as a system comprising of loosely coupled transactional
components and data components. The consistency rationing approach, which
categorizes application data into three types and devises a different consistency
treatment for each category, has been recently proposed in [24].

In ES2, allowing OLAP and OLTP queries to operate within the same stor-
age system further complicates the problem of transaction management. In our
recent study [36], we examined transaction management in distributed envi-
ronment where distributed data structures and replications are common. ES2

uses replication mainly for load balancing and data reliability requirements, and
multi-versioning transaction management technique to support both OLTP and
OLAP workloads. Consequently, the OLTP operations access the latest version
of the data, while the OLAP data analysis tasks execute on a recent consistent
snapshot of the database.

Secondary Indexes. For OLTP queries and OLAP queries with high selec-
tivities, it is not efficient to perform sequential or parallel scan on the whole table
just to retrieve a few records. However, scanning the whole table is inevitable
if query predicates do not contain attributes that have been used to horizon-
tally partition the data. To handle this problem, we support various types of
distributed secondary indexes over the data in ES2. Recently, we have proposed
two types of distributed secondary indexes for Cloud data: the distributed B+-
tree index which supports one-dimensional range queries [39] and the distributed
multi-dimensional index which supports multi-dimensional range queries and
nearest neighbor (NN) queries [38]. Both approaches share the common key idea
of two-level indexing, whereby P2P routing overlays are used to index and guide
the search based on the index information published by local storage nodes based
on their local indexes.

Different P2P overlays are proposed to handle different types of queries. [37]
gives a survey of existing P2P overlays. In reality, we cannot afford the cost of
maintaining multiple overlays in the cluster for different types of distributed in-
dexes. Consequently, we develop a unified indexing framework, which provides an
abstract template overlay based on the Cayley graph model [27]. Based on this
framework, the structure and behaviors of different overlays can be customized
and mapped onto the template. In current implementation, we have integrated
the structures of Chord [34], CAN [33] and BATON [22] in the framework. More
P2P overlays will be included in the future.
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4 Conclusion

Cloud computing is the next generation computation model. It hides the un-
derlying implementation details and provides a resizable resource pool to users,
which simplifies the deployment of large-scale applications and services. In this
paper, we have reviewed some previous work on building scalable Cloud systems.
We have briefly analyzed the advantages and disadvantages of each design. We
have applied our background on parallel database systems and observations on
other systems to an on-going project, epiC, which aims to provide a flexible
framework for supporting various database applications. We have briefly intro-
duced its design and implementations, and we will conduct extensive system
benchmarking in the near future.
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